JP4770524B2 - Bottom structure of bottom blow converter - Google Patents

Bottom structure of bottom blow converter Download PDF

Info

Publication number
JP4770524B2
JP4770524B2 JP2006064553A JP2006064553A JP4770524B2 JP 4770524 B2 JP4770524 B2 JP 4770524B2 JP 2006064553 A JP2006064553 A JP 2006064553A JP 2006064553 A JP2006064553 A JP 2006064553A JP 4770524 B2 JP4770524 B2 JP 4770524B2
Authority
JP
Japan
Prior art keywords
tuyere
brick
bricks
converter
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006064553A
Other languages
Japanese (ja)
Other versions
JP2007239047A (en
Inventor
元達 杉澤
重穂 舘野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006064553A priority Critical patent/JP4770524B2/en
Publication of JP2007239047A publication Critical patent/JP2007239047A/en
Application granted granted Critical
Publication of JP4770524B2 publication Critical patent/JP4770524B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、炉底部から酸化性の精錬ガスを吹き込む底吹転炉の炉底部構造、特に、複数の煉瓦列を平行に敷き詰めることによって炉底を形成してなる底吹転炉の炉底部構造において複数の羽口煉瓦を有する底吹転炉の炉底部構造に関する。本発明における底吹転炉には、炉底部からのみ酸化性のガス、特に純酸素を吹き込むいわゆるQ−BOP転炉のほか炉底部とともに炉口側からランスを通して酸化性のガスを吹き込む上底吹き転炉が含まれる。また、羽口とは、中心部から酸化性のガスが、その周辺部から冷却用の、たとえば炭化水素ガスが吹き込まれる二重管羽口を意味する。   The present invention relates to a bottom structure of a bottom blowing converter in which oxidizing refining gas is blown from the bottom of the furnace, in particular, a bottom structure of a bottom blowing converter formed by laying a plurality of brick rows in parallel. Relates to the bottom structure of a bottom-blown converter having a plurality of tuyere bricks. The bottom blowing converter according to the present invention includes not only a so-called Q-BOP converter in which an oxidizing gas, particularly pure oxygen, is blown only from the bottom of the furnace, but also an upper bottom blowing in which an oxidizing gas is blown through the lance from the furnace port side together with the furnace bottom. A converter is included. The tuyere means a double pipe tuyere in which oxidizing gas is blown from the central part and cooling gas, for example, hydrocarbon gas is blown from the peripheral part.

製鋼用の転炉のうち上底吹き転炉や底吹き転炉(以下を総称して「底吹き転炉」という)は、精錬過程において酸化性のガス、例えば純酸素が炉底から吹き込まれ、これによって 精錬過程において溶鋼が強撹拌されるため、反応効率が高く、高品質の鋼を精錬するのに適している。この種の底吹き転炉においては、公知のとおり、炉底部にステンレス鋼又は銅製の羽口管が備えられ、そこから純酸素等の酸化性のガスが転炉内へ吹き込まれるようになっている。また、羽口管には、純酸素等の酸化性ガスが通される内管とそれを取り囲み炭化水素ガス(典型的にはプロパン)等の冷却ガスを通す外管とからなる二重管が採用され、これによって 精錬過程における羽口周りの冷却が行なわれるようになっている。この冷却作用は、 精錬過程において羽口部周りで生ずる炭化水素の分解によって生じ、その結果、羽口周辺にはいわゆるマシュルームが形成され、それによって羽口管及び羽口煉瓦が溶損から保護されるようになっている。   Among bottom converters for steel making, top-bottom blow converters and bottom-blowing converters (hereinafter collectively referred to as “bottom blow converters”) are used to oxidize gases such as pure oxygen from the bottom of the furnace during the refining process. Because of this, the molten steel is strongly stirred during the refining process, so the reaction efficiency is high and it is suitable for refining high-quality steel. In this type of bottom-blown converter, as is well known, a tuyeres made of stainless steel or copper are provided at the bottom of the furnace, and an oxidizing gas such as pure oxygen is blown into the converter from there. Yes. In addition, the tuyere tube has a double tube comprising an inner tube through which an oxidizing gas such as pure oxygen is passed and an outer tube surrounding the inner tube through which a cooling gas such as hydrocarbon gas (typically propane) is passed. It has been adopted to cool the tuyere around the refining process. This cooling action is caused by the decomposition of hydrocarbons around the tuyere during the refining process, and as a result, so-called mushrooms are formed around the tuyere, thereby protecting the tuyere pipe and tuyere brick from melting. It has come to be.

このような羽口管及び羽口煉瓦を有する底吹き転炉の代表的な炉底構造は、例えば特許文献1の図1に示されている。ここに示されているように、底吹き転炉の炉底構造は、複数の煉瓦列を平行に敷き詰めることによって炉底を形成させ、羽口煉瓦は炉底部直径方向にそってほぼ均等に、かつ前記各煉瓦列内に1個だけ配置されるようになっている。なお、羽口管は上記羽口煉瓦に挟持させて所定位置に維持されるようになっている。いいかえれば、特定の煉瓦列内に複数の羽口煉瓦、したがって複数の羽口管を配置することは行われていない。その理由は以下のとおりである。   A typical bottom structure of a bottom-blown converter having such tuyere tubes and tuyere bricks is shown in FIG. As shown here, the bottom structure of the bottom-blown converter is to form the furnace bottom by laying a plurality of brick rows in parallel, and the tuyere bricks are almost evenly along the furnace bottom diameter direction, And only one is arranged in each brick row. The tuyere tube is held between the tuyere bricks and maintained in a predetermined position. In other words, it is not done to arrange a plurality of tuyere bricks, and thus a plurality of tuyere tubes, in a particular brick row. The reason is as follows.

すなわち、炭化水素ガスの熱分解作用によって生ずる冷却作用は羽口管及びそれを挟持する羽口煉瓦には及ぶが、その周辺の炉底煉瓦には直接には及ばない。そのため、図5(a)に示すように、特定の煉瓦列50内に炉底煉瓦53a, 53b, 53c ,53d及び複数の羽口煉瓦52a、52bを配置したときは、精錬段階において、図5(b)に模式的に示すように、羽口煉瓦52a、52b間にある炉底煉瓦53b、53cが溶鋼に接する部位近傍において羽口煉瓦52a、52bに比べて膨張し、それにより羽口管54a、54bを変形させるなどの障害が生ずるためである。   That is, the cooling action caused by the pyrolysis action of hydrocarbon gas extends to the tuyere tube and tuyere bricks sandwiching it, but not directly to the surrounding furnace bottom bricks. Therefore, as shown in FIG. 5 (a), when the bottom bricks 53a, 53b, 53c, 53d and the plurality of tuyere bricks 52a, 52b are arranged in a specific brick row 50, in the refining stage, FIG. As schematically shown in (b), the furnace bottom bricks 53b, 53c between the tuyere bricks 52a, 52b expand in comparison with the tuyere bricks 52a, 52b in the vicinity of the portion in contact with the molten steel, thereby the tuyere tube This is because troubles such as deformation of 54a and 54b occur.

特開2004-285441JP2004-285441

上記の理由により、従来の底吹き転炉の炉底構造においては、図6に示すように、複数の煉瓦列501, 502, 503,・・・50nを平行に敷き詰めることによって炉底部51を形成させ、羽口煉瓦521, 522, 523, 52mは炉底部直径方向にほぼ均等に、かつ各煉瓦列内に1個だけ配設されるようにし、1本の煉瓦列内に複数の羽口煉瓦を配置することは行われていない。しかしながら、このような、配列上の制限は、操業上、以下のような問題がある。 For the above reasons, in the furnace bottom structure of a conventional bottom-blown converter, as shown in FIG. 6, a plurality of bricks rows 50 1, 50 2, 50 3, furnace by laying in parallel · · · 50 n The bottom 51 is formed, and the tuyere bricks 52 1 , 52 2 , 52 3 , 52 m are arranged almost evenly in the diameter direction of the furnace bottom, and only one brick is arranged in each brick row. There is no arrangement of multiple tuyere bricks in a row. However, such restrictions on arrangement have the following problems in operation.

すなわち、上記炉底構造を採るときは、マシュルームの形状にも依存するのであるが、羽口間の距離が小さいときには、ときとして図7に示すように、羽口から吹き込まれた酸素等が、煉瓦間の目地55を伝わって流れ、目地55を選択的に溶損する。そして、このような選択的な溶損部を起点として、図8に示すように、羽口煉瓦52a, 52b間にいわばすり鉢状の損耗部56が生ずるに至り、他の部位では十分な残厚があるのもかかわらず、炉底全体を交換しなければならず、転炉寿命を短くする原因になっていた。したがって、従来の炉底構造では、羽口間距離を大きく採る必要があるなどの制約があり、羽口数を数多く取れないなどの支障があった。   That is, when the furnace bottom structure is adopted, it also depends on the shape of the mushroom, but when the distance between the tuyere is small, as shown in FIG. It flows along the joint 55 between the bricks and selectively melts the joint 55. Then, starting from such a selective melted portion, as shown in FIG. 8, a so-called mortar-shaped worn portion 56 is formed between the tuyere bricks 52a and 52b, and the remaining thickness is sufficient in other portions. In spite of this, the entire furnace bottom had to be replaced, which shortened the converter life. Therefore, the conventional furnace bottom structure has a restriction that it is necessary to increase the distance between tuyere, and there is a problem that a large number of tuyere cannot be taken.

本発明は、上記従来の底吹転炉の炉底部構造の有する問題点を解決することを目的とし、羽口間の距離を小さくとっても、炉底煉瓦の膨張による羽口の変形がなく、かつ、羽口間煉瓦の目地が溶損され難い底吹転炉の炉底部構造を提案することを目的とする。   The present invention aims to solve the problems of the furnace bottom structure of the conventional bottom blow converter, and even if the distance between the tuyere is small, there is no deformation of the tuyere due to expansion of the furnace bottom brick, and The purpose of this study is to propose a bottom structure of a bottom-blown converter where the joints between the tuyere bricks are not easily melted.

本発明者は、羽口煉瓦を炉底部直径方向に敷き詰められた煉瓦列内の特定の煉瓦列内に配置するに当たり、羽口間煉瓦が羽口煉瓦により十分冷却されるようにすれば、その膨張が抑制され、ひいては、羽口間煉瓦の目地の溶損が抑制され、底吹き転炉の寿命が延長されることを知った。   The present inventor, when placing the tuyere bricks in a specific brick row in the brick row laid in the furnace bottom diameter direction, if the inter-tuyer bricks are sufficiently cooled by the tuyere bricks, It was found that expansion was suppressed, and in turn, melting of the joints between the tuyere bricks was suppressed, and the life of the bottom blown converter was extended.

本発明は、複数の煉瓦列を平行に配置することによって炉底を形成してなる底吹転炉の炉底部構造において、前記の煉瓦列のうち、炉底部直径に沿った特定の一の煉瓦列内に羽口管を挟持する羽口煉瓦を複数配置するとともに、該羽口煉瓦を配置するに当たっては、該羽口煉瓦間に1枚の羽口煉瓦間煉瓦を介在させることとするものである。   The present invention provides a furnace bottom structure of a bottom blow converter in which a plurality of brick rows are arranged in parallel to form a furnace bottom. Among the brick rows, one specific brick along the furnace bottom diameter is provided. A plurality of tuyere bricks sandwiching tuyere pipes in a row and, when placing the tuyere bricks, one inter-brick brick is interposed between the tuyere bricks. is there.

上記発明において、羽口煉瓦は、煉瓦列内の羽口配置領域内に均等に配置されていることが好ましく、また羽口間の間隔が400mm以下となるように配置することが望ましい。   In the above invention, the tuyere bricks are preferably arranged evenly in the tuyere arrangement region in the brick row, and are preferably arranged so that the interval between the tuyere is 400 mm or less.

本発明により、底吹き転炉が、羽口間の距離を小さくとっても、炉底煉瓦の膨張による羽口の変形がなく、かつ、羽口間煉瓦の目地が溶損され難いものとなる。それにより、炉底に配置する羽口の数を多く取ることができ、転炉の操業効率を高めることができた。   According to the present invention, even if the bottom blow converter has a small distance between tuyere, there is no deformation of tuyere due to expansion of the bottom brick, and the joints between the tuyere bricks are not easily melted. As a result, it was possible to increase the number of tuyere arranged at the furnace bottom, and to improve the operation efficiency of the converter.

本発明の適用される転炉は、底吹転炉である。これには、炉底部からのみ酸化性のガスを吹き込むいわゆるQ−BOP転炉のほか炉底部とともに炉口側からランスを通して酸化性のガスを吹き込む上底吹き転炉が含まれる。酸化性のガスには、純酸素の他、転炉操業の脱炭末期に使用される例えば酸素ガスとアルゴンガスの混合ガスも含まれる。   The converter to which the present invention is applied is a bottom blowing converter. This includes a so-called Q-BOP converter in which oxidizing gas is blown only from the furnace bottom, and an upper bottom blowing converter in which oxidizing gas is blown from the furnace bottom side through a lance together with the furnace bottom. In addition to pure oxygen, the oxidizing gas includes, for example, a mixed gas of oxygen gas and argon gas used at the end of decarburization in the converter operation.

図1は、本発明の適用される上記底吹転炉の炉底部構造の平面図である。図1から理解できるように、本発明においても、転炉炉底部の煉瓦積み構造は、周知のかつ通常利用される形態であり、複数の煉瓦列101, 102, 103,・・・10nを平行に配列したものとなっている。このような転炉炉底部の構築に用いられる煉瓦は、特許文献1に示されているように、例えばMgO−C系煉瓦とし、その煉瓦積み構造は、周知のように、多数の煉瓦を列状に並べて煉瓦列を形成し、これを炉底部直径に並行に敷き詰めたものとなっている。 FIG. 1 is a plan view of the bottom structure of the bottom blow converter to which the present invention is applied. As can be understood from FIG. 1, also in the present invention, the brickwork structure at the bottom of the converter furnace is a well-known and normally used form, and a plurality of brick rows 10 1 , 10 2 , 10 3 ,. 10 n are arranged in parallel. As shown in Patent Document 1, the brick used for the construction of the bottom portion of such a converter furnace is, for example, an MgO-C brick, and the brick stacking structure includes a large number of bricks, as is well known. Brick rows are arranged in a row, and this is laid in parallel to the furnace bottom diameter.

このように構築された転炉炉底部の特定の煉瓦列10mに羽口煉瓦111〜118が配置される図1に示す例では、特定の煉瓦列10mに羽口煉瓦111〜118が配置される。この羽口煉瓦111〜118は、羽口を形成する羽口管を支える煉瓦であって2つ割りになっており、一対で羽口管を挟持するようになっている。その材質は、例えば、MgO−20%C系煉瓦となっている。なお、上記羽口管の配置される特定の煉瓦列(図1に示す例では10)は、直径に沿って、すなわち、ほぼ炉底の直径上に存在するものであるが、直径上から数列内の範囲で外れることも許容される。 In the example shown in FIG. 1, the tuyere brick 11 1 to 11 8 are placed in a particular brick column 10 m of the converter furnace bottom constructed in this manner, the tuyere bricks 11 1 to a particular brick column 10 m 11 8 is arranged. The tuyere bricks 11 1 to 11 8 are bricks that support the tuyere tube forming the tuyere and are divided into two, and the tuyere tubes are sandwiched in pairs. The material is, for example, MgO-20% C brick. In addition, the specific brick row (10 m in the example shown in FIG. 1) where the tuyere tube is arranged exists along the diameter, that is, substantially on the diameter of the furnace bottom. It is allowed to deviate within the range of the numerical sequence.

上記羽口煉瓦11の特定の煉瓦列10内への配置は、図1の一部模式的拡大図である図2に示されているように、羽口煉瓦間に介在する炉底煉瓦(以下「羽口間煉瓦」という)を1枚だけとする。具体的には、例えば、羽口管14a、14bが内挿支持される羽口煉瓦11aと11b間に1枚の炉底煉瓦12bのみを介在させるようにする。これにより、炉底煉瓦12bは、羽口煉瓦10a及び10bからの冷却作用を受けることになり、転炉の吹錬操業中においても大きく昇温して熱膨張することが避けられ、先に図5を用いて説明したような羽口煉瓦52a、52b間にある炉底煉瓦53a、53b(羽口間煉瓦)が溶鋼に接する部位近傍において羽口煉瓦に比べて膨張し、それにより羽口管54a、54bを変形させるなどの障害が生ずるのを避けることができる。 The arrangement of the tuyere bricks 11 within a specific brick row 10 m is shown in FIG. 2, which is a partially enlarged view of FIG. (Hereinafter referred to as “the tuyeres brick”). Specifically, for example, only one furnace bottom brick 12b is interposed between tuyere bricks 11a and 11b in which tuyere tubes 14a and 14b are inserted and supported. As a result, the furnace bottom brick 12b receives the cooling action from the tuyere bricks 10a and 10b, and it is possible to avoid a large temperature rise and thermal expansion even during the blowing operation of the converter. The furnace bottom bricks 53a, 53b (brick between the tuyere) between the tuyere bricks 52a, 52b as explained with reference to Fig. 5 expand in comparison with the tuyere brick in the vicinity of the portion contacting the molten steel, thereby It is possible to avoid the occurrence of obstacles such as deformation of 54a and 54b.

羽口間煉瓦12の数を1枚とするのは、2枚以上あるときにはその間に介在する目地のために、羽口煉瓦11からの冷却が十分行われなくなるためである。したがって、本発明の効果を得るためには、羽口間煉瓦を1枚以下とすることが必須であるが、さらに羽口間煉瓦の厚さを調整して羽口間の間隔が400mm以下となるようにすることが望ましい。   The reason that the number of inter-tuyere bricks 12 is one is that when there are two or more bricks, cooling from the tuyere bricks 11 is not sufficiently performed due to joints interposed therebetween. Therefore, in order to obtain the effect of the present invention, it is essential that the number of bricks between the tuyere is one or less, but the thickness of the tuyere brick is further adjusted so that the interval between the tuyere is 400 mm or less. It is desirable to be

図3は、羽口間の間隔が400mmの場合と500mmの場合について、羽口中心からの距離に対する煉瓦内部温度、すなわち、煉瓦上面から100mmの位置の温度との関係図である。ここに示すように、羽口間の間隔が400mmを超えると羽口間の中央部にある煉瓦の冷却が十分に行われず、その部位で煉瓦温度が上昇し、その結果、羽口間煉瓦が著しく熱膨張して羽口管を変形させるなどの障害が生ずる。よって、前記のとおり羽口間煉瓦の厚さを調整して羽口間の間隔が400mm以下となるようにすることが望ましい。   FIG. 3 is a relationship diagram of the brick internal temperature with respect to the distance from the tuyere center, that is, the temperature at a position of 100 mm from the top surface of the brick, when the distance between the tuyere is 400 mm and 500 mm. As shown here, when the interval between tuyere exceeds 400 mm, the brick in the center between tuyere is not sufficiently cooled, the brick temperature rises at that part, and as a result, the brick between tuyere Problems such as significant thermal expansion and deformation of the tuyere occur. Therefore, as described above, it is desirable to adjust the thickness of the bricks between tuyere so that the spacing between tuyere is 400 mm or less.

このような羽口間煉瓦は、通常の炉底煉瓦をそのまま利用できるが、厚さ方向に適宜削り込んでその厚さを適当に調節して用いることが望ましい。これにより、羽口間煉瓦を築炉の際のスペーサ−として利用することができ、前記特定の煉瓦列10m内に羽口煉瓦を緩みなく配置することが可能になる。 As such a tuyeres brick, a normal furnace bottom brick can be used as it is, but it is desirable to use it by appropriately trimming it in the thickness direction and adjusting its thickness appropriately. As a result, the inter-tuyere brick can be used as a spacer in the construction of the furnace, and the tuyere brick can be arranged in the specific brick row 10 m without looseness.

上記構成によって、羽口間の距離を小さくとっても、炉底煉瓦の膨張による羽口の変形がなく、かつ、羽口間煉瓦の目地が溶損され難い底吹転炉の炉底部構造を実現することができるが、転炉操業上、羽口煉瓦は特定の煉瓦列内の羽口配置領域内に均等に配置されているようにすることが望ましい。ここに、「羽口配置領域」とは、羽口煉瓦及び羽口間煉瓦を含む煉瓦列であって、羽口煉瓦が配置される領域を意味し、羽口煉瓦の配置される煉瓦列のうちの炉底周囲に接する炉底煉瓦を除いた部分をいう。   With the above configuration, the bottom structure of the bottom blow converter is realized even when the distance between the tuyere is small, the tuyere is not deformed due to the expansion of the bottom brick, and the joints between the tuyere bricks are not easily melted. However, it is desirable for the converter operation that the tuyere bricks are evenly arranged in the tuyere placement area in a specific brick row. Here, the “tuyere placement area” means a brick row including tuyere bricks and inter-tuyere bricks, and means a region in which tuyere bricks are placed. This refers to the part excluding the furnace bottom brick that touches the periphery of the furnace bottom.

したがって、「羽口配置領域」外にあっては、炉底煉瓦は、通常採用されるように施工されるが、この領域に施工された炉底煉瓦は、転炉操業中高温に昇温しても、羽口煉瓦に圧縮を及ぼすことはなく、そのため、その構造について特段の配慮をする必要はない。   Therefore, outside the “tuyere placement area”, the bottom brick is constructed so that it is normally adopted. However, the bottom brick constructed in this area is heated to a high temperature during the converter operation. However, there is no compression on the tuyere bricks, so there is no need to pay special attention to the structure.

図4は、本発明の炉底煉瓦配列転炉と従来の炉底煉瓦配列を有する底吹き転炉とを用いて吹練を行ったときの吹練回数(チャージ回数、ボトム回数ともいう)に対する羽口の残厚(mm)との関係図である。ここにおいて、転炉寿命は、炉底煉瓦の交換までの吹練回数として測定され、この場合、羽口残厚が200mmになったときに相当する。図4に示す結果によれば、従来例では、転炉寿命が約500回であったが、本発明により630回に延びた。   FIG. 4 shows the number of times of blowing (also referred to as the number of charges or the number of bottoms) when blowing using the bottom brick array converter of the present invention and the bottom blowing converter having the conventional bottom brick arrangement. It is a relationship figure with the remaining thickness (mm) of a tuyere. Here, the converter life is measured as the number of times of blowing until replacement of the furnace bottom brick, and in this case, it corresponds to when the remaining tuyere thickness becomes 200 mm. According to the result shown in FIG. 4, in the conventional example, the converter life was about 500 times, but it was extended to 630 times according to the present invention.

上記試験に用いた転炉の諸元は下記のとおりである。
(共通事項)
転炉形式及び容量:上底吹き転炉(公称180t)
炉底直径:3100mm
The specifications of the converter used in the above test are as follows.
(Common subject matter)
Converter type and capacity: Top-bottom blowing converter (nominal 180t)
Furnace bottom diameter: 3100mm

(本発明例)
炉底様式:図1にしたがう炉底構造を有し、その主要寸法等は下記のとおりである。
煉瓦列数:25列
羽口煉瓦配置列:14列目
羽口煉瓦配置数:16個
羽口煉瓦寸法:幅115mm×長さ1700mm×厚さ120mm
羽口間煉瓦寸法:幅115mm×長さ1700mm×厚さ120mm
羽口間の間隔:345mm
(Example of the present invention)
Furnace bottom style: It has a furnace bottom structure according to FIG. 1 and its main dimensions are as follows.
Number of brick rows: 25 rows Number of tuyer bricks arranged: 14th Row number of tuyer bricks: 16 Size of tuyere bricks: width 115mm x length 1700mm x thickness 120mm
Dimensions between bricks at the tuyere: width 115mm x length 1700mm x thickness 120mm
Distance between tuyere: 345mm

(従来例)
炉底様式:図6にしたがう炉底構造を有し、その主要寸法等は下記のとおりである。
煉瓦列数:25列
羽口煉瓦配置数:16個
羽口煉瓦寸法:幅115mm×長さ1700mm×厚さ120mm
羽口間煉瓦寸法:幅115mm×長さ1700mm×厚さ120mm
羽口間の間隔:345mm
(Conventional example)
Furnace bottom style: It has a furnace bottom structure according to FIG. 6 and its main dimensions are as follows.
Number of brick rows: 25 rows Number of tuyere bricks: 16 Feather brick dimensions: width 115 mm x length 1700 mm x thickness 120 mm
Dimensions between bricks at the tuyere: width 115mm x length 1700mm x thickness 120mm
Distance between tuyere: 345mm

本発明の適用される底吹転炉の炉底部構造の平面図である。It is a top view of the furnace bottom part structure of the bottom blow converter to which this invention is applied. 図1の一部模視的拡大図であり、本発明の適用される上記底吹転炉の炉底部構造の断面図である。It is a partially schematic enlarged view of FIG. 1, and is a cross-sectional view of the bottom structure of the bottom blow converter to which the present invention is applied. 羽口中心からの距離に対する煉瓦内部温度の関係図である。It is a relationship figure of the brick internal temperature with respect to the distance from a tuyere center. 本発明の炉底煉瓦配列転炉と従来の炉底煉瓦配列を有する底吹き転炉とを用いて吹練を行ったときの吹練回数(チャージ回数)に対する羽口の残厚量(mm)の関係図である。Remaining amount of tuyere (mm) with respect to the number of times of blowing (number of charges) when blown using the bottom-brick array converter of the present invention and the bottom-blow converter having the conventional bottom-brick arrangement FIG. 炉底の煉瓦列内に距離をおいて複数の羽口煉瓦を配置したときの障害発生状況の模式図である。It is a schematic diagram of a failure occurrence situation when a plurality of tuyere bricks are arranged at a distance in a brick row at the furnace bottom. 従来の底吹転炉の炉底部構造の平面図である。It is a top view of the furnace bottom part structure of the conventional bottom blow converter. 従来の底吹転炉の炉底部構造において羽口間距離が小さいときの目地の侵食状況を示す模式図である。It is a schematic diagram which shows the erosion situation of a joint when the distance between tuyere is small in the furnace bottom part structure of the conventional bottom blow converter. 図7に示した従来の底吹転炉の炉底部構造における羽口間煉瓦の侵食状況を示す模式図である。It is a schematic diagram which shows the erosion situation of the brick between tuyere in the furnace bottom part structure of the conventional bottom blow converter shown in FIG.

符号の説明Explanation of symbols

10:煉瓦列
11:羽口煉瓦
12:羽口間煉瓦
14:羽口管
50:煉瓦列
51:炉底部
52:羽口煉瓦
53:炉底煉瓦
54:羽口管

10: Brick row
11: tuyere brick
12: Brick between tuyere
14: tuyere tube
50: Brick row
51: Furnace bottom
52: tuyere brick
53: Furnace bottom brick
54: tuyere tube

Claims (3)

複数の煉瓦列を平行に配置することによって炉底を形成してなる底吹転炉の炉底部構造において、
前記の煉瓦列のうち、炉底部直径に沿った特定の一の煉瓦列内に羽口管を挟持する羽口煉瓦を複数配置するとともに、該羽口煉瓦を配置するに当たっては、該羽口煉瓦間に1枚の羽口間煉瓦を介在させることを特徴とする底吹転炉の炉底部構造。
In the bottom blowing structure of the bottom blowing converter formed by arranging a plurality of brick rows in parallel to form the furnace bottom,
Among the brick rows, a plurality of tuyere bricks sandwiching tuyere pipes are arranged in one specific brick row along the furnace bottom diameter, and the tuyere bricks are arranged in arranging the tuyere bricks. A bottom structure of a bottom-blowing converter characterized by interposing one inter-tuyer brick between them.
羽口煉瓦は煉瓦列内の羽口配置領域内に均等に配置されていることを特徴とする請求項1記載の底吹転炉の炉底部構造。   The bottom structure of a bottom blow converter according to claim 1, wherein the tuyere bricks are evenly arranged in the tuyere arrangement region in the brick row. 羽口煉瓦を羽口間の間隔が400mm以下となるように配置したことを特徴とする請求項1又は2記載の底吹転炉の炉底部構造。

The bottom structure of a bottom blow converter according to claim 1 or 2, wherein the tuyere bricks are arranged so that the interval between tuyere is 400 mm or less.

JP2006064553A 2006-03-09 2006-03-09 Bottom structure of bottom blow converter Expired - Fee Related JP4770524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006064553A JP4770524B2 (en) 2006-03-09 2006-03-09 Bottom structure of bottom blow converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006064553A JP4770524B2 (en) 2006-03-09 2006-03-09 Bottom structure of bottom blow converter

Publications (2)

Publication Number Publication Date
JP2007239047A JP2007239047A (en) 2007-09-20
JP4770524B2 true JP4770524B2 (en) 2011-09-14

Family

ID=38584869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006064553A Expired - Fee Related JP4770524B2 (en) 2006-03-09 2006-03-09 Bottom structure of bottom blow converter

Country Status (1)

Country Link
JP (1) JP4770524B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5463623B2 (en) * 2008-03-26 2014-04-09 Jfeスチール株式会社 Brick structure of converter bottom blowing tuyere

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049688B2 (en) * 1980-12-03 1985-11-05 新日本製鐵株式会社 How to construct the bottom of a converter
JPS5884920A (en) * 1981-11-16 1983-05-21 Kawasaki Steel Corp Construction of bottom of converter having bottom blowing tuyere
JPS6040454U (en) * 1983-08-26 1985-03-22 日新製鋼株式会社 Converter hearth structure
JPH11193415A (en) * 1997-12-26 1999-07-21 Kurosaki Refract Co Ltd Brick block laying structure of converter hearth
JP2003261374A (en) * 2002-03-07 2003-09-16 Shinagawa Refract Co Ltd Carbon-containing brick for refining furnace, and refining furnace arranged with the bricks

Also Published As

Publication number Publication date
JP2007239047A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
KR101795618B1 (en) Hearth for a metallurgical furnace having an improved wall lining
JP4770524B2 (en) Bottom structure of bottom blow converter
US9194013B2 (en) Hot blast stove dome and hot blast stove
JP6406517B2 (en) Bottom blowing tuyere for converter
JP6700086B2 (en) Bottom structure of melting furnace
CN101762151B (en) Electric furnace body
JP6245455B2 (en) Converter bottom blowing tuyere block
US20100180806A1 (en) Refractory Brick and Tapered Mortar Joint
US8480951B2 (en) Tuyere structure of melting furnace
JP7294830B2 (en) A cooling structure for the outlet of a melting furnace and a method for manufacturing a metal plate block used in the cooling structure.
JP2000256716A (en) Structure for holding refractory in furnace body
CN103635437B (en) Float glass manufacturing device and use the float glass making process of this manufacture device
JP6162982B2 (en) Skid button
CN101762152B (en) Electric furnace
JP5395723B2 (en) H steel cooling structure in the settling ceiling part of the flash smelting furnace, and cooling method of the H steel in the settling ceiling part of the flash melting furnace
JPS6324008A (en) Gas blowing plug
JP2000256715A (en) Structure for holding refractory in furnace
JP4843165B2 (en) Duct disposed on the outlet side of the converter
WO2006010302A1 (en) A top-combustion type hot-mast stove with a heat insulation layer in the pre-combust chamber
JP2003261374A (en) Carbon-containing brick for refining furnace, and refining furnace arranged with the bricks
JPH09263819A (en) Method for lining refractory of converter bottom
JP2006283052A (en) Gas-blowing tuyere
JP6999473B2 (en) Flash smelting furnace cooling method and flash smelting furnace cooling structure
EP2628806B1 (en) Rh degassing lower vessel
JP6658683B2 (en) Metallurgical furnace furnace cooling stave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees