JP4770971B2 - Easy-adhesive polyester film for optics - Google Patents

Easy-adhesive polyester film for optics Download PDF

Info

Publication number
JP4770971B2
JP4770971B2 JP2009182048A JP2009182048A JP4770971B2 JP 4770971 B2 JP4770971 B2 JP 4770971B2 JP 2009182048 A JP2009182048 A JP 2009182048A JP 2009182048 A JP2009182048 A JP 2009182048A JP 4770971 B2 JP4770971 B2 JP 4770971B2
Authority
JP
Japan
Prior art keywords
polyester film
mass
layer
resin
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009182048A
Other languages
Japanese (ja)
Other versions
JP2011031561A (en
Inventor
晃侍 伊藤
洋平 山口
寛子 矢吹
雄一郎 山本
憲一 森
宗範 河本
直樹 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2009182048A priority Critical patent/JP4770971B2/en
Priority to PCT/JP2010/061588 priority patent/WO2011016311A1/en
Priority to CN201080034873.4A priority patent/CN102497985B/en
Priority to KR1020127004878A priority patent/KR101685733B1/en
Priority to TW099125846A priority patent/TWI411634B/en
Publication of JP2011031561A publication Critical patent/JP2011031561A/en
Application granted granted Critical
Publication of JP4770971B2 publication Critical patent/JP4770971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/166Catalysts not provided for in the groups C08G18/18 - C08G18/26
    • C08G18/168Organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/285Nitrogen containing compounds
    • C08G18/286Oximes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/255Polyesters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier

Description

本発明は、密着性と耐湿熱性に優れた光学用易接着性ポリエステルフィルムに関する。詳しくは、ディスプレイなどに主として用いられる、ハードコートフィルム、反射防止フィルム、光拡散シート、レンズシート、近赤外線遮断フィルム、透明導電性フィルム、防眩フィルムなどの光学機能性フィルムの基材として好適な光学用易接着性ポリエステルフィルムに関する。   The present invention relates to an optically easy-adhesive polyester film having excellent adhesion and heat-and-moisture resistance. Specifically, it is suitable as a base material for optical functional films such as hard coat films, antireflection films, light diffusion sheets, lens sheets, near-infrared shielding films, transparent conductive films, and antiglare films, which are mainly used for displays and the like. The present invention relates to an optically easy-adhesive polyester film.

一般に、液晶ディスプレイ(LCD)の部材として用いられる光学機能性フィルムの基材には、ポリエチレンテレフタレート(PET)、アクリル、ポリカーボネート(PC)、トリアセチルセルロース(TAC)、ポリオレフィン等からなる透明な熱可塑性樹脂フィルムが用いられている。   In general, the base material of an optical functional film used as a member of a liquid crystal display (LCD) is a transparent thermoplastic made of polyethylene terephthalate (PET), acrylic, polycarbonate (PC), triacetyl cellulose (TAC), polyolefin, or the like. A resin film is used.

前記の熱可塑性樹脂フィルムを各種光学機能性フィルムの基材として用いる場合には、各種用途に応じた機能層が積層される。例えば、液晶ディスプレイ(LCD)では、表面の傷つきを防止する保護膜(ハードコート層)、外光の映り込みを防止する反射防止層(AR層)、光の集光や拡散に用いられるプリズム層、輝度を向上する光拡散層等の機能層が挙げられる。このような基材の中でも、特に、ポリエステルフィルムは、優れた透明性、寸法安定性、耐薬品性に優れ、比較的安価であるため各種光学機能性フィルムの基材として広く使用されている。   When using the thermoplastic resin film as a base material for various optical functional films, functional layers corresponding to various applications are laminated. For example, in a liquid crystal display (LCD), a protective film (hard coat layer) that prevents scratches on the surface, an antireflection layer (AR layer) that prevents reflection of external light, and a prism layer that is used to collect and diffuse light And a functional layer such as a light diffusion layer for improving luminance. Among such substrates, particularly polyester films are widely used as substrates for various optical functional films because they are excellent in transparency, dimensional stability and chemical resistance and are relatively inexpensive.

一般に、二軸配向ポリエステルフィルムや二軸配向ポリアミドフィルムのような二軸配向熱可塑性フィルムの場合、フィルム表面は高度に結晶配向しているため、各種塗料、接着剤、インキなどとの密着性が乏しいという欠点がある。このため、従来から二軸配向ポリエステルフィルム表面に種々の方法で易接着性を付与する方法が提案されてきた。   In general, in the case of a biaxially oriented thermoplastic film such as a biaxially oriented polyester film or a biaxially oriented polyamide film, the film surface is highly crystallized, so it has good adhesion to various paints, adhesives, inks, etc. There is a disadvantage of being scarce. For this reason, methods for imparting easy adhesion to the biaxially oriented polyester film surface by various methods have been proposed.

例えば、基材のポリエステルフィルムの表面に、ポリエステル、アクリル、ポリウレタン、アクリルグラフトポリエステルなどの各種樹脂を主たる構成成分とする塗布層を設けることにより、基材フィルムに易接着性を付与する方法が一般的に知られている。この塗布法の中でも、結晶配向が完了する前のポリエステルフィルムに、前記樹脂の溶液または樹脂を分散媒で分散させた分散体を含有する水性塗布液を基材フィルムに塗工し、乾燥後、少なくとも一軸方向に延伸し、次いで熱処理を施して、ポリエステルフィルムの配向を完了させる方法(いわゆる、インラインコート法)や、ポリエステルフィルムの製造後、該フィルムに水系または溶剤系の塗布液を塗布後、乾燥する方法(いわゆる、オフラインコート法)が工業的に実施されている。   For example, a method of providing easy adhesion to a base film by providing a coating layer mainly composed of various resins such as polyester, acrylic, polyurethane, and acrylic graft polyester on the surface of the base polyester film is generally used. Known. Among these coating methods, the polyester film before the completion of crystal orientation is coated on the base film with an aqueous coating solution containing the resin solution or a dispersion in which the resin is dispersed in a dispersion medium, and after drying, Stretch at least uniaxially, then heat treatment to complete the orientation of the polyester film (so-called in-line coating method), after the production of the polyester film, after applying a water-based or solvent-based coating liquid to the film, A drying method (so-called off-line coating method) is industrially implemented.

LCD、PDP等のディスプレイや、ハードコートフィルムを部材とする携帯用機器などは、屋内、屋外を問わず種々の環境で用いられる。特に、携帯用機器では、浴室、高温多湿地域などにも耐えうる耐湿熱性が要求される場合がある。このような用途に使用される光学機能性フィルムでは、高温高湿下でも層間剥離がおきないような高い密着性が求められる。そのため下記特許文献では、塗布液にガラス転移温度の高い樹脂や架橋剤を添加し、インラインコート法による塗布層形成時に塗布層樹脂中に強硬な塗布層を形成させることで、耐湿熱性を付与した易接着性ポリエステルフィルムが開示されている。   A display such as an LCD or PDP, or a portable device using a hard coat film as a member is used in various environments regardless of indoors or outdoors. In particular, portable devices may require moisture and heat resistance that can withstand a bathroom, a hot and humid area, and the like. The optical functional film used for such applications is required to have high adhesion such that delamination does not occur even under high temperature and high humidity. Therefore, in the following patent document, a resin having a high glass transition temperature and a crosslinking agent are added to the coating liquid, and a hard coating layer is formed in the coating layer resin when the coating layer is formed by an in-line coating method, thereby imparting moisture and heat resistance. An easily adhesive polyester film is disclosed.

特開2000−141574号公報JP 2000-141574 A 特許第3900191号公報Japanese Patent No. 3900191 特開2007−253512号公報JP 2007-253512 A

地球環境負荷の低減のためディスプレイを有する家電製品などで、従来以上の長寿命化が期待されている。そのため、部材として用いられる光学機能性フィルムにおいても、高温高湿下でも長期間、密着性を保持することが必要であると考えられた。しかしながら、上記特許文献に開示されるような易接着性フィルムは、当初は良好な密着性を示すものの、高温高湿下の長期間の使用においては密着強度の低下は避けられないものであった。このような密着性の低下のため、初期性能が長期間維持しないという問題があった。   Longer life expectancy is expected for home appliances with a display to reduce the global environmental impact. Therefore, it was considered that the optical functional film used as a member also needs to maintain adhesiveness for a long time even under high temperature and high humidity. However, the easy-adhesion film as disclosed in the above-mentioned patent document shows good adhesion at first, but a decrease in adhesion strength is inevitable in long-term use under high temperature and high humidity. . Due to such a decrease in adhesion, there is a problem that the initial performance is not maintained for a long time.

加えて、光学設計の精密化に伴い、光学機能層を構成する光硬化型樹脂として屈折率や強度の異なる多様な樹脂組成物種が用いられるようになりつつある。しかしながら、上記易接着性フィルムの中には特定の樹脂組成物種に対しては高い密着性は有するものの、多様な光硬化型樹脂に対しても同程度の密着性を示す汎用性の高い易接着性フィルムが求められている。   In addition, along with the refinement of optical design, various resin composition types having different refractive indices and strengths are being used as the photocurable resin constituting the optical functional layer. However, although the above-mentioned easy-adhesive film has high adhesion to a specific resin composition type, it is highly versatile and easy-to-adhere that exhibits the same degree of adhesion to various photocurable resins. There is a need for conductive films.

本発明は上記課題に鑑み、従来避けられないと考えられてきた高温高湿下における密着性の低下をほとんど引き起こさず、多様な光学樹脂組成物に対しても良好な密着性を有する光学用易接着性ポリエステルフィルムを提供するものである。   In view of the above problems, the present invention hardly causes a decrease in adhesion under high temperature and high humidity, which has been considered to be unavoidable in the past, and has good adhesion to various optical resin compositions. An adhesive polyester film is provided.

なお、本発明で言う高温高湿下での密着性とは光硬化型樹脂層などを積層した後80℃、95%RH、48時間の環境下に置き、隙間間隔2mmのカッターガイドを用いて、光硬化型樹脂層を貫通して基材フィルムに達する100個のマス目状の切り傷を光硬化型樹脂層面につけ、次いで、セロハン粘着テープをマス目状の切り傷面に貼り付け、消しゴムでこすって完全に密着させ、同一箇所を、勢いよく5回引きはがした時の密着性を意味し、一般に用いられるJIS K5600−5−6記載の評価方法より厳しい判定基準における密着性であり、本発明は、このような高温高湿下での密着性が初期に示す密着性と同等の密着性を示すことが課題である。   In the present invention, the adhesiveness under high temperature and high humidity refers to the use of a cutter guide having a clearance of 2 mm after laminating a photocurable resin layer and placing it in an environment of 80 ° C., 95% RH, 48 hours. Then, 100 grid-shaped cuts that penetrate the photocurable resin layer and reach the base film are made on the surface of the photocurable resin layer, and then a cellophane adhesive tape is applied to the grid-shaped cut surface and rubbed with an eraser. It means the adhesion when the same part is peeled off 5 times vigorously, and the adhesion is based on stricter criteria than the evaluation method described in JIS K5600-5-6, which is generally used. An object of the present invention is to exhibit an adhesiveness equivalent to the initial adhesiveness under such high temperature and high humidity.

本発明者は上記課題を解決するため鋭意検討を行った結果、少なくとも片面に塗布層を有するポリエステルフィルムであって、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂と架橋剤を主成分とし、赤外分光スペクトルにおいて脂肪族系ポリカーボネート成分由来の1460cm−1付近の吸光度(A1460)とウレタン成分由来の1530cm−1付近の吸光度(A1530)との比率(A1460/A1530)が0.40〜1.55である塗布層を用いることにより、高温高湿下での密着性が向上することを見出し、本願発明に至ったものである。 As a result of diligent studies to solve the above problems, the present inventor is a polyester film having an application layer on at least one surface, and mainly comprises a urethane resin having an aliphatic polycarbonate polyol as a constituent component and a crosslinking agent, infrared aliphatic polycarbonate component derived from 1460 cm -1 vicinity of absorbance in the spectrum ratio of (a 1460) and 1530 cm -1 near the absorbance derived from urethane component with (a 1530) (a 1460 / a 1530) is 0. It has been found that the adhesion under high temperature and high humidity is improved by using a coating layer of 40 to 1.55, and the present invention has been achieved.

すなわち、前記の課題は、以下の解決手段により達成することができる。
(1)少なくとも片面にインラインコート法により形成された塗布層を有するポリエステルフィルムであって、前記塗布層が、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂と架橋剤を主成分とし、前記塗布層の赤外分光スペクトルにおいて脂肪族系ポリカーボネート成分由来の1460cm−1付近の吸光度(A1460)とウレタン成分由来の1530cm−1付近の吸光度(A1530)との比率(A1460/A1530)が0.40〜1.55であることを特徴とする光学用易接着性ポリエステルフィルム。
(2)前記架橋剤が、メラミン系架橋剤、イソシアネート系架橋剤、カルボジイミド系架橋剤、オキサゾリン系架橋剤から選ばれた少なくとも1種の架橋剤であることを特徴とする前記光学用易接着性ポリエステルフィルム。
(3)前記塗布層中の脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂と架橋剤の質量比(ウレタン樹脂/架橋剤)が1/9〜9/1である、前記光学用易接着性ポリエステルフィルム。
(4)ポリエステルフィルムのヘイズが2.5%以下である、前記光学用易接着性ポリエステルフィルム。
(5)前記塗布層の乾燥後塗布量が0.02〜0.5g/m である、前記光学用易接着性ポリエステルフィルム。
(6)前記ウレタン樹脂が、脂肪族ポリカーボネートジオールと、ポリイソシアネートと、鎖延長剤を構成成分として含み、脂肪族ポリカーボネートジオールの数平均分子量が1500〜4000である、前記光学用易接着性ポリエステルフィルム。
(7)前記ウレタン樹脂が、脂肪族ポリカーボネートジオールと、ポリイソシアネートと、鎖延長剤を構成成分として含み、鎖延長剤が炭素数4〜10の脂肪族系ジオールもしくは炭素数4〜10の脂肪族系ジアミンである、前記光学用易接着性ポリエステルフィルム。
(8)前記ウレタン樹脂が、構成成分としてカルボン酸基もしくはカルボン酸塩基を有するポリオールを全ポリイソシアネート中3〜60モル%含む、前記光学用易接着性ポリエステルフィルム。
(9)前記ウレタン樹脂のカラス転移点温度が0℃未満である、前記光学用易接着性ポリエステルフィルム。
(10)前記塗布層が、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂と架橋剤と粒子と界面活性剤からなる、前記光学用易接着性ポリエステルフィルム。
11)前記光学用易接着性ポリエステルフィルムの前記塗布層に、ハードコート層、光拡散層、レンズ層、電磁波吸収層、近赤外線遮断層、透明導電層から選択される少なくとも1層の光学機能層を積層してなる光学用積層ポリエステルフィルム。
(12)前記光学機能層がアクリル系硬化樹脂からなる、前記光学用積層ポリエステルフィルム。
13)前記光学用易接着性ポリエステルフィルムを巻き取ってなる光学用易接着性ポリエステルフィルムロール。
That is, the said subject can be achieved by the following solution means.
(1) A polyester film having a coating layer formed on at least one surface by an in- line coating method , wherein the coating layer is mainly composed of a urethane resin having an aliphatic polycarbonate polyol as a constituent component and a crosslinking agent, and the coating. The ratio (A 1460 / A 1530 ) of the absorbance (A 1460 ) near 1460 cm −1 derived from the aliphatic polycarbonate component to the absorbance (A 1530 ) near 1530 cm −1 derived from the urethane component in the infrared spectrum of the layer An easily adhesive polyester film for optics, which is 0.40 to 1.55.
(2) The easy adhesion for optics, wherein the crosslinking agent is at least one crosslinking agent selected from a melamine crosslinking agent, an isocyanate crosslinking agent, a carbodiimide crosslinking agent, and an oxazoline crosslinking agent. Polyester film.
(3) The optical easy-adhesiveness, wherein a mass ratio of urethane resin and crosslinking agent (urethane resin / crosslinking agent) comprising aliphatic polycarbonate polyol as a constituent component in the coating layer is 1/9 to 9/1. Polyester film.
(4) The said easily adhesive polyester film for optics whose haze of a polyester film is 2.5% or less.
(5) The above-mentioned easily adhesive polyester film for optics, wherein the coating amount after drying of the coating layer is 0.02 to 0.5 g / m 2 .
(6) The optically easily adhesive polyester film, wherein the urethane resin contains an aliphatic polycarbonate diol, a polyisocyanate, and a chain extender as components, and the number average molecular weight of the aliphatic polycarbonate diol is 1500 to 4000. .
(7) The urethane resin contains an aliphatic polycarbonate diol, a polyisocyanate, and a chain extender as components, and the chain extender is an aliphatic diol having 4 to 10 carbon atoms or an aliphatic having 4 to 10 carbon atoms. The easily adhesive polyester film for optics, which is a diamine.
(8) The said easily adhesive polyester film for optics in which the said urethane resin contains 3-60 mol% of polyol which has a carboxylic acid group or a carboxylate group as a structural component in all the polyisocyanates.
(9) The easily adhesive polyester film for optics, wherein the crow transition temperature of the urethane resin is less than 0 ° C.
(10) The above-mentioned easily adhesive polyester film for optics, wherein the coating layer comprises a urethane resin having an aliphatic polycarbonate polyol as a constituent component, a crosslinking agent, particles, and a surfactant.
( 11 ) An optical function of at least one layer selected from a hard coat layer, a light diffusion layer, a lens layer, an electromagnetic wave absorption layer, a near-infrared shielding layer, and a transparent conductive layer on the coating layer of the optically easily adhesive polyester film. An optical laminated polyester film obtained by laminating layers.
(12) The optical laminated polyester film, wherein the optical functional layer is made of an acrylic curable resin.
( 13 ) An optically easy-adhesive polyester film roll obtained by winding the optically easy-adhesive polyester film.

本発明の光学用易接着ポリエステルフィルムは多様な光学機能層との高温高湿下での密着性(耐湿熱性)に優れる。そのため、好ましい実施態様としては、上記高温、高湿処理での密着性が、当初の密着性と同等に維持される。   The easily adhesive polyester film for optics of the present invention is excellent in adhesiveness (wet heat resistance) with various optical functional layers under high temperature and high humidity. Therefore, as a preferred embodiment, the adhesion at the high temperature and high humidity treatment is maintained at the same level as the initial adhesion.

(ポリエステルフィルム)
本発明で基材を構成するポリエステル樹脂は、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリメチレンテレフタレート、および共重合成分として、例えば、ジエチレングリコール、ネオペンチルグリコール、ポリアルキレングリコールなどのジオール成分や、アジピン酸、セバチン酸、フタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸などのジカルボン酸成分などを共重合したポリエステル樹脂などを用いることができる。
(Polyester film)
The polyester resin constituting the substrate in the present invention includes polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polymethylene terephthalate, and copolymerization components such as diethylene glycol, neopentyl glycol, and polyalkylene glycol. A diol component, a polyester resin copolymerized with a dicarboxylic acid component such as adipic acid, sebacic acid, phthalic acid, isophthalic acid, or 2,6-naphthalenedicarboxylic acid can be used.

本発明で好適に用いられるポリエステル樹脂は、主に、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートの少なくとも1種を構成成分とする。これらのポリエステル樹脂の中でも、物性とコストのバランスからポリエチレンテレフタレートが最も好ましい。また、これらのポリエステルフィルムは二軸延伸することで耐薬品性、耐熱性、機械的強度などを向上させることができる。   The polyester resin suitably used in the present invention mainly contains at least one of polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate as a constituent component. Among these polyester resins, polyethylene terephthalate is most preferable from the balance between physical properties and cost. Moreover, these polyester films can improve chemical resistance, heat resistance, mechanical strength, etc. by biaxially stretching.

また、前記の二軸延伸ポリエステルフィルムは、単層であっても複層であってもかまわない。また、本発明の効果を奏する範囲内であれば、これらの各層には、必要に応じて、ポリエステル樹脂中に各種添加剤を含有させることができる。添加剤としては、例えば、酸化防止剤、耐光剤、ゲル化防止剤、有機湿潤剤、帯電防止剤、紫外線吸収剤、界面活性剤などが挙げられる。   The biaxially stretched polyester film may be a single layer or a multilayer. Moreover, as long as it exists in the range with the effect of this invention, each of these layers can contain various additives in a polyester resin as needed. Examples of the additive include an antioxidant, a light resistance agent, an antigelling agent, an organic wetting agent, an antistatic agent, an ultraviolet absorber, and a surfactant.

また、フィルムの滑り性、巻き性、耐ブロッキング性などのハンドリング性や、耐摩耗性、耐スクラッチ性などの摩耗特性を改善するために、ポリエステルフィルム中に不活性粒子を含有させる場合がある。しかしながら、本発明のフィルムは光学用部材の基材フィルムとして用いるため、高度な透明性を維持しながらハンドリング性に優れていることが要求される。具体的には、光学用部材の基材フィルムとして使用する場合、光学用易接着性ポリエステルフィルムの全光線透過率が85%以上であることが好ましく、87%以上がより好ましく、88%以上がさらに好ましく、89%以上がよりさらに好ましく、90%以上が特に好ましい。   In addition, in order to improve handling properties such as slipperiness, rollability and blocking resistance of the film, and wear characteristics such as wear resistance and scratch resistance, inert particles may be included in the polyester film. However, since the film of the present invention is used as a base film for an optical member, it is required to have excellent handling properties while maintaining high transparency. Specifically, when used as a base film for an optical member, the total light transmittance of the optically easy-adhesive polyester film is preferably 85% or more, more preferably 87% or more, and 88% or more. More preferably, 89% or more is further more preferable, and 90% or more is particularly preferable.

また、高い鮮明度のためには、基材フィルム中への不活性粒子の含有量はできるだけ少ない方が好ましい。したがって、フィルムの表層のみに粒子を含有させた多層構成にするか、あるいは、フィルム中に実質的に粒子を含有させず、塗布層にのみ微粒子を含有させることが好ましい実施態様である。   For high definition, the content of inert particles in the base film is preferably as small as possible. Therefore, it is a preferred embodiment that a multilayer structure in which particles are contained only in the surface layer of the film is used, or that the particles are substantially not contained in the film and fine particles are contained only in the coating layer.

特に、透明性の点から、ポリエステルフィルム中に不活性粒子を事実上含有させない場合は、フィルムのハンドリング性を向上させるために、無機及び/または耐熱性高分子粒子を水系塗布液中に含有させ、塗布層表面に凹凸を形成させることも好ましい。   In particular, from the viewpoint of transparency, when an inert particle is practically not contained in the polyester film, an inorganic and / or heat-resistant polymer particle is contained in the aqueous coating solution in order to improve the handleability of the film. It is also preferable to form irregularities on the surface of the coating layer.

なお、「不活性粒子が実質上含有されていない」とは、例えば、無機粒子の場合、蛍光X線分析で粒子に由来する元素を定量分析した際に、50ppm以下、好ましくは10ppm以下、最も好ましくは検出限界以下となる含有量を意味する。これは積極的に粒子を基材フィルム中に添加させなくても、外来異物由来のコンタミ成分や、原料樹脂あるいはフィルムの製造工程におけるラインや装置に付着した汚れが剥離して、フィルム中に混入する場合があるためである。   Note that “substantially no inert particles” means, for example, in the case of inorganic particles, when the element derived from the particles is quantitatively analyzed by fluorescent X-ray analysis, 50 ppm or less, preferably 10 ppm or less, Preferably, the content is below the detection limit. This means that even if particles are not actively added to the base film, contaminants derived from foreign substances and raw material resin or dirt adhering to the line or equipment in the film manufacturing process will be peeled off and mixed into the film. It is because there is a case to do.

(塗布層)
本発明の光学用易接着性ポリエステルフィルムには、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂と架橋剤を主成分とした塗布層が形成され、赤外分光法による測定で、前記塗布層の脂肪族系ポリカーボネート成分由来の1460cm−1付近の吸光度(A1460)とウレタン成分由来の1530cm−1付近の吸光度(A1530)の比率(A1460/A1530)が0.40〜1.55であることが重要である。ここで、「主成分」とは、塗布層に含まれる全固形成分中として50質量%以上、より好ましくは70質量%以上含有することを意味する。
(Coating layer)
The easily adhesive polyester film for optics of the present invention is formed with a coating layer mainly composed of a urethane resin having an aliphatic polycarbonate polyol as a constituent component and a crosslinking agent, and the coating layer is measured by infrared spectroscopy. the ratio of the aliphatic polycarbonate component derived from 1460 cm -1 vicinity of absorbance (a 1460) and 1530 cm -1 vicinity of absorbance from urethane component (a 1530) (a 1460 / a 1530) is 0.40 to 1.55 It is important that Here, the “main component” means that it is contained in an amount of 50% by mass or more, more preferably 70% by mass or more as the total solid component contained in the coating layer.

上記特許文献1〜3のように、従来の技術常識では塗布層の耐湿熱性を向上させる点からは塗布層形成においてガラス転移温度の高い樹脂や架橋構造を積極的に導入し、強硬な塗布層にすることが望ましいと考えられていた。しかし、本発明ではポリウレタン樹脂と架橋剤を組み合わせ、赤外分光法による吸光度を一定の範囲に制御することで、高温高湿熱下での密着性を向上させるという顕著な効果を見出し、本発明に至った。このような構成により、高温高湿下での密着性を向上させることの機序はよくわからないが、本発明者は次のように考えている。   As in the above Patent Documents 1 to 3, in the conventional technical common sense, from the point of improving the heat-and-moisture resistance of the coating layer, a resin or a crosslinked structure having a high glass transition temperature is positively introduced in forming the coating layer, and a strong coating layer It was considered desirable. However, in the present invention, by combining a polyurethane resin and a crosslinking agent and controlling the absorbance by infrared spectroscopy within a certain range, a remarkable effect of improving adhesion under high temperature and high humidity heat was found, and the present invention It came. Although the mechanism of improving the adhesion under high temperature and high humidity with such a configuration is not well understood, the present inventor considers as follows.

ベースフィルムに光学機能層を積層した場合、光学機能層を構成する光硬化型樹脂の硬化時の収縮や高温高湿処理時の膨潤により、光学機能層と塗布層との間に強い応力が生じる。係る積層フィルムを高温高湿下においた場合、光硬化型樹脂に含まれる溶媒による溶解または膨潤や加水分解により、塗布層の劣化が進行する。その結果、上記応力に耐え切れず、光学機能層が剥離し、密着性が低下すると考えられた。そのため、高温高湿下での密着性を高度に保持するためには、単に塗布層を強固に架橋したり、耐加水分解性を付与するだけでなく、上記応力に耐えうる柔軟性を備えることが望ましいと考えられる。しかし、単に柔軟性を有するだけでは、耐溶剤性や強度の点で問題がある。そのためこれら相反する特性を両立させることが最も望ましい。   When an optical functional layer is laminated on a base film, strong stress is generated between the optical functional layer and the coating layer due to shrinkage during curing of the photocurable resin constituting the optical functional layer and swelling during high-temperature and high-humidity treatment. . When such a laminated film is placed under high temperature and high humidity, deterioration of the coating layer proceeds due to dissolution or swelling or hydrolysis by a solvent contained in the photocurable resin. As a result, it was considered that the above-mentioned stress could not be endured, the optical functional layer was peeled off, and the adhesion was lowered. Therefore, in order to maintain a high degree of adhesion under high temperature and high humidity, the coating layer should not only be firmly cross-linked or provided with hydrolysis resistance but also be flexible enough to withstand the above stress. Is considered desirable. However, simply having flexibility is problematic in terms of solvent resistance and strength. Therefore, it is most desirable to make these conflicting characteristics compatible.

本発明では、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂と架橋剤を主成分とする塗布層であって、赤外分光法による測定される脂肪族系ポリカーボネート成分由来の1460cm−1付近の吸光度(A1460)とウレタン成分由来の1530cm−1付近の吸光度(A1530)の比率(A1460/A1530)が0.40〜1.55とすることで、上記特性を両立させるものである。すなわち、架橋剤により耐溶剤性を付与しつつ、耐加水分解性かつ柔軟性を有する脂肪族系ポリカーボネート成分と、強硬性を奏するウレタン成分とを所定の割合で共存させることで、上記特性の両立を図るものである。これにより、光硬化型樹脂の硬化時の収縮や高温高湿処理時の膨潤による応力を緩和することができるため、様々な光硬化型樹脂等で良好な密着性を得ることができ、その後の高温高湿の環境下でも、塗布層に残留した溶剤や希釈モノマーによる溶解、膨潤や加水分解などの塗布層の劣化を防止できると考えている In the present invention, the coating layer is mainly composed of a urethane resin having an aliphatic polycarbonate polyol as a constituent component and a cross-linking agent as a main component, and the coating layer is in the vicinity of 1460 cm −1 derived from an aliphatic polycarbonate component measured by infrared spectroscopy. By making the ratio (A 1460 / A 1530 ) of the absorbance (A 1460 ) and the absorbance (A 1530 ) in the vicinity of 1530 cm −1 derived from the urethane component to be 0.40 to 1.55, the above characteristics are compatible. . That is, the above-mentioned characteristics can be achieved by coexisting a predetermined amount of an aliphatic polycarbonate component having hydrolysis resistance and flexibility and a urethane component exhibiting toughness while providing solvent resistance with a crosslinking agent. Is intended. Thereby, since the stress due to the shrinkage at the time of curing of the photocurable resin and the swelling due to the swelling at the time of high temperature and high humidity treatment can be relieved, it is possible to obtain good adhesion with various photocurable resins and the like. We believe that even under high-temperature and high-humidity environments, it is possible to prevent deterioration of the coating layer, such as dissolution, swelling, and hydrolysis due to the solvent and diluent monomer remaining in the coating layer.

ここで、1460cm−1付近の吸光度(A1460)は、脂肪族系ポリカーボネート成分に含まれるメチレン基のC−H結合に特有の変角振動に由来する。よって、1460cm−1付近の吸光度(A1460)の大きさは塗布層に存在するウレタン樹脂を構成する脂肪族系ポリカーボネートポリオール成分量に依存する。一方、1530cm−1付近の吸光度(A1530)は、ウレタン成分に含まれるN−H結合に特有の変角振動に由来する。よって、1530cm−1付近の吸光度(A1530)の大きさは塗布層に存在するウレタン樹脂を構成するウレタン成分量(ウレタン結合数)に依存する。また、架橋剤としてイソシアネート系架橋剤を用いる場合、1530cm−1付近の吸光度(A1530)の大きさは塗布層に存在するウレタン樹脂と架橋剤量の総和としてのウレタン成分量(ウレタン結合数)に依存する。そのため、これらの吸光度比率(A1460/A1530)は、それぞれ異なる特性を有する両成分を特定の割合で共存していることを示すものである。本発明では、前記比率(A1460/A1530)が0.40〜1.55であるが、前記比率(A1460/A1530)の下限は好ましくは0.45であり、より好ましくは0.50である。また、前記比率(A1460/A1530)の上限は好ましくは1.50であり、より好ましくは1.40であり、さらに好ましくは1.30であり、よりさらに好ましくは1.20である。前記比率(A1460/A1530)が、0.40未満の場合は、強硬なウレタン成分が多くなりすぎ、塗布層の応力緩和が低下するため耐湿熱性が低下する。また、前記比率(A1460/A1530)が、1.55を越える場合は、柔軟な脂肪族系ポリカーボネートの脂肪族成分が多くなりすぎ、塗布層の耐溶剤性が低下するため耐湿熱性が低下する。 Here, the absorbance in the vicinity of 1460 cm −1 (A 1460 ) is derived from the bending vibration specific to the CH bond of the methylene group contained in the aliphatic polycarbonate component. Therefore, the magnitude of the absorbance (A 1460 ) near 1460 cm −1 depends on the amount of the aliphatic polycarbonate polyol component constituting the urethane resin present in the coating layer. On the other hand, the absorbance (A 1530 ) in the vicinity of 1530 cm −1 is derived from the bending vibration specific to the N—H bond contained in the urethane component. Therefore, the magnitude of the absorbance (A 1530 ) near 1530 cm −1 depends on the amount of urethane components (number of urethane bonds) constituting the urethane resin present in the coating layer. Moreover, when using an isocyanate type crosslinking agent as a crosslinking agent, the magnitude | size of the light absorbency ( A1530 ) vicinity of 1530cm < -1 > is the urethane component amount (urethane bond number) as the sum total of the urethane resin and crosslinking agent amount which exist in a coating layer. Depends on. Therefore, these absorbance ratios (A 1460 / A 1530 ) indicate that both components having different characteristics coexist in a specific ratio. In the present invention, the ratio (A 1460 / A 1530 ) is 0.40 to 1.55, but the lower limit of the ratio (A 1460 / A 1530 ) is preferably 0.45, more preferably 0.00. 50. The upper limit of the ratio (A 1460 / A 1530 ) is preferably 1.50, more preferably 1.40, still more preferably 1.30, and still more preferably 1.20. When the ratio (A 1460 / A 1530 ) is less than 0.40, the amount of the hard urethane component is excessive, and the stress relaxation of the coating layer is lowered, so that the heat and humidity resistance is lowered. Further, when the ratio (A 1460 / A 1530 ) exceeds 1.55, the aliphatic component of the flexible aliphatic polycarbonate is excessively increased, and the solvent resistance of the coating layer is lowered, so that the heat and humidity resistance is lowered. To do.

本発明は、上記態様により、レンズ層、さらに他の光学機能層との高温高湿下での密着性(耐湿熱性)を向上させることができる。さらに、本発明の構成を以下に詳細する。   According to the above aspect, the present invention can improve the adhesiveness (humidity heat resistance) with a lens layer and other optical functional layers under high temperature and high humidity. Further, the configuration of the present invention will be described in detail below.

(ウレタン樹脂)
本発明のウレタン樹脂は、構成成分として、少なくともポリオール成分、ポリイソシアネート成分を含み、さらに必要に応じて鎖延長剤を含む。本発明のウレタン樹脂は、これら構成成分が主としてウレタン結合により共重合された高分子化合物である。本発明では、ウレタン樹脂の構成成分として脂肪族系ポリカーボネートポリオールを有することを特徴とする。本発明の塗布層に脂肪族系ポリカーボネートを構成成分とするウレタン樹脂を含有させることで、耐湿熱性を向上させることができる。なお、これらウレタン樹脂の構成成分は、核磁気共鳴分析などにより特定することが可能である。
(Urethane resin)
The urethane resin of the present invention includes at least a polyol component and a polyisocyanate component as constituent components, and further includes a chain extender as necessary. The urethane resin of the present invention is a polymer compound in which these constituent components are mainly copolymerized by urethane bonds. In this invention, it has an aliphatic polycarbonate polyol as a structural component of a urethane resin. Heat-and-moisture resistance can be improved by including a urethane resin containing an aliphatic polycarbonate as a constituent component in the coating layer of the present invention. The components of these urethane resins can be specified by nuclear magnetic resonance analysis or the like.

本発明のウレタン樹脂の構成成分であるジオール成分には、耐熱、耐加水分解性に優れる脂肪族系ポリカーボネートポリオールを含有させる必要がある。本発明の光学用途においては、黄変防止の点からも脂肪族系ポリカーボネートポリオールを用いることが好ましい。   The diol component, which is a constituent component of the urethane resin of the present invention, needs to contain an aliphatic polycarbonate polyol having excellent heat resistance and hydrolysis resistance. In the optical use of the present invention, it is preferable to use an aliphatic polycarbonate polyol from the viewpoint of preventing yellowing.

脂肪族系ポリカーボネートポリオールとしては、脂肪族系ポリカーボネートジオール、脂肪族系ポリカーボネートトリオールなどが挙げられるが、好適には脂肪族系ポリカーボネートジオールを用いることができる。本発明のウレタン樹脂の構成成分である脂肪族系ポリカーボネートジオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、3−メチルー1,5−ペンタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、1,8−ノナンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノールなどのジオール類の1種または2種以上と、例えば、ジメチルカーボネート、ジフェニルカーボネート、エチレンカーボネート、ホスゲンなどのカーボネート類とを反応させることにより得られる脂肪族系ポリカーボネートジオールなどが挙げられる。脂肪族系ポリカーボネートジオールの数平均分子量としては、好ましくは1500〜4000であり、より好ましくは2000〜3000である。脂肪族系ポリカーボネートジオールの数平均分子量が小さい場合は、相対的にウレタン樹脂を構成する脂肪族系ポリカーボネート成分の比率が小さくなる。そのため、前記比率(A1460/A1530)を前述の範囲にするためには、脂肪族系ポリカーボネートジオールの数平均分子量を上記範囲で制御することが好ましい。脂肪族系ポリカーボネートジオールの数平均分子量が大きいと、脂肪族系ポリカーボネート成分由来の1460cm−1付近の吸光度(A1460)が増加し、脂肪族成分が増加してしまうため、耐溶剤性が低下し、密着性が低下する場合がある。脂肪族系ポリカーボネートジオールの数平均分子量が小さいと強硬なウレタン成分が増加し、光硬化型樹脂等の収縮、膨潤による応力を緩和できなくなり、密着性が低下する場合がある。 Examples of the aliphatic polycarbonate polyol include aliphatic polycarbonate diols and aliphatic polycarbonate triols, and aliphatic polycarbonate diols can be preferably used. Examples of the aliphatic polycarbonate diol that is a constituent component of the urethane resin of the present invention include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 3-methyl- 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,8-nonanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexane Aliphatic polycarbonate diols obtained by reacting one or more diols such as dimethanol with carbonates such as dimethyl carbonate, diphenyl carbonate, ethylene carbonate, and phosgene. It is below. The number average molecular weight of the aliphatic polycarbonate diol is preferably 1500 to 4000, and more preferably 2000 to 3000. When the number average molecular weight of the aliphatic polycarbonate diol is small, the ratio of the aliphatic polycarbonate component constituting the urethane resin is relatively small. Therefore, in order to make the ratio (A 1460 / A 1530 ) within the above range, it is preferable to control the number average molecular weight of the aliphatic polycarbonate diol within the above range. If the number average molecular weight of the aliphatic polycarbonate diol is large, the absorbance (A 1460 ) in the vicinity of 1460 cm −1 derived from the aliphatic polycarbonate component increases and the aliphatic component increases, so that the solvent resistance decreases. , The adhesion may be reduced. If the number average molecular weight of the aliphatic polycarbonate diol is small, a strong urethane component increases, and stress due to shrinkage or swelling of the photocurable resin or the like cannot be relieved, and adhesion may be lowered.

本発明のウレタン樹脂の構成成分であるポリイソシアネートとしては、例えば、キシリレンジイソシアネート等の芳香族脂肪族ジイソシアネート類、イソホロンジイソシアネート及び4,4−ジシクロヘキシルメタンジイソシアネート、1,3−ビス(イソシアネートメチル)シクロヘキサン等の脂環式ジイソシアネート類、ヘキサメチレンジイソシアネート、および2,2,4−トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート類、あるいはこれらの化合物を単一あるいは複数でトリメチロールプロパン等とあらかじめ付加させたポリイソシアネート類が挙げられる。芳香族イソシアネートを使用した場合、黄変の問題があり、高い透明性が要求される光学用としては、好ましくない場合がある。また、脂肪族系と比較して、強硬な塗膜になるため、光硬化型樹脂等の収縮、膨潤による応力を緩和できなくなり、密着性が低下する場合がある。   Examples of the polyisocyanate that is a component of the urethane resin of the present invention include aromatic aliphatic diisocyanates such as xylylene diisocyanate, isophorone diisocyanate and 4,4-dicyclohexylmethane diisocyanate, and 1,3-bis (isocyanatomethyl) cyclohexane. Such as alicyclic diisocyanates such as hexamethylene diisocyanate and aliphatic diisocyanates such as 2,2,4-trimethylhexamethylene diisocyanate; Isocyanates. When aromatic isocyanate is used, there is a problem of yellowing, which may not be preferable for optical use requiring high transparency. Moreover, since it becomes a hard coating film compared with an aliphatic type | system | group, it becomes impossible to relieve | moderate the stress by shrinkage | contraction and swelling of photocurable resin etc., and adhesiveness may fall.

前記比率(A1460/A1530)は、鎖延長剤によっても調整することができる。本発明の用いることができる。鎖延長剤としては、エチレングリコール、ジエチレングリコール、1,4−ブタンジオール、ネオペンチルグリコール及び1,6−ヘキサンジオール等のグリコール類、グリセリン、トリメチロールプロパン、およびペンタエリスリトール等の多価アルコール類、エチレンジアミン、ヘキサメチレンジアミン、およびピペラジン等のジアミン類、モノエタノールアミンおよびジエタノールアミン等のアミノアルコール類、チオジエチレングルコール等のチオジグリコール類、あるいは水が挙げられる。ただし、主鎖の短い鎖延長剤を用いると、ウレタン成分由来の1530cm−1付近の吸光度(A1530)が増し、塗布層の柔軟性が低下する場合がある。よって、鎖延長剤としては主鎖の長いものが好ましい。また、塗布層の柔軟性を付与する点では、脂肪族系で主鎖の炭素数が4〜10の長さのジオールやジアミンの鎖延長剤が好ましい。これらの点から、本発明に用いる鎖延長剤としては、1,4−ブタンジオール、1,6−ヘキサンジオール、ヘキサメチレンジアミンなどが好適である。 The ratio (A 1460 / A 1530 ) can also be adjusted by a chain extender. The present invention can be used. Chain extenders include glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol and 1,6-hexanediol, polyhydric alcohols such as glycerin, trimethylolpropane, and pentaerythritol, ethylenediamine Diamines such as hexamethylenediamine and piperazine, aminoalcohols such as monoethanolamine and diethanolamine, thiodiglycols such as thiodiethylene glycol, and water. However, when a chain extender having a short main chain is used, the absorbance (A 1530 ) in the vicinity of 1530 cm −1 derived from the urethane component increases, and the flexibility of the coating layer may decrease. Therefore, a chain extender having a long main chain is preferable. Moreover, the point which provides the softness | flexibility of an application layer has preferable the chain extender of the diol and the diamine whose length of carbon number of a main chain is 4-10. From these points, 1,4-butanediol, 1,6-hexanediol, hexamethylenediamine and the like are preferable as the chain extender used in the present invention.

本発明の塗布層は、水系の塗布液を用い後述のインラインコート法により設けることが好ましい。そのため、本発明のウレタン樹脂は水溶性であることが望ましい。なお、前記の「水溶性」とは、水、または水溶性の有機溶剤を50質量%未満含む水溶液に対して溶解することを意味する。   The coating layer of the present invention is preferably provided by an in-line coating method described later using an aqueous coating solution. Therefore, it is desirable that the urethane resin of the present invention is water-soluble. The “water-soluble” means that it dissolves in water or an aqueous solution containing less than 50% by mass of a water-soluble organic solvent.

ウレタン樹脂に水溶性を付与させるためには、ウレタン分子骨格中にスルホン酸(塩)基又はカルボン酸(塩)基を導入(共重合)することができる。スルホン酸(塩)基は強酸性であり、その吸湿性能により耐湿性を維持するのが困難な場合があるので、弱酸性であるカルボン酸(塩)基を導入するのが好適である。また、ポリオキシアルキレン基などのノニオン性基を導入することもできる。   In order to impart water solubility to the urethane resin, a sulfonic acid (salt) group or a carboxylic acid (salt) group can be introduced (copolymerized) into the urethane molecular skeleton. Since the sulfonic acid (salt) group is strongly acidic and it may be difficult to maintain moisture resistance due to its hygroscopic performance, it is preferable to introduce a weakly acidic carboxylic acid (salt) group. Moreover, nonionic groups, such as a polyoxyalkylene group, can also be introduced.

ウレタン樹脂にカルボン酸(塩)基を導入するためには、例えば、ポリオール成分として、ジメチロールプロピオン酸、ジメチロールブタン酸などのカルボン酸基を有するポリオール化合物を共重合成分として導入し、塩形成剤により中和する。塩形成剤の具体例としては、アンモニア、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミンなどのトリアルキルアミン類、N−メチルモルホリン、N−エチルモルホリンなどのN−アルキルモルホリン類、N−ジメチルエタノールアミン、N−ジエチルエタノールアミンなどのN−ジアルキルアルカノールアミン類が挙げられる。これらは単独で使用できるし、2種以上併用することもできる。   In order to introduce a carboxylic acid (salt) group into a urethane resin, for example, as a polyol component, a polyol compound having a carboxylic acid group such as dimethylolpropionic acid or dimethylolbutanoic acid is introduced as a copolymer component to form a salt. Neutralize with an agent. Specific examples of the salt forming agent include trialkylamines such as ammonia, trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine, tri-n-butylamine, N such as N-methylmorpholine and N-ethylmorpholine. -N-dialkylalkanolamines such as alkylmorpholines, N-dimethylethanolamine, N-diethylethanolamine and the like. These can be used alone or in combination of two or more.

水溶性を付与するために、カルボン酸(塩)基を有するポリオール化合物を共重合成分として用いる場合は、ウレタン樹脂中のカルボン酸(塩)基を有するポリオール化合物の組成モル比は、ウレタン樹脂の全ポリイソシアネート成分を100モル%としたときに、3〜60モル%であることが好ましく、5〜40モル%であることが好ましい。前記組成モル比が3モル%未満の場合は、水分散性が困難になる場合がある。また、前記組成モル比が60モル%を超える場合は、耐水性が低下するため耐湿熱性が低下する場合がある。   In order to impart water solubility, when a polyol compound having a carboxylic acid (salt) group is used as a copolymerization component, the composition molar ratio of the polyol compound having a carboxylic acid (salt) group in the urethane resin is the same as that of the urethane resin. When the total polyisocyanate component is 100 mol%, it is preferably 3 to 60 mol%, more preferably 5 to 40 mol%. If the composition molar ratio is less than 3 mol%, water dispersibility may be difficult. Moreover, when the said composition molar ratio exceeds 60 mol%, since water resistance falls, moist heat resistance may fall.

本発明のウレタン樹脂のガラス転移点温度は0℃未満が好ましく、より好ましくは−5℃未満である。ガラス転移点温度が0℃未満の場合は塗布層の応力緩和の点から好適な柔軟性を奏しやすく好ましい。   The glass transition temperature of the urethane resin of the present invention is preferably less than 0 ° C, more preferably less than -5 ° C. When the glass transition temperature is less than 0 ° C., it is easy to achieve suitable flexibility from the viewpoint of stress relaxation of the coating layer.

前記ウレタン樹脂は架橋剤に対して、10質量%以上90質量%以下含有することが好ましい。特に、レンズ層のように高い密着性が求められる場合、より好ましくは20質量%以上80質量%以下である。ウレタン樹脂の含有量が多い場合には、高温高湿下での密着性が低下し、逆に、含有量が少ない場合には、初期での密着性が低下する。   The urethane resin is preferably contained in an amount of 10% by mass to 90% by mass with respect to the crosslinking agent. In particular, when high adhesion is required as in a lens layer, the content is more preferably 20% by mass or more and 80% by mass or less. When the content of the urethane resin is large, the adhesiveness under high temperature and high humidity is lowered, and conversely, when the content is small, the initial adhesiveness is lowered.

本発明のウレタン樹脂には耐溶剤性を向上させるために、架橋剤の添加に加えてウレタン樹脂自体に自己架橋基を導入しても良い。これにより、樹脂の架橋度が増し、耐溶剤性が向上する。本発明に用いる自己架橋基としては特に限定されないが、水系塗布液中でも比較的安定性なシラノール基を好適に用いることができる。   In order to improve the solvent resistance of the urethane resin of the present invention, a self-crosslinking group may be introduced into the urethane resin itself in addition to the addition of a crosslinking agent. Thereby, the crosslinking degree of resin increases and solvent resistance improves. Although it does not specifically limit as a self-crosslinking group used for this invention, The comparatively stable silanol group can be used suitably also in aqueous | water-based coating liquid.

本発明のウレタン樹脂以外の樹脂でも、密着性を向上させるために含有させても良い。例えば、ポリエーテル、または、ポリエステルを構成成分とするウレタン樹脂、アクリル樹脂、ポリエステル樹脂などが挙げられる。   A resin other than the urethane resin of the present invention may be contained in order to improve adhesion. For example, a urethane resin, an acrylic resin, a polyester resin, or the like containing polyether or polyester as a constituent component can be used.

(架橋剤)
本発明において、塗布層中に架橋剤を含有させる必要がある。架橋剤を含有させることにより、高温高湿下での密着性を更に向上させることが可能になる。架橋剤としては、カルボン酸基、水酸基、アミノ基などと反応して、アミド結合、ウレタン結合、ウレア結合を形成するものが高温高湿処理で劣化しにくいため好ましい。逆に、エステル結合、エーテル結合を伴う場合は加水分解性を有する場合があり好ましくない。本発明で好適に用いられる架橋剤としては、メラミン系、イソシアネート系、カルボジイミド系、オキサゾリン系等が挙げられる。これらの中で、塗液の経時安定性、高温高湿処理下の密着性向上効果からイソシアネート系、カルボジイミド系、が好ましい。さらに、塗布層に適度な柔軟性を奏し、塗布層の応力緩和作用を好適に付与する点で、イソシアネート系架橋剤を用いることが特に好ましい。また、架橋反応を促進させるため、触媒等を必要に応じて適宜使用される。
(Crosslinking agent)
In the present invention, it is necessary to contain a crosslinking agent in the coating layer. By containing a crosslinking agent, it becomes possible to further improve the adhesion under high temperature and high humidity. As the crosslinking agent, those that react with a carboxylic acid group, a hydroxyl group, an amino group, etc. to form an amide bond, a urethane bond, or a urea bond are preferable because they are not easily deteriorated by high-temperature and high-humidity treatment. Conversely, when an ester bond or an ether bond is involved, it may be hydrolyzable, which is not preferable. Examples of the crosslinking agent suitably used in the present invention include melamine-based, isocyanate-based, carbodiimide-based, and oxazoline-based. Among these, an isocyanate type and a carbodiimide type are preferable from the viewpoint of the stability over time of the coating liquid and the effect of improving the adhesion under high temperature and high humidity treatment. Furthermore, it is particularly preferable to use an isocyanate-based crosslinking agent from the viewpoint that the coating layer has appropriate flexibility and suitably imparts the stress relaxation action of the coating layer. Moreover, in order to promote a crosslinking reaction, a catalyst etc. are used suitably as needed.

架橋剤の含有量としては、ウレタン樹脂に対して、10質量%以上90質量%以下が好ましい。より好ましくは、20質量%以上80質量%以下である。少ない場合には、塗布層の耐溶剤性が低下し、高温高湿下での密着性が低下し、多い場合には、塗布層の樹脂の柔軟性が低下し、常温、高温高湿下での密着性が低下する。   As content of a crosslinking agent, 10 mass% or more and 90 mass% or less are preferable with respect to urethane resin. More preferably, it is 20 mass% or more and 80 mass% or less. When the amount is small, the solvent resistance of the coating layer is reduced, and the adhesiveness under high temperature and high humidity is reduced.When the amount is large, the flexibility of the resin of the coating layer is reduced, and at room temperature and high temperature and high humidity. The adhesiveness of is reduced.

本発明において、塗膜強度を向上させるために、2種類の架橋剤を混合させても良い。また、架橋反応を促進させるため、触媒等を必要に応じて適宜使用される。   In the present invention, two kinds of crosslinking agents may be mixed in order to improve the coating film strength. Moreover, in order to promote a crosslinking reaction, a catalyst etc. are used suitably as needed.

(添加剤)
本発明において、塗布層中に粒子を含有させることもできる。粒子は(1)シリカ、カオリナイト、タルク、軽質炭酸カルシウム、重質炭酸カルシウム、ゼオライト、アルミナ、硫酸バリウム、カーボンブラック、酸化亜鉛、硫酸亜鉛、炭酸亜鉛、二酸化チタン、サチンホワイト、珪酸アルミニウム、ケイソウ土、珪酸カルシウム、水酸化アルミニウム、加水ハロイサイト、炭酸マグネシウム、水酸化マグネシウム、等の無機粒子、(2)アクリルあるいはメタアクリル系、塩化ビニル系、酢酸ビニル系、ナイロン、スチレン/アクリル系、スチレン/ブタジエン系、ポリスチレン/アクリル系、ポリスチレン/イソプレン系、ポリスチレン/イソプレン系、メチルメタアクリレート/ブチルメタアクリレート系、メラミン系、ポリカーボネート系、尿素系、エポキシ系、ウレタン系、フェノール系、ジアリルフタレート系、ポリエステル系等の有機粒子が挙げられる。
(Additive)
In the present invention, particles may be contained in the coating layer. Particles are (1) silica, kaolinite, talc, light calcium carbonate, heavy calcium carbonate, zeolite, alumina, barium sulfate, carbon black, zinc oxide, zinc sulfate, zinc carbonate, titanium dioxide, satin white, aluminum silicate, diatomaceous earth Inorganic particles such as soil, calcium silicate, aluminum hydroxide, hydrous halloysite, magnesium carbonate, magnesium hydroxide, (2) acrylic or methacrylic, vinyl chloride, vinyl acetate, nylon, styrene / acrylic, styrene / Butadiene, polystyrene / acrylic, polystyrene / isoprene, polystyrene / isoprene, methyl methacrylate / butyl methacrylate, melamine, polycarbonate, urea, epoxy, urethane, phenol, di Rirufutareto systems include organic particles of polyester or the like.

前記粒子は、平均粒径が1〜500nmのものが好適である。平均粒子径は特に限定されないが、フィルムの透明性を維持する点から1〜100nmであれば好ましい。   The particles preferably have an average particle size of 1 to 500 nm. Although an average particle diameter is not specifically limited, If it is 1-100 nm from the point which maintains the transparency of a film, it is preferable.

前記粒子は、平均粒径の異なる粒子を2種類以上含有させても良い。   The particles may contain two or more kinds of particles having different average particle diameters.

なお、上記の平均粒径は、透過型電子顕微鏡(TEM)を用いて、倍率12万倍で積層フィルムの断面を撮影し、塗布層の断面に存在する10ヶ以上の粒子の最大径を測定し、それらの平均値として求めることができる。   In addition, said average particle diameter measures the maximum diameter of the 10 or more particle | grains which exist in the cross section of a coating layer by image | photographing the cross section of a laminated film at a magnification of 120,000 times using a transmission electron microscope (TEM). And can be obtained as an average value of them.

粒子の含有量としては、0.5質量%以上20質量%以下が好ましい。少ない場合は、十分な耐ブロッキング性を得ることができない。また、対スクラッチ性が悪化してしまう。多い場合は、塗布層の透明性が悪くなるだけでなく、塗膜強度が低下する。   As content of particle | grains, 0.5 mass% or more and 20 mass% or less are preferable. When the amount is small, sufficient blocking resistance cannot be obtained. Further, scratch resistance is deteriorated. When the amount is large, not only the transparency of the coating layer is deteriorated, but also the coating strength is lowered.

塗布層には、コート時のレベリング性の向上、コート液の脱泡を目的に界面活性剤を含有させることもできる。界面活性剤は、カチオン系、アニオン系、ノニオン系などいずれのものでも構わないが、シリコン系、アセチレングリコール系又はフッ素系界面活性剤が好ましい。これらの界面活性剤は、光学機能層との密着性を損なわない程度の範囲、例えば、塗布液中に0.005〜0.5質量%の範囲で含有させることも好ましい。   The coating layer may contain a surfactant for the purpose of improving leveling properties during coating and defoaming the coating solution. The surfactant may be any of cationic, anionic and nonionic surfactants, but is preferably a silicon-based, acetylene glycol-based or fluorine-based surfactant. These surfactants are also preferably contained in a range that does not impair the adhesion to the optical functional layer, for example, in the range of 0.005 to 0.5% by mass in the coating solution.

本発明の光学用易接着性ポリエステルフィルムは、ヘイズ値が2.5%以下であることが好ましく、より好ましくは2.0%以下であり、さらに好ましくは1.5%以下である。なお、高い透明性を得るためには、前記ウレタン樹脂の平均粒子系を小さくすることが好ましい。これにより樹脂の分散性・相溶性が向上し、高い透明性が得られる。透明性の点から、塗布層に用いるウレタン樹脂の平均粒子系は150nm以下が好ましく、より好ましくは、100nm以下である。   The optically easily adhesive polyester film of the present invention preferably has a haze value of 2.5% or less, more preferably 2.0% or less, and even more preferably 1.5% or less. In order to obtain high transparency, it is preferable to reduce the average particle size of the urethane resin. Thereby, the dispersibility and compatibility of the resin are improved, and high transparency is obtained. From the viewpoint of transparency, the average particle size of the urethane resin used in the coating layer is preferably 150 nm or less, and more preferably 100 nm or less.

塗布層に他の機能性を付与するために、封止材との接着性を損なわない程度の範囲で、各種の添加剤を含有させても構わない。前記添加剤としては、例えば、蛍光染料、蛍光増白剤、可塑剤、紫外線吸収剤、顔料分散剤、抑泡剤、消泡剤、防腐剤、帯電防止剤等が挙げられる。   In order to impart other functionality to the coating layer, various additives may be contained within a range that does not impair the adhesion with the sealing material. Examples of the additive include fluorescent dyes, fluorescent brighteners, plasticizers, ultraviolet absorbers, pigment dispersants, foam suppressors, antifoaming agents, preservatives, and antistatic agents.

本発明において、ポリエステルフィルム上に塗布層を設ける方法としては、溶媒、粒子、樹脂を含有する塗布液をポリエステルフィルムに塗布、乾燥する方法が挙げられる。溶媒として、トルエン等の有機溶剤、水、あるいは水と水溶性の有機溶剤の混合系が挙げられるが、好ましくは、環境問題の点から水単独あるいは水に水溶性の有機溶剤を混合したものが好ましい。   In the present invention, examples of the method for providing the coating layer on the polyester film include a method in which a coating solution containing a solvent, particles and a resin is applied to the polyester film and dried. Examples of the solvent include organic solvents such as toluene, water, and a mixed system of water and a water-soluble organic solvent. Preferably, water alone or a mixture of a water-soluble organic solvent and water is used from the viewpoint of environmental problems. preferable.

(光学用易接着性ポリエステルフィルムの製造)
本発明の光学用易接着性ポリエステルフィルムの製造方法について、ポリエチレンテレフタレート(以下、PETと略記する)フィルムを例にして説明するが、当然これに限定されるものではない。
(Manufacture of easily adhesive polyester film for optics)
The method for producing an optically easy-adhesive polyester film of the present invention will be described using a polyethylene terephthalate (hereinafter abbreviated as PET) film as an example, but is not limited to this.

PET樹脂を十分に真空乾燥した後、押出し機に供給し、Tダイから約280℃の溶融PET樹脂を回転冷却ロールにシート状に溶融押出しし、静電印加法により冷却固化せしめて未延伸PETシートを得る。前記未延伸PETシートは、単層構成でもよいし、共押出し法による複層構成であってもよい。また、PET樹脂中に不活性粒子を実質的に含有させないことが好ましい。   After sufficiently drying the PET resin in a vacuum, it is supplied to an extruder, melted and extruded at about 280 ° C. from a T-die into a rotating cooling roll into a sheet, cooled and solidified by an electrostatic application method, and unstretched PET. Get a sheet. The unstretched PET sheet may have a single layer structure or a multilayer structure by a coextrusion method. Moreover, it is preferable not to contain an inert particle substantially in PET resin.

得られた未延伸PETシートを、80〜120℃に加熱したロールで長手方向に2.5〜5.0倍に延伸して、一軸延伸PETフィルムを得る。さらに、フィルムの端部をクリップで把持して、70〜140℃に加熱された熱風ゾーンに導き、幅方向に2.5〜5.0倍に延伸する。引き続き、160〜240℃の熱処理ゾーンに導き、1〜60秒間の熱処理を行ない、結晶配向を完了させる。   The obtained unstretched PET sheet is stretched 2.5 to 5.0 times in the longitudinal direction with a roll heated to 80 to 120 ° C. to obtain a uniaxially stretched PET film. Furthermore, the edge part of a film is hold | gripped with a clip, it guide | induces to the hot air zone heated at 70-140 degreeC, and is extended | stretched 2.5 to 5.0 times in the width direction. Then, it guide | induces to the heat processing zone of 160-240 degreeC, and heat-processes for 1 to 60 seconds, and completes crystal orientation.

このフィルム製造工程の任意の段階で、PETフィルムの少なくとも片面に、塗布液を塗布し、前記塗布層を形成する。塗布層はPETフィルムの両面に形成させても特に問題はない。塗布液中の樹脂組成物の固形分濃度は、2〜35重量%であることが好ましく、特に好ましくは4〜15重量%である。   In an arbitrary stage of the film manufacturing process, a coating solution is applied to at least one surface of the PET film to form the coating layer. There is no particular problem even if the coating layer is formed on both sides of the PET film. The solid content concentration of the resin composition in the coating solution is preferably 2 to 35% by weight, particularly preferably 4 to 15% by weight.

この塗布液をPETフィルムに塗布するための方法は、公知の任意の方法を用いることができる。例えば、リバースロールコート法、グラビアコート法、キスコート法、ダイコーター法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、含浸コート法、カーテンコート法、などが挙げられる。これらの方法を単独で、あるいは組み合わせて塗工する。   Any known method can be used as a method for applying the coating solution to the PET film. For example, reverse roll coating method, gravure coating method, kiss coating method, die coater method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, etc. It is done. These methods are applied alone or in combination.

本発明においては、塗布層は未延伸あるいは一軸延伸後のPETフィルムに前記塗布液を塗布、乾燥した後、少なくとも一軸方向に延伸し、次いで熱処理を行って形成させる。   In the present invention, the coating layer is formed by coating the coating solution on an unstretched or uniaxially stretched PET film, drying it, stretching in at least a uniaxial direction, and then performing a heat treatment.

本発明において、最終的に得られる塗布層の厚みは20〜350nm、乾燥後の塗布量は、0.02〜0.5g/mであることが好ましい。塗布層の塗布量が0.02g/m未満であると、接着性に対する効果がほとんどなくなる。一方、塗布量が0.5g/mを越えると、ヘイズが増加してしまう。 In the present invention, the finally obtained coating layer preferably has a thickness of 20 to 350 nm, and the coating amount after drying is preferably 0.02 to 0.5 g / m 2 . When the coating amount of the coating layer is less than 0.02 g / m 2 , the effect on adhesiveness is almost lost. On the other hand, when the coating amount exceeds 0.5 g / m 2 , haze increases.

本発明の光学用易接着性ポリエステルフィルムを巻き取ってなる光学用易接着性ポリエステルフィルムロールも本発明の好適な態様である。本発明の塗布層は、架橋剤の添加により耐ブロッキング性が良好なため、生産性向上のためにロール体とした場合であっても好適に用いることができる。   An optically easy-adhesive polyester film roll obtained by winding up the optically-adhesive polyester film of the present invention is also a preferred embodiment of the present invention. Since the coating layer of the present invention has good anti-blocking properties due to the addition of a crosslinking agent, it can be suitably used even when it is a roll for improving productivity.

本発明の光学用易接着性ポリエステルフィルムの厚さは特に限定されないが、25〜500μmの範囲で、使用する用途の規格に応じて任意に決めることができる。光学用易接着性ポリエステルフィルムの厚みの上限は、400μmが好ましく、特に好ましくは350μmである。一方、フィルム厚みの下限は、50μmが好ましく、特に好ましくは75μmである。フィルム厚みが25μm未満では、機械的強度が不十分となりやすい。一方、フィルム厚みが500μmを超えるとロール状に巻き取ることが困難になりやすい。   The thickness of the optically easy-adhesive polyester film of the present invention is not particularly limited, but can be arbitrarily determined in the range of 25 to 500 μm according to the specification of the application to be used. The upper limit of the thickness of the optically easy-adhesive polyester film is preferably 400 μm, and particularly preferably 350 μm. On the other hand, the lower limit of the film thickness is preferably 50 μm, particularly preferably 75 μm. If the film thickness is less than 25 μm, the mechanical strength tends to be insufficient. On the other hand, when the film thickness exceeds 500 μm, it tends to be difficult to wind it into a roll.

本発明の光学用易接着性ポリエステルフィルムをロールとする場合には、その巻き長及び幅は、当該フィルムロールの用途により適宜決定される。フィルムロールの巻き長は1500m以上が好ましく、より好ましくは1800m以上である。また、巻き長の上限としては5000mが好ましい。また、フィルムロールの幅は500mm以上であることが好ましく、より好ましくは800mmである。なお、フィルムロールの幅の上限としては2000mmが好ましい。   When the easily adhesive polyester film for optics of the present invention is used as a roll, the winding length and width are appropriately determined depending on the use of the film roll. The winding length of the film roll is preferably 1500 m or more, more preferably 1800 m or more. The upper limit of the winding length is preferably 5000 m. Moreover, it is preferable that the width | variety of a film roll is 500 mm or more, More preferably, it is 800 mm. In addition, as an upper limit of the width | variety of a film roll, 2000 mm is preferable.

(光学用積層フィルム)
本発明の光学用積層ポリエステルフィルムは、前述のポリエステルフィルムの塗布層の少なくとも片面に、ハードコート層、光拡散層、レンズ層、電磁波吸収層、近赤外線遮断層、透明導電層から選択される、少なくとも1層の光学機能層を積層することにより得られる。なお、前記レンズ層としては特に形状を問わないが、例えば、プリズム状レンズ、フレネル状レンズ、マイクロレンズなどが好適に適用できる。
(Laminated film for optics)
The optically laminated polyester film of the present invention is selected from a hard coat layer, a light diffusion layer, a lens layer, an electromagnetic wave absorption layer, a near-infrared shielding layer, and a transparent conductive layer on at least one side of the above-mentioned polyester film coating layer. It is obtained by laminating at least one optical functional layer. The shape of the lens layer is not particularly limited. For example, a prism-shaped lens, a Fresnel-shaped lens, a microlens, or the like can be suitably applied.

前記光学機能層に用いられる材料は特に限定されるものではなく、乾燥、熱、化学反応、もしくは電子線、放射線、紫外線のいずれかを照射することによって重合、および/または反応する樹脂化合物を用いることができる。このような、硬化性樹脂としては、メラミン系、アクリル系、シリコン系、ポリビニルアルコール系の硬化性樹脂が挙げられるが、高い表面硬度もしくは光学設計を得る点で光硬化性型のアクリル系硬化性樹脂が好ましい。このようなアクリル系硬化性樹脂としては、多官能(メタ)アクリレート系モノマーやアクリレート系オリゴマーを用いることができ、アクリレート系オリゴマーの例としては、ポリエステルアクリレート系、エポキシアクリレート系、ウレタンアクリレート系、ポリエーテルアクリレート系、ポリブタジエンアクリレート系、シリコーンアクリレート系などが挙げられる。これらアクリル系硬化性樹脂に反応希釈剤、光重合開始剤、増感剤などを混合することで、前記光学機能層を形成するためのコート用組成物を得ることができる。   The material used for the optical functional layer is not particularly limited, and a resin compound that is polymerized and / or reacted by drying, heat, chemical reaction, or irradiation with an electron beam, radiation, or ultraviolet light is used. be able to. Examples of such a curable resin include melamine-based, acrylic-based, silicon-based, and polyvinyl alcohol-based curable resins. However, in terms of obtaining high surface hardness or optical design, a photocurable acrylic curable resin is used. Resins are preferred. As such an acrylic curable resin, a polyfunctional (meth) acrylate monomer or an acrylate oligomer can be used. Examples of the acrylate oligomer include polyester acrylate, epoxy acrylate, urethane acrylate, Examples include ether acrylate, polybutadiene acrylate, and silicone acrylate. A coating composition for forming the optical functional layer can be obtained by mixing a reactive diluent, a photopolymerization initiator, a sensitizer and the like with these acrylic curable resins.

また、本発明のポリエステルフィルムは、前記光学用途以外でも良好な接着強度が得られうる。具体的には、写真感光層、ジアゾ感光層、マット層、磁性層、インクジェットインキ受容層、ハードコート層、紫外線硬化樹脂、熱硬化樹脂、印刷インキやUVインキ、ドライラミネートや押し出しラミネート等の接着剤、金属あるいは無機物またはそれらの酸化物の真空蒸着、電子ビーム蒸着、スパッタリング、イオンプレーティング、CVD、プラズマ重合等で得られる薄膜層、有機バリアー層等が挙げられる。   Moreover, the polyester film of this invention can obtain favorable adhesive strength other than the said optical use. Specifically, adhesion such as photographic photosensitive layer, diazo photosensitive layer, matte layer, magnetic layer, inkjet ink receiving layer, hard coat layer, UV curable resin, thermosetting resin, printing ink and UV ink, dry laminate, extrusion laminate, etc. Examples thereof include vacuum deposition, electron beam deposition, sputtering, ion plating, CVD, plasma polymerization and the like of an agent, a metal or an inorganic substance, or an oxide thereof, and an organic barrier layer.

次に、実施例および比較例を用いて本発明を詳細に説明するが、本発明は当然以下の実施例に限定されるものではない。また、本発明で用いた評価方法は以下の通りである。   EXAMPLES Next, although this invention is demonstrated in detail using an Example and a comparative example, naturally this invention is not limited to a following example. The evaluation method used in the present invention is as follows.

(1)固有粘度
JIS K 7367−5に準拠し、溶媒としてフェノール(60質量%)と1,1,2,2−テトラクロロエタン(40質量%)の混合溶媒を用い、30℃で測定した。
(1) Intrinsic viscosity Based on JIS K7367-5, it measured at 30 degreeC, using the mixed solvent of phenol (60 mass%) and 1,1,2,2-tetrachloroethane (40 mass%) as a solvent.

(2)ガラス転移点温度
JIS K7121に準拠し、示差走査熱量計(セイコーインスツルメンツ株式会社製、DSC6200)を使用して、DSC曲線からガラス転移開始温度を求めた。
(2) Glass transition temperature Based on JIS K7121, the glass transition start temperature was calculated | required from the DSC curve using the differential scanning calorimeter (The Seiko Instruments Inc. make, DSC6200).

(3)赤外分光法による吸光度測定
得られた光学用易接着性ポリエステルフィルムについて塗布層を削り取り、約1mgの試料を採取した。採取した試料に圧力をかけ、厚み約1μmのフィルム状に成型した塗布層試料片(大きさ:約50μm×約50μm)を作成した。さらに、ブランク試料として基材フィルムと同質のPET樹脂についても前記手順と同様にして試料片(ブランク試料片)を作成した。
作成した試料片をKBr板上に載せ、下記条件の顕微透過法により赤外吸収スペクトルを測定した。塗布層の赤外分光スペクトルは、塗布層試料片から得た赤外分光スペクトルとブランク試料片のスペクトルとの差スペクトルとして求めた。
脂肪族系ポリカーボネート成分由来の1460cm−1付近の吸光度(A1460)は1460±10cm−1の領域に吸収極大をもつ吸収ピーク高さの値とし、ウレタン成分由来の1530cm−1付近の吸光度(A1530)は1530±10cm−1の領域に吸収極大をもつ吸収ピーク高さの値とした。なお、ベースラインはそれぞれの極大吸収のピークの両側の裾を結ぶ線とした。得られた吸光度から下記式により吸光度比率を求めた。
(吸光度比率)=A1460/A1530
(3) Absorbance measurement by infrared spectroscopy About the obtained optically-adhesive polyester film for optics, the coating layer was scraped off and about 1 mg of a sample was collected. A pressure was applied to the collected sample to prepare a coating layer sample piece (size: about 50 μm × about 50 μm) molded into a film having a thickness of about 1 μm. Further, a sample piece (blank sample piece) was prepared in the same manner as described above for a PET resin having the same quality as the base film as a blank sample.
The prepared sample piece was placed on a KBr plate, and an infrared absorption spectrum was measured by a microscopic transmission method under the following conditions. The infrared spectrum of the coating layer was determined as the difference spectrum between the infrared spectrum obtained from the coating layer sample piece and the spectrum of the blank sample piece.
Absorbance around 1460 cm -1 derived from an aliphatic polycarbonate component (A 1460) is 1460 and the value of the absorption peak height having an absorption maximum in the region of ± 10 cm -1, the absorbance in the vicinity of 1530 cm -1 derived from urethane component (A 1530 ) is the value of the absorption peak height having an absorption maximum in the region of 1530 ± 10 cm −1 . The baseline was a line connecting the hems on both sides of each maximum absorption peak. The absorbance ratio was determined from the obtained absorbance by the following formula.
(Absorbance ratio) = A 1460 / A 1530

(測定条件)
装置:FT−IR分析装置SPECTRATECH社製 IRμs/SIRM
検出器:MCT
分解能:4cm−1
積算回数:128回
(Measurement condition)
Apparatus: FT-IR analyzer SPECTRATECH IRμs / SIRM
Detector: MCT
Resolution: 4cm -1
Integration count: 128 times

(4)光学用易接着性ポリエステルフィルムの全光線透過率
得られた光学用易接着性ポリエステルフィルムの全光線透過率はJIS K 7105に準拠し、濁度計(日本電色製、NDH2000)を用いて測定した。
(4) Total light transmittance of optically easy-adhesive polyester film The total light transmittance of the obtained optically-adhesive polyester film is based on JIS K 7105, and a turbidimeter (Nippon Denshoku, NDH2000) is used. And measured.

(5)光学用易接着性ポリエステルフィルムのヘイズ
得られた光学用易接着性ポリエステルフィルムのヘイズはJIS K 7136に準拠し、濁度計(日本電色製、NDH2000)を用いて測定した。
(5) Haze of optically easy-adhesive polyester film The haze of the obtained optically-adhesive polyester film was measured according to JIS K 7136 using a turbidimeter (Nippon Denshoku, NDH2000).

(6)接着性
得られた光学用積層ポリエステルフィルムの光硬化型ハードコート層または光硬化型アクリル層または光硬化型ウレタン/アクリル層面(以下、光学機能層)に、隙間間隔2mmのカッターガイドを用いて、光学機能層を貫通して基材フィルムに達する100個のマス目状の切り傷をつける。次いで、セロハン粘着テープ(ニチバン社製、405番;24mm幅)をマス目状の切り傷面に貼り付け、消しゴムでこすって完全に密着させた。その後、垂直にセロハン粘着テープを光学用積層ポリエステルフィルムの光学機能層面から引き剥がす作業を5回行った後、光学用積層ポリエステルフィルムの光学機能層面から剥がれたマス目の数を目視で数え、下記の式から光学機能層と基材フィルムとの密着性を求めた。なお、マス目の中で部分的に剥離しているものも剥がれたマス目として数え、下記の基準でランク分けをした。
密着性(%)=(1−剥がれたマス目の数/100)×100
◎:100%、または、光学機能層の材破
○:99〜90%
△:89〜70%
×:69〜0%
(6) Adhesiveness A cutter guide having a gap distance of 2 mm is provided on the surface of the optically laminated polyester film, the photocurable hard coat layer, the photocurable acrylic layer, or the photocurable urethane / acrylic layer (hereinafter referred to as an optical functional layer). Used to make 100 grid-like cuts that penetrate the optical functional layer and reach the base film. Next, a cellophane adhesive tape (manufactured by Nichiban Co., Ltd., No. 405; 24 mm width) was attached to the cut surface of the grid and rubbed with an eraser for complete adhesion. Then, after performing the work of peeling the cellophane adhesive tape perpendicularly from the optical functional layer surface of the laminated polyester film for optics 5 times, the number of squares peeled off from the optical functional layer surface of the laminated polyester film for optics was counted visually. The adhesiveness between the optical functional layer and the base film was determined from the formula: In addition, what peeled partially among squares was also counted as the square which peeled, and was ranked according to the following references | standards.
Adhesiveness (%) = (1−number of peeled squares / 100) × 100
A: 100% or material failure of the optical functional layer B: 99-90%
Δ: 89-70%
X: 69 to 0%

(7)耐湿熱性
得られた光学用積層ポリエステルフィルムを、高温高湿槽中で80℃、95%RHの環境下48時間放置した。次いで、光学用積層ポリエステルフィルムを取りだし、室温常湿で12時間放置した。その後、前記(6)と同様の方法で光学機能層と基材フィルムの接密着性を求め、下記の基準でランク分けをした。
◎:100%、または、光学機能層の材破
○:99〜90%
△:89〜70%
×:69〜0%
(7) Moisture and heat resistance The obtained laminated polyester film for optics was left in an environment of 80 ° C. and 95% RH for 48 hours in a high-temperature and high-humidity tank. Next, the laminated polyester film for optics was taken out and allowed to stand at room temperature and humidity for 12 hours. Thereafter, contact adhesion between the optical functional layer and the substrate film was determined by the same method as in (6) above, and ranked according to the following criteria.
A: 100% or material failure of the optical functional layer B: 99-90%
Δ: 89-70%
X: 69 to 0%

(脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A−1の重合)
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4−ジフェニルメタンジイソシアネート43.75質量部、ジメチロールブタン酸12.85質量部、数平均分子量2000のポリヘキサメチレンカーボネートジオール153.41質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン8.77質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min−1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分35%の水溶性ポリウレタン樹脂(A−1)を調製した。得られたポリウレタン樹脂(A−1)のガラス転移点温度は−30℃であった。
(Polymerization of urethane resin A-1 containing aliphatic polycarbonate polyol)
In a four-necked flask equipped with a stirrer, Dimroth cooler, nitrogen inlet tube, silica gel drying tube, and thermometer, 43.75 parts by mass of 4,4-diphenylmethane diisocyanate, 12.85 parts by mass of dimethylolbutanoic acid, several 153.41 parts by mass of polyhexamethylene carbonate diol having an average molecular weight of 2000, 0.03 parts by mass of dibutyltin dilaurate, and 84.00 parts by mass of acetone as a solvent were added and stirred at 75 ° C. for 3 hours in a nitrogen atmosphere. It was confirmed that had reached the predetermined amine equivalent. Next, after the temperature of this reaction liquid was lowered to 40 ° C., 8.77 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring and adjusted to 25 ° C., while stirring and mixing at 2000 min −1 , the polyurethane prepolymer solution was added and dispersed in water. . Thereafter, a part of acetone and water was removed under reduced pressure to prepare a water-soluble polyurethane resin (A-1) having a solid content of 35%. The obtained polyurethane resin (A-1) had a glass transition temperature of -30 ° C.

(脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A−2の重合)
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4−ジフェニルメタンジイソシアネート29.14質量部、ジメチロールブタン酸7.57質量部、数平均分子量3000のポリヘキサメチレンカーボネートジオール173.29質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン5.17質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min−1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分35%の水溶性ポリウレタン樹脂(A−2)を調製した。
(Polymerization of urethane resin A-2 containing aliphatic polycarbonate polyol)
In a four-necked flask equipped with a stirrer, a Dimroth cooler, a nitrogen inlet tube, a silica gel drying tube, and a thermometer, 29.14 parts by mass of 4,4-diphenylmethane diisocyanate, 7.57 parts by mass of dimethylolbutanoic acid, several An average molecular weight of 3000 polyhexamethylene carbonate diol 173.29 parts by mass, dibutyltin dilaurate 0.03 parts by mass, and 84.00 parts by mass of acetone as a solvent were added, and the mixture was stirred at 75 ° C. for 3 hours in a nitrogen atmosphere. It was confirmed that had reached the predetermined amine equivalent. Next, after the temperature of this reaction liquid was lowered to 40 ° C., 5.17 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring and adjusted to 25 ° C., while stirring and mixing at 2000 min −1 , the polyurethane prepolymer solution was added and dispersed in water. . Thereafter, a part of acetone and water was removed under reduced pressure to prepare a water-soluble polyurethane resin (A-2) having a solid content of 35%.

(脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A−3の重合)
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4−ジフェニルメタンジイソシアネート43.75質量部、ジメチロールブタン酸11.12質量部、ヘキサンジオール1.97質量部、数平均分子量2000のポリヘキサメチレンカーボネートジオール143.40質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン8.77質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min−1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分35%の水溶性ポリウレタン樹脂(A−3)を調製した。
(Polymerization of urethane resin A-3 containing aliphatic polycarbonate polyol as a constituent)
In a four-necked flask equipped with a stirrer, Dimroth cooler, nitrogen inlet tube, silica gel drying tube, and thermometer, 43.75 parts by mass of 4,4-diphenylmethane diisocyanate, 11.12 parts by mass of dimethylolbutanoic acid, hexane 1.97 parts by mass of diol, 143.40 parts by mass of polyhexamethylene carbonate diol having a number average molecular weight of 2000, 0.03 parts by mass of dibutyltin dilaurate, and 84.00 parts by mass of acetone as a solvent were added, and 75 ° C. in a nitrogen atmosphere. The mixture was stirred for 3 hours to confirm that the reaction solution reached a predetermined amine equivalent. Next, after the temperature of this reaction liquid was lowered to 40 ° C., 8.77 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring and adjusted to 25 ° C., while stirring and mixing at 2000 min −1 , the polyurethane prepolymer solution was added and dispersed in water. . Thereafter, a part of acetone and water was removed under reduced pressure to prepare a water-soluble polyurethane resin (A-3) having a solid content of 35%.

(脂肪族系ポリカーボネートポリオールを構成成分とするシラノール基含有ウレタン樹脂A−4の重合)
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、イソホロンジイソシアネート38.41質量部、ジメチロールプロパン酸6.95質量部、数平均分子量2000のポリヘキサメチレンカーボネートジオール158.99質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン4.37質量部を添加し、ポリウレタンプレポリマー溶液を得た。次にγ―(アミノエチル)アミノプロピルトリエトキシシラン3.84質量部、2−[(2−アミノエチル)アミノ]エタノール1.80質量部と水450gを添加して、ポリウレタンプレポリマー溶液を滴下して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分30%の水溶性シラノール基含有ポリウレタン樹脂(A−4)を調製した。
(Polymerization of silanol group-containing urethane resin A-4 containing aliphatic polycarbonate polyol as a constituent)
In a four-necked flask equipped with a stirrer, a Dimroth cooler, a nitrogen inlet tube, a silica gel drying tube, and a thermometer, 38.41 parts by mass of isophorone diisocyanate, 6.95 parts by mass of dimethylolpropanoic acid, and a number average molecular weight of 2000 Polyhexamethylene carbonate diol 158.999 parts by mass, dibutyltin dilaurate 0.03 parts by mass, and acetone 84.00 parts by mass as a solvent were added and stirred at 75 ° C. for 3 hours in a nitrogen atmosphere. It was confirmed that the equivalent amount was reached. Next, after cooling this reaction liquid to 40 degreeC, 4.37 mass parts of triethylamine was added, and the polyurethane prepolymer solution was obtained. Next, 3.84 parts by mass of γ- (aminoethyl) aminopropyltriethoxysilane, 1.80 parts by mass of 2-[(2-aminoethyl) amino] ethanol and 450 g of water were added, and the polyurethane prepolymer solution was dropped. And dispersed in water. Thereafter, a part of acetone and water was removed under reduced pressure to prepare a water-soluble silanol group-containing polyurethane resin (A-4) having a solid content of 30%.

(脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A−5の重合)
水溶性ポリウレタン樹脂(A−1)の数平均分子量2000のポリヘキサメチレンカーボネートジオールを数平均分子量1000のポリヘキサメチレンカーボネートジオールに変更した以外は、同様の方法で固形分35%の水溶性ポリウレタン樹脂(A−5)を得た。
(Polymerization of urethane resin A-5 containing aliphatic polycarbonate polyol as a constituent)
A water-soluble polyurethane resin having a solid content of 35% was obtained in the same manner except that the polyhexamethylene carbonate diol having a number average molecular weight of 2000 in the water-soluble polyurethane resin (A-1) was changed to a polyhexamethylene carbonate diol having a number average molecular weight of 1000. (A-5) was obtained.

(脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A−6の重合)
水溶性ポリウレタン樹脂(A−1)の数平均分子量2000のポリヘキサメチレンカーボネートジオールを数平均分子量5000のポリヘキサメチレンカーボネートジオールに変更した以外は、同様の方法で固形分35%の水溶性ポリウレタン樹脂(A−6)を得た。
(Polymerization of urethane resin A-6 containing aliphatic polycarbonate polyol as a constituent)
A water-soluble polyurethane resin having a solid content of 35% was obtained in the same manner except that the polyhexamethylene carbonate diol having a number average molecular weight of 2000 in the water-soluble polyurethane resin (A-1) was changed to a polyhexamethylene carbonate diol having a number average molecular weight of 5000. (A-6) was obtained.

(ポリエステルポリオールを構成成分とするウレタン樹脂の重合A−7)
水溶性ポリウレタン樹脂(A−1)の数平均分子量2000のポリヘキサメチレンカーボネートジオールを数平均分子量2000のポリエステルジオールに変更した以外は、同様の方法で固形分35%の水溶性ポリウレタン樹脂(A−7)を得た。
(Polymerization A-7 of Polyurethane Resin Containing Polyester Polyol)
The water-soluble polyurethane resin (A-) having a solid content of 35% was prepared in the same manner except that the polyhexamethylene carbonate diol having a number average molecular weight of 2000 of the water-soluble polyurethane resin (A-1) was changed to a polyester diol having a number average molecular weight of 2000. 7) was obtained.

(ポリエーテルポリオールを構成成分とするウレタン樹脂の重合A−8)
水溶性ポリウレタン樹脂(A−1)の数平均分子量2000のポリヘキサメチレンカーボネートジオールを数平均分子量2000のポリエーテルジオールに変更した以外は、同様の方法で固形分35%の水溶性ポリウレタン樹脂(A−8)を得た。
(Polymerization A-8 of Polyurethane Resin Containing Polyether Polyol)
A water-soluble polyurethane resin (A) having a solid content of 35% was obtained in the same manner except that the polyhexamethylene carbonate diol having a number average molecular weight of 2000 in the water-soluble polyurethane resin (A-1) was changed to a polyether diol having a number average molecular weight of 2000. -8) was obtained.

(ブロックポリイソシアネート架橋剤の重合)
撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネートを原料としたイソシアヌレート構造を有するポリイソシアネート化合物(旭化成ケミカルズ製、デュラネートTPA)100質量部、プロピレングリコールモノメチルエーテルアセテート55質量部、ポリエチレングリコールモノメチルエーテル(平均分子量 750)30質量部を仕込み、窒素雰囲気下、70℃で4時間保持した。その後、反応液温度を50℃に下げ、メチルエチルケトオキシム47質量部を滴下した。反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認し、固形分75質量%のブロックポリイソシアネート水分散液(B)を得た。
(Polymerization of block polyisocyanate crosslinking agent)
100 parts by mass of a polyisocyanate compound having an isocyanurate structure using hexamethylene diisocyanate as a raw material (manufactured by Asahi Kasei Chemicals, Duranate TPA) in a flask equipped with a stirrer, a thermometer and a reflux condenser, 55 parts by mass of propylene glycol monomethyl ether acetate, 30 parts by mass of polyethylene glycol monomethyl ether (average molecular weight 750) was charged and held at 70 ° C. for 4 hours in a nitrogen atmosphere. Thereafter, the reaction solution temperature was lowered to 50 ° C., and 47 parts by mass of methyl ethyl ketoxime was added dropwise. The infrared spectrum of the reaction solution was measured to confirm that the absorption of the isocyanate group had disappeared, and a block polyisocyanate aqueous dispersion (B) having a solid content of 75% by mass was obtained.

(オキサゾリン系架橋剤の重合)
温度計、窒素ガス導入管、還流冷却器、滴下ロート、および攪拌機を備えたフラスコに水性媒体としてのイオン交換水58質量部とイソプロパノール58質量部との混合物、および、重合開始剤(2,2’−アゾビス(2−アミジノプロパン)・二塩酸塩)4質量部を投入した。一方、滴下ロートに、オキサゾリン基を有する重合性不飽和単量体としての2−イソプロペニル−2−オキサゾリン16質量部、メトキシポリエチレングリコールアクリレート(エチレングリコールの平均付加モル数・9モル、新中村化学製)32質量部、およびメタクリル酸メチル32質量部の混合物を投入し、窒素雰囲気下、70℃において1時間にわたり滴下した。滴下終了後、反応溶液を9時間攪拌し、冷却することで固形分濃度40質量%のオキサゾリン基を有する水溶性樹脂(C)を得た。
(Polymerization of oxazoline crosslinking agent)
A mixture of 58 parts by mass of ion-exchanged water and 58 parts by mass of isopropanol as an aqueous medium in a flask equipped with a thermometer, a nitrogen gas introduction tube, a reflux condenser, a dropping funnel, and a stirrer, and a polymerization initiator (2, 2 4 parts by mass of '-azobis (2-amidinopropane) dihydrochloride) was added. On the other hand, in a dropping funnel, 16 parts by mass of 2-isopropenyl-2-oxazoline as a polymerizable unsaturated monomer having an oxazoline group, methoxypolyethylene glycol acrylate (average number of moles of ethylene glycol added: 9 moles, Shin Nakamura Chemical) A mixture of 32 parts by mass and 32 parts by mass of methyl methacrylate was added, and the mixture was added dropwise at 70 ° C. for 1 hour in a nitrogen atmosphere. After completion of dropping, the reaction solution was stirred for 9 hours and cooled to obtain a water-soluble resin (C) having an oxazoline group with a solid content concentration of 40% by mass.

(カルボジイミド系架橋剤の重合)
撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネート168質量部とポリエチレングリコールモノメチルエーテル(M400、平均分子量400)220質量部を仕込み、120℃で1時間、撹拌し、更に4,4’−ジシクロヘキシルメタンジイソシアネート26質量部とカルボジイミド化触媒として3−メチル−1−フェニル−2−フォスフォレン−1−オキシド3.8質量部(全イソシイアネートに対し2重量%)を加え、窒素気流下185℃で更に5時間撹拌した。反応液の赤外スペクトルを測定し、波長2200〜2300cm−1の吸収が消失したことを確認した。60℃まで放冷し、イオン交換水を567質量部加え、固形分40質量%のカルボジイミド水溶性樹脂(D)を得た。
(Polymerization of carbodiimide crosslinking agent)
A flask equipped with a stirrer, thermometer and reflux condenser was charged with 168 parts by mass of hexamethylene diisocyanate and 220 parts by mass of polyethylene glycol monomethyl ether (M400, average molecular weight 400), stirred at 120 ° C. for 1 hour, 26 parts by mass of 4′-dicyclohexylmethane diisocyanate and 3.8 parts by mass of 3-methyl-1-phenyl-2-phospholene-1-oxide (2% by weight based on the total isocyanate) were added as a carbodiimidization catalyst, and 185 under a nitrogen stream. Stir at 5 ° C. for a further 5 hours. The infrared spectrum of the reaction solution was measured, and it was confirmed that absorption at a wavelength of 2200 to 2300 cm −1 disappeared. It stood to cool to 60 degreeC, 567 mass parts of ion-exchange water was added, and the carbodiimide water-soluble resin (D) of 40 mass% of solid content was obtained.

実施例1
(1)塗布液の調整
下記の塗剤を混合し、塗布液を作成した。
水 55.62質量%
イソプロパノール 30.00質量%
ポリウレタン樹脂(A−1) 11.29質量%
ブロックポリイソシアネート水分散液(B) 2.26質量%
粒子 0.71質量%
(平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子 0.07質量%
(平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤 0.05質量%
(シリコン系、固形分濃度100質量%)
Example 1
(1) Adjustment of coating liquid The following coating agent was mixed and the coating liquid was created.
Water 55.62% by mass
Isopropanol 30.00% by mass
Polyurethane resin (A-1) 11.29 mass%
Block polyisocyanate aqueous dispersion (B) 2.26% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.07% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
Surfactant 0.05% by mass
(Silicon, solid content concentration of 100% by mass)

(2)光学用易接着性ポリエステルフィルムの製造
フィルム原料ポリマーとして、固有粘度が0.62dl/gで、かつ粒子を実質上含有していないPET樹脂ペレットを、133Paの減圧下、135℃で6時間乾燥した。その後、押し出し機に供給し、約280℃でシート状に溶融押し出しして、表面温度20℃に保った回転冷却金属ロール上で急冷密着固化させ、未延伸PETシートを得た。
(2) Production of optically easy-adhesive polyester film As a film raw material polymer, PET resin pellets having an intrinsic viscosity of 0.62 dl / g and substantially free of particles are obtained at 135 ° C. under a reduced pressure of 133 Pa. Dry for hours. Thereafter, the sheet was supplied to an extruder, melted and extruded into a sheet at about 280 ° C., and rapidly cooled and solidified on a rotating cooling metal roll maintained at a surface temperature of 20 ° C. to obtain an unstretched PET sheet.

この未延伸PETシートを加熱されたロール群及び赤外線ヒーターで100℃に加熱し、その後周速差のあるロール群で長手方向に3.5倍延伸して、一軸延伸PETフィルムを得た。   This unstretched PET sheet was heated to 100 ° C. with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed to obtain a uniaxially stretched PET film.

次いで、前記塗布液をロールコート法でPETフィルムの片面に塗布した後、80℃で20秒間乾燥した。なお、最終(二軸延伸後)の乾燥後の塗布量が0.15g/mになるように調整した。引続いてテンターで、120℃で幅方向に4.0倍に延伸し、フィルムの幅方向の長さを固定した状態で、230℃で0.5秒間加熱し、さらに230℃で10秒間3%の幅方向の弛緩処理を行なった。両端をトリミングし、巻き取り装置にて巻き取り、さらにこれを幅方向に2等分してスリットし、幅1300mm、フィルム長さ3000m、フィルム厚さ100μmのフィルムロールを得た。得られた光学用易接着性ポリエステルフィルムについての評価結果を表1に示す。 Subsequently, after apply | coating the said coating liquid on the single side | surface of PET film by the roll coat method, it dried at 80 degreeC for 20 second. The final coating amount (after biaxial stretching) was adjusted so that the coating amount after drying was 0.15 g / m 2 . Subsequently, the film was stretched 4.0 times in the width direction at 120 ° C. with a tenter, and heated at 230 ° C. for 0.5 seconds with the length in the width direction fixed, and further at 230 ° C. for 10 seconds. % Relaxation treatment in the width direction was performed. Both ends were trimmed, wound up by a winding device, further divided into two in the width direction and slitted to obtain a film roll having a width of 1300 mm, a film length of 3000 m, and a film thickness of 100 μm. Table 1 shows the evaluation results for the obtained optically easy-adhesive polyester film.

(3)光学用積層ポリエステルフィルムの製造
(ハードコート層を有する光学用積層ポリエステルフィルム)
前記の光学用易接着性ポリエステルフィルムの塗布層面に、下記組成のハードコート層形成用塗布液(E)を#10ワイヤーバーを用いて塗布し、70℃で1分間乾燥し、溶剤を除去した。次いで、ハードコート層を塗布したフィルムに高圧水銀灯を用いて300mJ/cmの紫外線を照射し、厚み5μmのハードコート層を有する光学用積層ポリエステルフィルムを得た。
ハードコート層形成用塗布液(E)
メチルエチルケトン 65.00質量%
ジペンタエリスリトールヘキサアクリレート 27.20質量%
(新中村化学製A−DPH)
ポリエチレンジアクリレート 6.80質量%
(新中村化学製A−400)
光重合開始剤 1.00質量%
(チバスペシャリティーケミカルズ社製イルガキュア184)
(3) Production of optical laminated polyester film (Optical laminated polyester film having a hard coat layer)
The coating liquid for forming a hard coat layer (E) having the following composition was applied to the coating layer surface of the optically easy-adhesive polyester film using a # 10 wire bar and dried at 70 ° C. for 1 minute to remove the solvent. . Next, the film coated with the hard coat layer was irradiated with 300 mJ / cm 2 ultraviolet rays using a high-pressure mercury lamp to obtain an optical laminated polyester film having a hard coat layer having a thickness of 5 μm.
Hard coat layer forming coating solution (E)
Methyl ethyl ketone 65.00% by mass
Dipentaerythritol hexaacrylate 27.20% by mass
(Shin-Nakamura Chemical A-DPH)
Polyethylene diacrylate 6.80% by mass
(Shin-Nakamura Chemical A-400)
Photopolymerization initiator 1.00% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)

(光硬化型ウレタン/アクリル層を有する光学用積層ポリエステルフィルム)
清浄に保った厚さ1mmのSUS板上(SUS304)に、下記光硬化型アクリル系塗布液を約5gのせ、フィルム試料の塗布層面と光硬化型アクリル系塗布液が接するように重ね合わせ、フィルム試料の上から幅10cm、直径4cmの手動式荷重ゴムローラーで光硬化型ウレタン/アクリル系塗布液(F)を引き延ばすように圧着した。次いで、フィルム面側から、高圧水銀灯を用いて500mJ/cmの紫外線を照射し、光硬化型ウレタン/アクリル樹脂を硬化させた。厚み20μmの光硬化型ウレタン/アクリル層を有するフィルム試料をSUS板から剥離し、光学用積層ポリエステルフィルムを得た。
光硬化型ウレタン/アクリル系塗布液(F)
光硬化型アクリル樹脂 67.00質量%
(新中村化学製A−BPE−4)
光硬化型アクリル樹脂 15.00質量%
(新中村化学製AMP−10G)
光硬化型ウレタン/アクリル樹脂 15.00質量%
(新中村化学製U−6HA)
光重合開始剤 3.00質量%
(チバスペシャリティーケミカルズ社製イルガキュア184)
(Optical laminated polyester film with photocurable urethane / acrylic layer)
About 5 g of the following photo-curing acrylic coating liquid is placed on a 1 mm thick SUS plate (SUS304) kept clean, and the film is applied so that the coating layer surface of the film sample and the photo-curing acrylic coating liquid are in contact with each other. The photo-curing urethane / acrylic coating solution (F) was pressure-bonded with a manually loaded rubber roller having a width of 10 cm and a diameter of 4 cm from above the sample. Next, from the film surface side, UV light of 500 mJ / cm 2 was irradiated using a high pressure mercury lamp to cure the photocurable urethane / acrylic resin. A film sample having a photocurable urethane / acrylic layer having a thickness of 20 μm was peeled from the SUS plate to obtain a laminated polyester film for optics.
Light curable urethane / acrylic coating solution (F)
Photo-curing acrylic resin 67.00% by mass
(Shin-Nakamura Chemical A-BPE-4)
Photo-curing acrylic resin 15.00% by mass
(AMP-10G manufactured by Shin-Nakamura Chemical)
Light curable urethane / acrylic resin 15.00% by mass
(Shin Nakamura Chemical U-6HA)
Photopolymerization initiator 3.00% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)

(光硬化型アクリル層を有する光学用積層ポリエステルフィルム)
光硬化型ウレタン/アクリル層を有する光学用積層ポリエステルフィルムの光硬化型ウレタン/アクリル系塗布液(F)を光硬化型アクリル系塗布液(G)に変更した以外は同様にして、光学用積層ポリエステルフィルムを得た。
光硬化型アクリル系塗布液(G)
光硬化型アクリル樹脂 67.00質量%
(新中村化学製A−BPE−4)
光硬化型アクリル樹脂 30.00質量%
(新中村化学製AMP−10G)
光重合開始剤 3.00質量%
(チバスペシャリティーケミカルズ社製イルガキュア184)
(Laminated polyester film for optics having a photocurable acrylic layer)
Optical lamination in the same manner except that the photocurable urethane / acrylic coating liquid (F) of the optically laminated polyester film having the photocurable urethane / acrylic layer is changed to the photocurable acrylic coating liquid (G). A polyester film was obtained.
Photo-curing acrylic coating solution (G)
Photo-curing acrylic resin 67.00% by mass
(Shin-Nakamura Chemical A-BPE-4)
Photo-curing acrylic resin 30.00% by mass
(AMP-10G manufactured by Shin-Nakamura Chemical)
Photopolymerization initiator 3.00% by mass
(Irgacure 184 manufactured by Ciba Specialty Chemicals)

比較例1
ポリウレタン樹脂をポリウレタン樹脂(A−5)に変更した以外は実施例1と同様にして光学用易接着性ポリエステルフィルムおよび光学用積層ポリエステルフィルムを得た。
Comparative Example 1
An optically easily adhesive polyester film and an optically laminated polyester film were obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-5).

比較例2
ポリウレタン樹脂をポリウレタン樹脂(A−6)に変更した以外は実施例1と同様にして光学用易接着性ポリエステルフィルムおよび光学用積層ポリエステルフィルムを得た。
Comparative Example 2
An optically easily adhesive polyester film and an optical laminated polyester film were obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-6).

比較例3
ポリウレタン樹脂をポリウレタン樹脂(A−7)に変更した以外は実施例1と同様にして光学用易接着性ポリエステルフィルムおよび光学用積層ポリエステルフィルムを得た。
Comparative Example 3
An optically easily adhesive polyester film and an optical laminated polyester film were obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-7).

比較例4
ポリウレタン樹脂をポリウレタン樹脂(A−8)に変更した以外は実施例1と同様にして光学用易接着性ポリエステルフィルムおよび光学用積層ポリエステルフィルムを得た。
Comparative Example 4
An optically easy-adhesive polyester film and an optical laminated polyester film were obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-8).

比較例5
塗布液を下記に変更したこと以外は実施例1と同様にして光学用易接着性ポリエステルフィルムおよび光学用積層ポリエステルフィルムを得た。
水 53.04質量%
イソプロパノール 30.00質量%
ポリウレタン樹脂(A−1) 16.13質量%
粒子 0.71質量%
(平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子 0.07質量%
(平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤 0.05質量%
(シリコン系、固形分濃度100質量%)
Comparative Example 5
Except having changed the coating liquid into the following, it carried out similarly to Example 1, and obtained the easily adhesive polyester film for optics, and the laminated polyester film for optics.
Water 53.04 mass%
Isopropanol 30.00% by mass
Polyurethane resin (A-1) 16.13 mass%
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.07% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
Surfactant 0.05% by mass
(Silicon, solid content concentration of 100% by mass)

実施例2
塗布液を下記に変更したこと以外は実施例1と同様にして光学用易接着性ポリエステルフィルムおよび光学用積層ポリエステルフィルムを得た。
水 53.91質量%
イソプロパノール 30.00質量%
ポリウレタン樹脂(A−1) 14.51質量%
ブロックポリイソシアネート水分散液(B) 0.75質量%
粒子 0.71質量%
(平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子 0.07質量%
(平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤 0.05質量%
(シリコン系、固形分濃度100質量%)
Example 2
Except having changed the coating liquid into the following, it carried out similarly to Example 1, and obtained the easily adhesive polyester film for optics, and the laminated polyester film for optics.
Water 53.91% by mass
Isopropanol 30.00% by mass
Polyurethane resin (A-1) 14.51% by mass
Block polyisocyanate aqueous dispersion (B) 0.75% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.07% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
Surfactant 0.05% by mass
(Silicon, solid content concentration of 100% by mass)

実施例3
塗布液を下記に変更したこと以外は実施例1と同様にして光学用易接着性ポリエステルフィルムおよび光学用積層ポリエステルフィルムを得た。
水 54.76質量%
イソプロパノール 30.00質量%
ポリウレタン樹脂(A−1) 12.90質量%
ブロックポリイソシアネート水分散液(B) 1.51質量%
粒子 0.71質量%
(平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子 0.07質量%
(平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤 0.05質量%
(シリコン系、固形分濃度100質量%)
Example 3
Except having changed the coating liquid into the following, it carried out similarly to Example 1, and obtained the easily adhesive polyester film for optics, and the laminated polyester film for optics.
Water 54.76% by mass
Isopropanol 30.00% by mass
Polyurethane resin (A-1) 12.90 mass%
Block polyisocyanate aqueous dispersion (B) 1.51% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.07% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
Surfactant 0.05% by mass
(Silicon, solid content concentration of 100% by mass)

実施例4
塗布液を下記に変更したこと以外は実施例1と同様にして光学用易接着性ポリエステルフィルムおよび光学用積層ポリエステルフィルムを得た。
水 57.35質量%
イソプロパノール 30.00質量%
ポリウレタン樹脂(A−1) 8.06質量%
ブロックポリイソシアネート水分散液(B) 3.76質量%
粒子 0.71質量%
(平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子 0.07質量%
(平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤 0.05質量%
(シリコン系、固形分濃度100質量%)
Example 4
Except having changed the coating liquid into the following, it carried out similarly to Example 1, and obtained the easily adhesive polyester film for optics, and the laminated polyester film for optics.
Water 57.35% by mass
Isopropanol 30.00% by mass
Polyurethane resin (A-1) 8.06% by mass
Block polyisocyanate aqueous dispersion (B) 3.76% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.07% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
Surfactant 0.05% by mass
(Silicon, solid content concentration of 100% by mass)

実施例5
塗布液を下記に変更したこと以外は実施例1と同様にして光学用易接着性ポリエステルフィルムおよび光学用積層ポリエステルフィルムを得た。
水 59.92質量%
イソプロパノール 30.00質量%
ポリウレタン樹脂(A−1) 3.23質量%
ブロックポリイソシアネート水分散液(B) 6.02質量%
粒子 0.71質量%
(平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子 0.07質量%
(平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤 0.05質量%
(シリコン系、固形分濃度100質量%)
Example 5
Except having changed the coating liquid into the following, it carried out similarly to Example 1, and obtained the easily adhesive polyester film for optics, and the laminated polyester film for optics.
59.92% by mass of water
Isopropanol 30.00% by mass
Polyurethane resin (A-1) 3.23 mass%
Block polyisocyanate aqueous dispersion (B) 6.02 mass%
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.07% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
Surfactant 0.05% by mass
(Silicon, solid content concentration of 100% by mass)

実施例6
塗布液を下記に変更したこと以外は実施例1と同様にして光学用易接着性ポリエステルフィルムおよび光学用積層ポリエステルフィルムを得た。
水 60.79質量%
イソプロパノール 30.00質量%
ポリウレタン樹脂(A−1) 1.61質量%
ブロックポリイソシアネート水分散液(B) 6.77質量%
粒子 0.71質量%
(平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子 0.07質量%
(平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤 0.05質量%
(シリコン系、固形分濃度100質量%)
Example 6
Except having changed the coating liquid into the following, it carried out similarly to Example 1, and obtained the easily adhesive polyester film for optics, and the laminated polyester film for optics.
60.79% by mass of water
Isopropanol 30.00% by mass
Polyurethane resin (A-1) 1.61% by mass
Block polyisocyanate aqueous dispersion (B) 6.77% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.07% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
Surfactant 0.05% by mass
(Silicon, solid content concentration of 100% by mass)

実施例7
ポリウレタン樹脂をポリウレタン樹脂(A−2)に変更した以外は実施例1と同様にして光学用易接着性ポリエステルフィルムおよび光学用積層ポリエステルフィルムを得た。
Example 7
An optically easily adhesive polyester film and an optical laminated polyester film were obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-2).

実施例8
ポリウレタン樹脂をポリウレタン樹脂(A−3)に変更した以外は実施例1と同様にして光学用易接着性ポリエステルフィルムおよび光学用積層ポリエステルフィルムを得た。
Example 8
An optically easily adhesive polyester film and an optical laminated polyester film were obtained in the same manner as in Example 1 except that the polyurethane resin was changed to the polyurethane resin (A-3).

実施例9
ポリウレタン樹脂をシラノール基含有ポリウレタン樹脂(A−4)に変更した以外は実施例1と同様にして光学用易接着性ポリエステルフィルムおよび光学用積層ポリエステルフィルムを得た。
Example 9
An optically easily adhesive polyester film and an optically laminated polyester film were obtained in the same manner as in Example 1 except that the polyurethane resin was changed to a silanol group-containing polyurethane resin (A-4).

実施例10
ブロックポリイソシアネート水分散液(B)をオキサゾリン基を有する水溶性樹脂(C)に変更した以外は実施例1と同様にして光学用積層ポリエステルフィルムを得た。
Example 10
An optical laminated polyester film was obtained in the same manner as in Example 1 except that the block polyisocyanate aqueous dispersion (B) was changed to a water-soluble resin (C) having an oxazoline group.

実施例11
ブロックポリイソシアネート水分散液(C)をカルボジイミド水溶性樹脂(D)に変更した以外は実施例1と同様にして光学用積層ポリエステルフィルムを得た。
Example 11
The laminated polyester film for optics was obtained like Example 1 except having changed the block polyisocyanate water dispersion (C) into the carbodiimide water-soluble resin (D).

実施例12
ブロックポリイソシアネート水分散液(C)をイミノ・メチロールメラミン(固形分濃度70質量%)に変更した以外は実施例1と同様にして光学用積層ポリエステルフィルムを得た。
Example 12
An optical laminated polyester film was obtained in the same manner as in Example 1 except that the block polyisocyanate aqueous dispersion (C) was changed to imino / methylolmelamine (solid content concentration: 70% by mass).

実施例13
塗布液を下記に変更したこと以外は実施例1と同様にして光学用易接着性ポリエステルフィルムおよび光学用積層ポリエステルフィルムを得た。
水 62.82質量%
イソプロパノール 30.00質量%
ポリウレタン樹脂(A−1) 5.64質量%
ブロックポリイソシアネート水分散液(B) 1.13質量%
粒子 0.35質量%
(平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子 0.04質量%
(平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤 0.02質量%
(シリコン系、固形分濃度100質量%)
Example 13
Except having changed the coating liquid into the following, it carried out similarly to Example 1, and obtained the easily adhesive polyester film for optics, and the laminated polyester film for optics.
62.82% by mass of water
Isopropanol 30.00% by mass
Polyurethane resin (A-1) 5.64% by mass
Block polyisocyanate aqueous dispersion (B) 1.13% by mass
0.35% by mass of particles
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.04% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
Surfactant 0.02% by mass
(Silicon, solid content concentration of 100% by mass)

Figure 0004770971
Figure 0004770971

本発明の光学用易接着ポリエステルフィルムは、光学機能層との密着性及び高温高湿下での密着性(耐湿熱性)に優れるため、ディスプレイなどに主として用いられる、ハードコートフィルム及び該フィルムを用いた反射防止フィルム、光拡散シート、レンズシート、近赤外線遮断フィルム、透明導電性フィルム、防眩フィルム、などの光学機能性フィルムの基材フィルムとして好適である。   The easily adhesive polyester film for optics of the present invention is excellent in adhesion with an optical functional layer and adhesion under high temperature and high humidity (moisture and heat resistance). Therefore, a hard coat film mainly used for displays and the like is used. It is suitable as a base film for optical functional films such as antireflection films, light diffusion sheets, lens sheets, near-infrared shielding films, transparent conductive films, and antiglare films.

Claims (9)

少なくとも片面にインラインコート法により形成された塗布層を有するポリエステルフィルムであって、
前記塗布層が、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂と架橋剤を主成分とし、
前記ウレタン樹脂が、構成成分としてカルボン酸基もしくはカルボン酸塩基を有するポリオールを全ポリイソシアネート中3〜60モル%含み、
前記塗布層の赤外分光スペクトルにおいて脂肪族系ポリカーボネート成分由来の1460cm−1付近の吸光度(A1460)とウレタン成分由来の1530cm−1付近の吸光度(A1530)との比率(A1460/A1530)が0.40〜1.55であることを特徴とする光学用易接着性ポリエステルフィルム。
A polyester film having a coating layer formed on at least one side by an inline coating method,
The coating layer is mainly composed of a urethane resin and a cross-linking agent having aliphatic polycarbonate polyol as constituent components,
The urethane resin contains 3 to 60 mol% of a polyol having a carboxylic acid group or a carboxylic acid group as a constituent component in the total polyisocyanate,
The ratio (A 1460 / A 1530 ) of the absorbance (A 1460 ) near 1460 cm −1 derived from the aliphatic polycarbonate component and the absorbance (A 1530 ) near 1530 cm −1 derived from the urethane component in the infrared spectrum of the coating layer. ) Is 0.40 to 1.55, an easily adhesive polyester film for optics.
前記架橋剤が、メラミン系架橋剤、イソシアネート系架橋剤、カルボジイミド系架橋剤、オキサゾリン系架橋剤から選ばれた少なくとも1種の架橋剤であることを特徴とする請求項1に記載の光学用易接着性ポリエステルフィルム。   2. The optical ease according to claim 1, wherein the cross-linking agent is at least one cross-linking agent selected from a melamine cross-linking agent, an isocyanate cross-linking agent, a carbodiimide cross-linking agent, and an oxazoline cross-linking agent. Adhesive polyester film. 前記塗布層中の脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂と架橋剤の質量比(ウレタン樹脂/架橋剤)が1/9〜9/1である、請求項1または2に記載の光学用易接着性ポリエステルフィルム。   The optical according to claim 1 or 2, wherein a mass ratio of urethane resin and crosslinking agent (urethane resin / crosslinking agent) comprising aliphatic polycarbonate polyol as a constituent component in the coating layer is 1/9 to 9/1. Easy-adhesive polyester film. ポリエステルフィルムのヘイズが2.5%以下である、請求項1〜3のいずれかに記載の光学用易接着性ポリエステルフィルム。   The easily adhesive polyester film for optics according to any one of claims 1 to 3, wherein the haze of the polyester film is 2.5% or less. 前記塗布層の乾燥後塗布量が0.02〜0.5g/mである、請求項1〜3のいずれかに記載の光学用易接着性ポリエステルフィルム。 The dried coating amount of the coating layer is 0.02 to 0.5 g / m 2, optical highly adhesive polyester film according to claim 1. 前記塗布層が、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂と架橋剤と粒子と界面活性剤からなる、請求項1〜のいずれかに記載の光学用易接着性ポリエステルフィルム。 The optically easy-adhesive polyester film according to any one of claims 1 to 5 , wherein the coating layer comprises a urethane resin having an aliphatic polycarbonate polyol as a constituent component, a crosslinking agent, particles, and a surfactant. 請求項1〜のいずれかに記載する光学用易接着性ポリエステルフィルムの前記塗布層に、ハードコート層、光拡散層、レンズ層、電磁波吸収層、近赤外線遮断層、透明導電層から選択される少なくとも1層の光学機能層を積層してなる光学用積層ポリエステルフィルム。 The hard-coat layer, the light diffusion layer, the lens layer, the electromagnetic wave absorption layer, the near infrared ray blocking layer, and the transparent conductive layer are selected as the coating layer of the optically easy-adhesive polyester film according to any one of claims 1 to 6. An optically laminated polyester film obtained by laminating at least one optical functional layer. 前記光学機能層がアクリル系硬化樹脂からなる、請求項に記載の光学用積層ポリエステルフィルム。 The laminated polyester film for optics according to claim 7 , wherein the optical functional layer is made of an acrylic cured resin. 請求項1〜のいずれかに記載の光学用易接着性ポリエステルフィルムを巻き取ってなる光学用易接着性ポリエステルフィルムロール。 An easily adhesive polyester film roll for optical use obtained by winding up the easily adhesive polyester film for optics according to any one of claims 1 to 6 .
JP2009182048A 2009-08-05 2009-08-05 Easy-adhesive polyester film for optics Active JP4770971B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009182048A JP4770971B2 (en) 2009-08-05 2009-08-05 Easy-adhesive polyester film for optics
PCT/JP2010/061588 WO2011016311A1 (en) 2009-08-05 2010-07-08 Highly adhesive polyester film
CN201080034873.4A CN102497985B (en) 2009-08-05 2010-07-08 Highly adhesive polyester film
KR1020127004878A KR101685733B1 (en) 2009-08-05 2010-07-08 Highly adhesive polyester film
TW099125846A TWI411634B (en) 2009-08-05 2010-08-04 Adhesive polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009182048A JP4770971B2 (en) 2009-08-05 2009-08-05 Easy-adhesive polyester film for optics

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2011068024A Division JP4771021B2 (en) 2011-03-25 2011-03-25 Easy-adhesive polyester film for optics
JP2011068023A Division JP4771020B2 (en) 2011-03-25 2011-03-25 Easy-adhesive polyester film for optics
JP2011068025A Division JP4771022B2 (en) 2011-03-25 2011-03-25 Easy-adhesive polyester film for optics

Publications (2)

Publication Number Publication Date
JP2011031561A JP2011031561A (en) 2011-02-17
JP4770971B2 true JP4770971B2 (en) 2011-09-14

Family

ID=43544212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009182048A Active JP4770971B2 (en) 2009-08-05 2009-08-05 Easy-adhesive polyester film for optics

Country Status (5)

Country Link
JP (1) JP4770971B2 (en)
KR (1) KR101685733B1 (en)
CN (1) CN102497985B (en)
TW (1) TWI411634B (en)
WO (1) WO2011016311A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131409A (en) * 2009-12-22 2011-07-07 Toyobo Co Ltd Polyester film for molding and hard coat film for molding

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5476199B2 (en) * 2010-04-19 2014-04-23 三菱樹脂株式会社 Laminated polyester film
JP2011224849A (en) * 2010-04-19 2011-11-10 Mitsubishi Plastics Inc Laminated polyester film
EP2561985A4 (en) * 2010-04-19 2014-01-08 Mitsubishi Plastics Inc Laminated polyester film
JP5364119B2 (en) * 2011-03-15 2013-12-11 三菱樹脂株式会社 Laminated polyester film
JP5536697B2 (en) * 2011-03-15 2014-07-02 三菱樹脂株式会社 Laminated polyester film
JP5909857B2 (en) * 2011-03-29 2016-04-27 東洋紡株式会社 Laminated film
JP5599359B2 (en) * 2011-04-18 2014-10-01 三菱樹脂株式会社 Laminated polyester film
JP2012250447A (en) * 2011-06-03 2012-12-20 Mitsubishi Plastics Inc Laminated polyester film
JP2012251077A (en) * 2011-06-03 2012-12-20 Mitsubishi Plastics Inc Layered polyester film
WO2012144416A1 (en) * 2011-04-18 2012-10-26 三菱樹脂株式会社 Coated film
JP5599360B2 (en) * 2011-04-18 2014-10-01 三菱樹脂株式会社 Laminated polyester film
JP2012223927A (en) * 2011-04-18 2012-11-15 Mitsubishi Plastics Inc Laminated polyester film
JP2012223926A (en) * 2011-04-18 2012-11-15 Mitsubishi Plastics Inc Laminated polyester film
JP5653884B2 (en) * 2011-10-19 2015-01-14 大日精化工業株式会社 Ultraviolet / near-infrared water-shielding paint, heat-shielding glass on which a coating film made of the paint is formed, and method of heat-shielding window glass using the paint
KR102105332B1 (en) * 2012-08-02 2020-04-28 유니띠까 가부시키가이샤 Multilayer film, method for producing same, and aqueous dispersion used for production of same
JPWO2014024873A1 (en) * 2012-08-06 2016-07-25 コニカミノルタ株式会社 Light reflecting film and light reflector using the same
JP5994469B2 (en) * 2012-08-07 2016-09-21 東洋紡株式会社 Polyester film for polarizer protection
WO2014156726A1 (en) * 2013-03-29 2014-10-02 東レ株式会社 Laminated film
US20160114559A1 (en) * 2013-06-04 2016-04-28 Toray Industries, Inc. Decorative molding film and decorative molding article
CN107093494B (en) * 2017-03-22 2021-07-13 中山大学 Transferable patterned conductive film and preparation and patterning method thereof
JP7017460B2 (en) * 2017-06-30 2022-02-08 三井化学株式会社 Method for producing polycarbodiimide composition, polycarbodiimide composition, aqueous dispersion composition, solution composition, resin composition and cured resin
US11661473B2 (en) 2017-09-28 2023-05-30 Asahi Kasei Kabushiki Kaisha Blocked polyisocyanate composition and use thereof
JP7259559B2 (en) * 2019-06-03 2023-04-18 東洋紡株式会社 metallized polyester film
CN114423809A (en) * 2019-08-02 2022-04-29 东洋纺株式会社 White laminated polyester film
WO2022004249A1 (en) * 2020-07-02 2022-01-06 東洋紡株式会社 Multilayered polyester film

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2544792B2 (en) * 1988-12-12 1996-10-16 ダイアホイルヘキスト株式会社 Laminated film
JP4769990B2 (en) 1998-11-18 2011-09-07 東レ株式会社 Lens sheet film
CN1512934A (en) * 2001-12-10 2004-07-14 ���˶Ű�����ձ���ʽ���� Adhesive polyester film for optical use
JP2005099474A (en) * 2003-09-25 2005-04-14 Asahi Glass Co Ltd Antireflection substrate and article using the same
JP4578950B2 (en) * 2004-11-24 2010-11-10 大日精化工業株式会社 Protective film for optics
JP3900191B2 (en) 2004-11-29 2007-04-04 東洋紡績株式会社 Laminated thermoplastic resin film and laminated thermoplastic resin film roll
JP4816183B2 (en) 2006-03-24 2011-11-16 東レ株式会社 Optically laminated biaxially stretched polyester film and hard coat film using the same
JP4750621B2 (en) * 2006-05-19 2011-08-17 三菱樹脂株式会社 Reflective film laminated metal body
JP2009086138A (en) * 2007-09-28 2009-04-23 Toray Ind Inc Optical easy-adhesive film and optical laminated film
JP4661946B2 (en) * 2007-11-22 2011-03-30 東洋紡績株式会社 Optically easy-adhesive polyester film and optical laminated polyester film
JP4457322B2 (en) * 2008-07-03 2010-04-28 東洋紡績株式会社 Easy-adhesive polyester film for optics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131409A (en) * 2009-12-22 2011-07-07 Toyobo Co Ltd Polyester film for molding and hard coat film for molding

Also Published As

Publication number Publication date
CN102497985B (en) 2015-06-17
TW201111422A (en) 2011-04-01
KR101685733B1 (en) 2016-12-12
TWI411634B (en) 2013-10-11
WO2011016311A1 (en) 2011-02-10
CN102497985A (en) 2012-06-13
JP2011031561A (en) 2011-02-17
KR20120051043A (en) 2012-05-21

Similar Documents

Publication Publication Date Title
JP4770971B2 (en) Easy-adhesive polyester film for optics
JP4457322B2 (en) Easy-adhesive polyester film for optics
JP4771022B2 (en) Easy-adhesive polyester film for optics
JP5568992B2 (en) Easy-adhesive polyester film for optics
KR101404875B1 (en) Highly adhesive thermoplastic resin film
JP4623239B1 (en) Laminated film
JP5434568B2 (en) Hard coat film for molding
JP4771021B2 (en) Easy-adhesive polyester film for optics
JP5621642B2 (en) Easy-adhesive polyester film
JP5880642B2 (en) Optical laminated polyester film
JP5773042B2 (en) Easy-adhesive polyester film
JP2011153290A (en) Highly adhesive thermoplastic resin film
JP2011140541A (en) Easily adhesive white polyester film
JP5493811B2 (en) Easy-adhesive polyester film
JP5434605B2 (en) Easy-adhesive white polyester film
JP5493810B2 (en) Easy-adhesive polyester film
JP4771020B2 (en) Easy-adhesive polyester film for optics
JP5304635B2 (en) Easy-adhesive thermoplastic film
JP5728986B2 (en) Easy-adhesive polyester film
JP2011153289A (en) Easily adhesive thermoplastic resin film
JP2011140531A (en) Easily-adhesive polyester film for optical use
JP2011136551A (en) Easily adhesive polyester film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4770971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350