JP4770805B2 - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
JP4770805B2
JP4770805B2 JP2007181210A JP2007181210A JP4770805B2 JP 4770805 B2 JP4770805 B2 JP 4770805B2 JP 2007181210 A JP2007181210 A JP 2007181210A JP 2007181210 A JP2007181210 A JP 2007181210A JP 4770805 B2 JP4770805 B2 JP 4770805B2
Authority
JP
Japan
Prior art keywords
liquid crystal
region
light transmittance
crystal region
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007181210A
Other languages
Japanese (ja)
Other versions
JP2007293364A (en
Inventor
利巳 渡邉
透 岩根
行 本間
武彦 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007181210A priority Critical patent/JP4770805B2/en
Publication of JP2007293364A publication Critical patent/JP2007293364A/en
Application granted granted Critical
Publication of JP4770805B2 publication Critical patent/JP4770805B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

本発明は、液晶表示装置に関し、特に高分子分散型液晶を用いた液晶表示装置に関するものである。   The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device using a polymer dispersed liquid crystal.

高分子分散型液晶による液晶表示装置は、高分子樹脂と液晶を分散させて形成した液晶表示素子を用い、印加電圧により光の透過・不透過を制御して所定の表示を行うものとして公知である。ここで、高分子分散型液晶は、電圧を印加したとき、光透過性となる。   A liquid crystal display device using a polymer dispersed liquid crystal is known as a device that uses a liquid crystal display element formed by dispersing a polymer resin and a liquid crystal, and performs predetermined display by controlling transmission and non-transmission of light by an applied voltage. is there. Here, the polymer-dispersed liquid crystal becomes light transmissive when a voltage is applied.

高分子分散型液晶を用いた従来の液晶表示装置において所定の表示をするために、表示パターンに対応してガラス基板上に透光性電極をパターニングした場合、次のような問題が生じる。図9に示すように、ガラス基板上の全面に高分子分散型液晶層91を形成し、この液晶層91において図9の実線で示す閉領域92を表示する場合、領域92に対応して図の破線で示すようにパターニングされた透光性電極93をガラス基板に形成し、更に電極93に連続して端子部93aを形成し、この端子部93aを介して外部から電圧を印加する。   When a translucent electrode is patterned on a glass substrate corresponding to a display pattern in order to perform a predetermined display in a conventional liquid crystal display device using a polymer dispersed liquid crystal, the following problems occur. As shown in FIG. 9, when a polymer dispersed liquid crystal layer 91 is formed on the entire surface of a glass substrate and a closed region 92 indicated by a solid line in FIG. The transparent electrode 93 patterned as shown by the broken line is formed on the glass substrate, and a terminal portion 93a is formed continuously from the electrode 93, and a voltage is applied from the outside through the terminal portion 93a.

図9のように、閉領域92を表示させる場合、端子部93aから電圧を印加すると、電極93に対応する閉領域92の光透過率が上昇し、閉領域92の光透過率が周囲と異なるようになるため、閉領域92が表示されるが、このとき同時に端子部93aに対応する領域もその光透過率が変化するため表示されてしまう。このように、高分子分散型液晶を用いた従来の液晶表示装置において閉領域を表示させようとすると、端子部のような不要の領域まで表示させてしまい、液晶表示品質上好ましくない。   As shown in FIG. 9, when displaying the closed region 92, when a voltage is applied from the terminal portion 93a, the light transmittance of the closed region 92 corresponding to the electrode 93 increases, and the light transmittance of the closed region 92 is different from the surroundings. For this reason, the closed region 92 is displayed, but at this time, the region corresponding to the terminal portion 93a is also displayed because its light transmittance changes. As described above, when a closed region is displayed in a conventional liquid crystal display device using a polymer dispersed liquid crystal, an unnecessary region such as a terminal portion is displayed, which is not preferable in terms of liquid crystal display quality.

本発明の目的は、簡単な電極構成で閉領域を表示することのできる液晶表示装置を提供することである。   An object of the present invention is to provide a liquid crystal display device capable of displaying a closed region with a simple electrode configuration.

