JP4770747B2 - Oxide superconducting wire and method for producing the same - Google Patents

Oxide superconducting wire and method for producing the same Download PDF

Info

Publication number
JP4770747B2
JP4770747B2 JP2007015114A JP2007015114A JP4770747B2 JP 4770747 B2 JP4770747 B2 JP 4770747B2 JP 2007015114 A JP2007015114 A JP 2007015114A JP 2007015114 A JP2007015114 A JP 2007015114A JP 4770747 B2 JP4770747 B2 JP 4770747B2
Authority
JP
Japan
Prior art keywords
silver
insulating film
oxide
superconducting wire
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007015114A
Other languages
Japanese (ja)
Other versions
JP2008181795A (en
Inventor
直樹 綾井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007015114A priority Critical patent/JP4770747B2/en
Publication of JP2008181795A publication Critical patent/JP2008181795A/en
Application granted granted Critical
Publication of JP4770747B2 publication Critical patent/JP4770747B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

この発明は、酸化物超電導線材およびその製造方法に関し、特に、電力、輸送、高エネルギー、医療などの分野で用いられる酸化物超電導線材、および、酸化物超電導線材の製造方法に関する。   The present invention relates to an oxide superconducting wire and a method for manufacturing the same, and more particularly to an oxide superconducting wire used in the fields of electric power, transportation, high energy, medicine, and the like, and a method for manufacturing an oxide superconducting wire.

高い臨界温度をもつ酸化物超電導体を利用した超電導技術の実用化が促進されている。イットリウム系の酸化物は温度90Kで、ビスマス系の酸化物は温度110Kで超電導現象を示す。これらの酸化物超電導体は、比較的安価で入手できる液体窒素中で超電導特性を示すため、実用化が期待されている。   Practical application of superconducting technology using oxide superconductors with high critical temperatures is being promoted. Yttrium-based oxides exhibit a superconducting phenomenon at a temperature of 90K and bismuth-based oxides at a temperature of 110K. These oxide superconductors are expected to be put to practical use because they exhibit superconducting properties in liquid nitrogen that is available at a relatively low cost.

このような超電導体に、たとえば電力供給用の交流電流を流すためには、超電導体を銀シースで被覆し、その銀シースを高抵抗体で被覆し、その高抵抗体をさらに金属で被覆するような超電導線材が用いられている(たとえば特許文献1参照)。   In order to pass, for example, an alternating current for power supply to such a superconductor, the superconductor is covered with a silver sheath, the silver sheath is covered with a high resistance body, and the high resistance body is further covered with a metal. Such a superconducting wire is used (for example, see Patent Document 1).

特許文献1では、複数の酸化物超電導体の間に介在する高抵抗体としてのセラミックス体を、バインダとセラミックス粉末に押出加工を施した後バインダを熱分解することにより形成する、酸化物超電導線材の製造方法が提案されている。
特開2002−75080号公報
In Patent Document 1, an oxide superconducting wire is formed by forming a ceramic body as a high-resistance body interposed between a plurality of oxide superconductors by subjecting a binder and ceramic powder to extrusion and then thermally decomposing the binder. The manufacturing method of this is proposed.
JP 2002-75080 A

特許文献1で提案されている酸化物超電導線材の製造方法では、バインダを熱分解するときに、バインダが完全に熱分解しないでバインダの成分の一部が残留する場合がある。バインダの成分の一部が残留すると、超電導体を生成または焼結する熱処理を行なうときにバインダの残留成分が気化して、線材の内部に空隙が生じるという問題があった。   In the method for manufacturing an oxide superconducting wire proposed in Patent Document 1, when the binder is thermally decomposed, the binder may not be completely thermally decomposed and a part of the binder component may remain. When a part of the binder component remains, there is a problem that the residual component of the binder is vaporized when heat treatment for generating or sintering the superconductor is performed, and voids are generated inside the wire.

また、バインダを熱分解するときに、セラミックス体の密度が低下して不均一になる。その後の加工で、セラミックス体に破れが生じて、交流損失の低減効果が下がる場合がある。また、セラミックス体の密度低下によって、超電導体が加工の際に影響を受けると、臨界電流などの超電導体の性能が低下する。   Further, when the binder is pyrolyzed, the density of the ceramic body is lowered and becomes non-uniform. Subsequent processing may cause the ceramic body to be broken and reduce the AC loss reduction effect. In addition, if the superconductor is affected during processing due to a decrease in the density of the ceramic body, the performance of the superconductor such as critical current deteriorates.

さらに、バインダを熱分解する際には、環境の負荷となる二酸化炭素、炭化水素系ガスなどの分解ガスを放出するという問題があった。   Furthermore, when thermally decomposing the binder, there has been a problem of releasing decomposition gases such as carbon dioxide and hydrocarbon gas, which are environmental loads.

それゆえに、この発明の主たる目的は、上述のようなバインダの熱分解による問題点の解決を図り、交流損失を低減することができる酸化物超電導線材およびその製造方法を提供することである。   Therefore, a main object of the present invention is to provide an oxide superconducting wire that can solve the problems caused by the thermal decomposition of the binder as described above, and can reduce AC loss, and a method for manufacturing the same.