上記課題の達成のため、本発明は、光透過率が印加電圧に応じて変化する液晶により閉領域の表示を行う液晶表示装置において、対向する一対の透光性基板と、前記一対の透光性基板の間に平坦且つ均一な厚さで配置されるとともに、光透過率と印加電圧とが第1の関係で変化する、前記閉領域に対応する第1の液晶領域と、前記第1の液晶領域の周囲に配置された、光透過率と印加電圧とが第1の関係と異なる第2の関係で変化する第2の液晶領域と、前記一対の透光性基板の全面にそれぞれ設けられると共に、前記第1の液晶領域と前記第2の液晶領域に対して共通の電圧を印加する透光性電極とを有し、前記第1の液晶領域および前記第2の液晶領域は、高分子分散型液晶から構成され、前記第1の液晶領域と前記第2の液晶領域とは、前記高分子分散型液晶の液晶と高分子樹脂との混合比が互いに異なり、前記第1の液晶領域と前記第2の液晶領域の透過率差によって前記閉領域を表示することを特徴とする液晶表示装置を提供する
In order to achieve the above object, the present invention provides a liquid crystal display device that displays a closed region with a liquid crystal whose light transmittance changes according to an applied voltage, and a pair of light-transmitting substrates facing each other and the pair of light-transmitting substrates. A first liquid crystal region corresponding to the closed region, wherein the first liquid crystal region is disposed between the conductive substrates with a flat and uniform thickness, and the light transmittance and the applied voltage change in a first relationship; A second liquid crystal region disposed around the liquid crystal region and having a light transmittance and an applied voltage that change in a second relationship different from the first relationship, and the entire surface of the pair of translucent substrates. And a translucent electrode for applying a common voltage to the first liquid crystal region and the second liquid crystal region , wherein the first liquid crystal region and the second liquid crystal region are made of a polymer. The first liquid crystal region and the second liquid crystal region are composed of dispersed liquid crystal. LCD said different mixing ratio of the polymer dispersed liquid crystal liquid crystal and the polymer resin of each other, and displaying the closed region of the first liquid crystal region and the transmittance difference of the second liquid crystal region A display device is provided .

本発明によれば、第1の液晶領域と第2の液晶領域は光透過率と印加電圧との関係が相違するため、印加電圧が所定の状態であるとき、両領域の各光透過率が異なるため、第1及び第2の液晶領域を区別して視認できる。これにより、電極を特にパターニングすることなく所定の表示を行うことができ、また、電極の端子部等が表示されてしまう、といった問題は生じない。   According to the present invention, since the relationship between the light transmittance and the applied voltage is different between the first liquid crystal region and the second liquid crystal region, when the applied voltage is in a predetermined state, each light transmittance in both regions is Since they are different, the first and second liquid crystal regions can be distinguished and visually recognized. Thereby, a predetermined display can be performed without particularly patterning the electrode, and the problem that the terminal portion of the electrode is displayed does not occur.

また、前記印加電圧を変化させることにより第1の液晶領域と第2の液晶領域との光透過率を同一または近似させて前記閉領域を視認できないようにすることを特徴とする。   Further, the closed voltage cannot be visually recognized by changing the applied voltage so that the light transmittances of the first liquid crystal region and the second liquid crystal region are the same or approximate.

これにより、両液晶領域の光透過率の差によって所定の表示を行う一方、第1の関係と第2の関係によって決まる所定の電圧に制御して両光透過率を同一または近似させることによって、第1及び第2の液晶領域を区別できなくして視認できないようにする。このようにして、所定の表示を行い、また非表示にできる。   Thereby, while performing a predetermined display by the difference in light transmittance between the two liquid crystal regions, by controlling to a predetermined voltage determined by the first relationship and the second relationship, the both light transmittance is the same or approximate, The first and second liquid crystal regions are made indistinguishable from being visually recognized. In this way, predetermined display can be performed and non-display can be performed.

また、前記第1の液晶領域および前記第2の液晶領域は、高分子分散型液晶から構成されていることを特徴とする。   Further, the first liquid crystal region and the second liquid crystal region are made of polymer dispersed liquid crystal.

また、前記第1の液晶領域と前記第2の液晶領域とは、前記高分子分散型液晶の液晶と高分子樹脂との混合比が互いに異なることを特徴とする。   Further, the first liquid crystal region and the second liquid crystal region are different from each other in a mixing ratio of the liquid crystal of the polymer dispersed liquid crystal and the polymer resin.

本発明によれば、電極の端子部等が表示されてしまうことなく簡単な電極構成で閉領域を表示することのできる液晶表示装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the liquid crystal display device which can display a closed area | region with a simple electrode structure, without displaying the terminal part of an electrode, etc. can be provided.

以下、本発明による第1〜第3の実施の形態について図面を用いて説明する。   Hereinafter, first to third embodiments of the present invention will be described with reference to the drawings.

〈第1の実施の形態〉
図1は本発明の第1の実施の形態による高分子分散型液晶を用いた液晶表示装置の平面図であり、図2は図1のII−II線断面図、図3は同じくIII−III線断面図である。図1に示す液晶表示装置1は、電圧−光透過率特性の異なる高分子分散型液晶10と11とを備え、高分子分散型液晶11が数字「8888」を表示できるようになっている。
<First Embodiment>
FIG. 1 is a plan view of a liquid crystal display device using a polymer dispersed liquid crystal according to a first embodiment of the present invention, FIG. 2 is a sectional view taken along line II-II in FIG. 1, and FIG. It is line sectional drawing. The liquid crystal display device 1 shown in FIG. 1 includes polymer dispersed liquid crystals 10 and 11 having different voltage-light transmittance characteristics, and the polymer dispersed liquid crystal 11 can display the number “8888”.

図2及び図3の断面図に示すように、液晶表示装置1は、一対のガラス基板13,13の間に、高分子分散型液晶10,11が形成されており、その周囲がシール材14により封止されている。ガラス基板13,13の各液晶10,11に接する側には全面に透光性電極12,12がそれぞれ形成されている。透光性電極12,12は、例えばITO(Indium Tin Oxide)等から蒸着等により形成することができる。   As shown in the cross-sectional views of FIGS. 2 and 3, the liquid crystal display device 1 includes polymer dispersed liquid crystals 10 and 11 formed between a pair of glass substrates 13 and 13, and the periphery thereof is a sealing material 14. It is sealed by. Translucent electrodes 12 and 12 are formed on the entire surface of the glass substrates 13 and 13 on the side in contact with the liquid crystals 10 and 11, respectively. The translucent electrodes 12 and 12 can be formed from, for example, ITO (Indium Tin Oxide) or the like by vapor deposition.

図4に第1の実施の形態における各液晶10,11の印加電圧と光透過率との関係を示す。図4に示す電圧光透過率特性曲線101が液晶10の特性を、電圧光透過率曲線102が液晶11の特性をそれぞれ示している。図4から分かるように、印加電圧がV1のとき、液晶10の光透過率T1(V1)と液晶11の光透過率T2(V1)とが等しくなり、両液晶10,11の光透過率に差がないため、液晶11による数字「8888」は視認できない。しかし、印加電圧が低下してV2となると、液晶10の光透過率T1(V2)が液晶11の光透過率T2(V2)よりも大きくなるため、両液晶10,11の光透過率に差が生じるために、液晶11による数字「8888」を視認できるようになる。印加電圧がVのときの光透過率差DT(V)は、次の式(1)により表すことができる。
DT(V)=abs(T1(V)−T2(V)) (1)
ここで、abs( )は絶対値を求める関数、T1(V)は液晶10の印加電圧がVであるときの光透過率、T2(V)は液晶11の印加電圧が同じくVであるときの光透過率である。
FIG. 4 shows the relationship between the voltage applied to each of the liquid crystals 10 and 11 and the light transmittance in the first embodiment. The voltage light transmittance characteristic curve 101 shown in FIG. 4 indicates the characteristics of the liquid crystal 10, and the voltage light transmittance curve 102 indicates the characteristics of the liquid crystal 11. As can be seen from FIG. 4, when the applied voltage is V1, the light transmittance T1 (V1) of the liquid crystal 10 is equal to the light transmittance T2 (V1) of the liquid crystal 11, and the light transmittance of both the liquid crystals 10 and 11 is reduced. Since there is no difference, the number “8888” by the liquid crystal 11 is not visible. However, when the applied voltage is reduced to V2, the light transmittance T1 (V2) of the liquid crystal 10 becomes larger than the light transmittance T2 (V2) of the liquid crystal 11, so that there is a difference between the light transmittances of both the liquid crystals 10 and 11. Therefore, the number “8888” by the liquid crystal 11 can be visually recognized. The light transmittance difference DT (V) when the applied voltage is V can be expressed by the following equation (1).
DT (V) = abs (T1 (V) −T2 (V)) (1)
Here, abs () is a function for obtaining an absolute value, T 1 (V) is a light transmittance when the applied voltage of the liquid crystal 10 is V, and T 2 (V) is a value obtained when the applied voltage of the liquid crystal 11 is also V. Light transmittance.

このようにして、液晶に対する印加電圧を変化させることにより、液晶表示装置1の表示数字等のコントラストを変化させることができる。このような液晶表示装置1をバックライト照明した場合、印加電圧V1において液晶10と液晶11の各領域はともに白色(高輝度)に見え、印加電圧V2において液晶10は白色(高輝度)に見えるとともに液晶11はグレー(低輝度)に見える。更に、電圧を下げて無印加の状態にすると、液晶10はグレー(高輝度)に見え、液晶11は黒色(低輝度)に見える。   In this way, by changing the voltage applied to the liquid crystal, it is possible to change the contrast of the display numbers of the liquid crystal display device 1. When such a liquid crystal display device 1 is backlit, each region of the liquid crystal 10 and the liquid crystal 11 appears white (high luminance) at the applied voltage V1, and the liquid crystal 10 appears white (high luminance) at the applied voltage V2. At the same time, the liquid crystal 11 appears gray (low luminance). Further, when the voltage is lowered and no voltage is applied, the liquid crystal 10 looks gray (high luminance) and the liquid crystal 11 looks black (low luminance).

このように、電圧の無印加時に、数字等が表示される一方、印加電圧を上げていくとある電圧以上で数字等が見えなくなる。かかる構成の液晶表示装置は、電圧を印可していない状態で表示ができるので、例えば電圧低下時の警告をする警告灯の表示に用いることができる。   As described above, when a voltage is not applied, numbers and the like are displayed. On the other hand, when the applied voltage is increased, the numbers and the like become invisible at a certain voltage or higher. Since the liquid crystal display device having such a configuration can display in a state where no voltage is applied, it can be used, for example, to display a warning lamp that warns when the voltage drops.

なお、この場合、電圧Vは、直流電圧でよいが、交流電圧でもよく、また液晶表示装置は、デューティ駆動により行われる。   In this case, the voltage V may be a DC voltage, but may be an AC voltage, and the liquid crystal display device is driven by duty driving.

また、高分子分散型液晶を図4のように電圧光透過率特性に差を持たせるように作製するには、例えば、液晶と高分子樹脂との混合比を変えることにより実現でき、また、高分子樹脂に紫外光硬化性のものを用いた場合には硬化時の温度を変えて硬化後の樹脂の網目構造を変えることにより実現できる。   In addition, to produce a polymer-dispersed liquid crystal so as to have a difference in voltage light transmittance characteristics as shown in FIG. 4, for example, it can be realized by changing the mixing ratio of the liquid crystal and the polymer resin, In the case of using an ultraviolet light curable polymer resin, it can be realized by changing the network temperature of the cured resin by changing the temperature at the time of curing.

〈第2の実施の形態〉
第2の実施の形態における液晶表示装置は、図1〜図3に示すものと同一の構成であるが、各液晶10,11における印加電圧と光透過率との関係を図5のようにしたものである。
<Second Embodiment>
The liquid crystal display device in the second embodiment has the same configuration as that shown in FIGS. 1 to 3, but the relationship between the applied voltage and the light transmittance in each of the liquid crystals 10 and 11 is as shown in FIG. Is.

図5に示す電圧光透過率特性曲線103が液晶10の特性を、電圧光透過率曲線104が液晶11の特性をそれぞれ示している。図4から分かるように、印加電圧がV3のとき、液晶10の光透過率T3(V3)と液晶11の光透過率T4(V3)とが等しくなり、両液晶10,11の光透過率に差がないため、液晶11による数字「8888」は視認できない。しかし、印加電圧が上昇してV4となると、液晶10の光透過率T3(V4)が液晶11の光透過率T4(V4)よりも小さくなるため、両液晶10,11の光透過率に差が生じるために、液晶11による数字「8888」を視認できるようになる。印加電圧Vのときの光透過率差DT(V)は、式(1)と同じように次の式(2)により表すことができる。
DT(V)=abs(T3(V)−T4(V)) (2)
The voltage light transmittance characteristic curve 103 shown in FIG. 5 indicates the characteristics of the liquid crystal 10, and the voltage light transmittance curve 104 indicates the characteristics of the liquid crystal 11. As can be seen from FIG. 4, when the applied voltage is V3, the light transmittance T3 (V3) of the liquid crystal 10 is equal to the light transmittance T4 (V3) of the liquid crystal 11, and the light transmittance of both the liquid crystals 10 and 11 is reduced. Since there is no difference, the number “8888” by the liquid crystal 11 is not visible. However, when the applied voltage rises to V4, the light transmittance T3 (V4) of the liquid crystal 10 becomes smaller than the light transmittance T4 (V4) of the liquid crystal 11, so that there is a difference between the light transmittances of the two liquid crystals 10 and 11. Therefore, the number “8888” by the liquid crystal 11 can be visually recognized. The light transmittance difference DT (V) at the applied voltage V can be expressed by the following equation (2) as in the equation (1).
DT (V) = abs (T3 (V) −T4 (V)) (2)

〈第3の実施の形態〉
図6は本発明の第3の実施の形態によるより具体的な液晶表示装置の分解斜視図である。図6示す液晶表示装置19は、電圧−光透過率特性の異なる高分子分散型液晶層16a,16bと、これらの液晶層16a,16bを挟み込むように配置された透光性電極15a,15bと、これらの電極15a,15bに交流電圧を付加する交流電源17と、この電源17をON/OFF制御するスイッチ18とを備えている。スイッチ18により高分子分散型液晶層16a,16bの光透過性、光拡散状態を制御する。
<Third Embodiment>
FIG. 6 is an exploded perspective view of a more specific liquid crystal display device according to the third embodiment of the present invention. A liquid crystal display device 19 shown in FIG. 6 includes polymer-dispersed liquid crystal layers 16a and 16b having different voltage-light transmittance characteristics, and translucent electrodes 15a and 15b disposed so as to sandwich the liquid crystal layers 16a and 16b. An AC power supply 17 for applying an AC voltage to these electrodes 15a and 15b, and a switch 18 for ON / OFF control of the power supply 17 are provided. The switch 18 controls the light transmittance and light diffusion state of the polymer dispersed liquid crystal layers 16a and 16b.

高分子分散型液晶層16a,16bの各電圧−光透過率特性を図7に示し、電圧光透過率特性曲線105aが液晶層16aの特性を、電圧光透過率曲線105bが液晶層16bの特性をそれぞれ示している。図7から分かるように、高分子分散型液晶層16bは、電圧を印可していない状態で大きな光透過率を示す。   FIG. 7 shows the voltage-light transmittance characteristics of the polymer dispersed liquid crystal layers 16a and 16b. The voltage / light transmittance characteristic curve 105a represents the characteristics of the liquid crystal layer 16a, and the voltage / light transmittance curve 105b represents the characteristics of the liquid crystal layer 16b. Respectively. As can be seen from FIG. 7, the polymer-dispersed liquid crystal layer 16b exhibits a large light transmittance when no voltage is applied.

図8は、図6の液晶表示装置19の表示状態を示す平面図である。いま、交流電源17の電圧をV5にしてスイッチ18をオンすると、図7に示すように、図6の両電極15a,15bに挟まれた液晶層16aは光透過率が上昇し、電極15a,15bに挟まれていない液晶層16bの光透過率とほぼ等しくなる。液晶層16aに対応するのは図8の領域20であり、液晶層16bと対応するのが領域21であるから、図8において領域20と領域21とは区別の付かない状態となる。なお、電極15a,15bの交流電源との接続のための各端子は、図6のように互いに重なり合わないように電極15aでは図の上方側に、電極15bでは図の下方側に、それぞれ設けられているから、スイッチ18がオンのとき、電圧は液晶層16bには印加されない。   FIG. 8 is a plan view showing a display state of the liquid crystal display device 19 of FIG. Now, when the voltage of the AC power supply 17 is set to V5 and the switch 18 is turned on, as shown in FIG. 7, the liquid crystal layer 16a sandwiched between the electrodes 15a and 15b in FIG. It becomes substantially equal to the light transmittance of the liquid crystal layer 16b not sandwiched by 15b. The region 20 in FIG. 8 corresponds to the liquid crystal layer 16a, and the region 21 corresponds to the liquid crystal layer 16b. Therefore, the region 20 and the region 21 are indistinguishable in FIG. The terminals for connecting the electrodes 15a and 15b to the AC power source are provided on the upper side of the figure for the electrode 15a and on the lower side of the figure for the electrode 15b so as not to overlap each other as shown in FIG. Therefore, no voltage is applied to the liquid crystal layer 16b when the switch 18 is on.

次に、スイッチ18をオフにすると、図6の液晶層16aは光拡散状態(白濁状態)となり光透過率がほぼゼロとなる一方、液晶層16bはスイッチオフ前と同じ光透過状態であるから、図8において領域20と領域21とは明りょうに区別できるようになる。このようにして、光透過性であり明るい領域21の中に閉領域である光透過性でない暗い領域20を表示することができる。そして、かかる構成を、電極の配置が複雑とならずに簡単な電極配置により、実現することができる。   Next, when the switch 18 is turned off, the liquid crystal layer 16a in FIG. 6 is in a light diffusing state (white turbid state) and the light transmittance is almost zero, while the liquid crystal layer 16b is in the same light transmitting state as before the switch is turned off. In FIG. 8, the region 20 and the region 21 can be clearly distinguished. In this way, the dark region 20 that is a light-transmissive and bright region 21 and that is a closed region that is not light-transmissive can be displayed. Such a configuration can be realized by a simple electrode arrangement without complicated electrode arrangement.

以上のように、各実施の形態によれば、領域毎に高分子分散型液晶の各電圧−光透過率特性を異ならせることにより、全面に透光性電極を配置しても(または電極の簡単な配置で)閉領域の表示・非表示が可能となる。従って、図9に示す従来の液晶表示装置のように、閉領域の表示のために必然的に生じてしまう電極端子部の表示といった表示品質の低下の問題はない。   As described above, according to each embodiment, even if a translucent electrode is arranged on the entire surface (or the electrode) by varying each voltage-light transmittance characteristic of the polymer dispersed liquid crystal for each region. The closed area can be displayed / hidden (with a simple arrangement). Therefore, unlike the conventional liquid crystal display device shown in FIG. 9, there is no problem of deterioration in display quality such as display of the electrode terminal portion that inevitably occurs for displaying the closed region.

なお、透光性電極を分割して形成し、高分子分散型液晶の第1の液晶領域と第2の液晶領域とをそれぞれ独立して制御するようにすると、印加電圧をそれぞれ独立に設定できるから、例えば第1の液晶領域と第2の液晶領域の光透過率の差が大きくなるようにでき、コントラスト差が大きくなり、表示の視認性を高めることが可能となる。また、各光透過率をほぼ等しくして表示を見えなくすることを、任意の光透過率において可能とすることができる。   In addition, when the translucent electrode is divided and formed, and the first liquid crystal region and the second liquid crystal region of the polymer dispersed liquid crystal are controlled independently, the applied voltages can be set independently. Thus, for example, the difference in light transmittance between the first liquid crystal region and the second liquid crystal region can be increased, the contrast difference can be increased, and display visibility can be improved. In addition, it is possible to make the display invisible by making the respective light transmittances substantially equal at any light transmittance.

また、例えば図4に示す電圧光透過率特性が温度依存性を有する場合、温度が両液晶領域の光透過率の差として現れるから、温度計としても利用することができる。この場合、電極に印加する液晶の駆動電圧を調整することにより、温度校正を行うことができる。   For example, when the voltage light transmittance characteristic shown in FIG. 4 has temperature dependence, the temperature appears as a difference between the light transmittances of the two liquid crystal regions, so that it can also be used as a thermometer. In this case, temperature calibration can be performed by adjusting the driving voltage of the liquid crystal applied to the electrode.

本発明の第1の実施の形態による高分子分散型液晶を用いた液晶表示装置の平面図である。1 is a plan view of a liquid crystal display device using a polymer-dispersed liquid crystal according to a first embodiment of the present invention. 図1のII−II線断面図である。It is the II-II sectional view taken on the line of FIG. 図1のIII−III線断面図である。It is the III-III sectional view taken on the line of FIG. 図1の各高分子分散型液晶の印加電圧と光透過率との関係を示す図である。It is a figure which shows the relationship between the applied voltage and light transmittance of each polymer dispersion type liquid crystal of FIG. 第2の実施の形態における各高分子分散型液晶の印加電圧と光透過率との関係を示す図である。It is a figure which shows the relationship between the applied voltage and light transmittance of each polymer dispersion type liquid crystal in 2nd Embodiment. 第3の実施の形態による液晶表示装置の分解斜視図である。It is a disassembled perspective view of the liquid crystal display device by 3rd Embodiment. 図6の各高分子分散型液晶層の印加電圧と光透過率との関係を示す図である。It is a figure which shows the relationship between the applied voltage and light transmittance of each polymer dispersion type liquid crystal layer of FIG. 図6の液晶表示装置の平面図である。It is a top view of the liquid crystal display device of FIG. 従来の液晶表示素子を説明するための平面図である。It is a top view for demonstrating the conventional liquid crystal display element.

符号の説明Explanation of symbols

1,19 液晶表示装置
10 高分子分散型液晶(第1の液晶領域)
11 高分子分散型液晶(第2の液晶領域)
101,103,105a 第1の液晶領域の電圧光透過率特性曲線
102,104,105b 第2の液晶領域の電圧光透過率特性曲線
12 透光性電極
13 ガラス基板
14 シール材
16a 高分子分散型液晶層(第1の液晶領域)
16b 高分子分散型液晶層(第2の液晶領域)
15a,15b 透光性電極
1,19 Liquid crystal display device 10 Polymer dispersion type liquid crystal (first liquid crystal region)
11 Polymer dispersed liquid crystal (second liquid crystal region)
101, 103, 105a Voltage light transmittance characteristic curve of the first liquid crystal region 102, 104, 105b Voltage light transmittance characteristic curve of the second liquid crystal region 12 Translucent electrode 13 Glass substrate 14 Sealing material 16a Polymer dispersion type Liquid crystal layer (first liquid crystal region)
16b Polymer dispersed liquid crystal layer (second liquid crystal region)
15a, 15b Translucent electrode

Claims (2)

光透過率が印加電圧に応じて変化する液晶により閉領域の表示を行う液晶表示装置において、
対向する一対の透光性基板と、
前記一対の透光性基板の間に平坦且つ均一な厚さで配置されるとともに、光透過率と印加電圧とが第1の関係で変化する、前記閉領域に対応する第1の液晶領域と、
前記第1の液晶領域の周囲に配置された、光透過率と印加電圧とが第1の関係と異なる第2の関係で変化する第2の液晶領域と、
前記一対の透光性基板の全面にそれぞれ設けられると共に、前記第1の液晶領域と前記第2の液晶領域に対して共通の電圧を印加する透光性電極とを有し、
前記第1の液晶領域および前記第2の液晶領域は、高分子分散型液晶から構成され、前記第1の液晶領域と前記第2の液晶領域とは、前記高分子分散型液晶の液晶と高分子樹脂との混合比が互いに異なり、
前記第1の液晶領域と前記第2の液晶領域の透過率差によって前記閉領域を表示することを特徴とする液晶表示装置。
In a liquid crystal display device that displays a closed region with a liquid crystal whose light transmittance changes according to an applied voltage,
A pair of opposing translucent substrates;
A first liquid crystal region corresponding to the closed region, wherein the first liquid crystal region is disposed between the pair of translucent substrates with a flat and uniform thickness, and the light transmittance and the applied voltage change in a first relationship; ,
A second liquid crystal region disposed around the first liquid crystal region, wherein the light transmittance and the applied voltage change in a second relationship different from the first relationship;
Each provided on the entire surface of the pair of translucent substrates, and having a translucent electrode for applying a common voltage to the first liquid crystal region and the second liquid crystal region,
The first liquid crystal region and the second liquid crystal region are composed of polymer dispersed liquid crystal, and the first liquid crystal region and the second liquid crystal region are higher than the liquid crystal of the polymer dispersed liquid crystal. The mixing ratio with molecular resin is different from each other,
The liquid crystal display device, wherein the closed region is displayed by a difference in transmittance between the first liquid crystal region and the second liquid crystal region.
前記印加電圧を変化させることにより前記第1の液晶領域と前記第2の液晶領域との光透過率を同一または近似させて前記閉領域を視認できないようにすることを特徴とする請求項1に記載の液晶表示装置。   2. The closed region cannot be visually recognized by changing the applied voltage so that light transmittances of the first liquid crystal region and the second liquid crystal region are the same or approximate. The liquid crystal display device described.
JP2007181210A 2007-07-10 2007-07-10 Liquid crystal display Expired - Lifetime JP4770805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007181210A JP4770805B2 (en) 2007-07-10 2007-07-10 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007181210A JP4770805B2 (en) 2007-07-10 2007-07-10 Liquid crystal display

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20391897A Division JP4013292B2 (en) 1997-07-15 1997-07-15 Liquid crystal display

Publications (2)

Publication Number Publication Date
JP2007293364A JP2007293364A (en) 2007-11-08
JP4770805B2 true JP4770805B2 (en) 2011-09-14

Family

ID=38763972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007181210A Expired - Lifetime JP4770805B2 (en) 2007-07-10 2007-07-10 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP4770805B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143093A (en) * 1978-04-28 1979-11-07 Citizen Watch Co Ltd Liquid crystal display unit
JPS55166621A (en) * 1979-06-13 1980-12-25 Casio Comput Co Ltd Liquid crystal display device
JP3100521B2 (en) * 1994-12-05 2000-10-16 シャープ株式会社 Liquid crystal display device

Also Published As

Publication number Publication date
JP2007293364A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
US20020085155A1 (en) Liquid crystal display device and electronic apparatus provided with the same
US20100309096A1 (en) Display device and its display method
JP2007171674A5 (en)
JP2007094038A (en) Multiple image display device
JP5241822B2 (en) Display panel and camera
WO2010095743A1 (en) Display element and electrical device
WO2011121687A1 (en) Display device, liquid crystal module, and image display system
KR101206285B1 (en) Display device capable of adjusting viewing angle and fabrication method the same
WO2011125271A1 (en) Display device, liquid crystal module, and image display system
KR20070071807A (en) Liquid crystal display device and method for driving the same
EP1407318B1 (en) Colour liquid crystal display device with electrically switchable colour filters
US20190064616A1 (en) Transflective liquid crystal display
JP2017191139A (en) Display
JP5927057B2 (en) Liquid crystal display
JP4770805B2 (en) Liquid crystal display
KR20070031507A (en) Color liquid crystal display
JP4013292B2 (en) Liquid crystal display
US11010120B2 (en) Graphical display assembly for depicting vehicle shifter position
KR101108313B1 (en) Display device
CN212749484U (en) Liquid crystal display panel and liquid crystal display device
JP4304635B2 (en) Liquid crystal display device and electronic device equipped with the same
JP2007256939A (en) Display device
JP2007047814A (en) Color liquid crystal display device
KR100765434B1 (en) Transflective display device
JP2015082018A (en) Liquid crystal display element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term