この発明に係る酸化物超電導線材の製造方法は、銀または銀合金からなる、小径の第1の金属管に、酸化物超電導体の原料を充填する工程を備える。また、第1の金属管を塑性加工して単芯線を形成する工程を備える。また、単芯線の表面に陽極酸化によりAgCl絶縁皮膜を作製して、被覆ロッドを形成する工程を備える。また、複数本の被覆ロッドを銀または銀合金からなる大径の第2の金属管に挿入して、多芯ビレットを形成する工程を備える。また、多芯ビレットを塑性加工して、多芯線を形成する工程を備える。また、多芯線に熱処理を行ない、酸化物超電導線材の内部に空隙を生じることなく絶縁皮膜の均一な組織を保持して原料から酸化物超電導体を生成する工程を備える。 The method for manufacturing an oxide superconducting wire according to the present invention includes a step of filling a raw material for an oxide superconductor into a small-diameter first metal tube made of silver or a silver alloy. In addition, the method includes a step of forming a single core wire by plastic working the first metal tube. Moreover, the process of producing an AgCl insulating film by the anodic oxidation on the surface of a single core wire, and forming a covering rod is provided. In addition, the method includes a step of forming a multi-core billet by inserting a plurality of covering rods into a second metal tube having a large diameter made of silver or a silver alloy. Moreover, the multi-core billet is plastically processed to form a multi-core wire. In addition, the method includes a step of heat-treating the multi-core wire to generate an oxide superconductor from the raw material while maintaining a uniform structure of the insulating film without generating voids inside the oxide superconducting wire.

この場合は、絶縁皮膜としてバインダを使用しないで形成できる銀化合物を用いるので、酸化物超電導体を生成または焼結する熱処理を行なうときに、バインダの残留成分が気化して酸化物超電導線材の内部に空隙が生じることがない。また、バインダを使用しないので、絶縁皮膜の密度が低下して不均一になることがなく、その後の加工でも、絶縁皮膜の均一な組織が保持され、交流損失が低減される。絶縁皮膜の密度低下がないので、酸化物超電導体も均一に加工されるため、臨界電流の低下が起こらない。また、バインダを使用しないので、環境の負荷となる二酸化炭素、炭化水素系ガスなどの分解ガスを放出しない。   In this case, since a silver compound that can be formed without using a binder is used as the insulating film, when the heat treatment for generating or sintering the oxide superconductor is performed, the residual components of the binder are vaporized and the inside of the oxide superconducting wire No voids are formed in Moreover, since the binder is not used, the density of the insulating film does not decrease and becomes non-uniform, and the uniform structure of the insulating film is maintained even in subsequent processing, and the AC loss is reduced. Since there is no decrease in the density of the insulating film, the oxide superconductor is also processed uniformly, so that the critical current does not decrease. In addition, since no binder is used, cracked gases such as carbon dioxide and hydrocarbon gas, which are environmental loads, are not released.

また、交流損失を低減するための高抵抗バリアとなる、単芯線の絶縁皮膜を、たとえば銀または銀合金からなる第1の金属管を陽極酸化する(たとえば、NaCl水溶液内で第1の金属管を陽極酸化する)ことによって、作製することができる。陽極酸化によると短時間に均質な絶縁皮膜が得られるので、安全で生産性に優れ、また周辺環境に対する負荷も小さい。また、陽極酸化以外の方法で第1の金属管表面の材料を加工または化学変化させることで、絶縁皮膜を形成してもよい。   In addition, a single-core wire insulating film serving as a high resistance barrier for reducing AC loss is anodized on a first metal tube made of, for example, silver or a silver alloy (for example, the first metal tube in an aqueous NaCl solution). Can be produced by anodizing. Anodization provides a uniform insulating film in a short time, so it is safe and productive, and the load on the surrounding environment is small. Further, the insulating film may be formed by processing or chemically changing the material of the first metal tube surface by a method other than anodic oxidation.

好ましくは、酸化物超電導体を生成する工程の後、多芯線の表面に陽極酸化によりAgCl絶縁皮膜を作製する工程をさらに備える。この場合は、酸化物超電導線材の表面に絶縁皮膜を作製し、素線絶縁を施すために、超電導線材間で起こる電流の乗り移りが抑制され、交流損失を低減できる。酸化物超電導線材の素線絶縁になる絶縁皮膜を、たとえば銀または銀合金からなる第2の金属管の陽極酸化(たとえば、NaCl水溶液内での陽極酸化)によって、作製することができる。陽極酸化によると短時間に均質な絶縁皮膜が得られるので、安全で生産性に優れ、また周辺環境に対する負荷も小さい。また、陽極酸化以外の方法で第2の金属管表面の材料を加工または化学変化させることで、絶縁皮膜を形成してもよい。 Preferably, the method further includes a step of forming an AgCl insulating film on the surface of the multi-core wire by anodic oxidation after the step of generating the oxide superconductor. In this case, since an insulating film is formed on the surface of the oxide superconducting wire and wire insulation is performed, current transfer occurring between the superconducting wires is suppressed, and AC loss can be reduced. The insulating film that becomes the wire insulation of the oxide superconducting wire can be produced by anodic oxidation (for example, anodic oxidation in a NaCl aqueous solution) of a second metal tube made of, for example, silver or a silver alloy. Anodization provides a uniform insulating film in a short time, so it is safe and productive, and the load on the surrounding environment is small. Further, the insulating film may be formed by processing or chemically changing the material of the second metal tube surface by a method other than anodic oxidation.

この発明に係る酸化物超電導線材は、複数の酸化物超電導体を備える。また、複数の酸化物超電導体のそれぞれの外周を被覆する、銀または銀合金からなる第1の被覆層を備える。また、複数の酸化物超電導体が埋め込まれ、第1の被覆層の外周を被覆し、内部に空隙が生じず組織が均一に保持された、陽極酸化により作製されたAgClからなる絶縁層を備える。また、絶縁層の外周を被覆する、銀または銀合金からなる第2の被覆層を備える。 The oxide superconducting wire according to the present invention includes a plurality of oxide superconductors. Moreover, the 1st coating layer which consists of silver or a silver alloy which coat | covers each outer periphery of a some oxide superconductor is provided. In addition, a plurality of oxide superconductors are embedded, covering the outer periphery of the first covering layer, and having an insulating layer made of AgCl made by anodic oxidation , in which no voids are formed and the structure is uniformly maintained . Moreover, the 2nd coating layer which consists of silver or a silver alloy which coat | covers the outer periphery of an insulating layer is provided.

この場合は、第1の被覆層の外周が絶縁層(たとえば、銀または銀合金からなる第1の被覆層を陽極酸化することによって作製された、銀化合物による絶縁皮膜)で被覆されているので、複数の酸化物超電導体のそれぞれを確実に電気的に分離することができ、交流損失を低減できる。絶縁層は銀化合物を含むものであって、バインダを使用しないので、酸化物超電導線材の内部に空隙が生じておらず、絶縁皮膜の組織が均一に保持されているので、交流損失が低減されている。絶縁皮膜の密度低下がないので、酸化物超電導体も均一に加工されているため、臨界電流の低下が起こらない。   In this case, since the outer periphery of the first covering layer is covered with an insulating layer (for example, an insulating film made of a silver compound produced by anodizing the first covering layer made of silver or a silver alloy). In addition, each of the plurality of oxide superconductors can be reliably electrically separated, and AC loss can be reduced. Since the insulating layer contains a silver compound and does not use a binder, there are no voids inside the oxide superconducting wire, and the structure of the insulating film is kept uniform, so AC loss is reduced. ing. Since there is no decrease in the density of the insulating film, the oxide superconductor is also processed uniformly, so that the critical current does not decrease.

この発明の酸化物超電導線材およびその製造方法によると、バインダの熱分解による問題点を解決でき、さらに酸化物超電導線材の交流損失を低減することができる。   According to the oxide superconducting wire and the manufacturing method thereof of the present invention, problems due to the thermal decomposition of the binder can be solved, and further, the AC loss of the oxide superconducting wire can be reduced.

以下、図面に基づいてこの発明の実施の形態を説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。   Embodiments of the present invention will be described below with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.

(実施の形態1)
図1は、この発明の実施の形態1に従った酸化物超電導線材の断面図である。図1に示すように、酸化物超電導線材120は、複数の酸化物超電導体としてのフィラメント117を備える。また、複数のフィラメント117のそれぞれの外周を被覆する、第1の被覆層としての銀からなるシース体110を備える。また、複数のフィラメント117が埋め込まれ、シース体110の外周を被覆する、絶縁層としてのAgCl絶縁皮膜112を備える。また、AgCl絶縁皮膜112の外周を被覆する第2の被覆層としての、銀からなるシース体114とを備える。酸化物超電導線材120はテープ状であり、紙面の手前側から奥側に向かって延びる。
(Embodiment 1)
FIG. 1 is a cross-sectional view of an oxide superconducting wire according to Embodiment 1 of the present invention. As shown in FIG. 1, the oxide superconducting wire 120 includes a plurality of filaments 117 as a plurality of oxide superconductors. In addition, a sheath body 110 made of silver is provided as a first coating layer that covers the outer periphery of each of the plurality of filaments 117. A plurality of filaments 117 are embedded, and an AgCl insulating film 112 as an insulating layer covering the outer periphery of the sheath body 110 is provided. In addition, a sheath body 114 made of silver is provided as a second coating layer covering the outer periphery of the AgCl insulating film 112. The oxide superconducting wire 120 is in the form of a tape and extends from the near side to the far side of the page.

フィラメント117、シース体110、AgCl絶縁皮膜112およびシース体114は、横方向に延びるように偏平形状に形成されている。フィラメント117は、たとえば(BiPb)SrCaCuで構成されている。酸化物超電導線材120内には複数本のフィラメント117が配置され、複数本のフィラメント117の間に介在するようにシース体110およびAgCl絶縁皮膜112が形成されている。なお、酸化物超電導線材120は偏平形状に成形される前にツイストされていてもよく、その場合、複数本のフィラメント117は酸化物超電導線材120の中心軸に対して螺旋状に延びるように形成されている。 The filament 117, the sheath body 110, the AgCl insulating film 112, and the sheath body 114 are formed in a flat shape so as to extend in the lateral direction. The filament 117 is made of, for example, (BiPb) 2 Sr 2 Ca 2 Cu 3 O X. A plurality of filaments 117 are arranged in the oxide superconducting wire 120, and a sheath body 110 and an AgCl insulating film 112 are formed so as to be interposed between the plurality of filaments 117. The oxide superconducting wire 120 may be twisted before being formed into a flat shape, and in that case, a plurality of filaments 117 are formed so as to extend spirally with respect to the central axis of the oxide superconducting wire 120. Has been.

次に、図1で示す酸化物超電導線材の製造方法について説明する。図2〜図6は、図1で示す酸化物超電導線材の製造方法を説明するための図である。まず、図2に示すように、小径の第1の金属管としての銀からなるシース体110に、酸化物超電導フィラメントの原料となる(BiPb)SrCaCuの原料粉末100を充填する。これを伸線(塑性加工)して、単芯線としての銀被覆ロッド101を得る。酸化物超電導フィラメントの原料粉末を成形してロッドを形成し、ロッドをシース体110に挿入し、これを伸線して銀被覆ロッド101としてもよい。銀被覆ロッド101の形状は、たとえば六角形状でもよい。シース体110には、たとえばAg−Mg合金、Ag−Mn合金、Ag−Cu合金パイプのような銀合金パイプを用いてもよい。なお、銀合金とは、銀およびMg、Mn、Cuなどの主要合金成分から構成される合金である。ただし、銀合金には、不可避的不純物が含まれていても構わない。 Next, a method for manufacturing the oxide superconducting wire shown in FIG. 1 will be described. 2-6 is a figure for demonstrating the manufacturing method of the oxide superconducting wire shown in FIG. First, as shown in FIG. 2, a raw material powder 100 of (BiPb) 2 Sr 2 Ca 2 Cu 3 O X used as a raw material of an oxide superconducting filament is formed on a sheath body 110 made of silver as a first metal tube having a small diameter. Fill. This is drawn (plastic processing) to obtain a silver-coated rod 101 as a single core wire. The raw material powder of the oxide superconducting filament may be formed to form a rod, the rod may be inserted into the sheath body 110, and this may be drawn to form the silver-coated rod 101. The shape of the silver-coated rod 101 may be a hexagonal shape, for example. For the sheath body 110, for example, a silver alloy pipe such as an Ag—Mg alloy, an Ag—Mn alloy, or an Ag—Cu alloy pipe may be used. The silver alloy is an alloy composed of silver and main alloy components such as Mg, Mn, and Cu. However, the silver alloy may contain inevitable impurities.

図3に示すように、AgCl皮膜形成装置300を用いて、銀被覆ロッド101の表面に絶縁皮膜を作製する。AgCl皮膜形成装置300は、AgClの光分解を防ぐための暗箱301の内部に、サプライ装置302と、巻取り装置303と、洗浄器304と、皮膜形成槽305と、乾燥器306と、電源308とを備える。銀被覆ロッド101は、サプライ装置302から供給され、洗浄器304、皮膜形成槽305および乾燥器306を通過した後に、巻取り装置303によって巻き取られる。   As shown in FIG. 3, an insulating film is formed on the surface of the silver-coated rod 101 using an AgCl film forming apparatus 300. The AgCl film forming apparatus 300 includes a supply device 302, a winding device 303, a cleaning device 304, a film forming tank 305, a dryer 306, and a power source 308 inside a dark box 301 for preventing photodecomposition of AgCl. With. The silver-coated rod 101 is supplied from the supply device 302, passes through the cleaning device 304, the film formation tank 305, and the drying device 306, and then wound up by the winding device 303.

サプライ装置302から供給された銀被覆ロッド101は、洗浄器304において、皮膜を形成する表面としてのシース体110(図2参照)の表面を浄化される。洗浄器304としては、たとえば洗浄槽や、超音波洗浄装置を用いることができる。表面を浄化された銀被覆ロッド101は、接続子309において、電源308のプラス側と電気的に接続される。接続子309としては、たとえばローラーやブラシを用いることができる。   The surface of the sheath body 110 (see FIG. 2) as a surface on which the film is formed is purified by the cleaning device 304 in the silver-coated rod 101 supplied from the supply device 302. As the cleaning device 304, for example, a cleaning tank or an ultrasonic cleaning device can be used. The silver-coated rod 101 whose surface has been purified is electrically connected to the positive side of the power supply 308 at a connector 309. As the connector 309, for example, a roller or a brush can be used.

皮膜形成槽305において、銀被覆ロッド101の表面に、AgCl絶縁皮膜112が形成される(図4参照)。つまり、皮膜形成槽305の内部には、電解液307が充填されている。電解液307中には、電源308のマイナス側と電気的に接続された、銅板などの陰極310が設けられている。電源308を駆動させると、電子は、電源308から、陰極310、電解液307、銀被覆ロッド101、接続子309の順に移動し、再び電源308に戻ってくる。つまり、電源308によって、接続子309、銀被覆ロッド101、電解液307および陰極310には電流が流れる。電解液307中で銀被覆ロッド101は陽極として機能するため、直流電流を流すと、電気分解により電極となっている金属(すなわち、銀)の表面が酸化される、陽極酸化が生じる。陽極酸化によって、図4に示すように、銀被覆ロッド101のシース体110の表面にAgCl絶縁皮膜112が作製され、AgCl絶縁皮膜被覆ロッド113が形成される。   In the film forming tank 305, an AgCl insulating film 112 is formed on the surface of the silver-coated rod 101 (see FIG. 4). That is, the inside of the film forming tank 305 is filled with the electrolytic solution 307. In the electrolytic solution 307, a cathode 310 such as a copper plate, which is electrically connected to the negative side of the power source 308, is provided. When the power source 308 is driven, electrons move from the power source 308 to the cathode 310, the electrolytic solution 307, the silver-coated rod 101, and the connector 309 in this order, and return to the power source 308 again. That is, a current flows through the connector 309, the silver-coated rod 101, the electrolytic solution 307, and the cathode 310 by the power source 308. Since the silver-coated rod 101 functions as an anode in the electrolytic solution 307, when a direct current is passed, anodization occurs in which the surface of the metal (that is, silver) serving as an electrode is oxidized by electrolysis. As shown in FIG. 4, an AgCl insulating film 112 is formed on the surface of the sheath body 110 of the silver-coated rod 101 by anodic oxidation, and an AgCl insulating film-coated rod 113 is formed.

たとえば、電解液307として10%のNaCl水溶液を用い、電源308を駆動させて約30mAの電流を数分間流す場合には、銀被覆ロッド101の表面に厚さ10μmのAgCl絶縁皮膜112を形成することができる。   For example, when a 10% NaCl aqueous solution is used as the electrolytic solution 307 and a current of about 30 mA is passed for several minutes by driving the power supply 308, an AgCl insulating film 112 having a thickness of 10 μm is formed on the surface of the silver-coated rod 101. be able to.

図3に戻って、乾燥器306において、AgCl絶縁皮膜被覆ロッド113の表面に残存した電解液307が乾燥により除去される。そして、巻取り装置303によってAgCl絶縁皮膜被覆ロッド113が巻き取られる。   Returning to FIG. 3, in the dryer 306, the electrolytic solution 307 remaining on the surface of the AgCl insulating coating rod 110 is removed by drying. Then, the AgCl insulating coating rod 113 is wound up by the winding device 303.

次に、図5に示すように、複数本のAgCl絶縁皮膜被覆ロッド113を束ねて、大径の第2の金属管としての銀からなるシース体114内に挿入して嵌合し、多芯ビレット115を形成する。多芯ビレット115は真空中で200℃に加熱され、内部の水分を除去して真空下で端末が封止される。   Next, as shown in FIG. 5, a plurality of AgCl insulating film-coated rods 113 are bundled and inserted into a sheath body 114 made of silver as a large-diameter second metal tube, and fitted into a multi-core. Billet 115 is formed. The multi-core billet 115 is heated to 200 ° C. in a vacuum to remove moisture inside and seal the terminal under the vacuum.

次に図6に示すように、多芯ビレット115を塑性加工で伸線して、多芯線としての多芯丸線116を形成する。多芯丸線116を圧延して矩形断面成形を行ないテープ状にする。また熱処理を加えて、フィラメント117内に酸化物超電導体(すなわち、(BiPb)SrCaCu)を生成する。さらに二次圧延を加え、高圧雰囲気で熱処理を加えて最終焼結を行なう。熱処理時にAgCl絶縁皮膜112に含まれるAgClも融解するが、このときAgCl絶縁皮膜被覆ロッド113は束ねられシース体114に囲まれているので、熱処理後にはAgCl絶縁皮膜112の形状は維持されている。 Next, as shown in FIG. 6, the multicore billet 115 is drawn by plastic working to form a multicore round wire 116 as a multicore wire. The multi-core round wire 116 is rolled to form a rectangular cross section into a tape shape. In addition, heat treatment is performed to generate an oxide superconductor (that is, (BiPb) 2 Sr 2 Ca 2 Cu 3 O X ) in the filament 117. Further, secondary rolling is performed, and heat treatment is performed in a high-pressure atmosphere to perform final sintering. AgCl contained in the AgCl insulating film 112 is also melted during the heat treatment. At this time, the AgCl insulating film covering rod 113 is bundled and surrounded by the sheath body 114, so that the shape of the AgCl insulating film 112 is maintained after the heat treatment. .

このようにして、図1に示すように、複数の酸化物超電導体のフィラメント117がAgCl絶縁皮膜112に埋め込まれ、その外側にシース体114が配置された酸化物超電導線材120を得ることができる。なお、シース体114には、たとえば外形φ26mm、内径φ22mmの丸断面を有するAg−Mg合金、Ag−Mn合金、Ag−Cu合金パイプのような、銀合金からなる金属管を用いることも可能である。   In this way, as shown in FIG. 1, it is possible to obtain an oxide superconducting wire 120 in which a plurality of oxide superconductor filaments 117 are embedded in an AgCl insulating film 112 and a sheath body 114 is disposed outside thereof. . For the sheath body 114, for example, a metal tube made of a silver alloy such as an Ag—Mg alloy, an Ag—Mn alloy, or an Ag—Cu alloy pipe having a round cross section with an outer diameter of φ26 mm and an inner diameter of φ22 mm can be used. is there.

以上説明した実施の形態1の酸化物超電導線材においては、製造時にバインダを使用しないので、酸化物超電導体を生成または焼結する熱処理を行なうときに、バインダの残留成分が気化して酸化物超電導線材120の内部に空隙が生じることがない。また、バインダを使用しないので、絶縁皮膜の密度が低下して不均一になることがなく、その後の加工でも、絶縁皮膜の均一な組織が保持され、交流損失が低減される。絶縁皮膜の密度低下がないので、酸化物超電導体も均一に加工されるため、臨界電流の低下が起こらない。また、バインダを使用しないので、環境の負荷となる二酸化炭素、炭化水素系ガスなどの分解ガスを放出しない。   In the oxide superconducting wire according to the first embodiment described above, since no binder is used at the time of manufacturing, when the heat treatment for generating or sintering the oxide superconductor is performed, the residual component of the binder is vaporized and the oxide superconductivity. No voids are generated inside the wire 120. Moreover, since the binder is not used, the density of the insulating film does not decrease and becomes non-uniform, and the uniform structure of the insulating film is maintained even in subsequent processing, and the AC loss is reduced. Since there is no decrease in the density of the insulating film, the oxide superconductor is also processed uniformly, so that the critical current does not decrease. In addition, since no binder is used, cracked gases such as carbon dioxide and hydrocarbon gas, which are environmental loads, are not released.

また、交流損失を低減するための高抵抗バリアとなる、AgCl絶縁皮膜112を、たとえば銀または銀合金からなるシース体110のNaCl水溶液内での陽極酸化によって、作製することができる。陽極酸化によると短時間に均質なAgCl絶縁皮膜112が得られるので、安全で生産性に優れ、また周辺環境に対する負荷も小さい。なお、絶縁皮膜の材料はAgClに限られるものではなく、硫化銀、臭化銀およびヨウ化銀のような銀化合物によって絶縁皮膜が形成されれば好適である。   Further, the AgCl insulating film 112 serving as a high resistance barrier for reducing AC loss can be produced by anodic oxidation in a NaCl aqueous solution of the sheath body 110 made of, for example, silver or a silver alloy. By anodizing, a homogeneous AgCl insulating film 112 can be obtained in a short time, so it is safe and excellent in productivity, and the load on the surrounding environment is small. Note that the material of the insulating film is not limited to AgCl, and it is preferable that the insulating film is formed of a silver compound such as silver sulfide, silver bromide, and silver iodide.

(実施の形態2)
図7は、実施の形態2の酸化物超電導線材の断面図である。実施の形態2の酸化物超電導線材の製造方法は、上述した実施の形態1の酸化物超電導線材の製造方法と基本的に同様の工程を備えている。しかし、実施の形態2では、酸化物超電導体を生成する最終焼結の後、シース体114の表面(すなわち、多芯線の表面)に、たとえば図3に示したAgCl皮膜形成装置300を用いて、絶縁皮膜を作製する工程をさらに備えている。その結果、図7に示すように、酸化物超電導線材120の表面には、AgCl絶縁皮膜118が形成されている。
(Embodiment 2)
FIG. 7 is a cross-sectional view of the oxide superconducting wire according to the second embodiment. The manufacturing method of the oxide superconducting wire according to Embodiment 2 includes basically the same steps as the manufacturing method of the oxide superconducting wire according to Embodiment 1 described above. However, in the second embodiment, after the final sintering for generating the oxide superconductor, for example, the AgCl film forming apparatus 300 shown in FIG. 3 is used on the surface of the sheath body 114 (that is, the surface of the multifilamentary wire). The method further includes the step of producing an insulating film. As a result, an AgCl insulating film 118 is formed on the surface of the oxide superconducting wire 120 as shown in FIG.

実施の形態2の酸化物超電導線材120では、表面にAgCl絶縁皮膜118が形成されており、素線絶縁が施されているために、交流損失を低減できる。酸化物超電導線材120の素線絶縁になるAgCl絶縁皮膜118を、銀または銀合金からなる第2の金属管であるシース体114のNaCl水溶液内での陽極酸化によって、作製することができる。陽極酸化によると短時間に均質な絶縁皮膜が得られるので、安全で生産性に優れ、また周辺環境に対する負荷も小さい。なお、実施の形態1と同様に、絶縁皮膜の材料はAgClに限られるものではなく、硫化銀、臭化銀およびヨウ化銀のような銀化合物によって絶縁皮膜が形成されれば好適である。   In the oxide superconducting wire 120 according to the second embodiment, the AgCl insulating film 118 is formed on the surface, and since the wire insulation is performed, the AC loss can be reduced. The AgCl insulating film 118 serving as the element insulation of the oxide superconducting wire 120 can be produced by anodic oxidation in the NaCl aqueous solution of the sheath body 114 that is the second metal tube made of silver or a silver alloy. Anodization provides a uniform insulating film in a short time, so it is safe and productive, and the load on the surrounding environment is small. As in the first embodiment, the material of the insulating film is not limited to AgCl, and it is preferable that the insulating film is formed of a silver compound such as silver sulfide, silver bromide, and silver iodide.

以下、この発明の実施例について説明する。この発明の酸化物超電導線材の製造方法によって試料を作製し、各試料の超電導特性を明らかにする実験を行なった。   Examples of the present invention will be described below. Samples were prepared by the method for manufacturing an oxide superconducting wire according to the present invention, and experiments were conducted to clarify the superconducting characteristics of each sample.

試料Aは、比較例として、従来の有機バインダを用いる酸化物超電導線材とした。まず銀パイプに、(BiPb)SrCaCuのフィラメントの原料粉末を充填した。銀パイプを伸線して、単芯線を作製した。次に、平均粒径約1μmに粉砕したSrCO粉末に、セルロース系有機バインダを添加してよく混合し、加水して混練し、粘土状にしたものを押出で単芯線の周りに被覆した。被覆したセラミックス被覆(SrCO粉末+セルロース系有機バインダ)を十分に乾燥させてから束ねて、Ag−Mg合金パイプに挿入して嵌合した。 Sample A was an oxide superconducting wire using a conventional organic binder as a comparative example. First, a raw material powder of a filament of (BiPb) 2 Sr 2 Ca 2 Cu 3 O X was filled in a silver pipe. A silver pipe was drawn to produce a single core wire. Next, a cellulosic organic binder was added to the SrCO 3 powder pulverized to an average particle size of about 1 μm, mixed well, mixed with water, kneaded, and the clay was coated around the single core wire by extrusion. The coated ceramic coating (SrCO 3 powder + cellulose organic binder) was sufficiently dried and then bundled and inserted into an Ag—Mg alloy pipe and fitted.

嵌合パイプを大気中で600℃に加熱してバインダを熱分解し、さらに嵌合パイプを真空中で200℃に加熱しさらに内部の水分を除去して、真空下で端末を封止した。次に嵌合パイプを伸線し、圧延してテープにした。そして嵌合パイプに熱処理を加えて、フィラメント内に(BiPb)SrCaCuを生成した。さらに二次圧延を加え、高圧雰囲気下で熱処理を加えて最終焼結を行なった。以上の製造方法によって、試料Aを作製した。 The fitting pipe was heated to 600 ° C. in the atmosphere to pyrolyze the binder, and the fitting pipe was heated to 200 ° C. in vacuum to further remove moisture inside, and the terminal was sealed under vacuum. Next, the fitting pipe was drawn and rolled into a tape. Then, heat treatment was applied to the fitting pipe to generate (BiPb) 2 Sr 2 Ca 2 Cu 3 O X in the filament. Further, secondary rolling was performed, and heat treatment was performed in a high-pressure atmosphere to perform final sintering. Sample A was prepared by the above manufacturing method.

試料Bは、実施の形態1で示す製造方法に従って作製した。シース体114にはAg−Mg合金パイプを用いた。また、試料Cは、実施の形態2に示す製造方法に従って作製した。なお、試料A〜Cの寸法は、幅2.6mm、厚み0.18mmとした。また、酸化物超電導線材が37本のフィラメントを含むように、試料A〜Cを作成した。   Sample B was manufactured according to the manufacturing method shown in Embodiment Mode 1. An Ag-Mg alloy pipe was used for the sheath body 114. Sample C was manufactured according to the manufacturing method shown in Embodiment Mode 2. The dimensions of the samples A to C were 2.6 mm in width and 0.18 mm in thickness. Samples A to C were prepared so that the oxide superconducting wire includes 37 filaments.

試料A〜Cについて、温度が77Kの液体窒素中で自己磁場下での臨界電流値Icの測定を実施した。また試料A〜Cについて、外部磁場(磁界:0.1T、周波数:50Hz)を線材の長さ方向に垂直でテープ面に平行な方向に印加することにより磁化法で交流損失を測定した。さらに試料A〜Cについて、試料に発生した欠陥を調査し、1km当りの欠陥の発生個数を求めた。   For samples A to C, the critical current value Ic was measured in liquid nitrogen at a temperature of 77 K under a self-magnetic field. For samples A to C, an AC magnetic loss was measured by a magnetization method by applying an external magnetic field (magnetic field: 0.1 T, frequency: 50 Hz) in a direction perpendicular to the length direction of the wire and parallel to the tape surface. Further, for samples A to C, the defects generated in the samples were investigated, and the number of defects generated per 1 km was determined.

測定した試料の長さと臨界電流値からそれぞれの試料についての交流損失Wを以下の式に従って求めた。 AC loss W i for each sample from the length and critical current value of the measured samples were calculated according to the following equation.

=(試料iの交流損失)/{(試料iの臨界電流値)・(試料iの長さ)}
なお、Wの単位はW/A・mである。
W i = (AC loss of sample i) / {(critical current value of sample i) · (length of sample i)}
The unit of W i is a W / A · m.

この交流損失値を試料Aの交流損失値で除した値を以下の式に従い規格化した交流損失とした。   A value obtained by dividing the AC loss value by the AC loss value of Sample A was defined as an AC loss normalized according to the following equation.

規格化した交流損失<W>=W/W
試料A〜Cについての、臨界電流値、欠陥の発生個数および規格化した交流損失を表1に示す。
Standardized AC loss <W i > = W i / W A
Table 1 shows the critical current value, the number of defects generated, and the normalized AC loss for samples A to C.

Figure 0004770747
Figure 0004770747

表1より、比較例である試料Aに対し、本願発明品である試料Bおよび試料Cでは、臨界電流値は増大しており、欠陥の発生個数は減少しており、交流損失は小さくなっていることがわかる。したがって、この発明によって、より優れた超電導特性を有し、かつ欠陥の発生も少ない酸化物超電導線材を得ることができることが示された。   From Table 1, the critical current value is increased, the number of defects generated is decreased, and the AC loss is reduced in Sample B and Sample C, which are the products of the present invention, compared to Sample A which is a comparative example. I understand that. Therefore, it has been shown that an oxide superconducting wire having superior superconducting characteristics and less occurrence of defects can be obtained by the present invention.

今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。   The embodiments and examples disclosed herein are illustrative in all respects and should not be construed as being restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

この発明の実施の形態1に従った酸化物超電導線材の断面図である。It is sectional drawing of the oxide superconducting wire according to Embodiment 1 of this invention. 図1に示す酸化物超電導線材の製造方法の第1工程を示す斜視図である。It is a perspective view which shows the 1st process of the manufacturing method of the oxide superconducting wire shown in FIG. AgCl絶縁皮膜形成装置の模式図である。It is a schematic diagram of an AgCl insulating film forming apparatus. 図1に示す酸化物超電導線材の製造方法の第2工程を示す斜視図である。It is a perspective view which shows the 2nd process of the manufacturing method of the oxide superconducting wire shown in FIG. 図1に示す酸化物超電導線材の製造方法の第3工程を示す斜視図である。It is a perspective view which shows the 3rd process of the manufacturing method of the oxide superconducting wire shown in FIG. 図1に示す酸化物超電導線材の製造方法の第4工程を示す斜視図である。It is a perspective view which shows the 4th process of the manufacturing method of the oxide superconducting wire shown in FIG. 実施の形態2の酸化物超電導線材の断面図である。6 is a cross-sectional view of an oxide superconducting wire according to Embodiment 2. FIG.

符号の説明Explanation of symbols

100 酸化物超電導体原料粉末、101 銀被覆ロッド、110 シース体、112 AgCl絶縁皮膜、113 AgCl絶縁皮膜被覆ロッド、114 シース体、115 多芯ビレット、116 多芯丸線、117 フィラメント、118 AgCl絶縁皮膜、120 酸化物超電導線材、300 AgCl皮膜形成装置、301 暗箱、302 サプライ装置、303 巻取り装置、304 洗浄器、305 皮膜形成槽、306 乾燥器、307 電解液、308 電源、309 接続子、310 陰極。   100 oxide superconductor raw material powder, 101 silver coated rod, 110 sheath body, 112 AgCl insulating film, 113 AgCl insulating film coated rod, 114 sheath body, 115 multi-core billet, 116 multi-core round wire, 117 filament, 118 AgCl insulation Film, 120 oxide superconducting wire, 300 AgCl film forming device, 301 dark box, 302 supply device, 303 winding device, 304 cleaning device, 305 film forming tank, 306 dryer, 307 electrolyte, 308 power supply, 309 connector, 310 Cathode.

Claims (3)

銀または銀合金からなる金属管に酸化物超電導体の原料を充填する工程と、
前記金属管を塑性加工して単芯線を形成する工程と、
前記単芯線の表面に陽極酸化によりAgCl絶縁皮膜を作製して、被覆ロッドを形成する工程と、
複数本の前記被覆ロッドを銀または銀合金からなる金属管に挿入して、多芯ビレットを形成する工程と、
前記多芯ビレットを塑性加工して、多芯線を形成する工程と、
前記多芯線に熱処理を行ない、酸化物超電導線材の内部に空隙を生じることなく前記絶縁皮膜の均一な組織を保持して前記原料から前記酸化物超電導体を生成する工程とを備える、酸化物超電導線材の製造方法。
Filling a metal tube made of silver or a silver alloy with a raw material of an oxide superconductor;
Forming the single core wire by plastic working the metal tube;
Producing an AgCl insulating film by anodic oxidation on the surface of the single core wire to form a coated rod;
Inserting a plurality of the covering rods into a metal tube made of silver or a silver alloy to form a multi-core billet;
Plastically processing the multicore billet to form a multicore wire;
Heat-treating the multifilamentary wire, and maintaining the uniform structure of the insulating film without generating voids inside the oxide superconducting wire, and generating the oxide superconductor from the raw material. A manufacturing method of a wire.
前記酸化物超電導体を生成する工程の後、前記多芯線の表面に陽極酸化によりAgCl絶縁皮膜を作製する工程をさらに備える、請求項1に記載の酸化物超電導線材の製造方法。 The method for producing an oxide superconducting wire according to claim 1, further comprising a step of producing an AgCl insulating film on the surface of the multi-core wire by anodic oxidation after the step of producing the oxide superconductor. 複数の酸化物超電導体と、
複数の前記酸化物超電導体のそれぞれの外周を被覆する、銀または銀合金からなる第1の被覆層と、
複数の前記酸化物超電導体が埋め込まれ、前記第1の被覆層の外周を被覆し、内部に空隙が生じず組織が均一に保持された、陽極酸化により作製されたAgClからなる絶縁層と、
前記絶縁層の外周を被覆する、銀または銀合金からなる第2の被覆層とを備える、酸化物超電導線材。
A plurality of oxide superconductors;
A first coating layer made of silver or a silver alloy covering the outer periphery of each of the plurality of oxide superconductors;
An insulating layer made of AgCl made by anodic oxidation , in which a plurality of the oxide superconductors are embedded, covering the outer periphery of the first coating layer, and voids are not formed inside, and the structure is uniformly maintained;
An oxide superconducting wire comprising: a second coating layer made of silver or a silver alloy that covers the outer periphery of the insulating layer.
JP2007015114A 2007-01-25 2007-01-25 Oxide superconducting wire and method for producing the same Expired - Fee Related JP4770747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007015114A JP4770747B2 (en) 2007-01-25 2007-01-25 Oxide superconducting wire and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007015114A JP4770747B2 (en) 2007-01-25 2007-01-25 Oxide superconducting wire and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008181795A JP2008181795A (en) 2008-08-07
JP4770747B2 true JP4770747B2 (en) 2011-09-14

Family

ID=39725519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007015114A Expired - Fee Related JP4770747B2 (en) 2007-01-25 2007-01-25 Oxide superconducting wire and method for producing the same

Country Status (1)

Country Link
JP (1) JP4770747B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102552631B1 (en) * 2021-11-22 2023-07-05 김주홍 Multi filament wire and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2583538B2 (en) * 1987-11-19 1997-02-19 株式会社フジクラ Method for producing oxide-based superconducting wire
JP2002075081A (en) * 2000-08-31 2002-03-15 Japan Fine Ceramics Center Oxide superconducting wire material, method for manufacturing the same, and composite powder for use in barrier layer

Also Published As

Publication number Publication date
JP2008181795A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
US20180158577A1 (en) Superconducting wires and methods of making thereof
US9741471B2 (en) Semifinished wire with PIT elements for a superconducting wire containing Nb3Sn and method of producing the semifinished wire
US7226894B2 (en) Superconducting wire, method of manufacture thereof and the articles derived therefrom
CN101518872A (en) Method for preparing Cu-Nb monofilamentary composite wire
JP4934497B2 (en) Nb3Sn superconducting wire, precursor therefor, and method for producing the precursor
JP4770747B2 (en) Oxide superconducting wire and method for producing the same
JP2007214002A (en) Method of manufacturing nb3sn superconductive wire rod and precursor for it
JP2019186167A (en) PRECURSOR OF Nb3Sn SUPERCONDUCTING WIRE ROD AND Nb3Sn SUPERCONDUCTING WIRE ROD
JP3783538B2 (en) Manufacturing method of oxide superconducting wire
JP2006228665A (en) Oxide superconducting wire material, manufacturing method thereof, and superconducting apparatus
US6418331B1 (en) Multi-core BSCCO high-temperature superconductor
JP4605156B2 (en) Superconducting wire manufacturing method
JP4423708B2 (en) Oxide superconducting wire and method for producing oxide superconducting multicore wire
JP4662203B2 (en) Superconducting cable
JP2001101936A (en) Oxide superconducting material and method for manufacturing it
WO2008015847A1 (en) Superconducting oxide wire and process for producing the same
JP2006147357A (en) Manufacturing method of oxide superconductive wire
JP4701631B2 (en) Superconducting wire manufacturing method
US6828508B1 (en) Oxide high-temperature superconductor wire and method of producing the same
JP3489313B2 (en) Method for producing Nb3Al-based superconducting wire
JP4844856B2 (en) Superconducting cable
JP4883379B2 (en) Superconducting cable
JPH117845A (en) Superconductive wire
JP2008181794A (en) Manufacturing method of oxide superconducting wire material
JP2005510016A (en) Method of applying electrical resistance layer on oxide superconducting material, oxide superconducting material having electrical resistance layer and method of using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4770747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees