JP4767234B2 - Sliding coating structure - Google Patents

Sliding coating structure Download PDF

Info

Publication number
JP4767234B2
JP4767234B2 JP2007236998A JP2007236998A JP4767234B2 JP 4767234 B2 JP4767234 B2 JP 4767234B2 JP 2007236998 A JP2007236998 A JP 2007236998A JP 2007236998 A JP2007236998 A JP 2007236998A JP 4767234 B2 JP4767234 B2 JP 4767234B2
Authority
JP
Japan
Prior art keywords
coating
molybdenum disulfide
lubricating coating
resin
lubricating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007236998A
Other languages
Japanese (ja)
Other versions
JP2009068584A (en
Inventor
孝男 鈴木
太 藤原
晁逸 伊藤
貴彦 佐々木
哲司 山口
昌二 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Art Metal Manufacturing Co Ltd
Toyota Motor Corp
DuPont Toray Specialty Materials KK
Original Assignee
Dow Corning Toray Co Ltd
Art Metal Manufacturing Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Toray Co Ltd, Art Metal Manufacturing Co Ltd, Toyota Motor Corp filed Critical Dow Corning Toray Co Ltd
Priority to JP2007236998A priority Critical patent/JP4767234B2/en
Publication of JP2009068584A publication Critical patent/JP2009068584A/en
Application granted granted Critical
Publication of JP4767234B2 publication Critical patent/JP4767234B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)

Description

本発明は、金属基材と、該金属基材の表面を覆う被膜とから成る摺動用被覆構造に関し、特に、ガソリンエンジン等の内燃機関ピストンのスカート、リング溝、ピン穴等の摺動部位に適した摺動用被覆構造に関する。   The present invention relates to a sliding coating structure comprising a metal substrate and a coating covering the surface of the metal substrate, and more particularly to a sliding part such as a skirt, ring groove, pin hole, etc. of an internal combustion engine piston such as a gasoline engine. The present invention relates to a suitable sliding covering structure.

近年、ガソリンエンジン等の内燃機関においては、高回転、高圧縮比、軽量化及び燃費向上を実現するために、部品サイズの小型化と併せて部品材質の軽合金化が進められている。軽合金を代表するアルミニウム材料は鉄系材料と比べて、耐摩耗性、耐焼付き性等が低いため、摺動部の表面に潤滑被膜を形成することが提案されている。   2. Description of the Related Art In recent years, in internal combustion engines such as gasoline engines, in order to realize high rotation, high compression ratio, light weight, and improved fuel efficiency, the use of light alloys as part materials has been promoted together with the reduction in part size. Since aluminum materials representing light alloys have lower wear resistance, seizure resistance, and the like than iron-based materials, it has been proposed to form a lubricating film on the surface of the sliding portion.

特許文献1には、結合剤としてのポリアミドイミド樹脂及びポリイミド樹脂のうちの少なくとも一方50〜73wt%と、固体潤滑剤としてのポリテトラフルオロエチレン3〜15wt%、二硫化モリブデン20〜30wt%及びグラファイト2〜8wt%とからなり、前記固体潤滑剤の総和が27〜50wt%であることを特徴とする摺動用樹脂組成物が開示されている。   Patent Document 1 discloses that at least one of polyamide-imide resin and polyimide resin as a binder is 50 to 73 wt%, polytetrafluoroethylene 3 to 15 wt%, molybdenum disulfide 20 to 30 wt% and graphite as a solid lubricant. There is disclosed a sliding resin composition comprising 2 to 8 wt%, wherein the total amount of the solid lubricant is 27 to 50 wt%.

また、特許文献2には、母材と、該母材の摺動面となる表面の少なくとも一部に形成されている乾性被膜潤滑剤よりなる被覆層とを有する摺動部材であって、前記乾性被膜潤滑剤が、ポリアミドイミド樹脂と、エポキシシランおよびエポキシ樹脂から選ばれる少なくとも1種の塗膜改質剤と、窒化珪素およびアルミナから選ばれる少なくとも1種の硬質粒子とを有し、さらに、ポリテトラフルオロエチレン、二硫化モリブデン、グラファイトから選ばれる少なくとも1種の固体潤滑剤を含むことを特徴とする摺動部材が開示されている。   Patent Document 2 discloses a sliding member having a base material and a coating layer made of a dry film lubricant formed on at least a part of a surface serving as a sliding surface of the base material. The dry film lubricant has a polyamideimide resin, at least one film modifier selected from epoxy silane and epoxy resin, and at least one hard particle selected from silicon nitride and alumina, and A sliding member characterized by containing at least one solid lubricant selected from polytetrafluoroethylene, molybdenum disulfide, and graphite is disclosed.

しかし、特許文献1、2に記載された摺動用樹脂組成物等を適用しても、その潤滑効果は未だ不十分であり、更に改良が望まれていた。   However, even when the sliding resin compositions described in Patent Documents 1 and 2 are applied, the lubrication effect is still insufficient, and further improvement has been desired.

特許第3017626号Patent No. 3017626 特開2004−149622号公報JP 2004-149622 A

本発明は、上記従来技術に比べて更に潤滑効果を高め、優れた摺動特性を有する摺動用被覆構造を提供することを目的とする。   An object of the present invention is to provide a sliding coating structure that further enhances the lubrication effect and has excellent sliding characteristics as compared with the prior art.

上記の目的を達成するために、本発明は、金属基材と、該金属基材の表面を覆う潤滑被膜とから成る摺動用被覆構造であって、
上記潤滑被膜は、ポリアミドイミド樹脂を有する耐熱性樹脂と二硫化モリブデン粒子とから成り、上記潤滑被膜中の耐熱性樹脂の重量百分率が52〜84wt%であり、二硫化モリブデン粒子の重量百分率が48〜16wt%であり、かつ、レーザー回折散乱式粒度分布測定法により測定した前記二硫化モリブデン粒子の平均粒子径が0.7〜2.7μmの範囲であり、および
上記金属基材は、中心線平均粗さ(Ra)が0.2〜0.6μmの範囲であることを特徴とする摺動用被覆構造を提供する。
To achieve the above object, the present invention is a sliding coating structure comprising a metal substrate and a lubricating coating covering the surface of the metal substrate,
The lubricating coating is composed of a heat-resistant resin having a polyamide-imide resin and molybdenum disulfide particles, the weight percentage of the heat-resistant resin in the lubricating coating is 52 to 84 wt%, and the weight percentage of molybdenum disulfide particles is 48. And the average particle diameter of the molybdenum disulfide particles measured by a laser diffraction / scattering particle size distribution measurement method is in the range of 0.7 to 2.7 μm, and the metal substrate has a center line Provided is a sliding covering structure characterized in that the average roughness (Ra) is in the range of 0.2 to 0.6 μm.

本発明によれば、潤滑被膜の組成を規定量のポリアミドイミド樹脂を有する耐熱性樹脂と二硫化モリブデン(MoS2)粒子のみにより構成し、更に前記二硫化モリブデンの平均粒子径と、金属基材の表面粗さとを規定して微細化したことにより、従来技術では得られない低い摩擦係数(μ)と低摩耗量とを達成できる。 According to the present invention, the composition of the lubricating coating is composed only of a heat-resistant resin having a specified amount of polyamideimide resin and molybdenum disulfide (MoS 2 ) particles, and the molybdenum disulfide average particle diameter, By defining the surface roughness and reducing the surface roughness, it is possible to achieve a low friction coefficient (μ) and a low wear amount that cannot be obtained by the prior art.

本発明の摺動用被覆構造の各構成をそれぞれ限定した理由を説明する。
以下、単に「粒子径」とは、レーザー回折散乱式粒度分布測定法により測定した体積累積平均粒子径(D50)を表すものであり、
「表面粗さRa」または「下地粗さRa」は、JIS B0601−1994に準じて測定された中心線平均粗さ(Ra)を表すものである。
The reason why each configuration of the sliding covering structure of the present invention is limited will be described.
Hereinafter, “particle diameter” simply represents the volume cumulative average particle diameter (D 50 ) measured by a laser diffraction / scattering particle size distribution measurement method,
“Surface roughness Ra” or “base roughness Ra” represents the centerline average roughness (Ra) measured according to JIS B0601-1994.

〔潤滑被膜の構成成分および該各成分の含有量〕の限定理由
本発明の第一の特徴は、本発明の潤滑被膜が規定量のポリアミドイミド樹脂を有する耐熱性樹脂と二硫化モリブデン粒子のみから成る点である。これが前記従来技術との基本的な相違点である。
[Responsive Component of Lubricating Film and Content of Each Component] The first feature of the present invention is that the lubricating film of the present invention comprises only a heat-resistant resin having a specified amount of polyamideimide resin and molybdenum disulfide particles. It is a point. This is a fundamental difference from the prior art.

まず従来技術のうち特許文献1ではポリアミドイミドと、二硫化モリブデン粒子、ポリテトラフルオロエチレン(PTFE)、グラファイト(C)の3種の固体潤滑剤とを用いている。本発明者は、後出の実施例にて詳述するように、上記3種の固体潤滑剤のうち潤滑被膜の摩擦係数μの値を最小とする固体潤滑剤である二硫化モリブデン粒子のみを選択的に用いることにより、3種の固体潤滑剤を併用した特許文献1では得られない低い摩擦係数μおよび低摩耗量が得られることを見出した。   First, among the prior arts, Patent Document 1 uses polyamideimide and three types of solid lubricants of molybdenum disulfide particles, polytetrafluoroethylene (PTFE), and graphite (C). As will be described in detail in the following examples, the present inventor has only molybdenum disulfide particles that are solid lubricants that minimize the value of the friction coefficient μ of the lubricating coating among the above three types of solid lubricants. It has been found that by using selectively, a low friction coefficient μ and a low wear amount that cannot be obtained by Patent Document 1 using three kinds of solid lubricants in combination are obtained.

また、特許文献2では上記3種の固体潤滑剤のいずれか1種の他に、硬質粒子として窒化珪素および/またはアルミナを用いていた。しかしながら、本発明の摺動用被覆構造において、潤滑被膜の構成成分をポリアミドイミド樹脂を有する耐熱性樹脂と二硫化モリブデン粒子のみに限定することにより、特許文献2に記載された摺動部材の特性に比して、低い摩擦係数μおよび優れた耐焼き付き性が実現されるものである。   In Patent Document 2, silicon nitride and / or alumina is used as the hard particles in addition to any one of the above three types of solid lubricants. However, in the sliding coating structure of the present invention, by limiting the constituent components of the lubricating coating to only the heat-resistant resin having polyamide-imide resin and molybdenum disulfide particles, the characteristics of the sliding member described in Patent Document 2 are achieved. In comparison, a low friction coefficient μ and excellent seizure resistance are realized.

次に,本発明の構成のもう一つの特徴は、潤滑被膜を構成するポリアミドイミド樹脂を有する耐熱性樹脂と二硫化モリブデン粒子の重量百分率を特定の範囲内に限定した点である。すなわち、潤滑被膜中のポリアミドイミド樹脂を有する耐熱性樹脂の重量百分率を52〜84wt%の範囲に、二硫化モリブデン粒子の重量百分率を48〜16wt%の範囲に限定したことにより、基材との良好な密着性を確保することができ、従来に比べて潤滑被膜の摩擦係数μおよび摩耗量を安定して低減することができる。   Next, another feature of the configuration of the present invention is that the weight percentage of the heat-resistant resin having the polyamideimide resin and the molybdenum disulfide particles constituting the lubricating coating is limited to a specific range. That is, the weight percentage of the heat-resistant resin having the polyamideimide resin in the lubricating coating is limited to the range of 52 to 84 wt%, and the weight percentage of the molybdenum disulfide particles is limited to the range of 48 to 16 wt%. Good adhesion can be ensured, and the friction coefficient μ and the wear amount of the lubricating coating can be stably reduced as compared with the conventional case.

〔レーザー回折散乱式粒度分布測定法により測定した前記二硫化モリブデンの平均粒子径が、0.7〜2.7μmの範囲であり〕の限定理由
本発明の構成は、小粒径の固体潤滑剤である二硫化モリブデン(MoS2)粒子を使用することを特徴とする。すなわち、該二硫化モリブデン(MoS2)粒子のレーザー回折散乱式粒度分布測定法により測定した体積累積平均粒子径D50(=粒子径)は0.7〜2.7μmの範囲であることが必要である。かかる微細な粒子径を有する二硫化モリブデン(MoS2)のみを使用することにより、得られる潤滑被膜の基材への密着性に優れ、被膜の表面粗さRaおよび摩擦係数μの値を低減することができる。
該二硫化モリブデンの粒子径は0.7〜2.7μmの範囲であるが、樹脂組成物への配合性および二硫化モリブデン(MoS2)粒子の入手しやすさの見地から、その粒子径が1.3〜2.1μmの範囲にあることが特に好ましい。なお、かかる小粒径の二硫化モリブデン(MoS2)粒子は、市販の二硫化モリブデン(MoS2)粒子等を機械力を用いて粉砕することにより、容易に調製することができる。
[Reason for limiting the average particle diameter of the molybdenum disulfide measured by the laser diffraction / scattering particle size distribution measurement method is in the range of 0.7 to 2.7 μm] The structure of the present invention is a solid lubricant having a small particle diameter. It is characterized by using molybdenum disulfide (MoS 2 ) particles. That is, the volume cumulative average particle diameter D 50 (= particle diameter) of the molybdenum disulfide (MoS 2 ) particles measured by a laser diffraction / scattering particle size distribution measurement method needs to be in the range of 0.7 to 2.7 μm. It is. By using only molybdenum disulfide (MoS 2 ) having such a fine particle diameter, the adhesion of the resulting lubricating coating to the substrate is excellent, and the surface roughness Ra and the coefficient of friction μ of the coating are reduced. be able to.
The particle diameter of the molybdenum disulfide is in the range of 0.7 to 2.7 μm. From the standpoint of blendability in the resin composition and availability of molybdenum disulfide (MoS 2 ) particles, the particle diameter is A range of 1.3 to 2.1 μm is particularly preferable. Incidentally, molybdenum disulfide such small particle size (MoS 2) particles by grinding using a mechanical force commercial molybdenum disulfide (MoS 2) particles, etc., can be easily prepared.

〔上記金属基材は、中心線平均粗さ(Ra)が、0.2〜0.6μmの範囲である〕の限定理由
潤滑被膜を形成させる金属基材表面(下地)の中心線平均粗さ(Ra)が、0.2〜0.6μmの範囲に限定して基材表面の平滑度を高めたことにより、その上に形成した潤滑被膜もこれを反映して高い平滑度が確保され、潤滑被膜の中心線平均粗さ(Ra)を減少させ、摩擦係数μおよび摩耗量を低減することができる。
[The above metal base material has a centerline average roughness (Ra) in the range of 0.2 to 0.6 μm] Reason for limitation The centerline average roughness of the metal base material surface (underlayer) on which the lubricating film is formed (Ra) is limited to a range of 0.2 to 0.6 μm to increase the smoothness of the surface of the base material, and the lubricating film formed thereon is reflected in this to ensure high smoothness, The center line average roughness (Ra) of the lubricating coating can be reduced, and the friction coefficient μ and the wear amount can be reduced.

本発明の摺動用被覆構造は、前記の特定の中心線平均粗さ(Ra)を有する金属基材表面(下地)上に、ポリアミドイミド樹脂を有する耐熱性樹脂と二硫化モリブデン粒子とから成り、潤滑被膜中の耐熱性樹脂の重量百分率が52〜84wt%であり、二硫化モリブデン粒子の重量百分率が48〜16wt%であり、レーザー回折散乱式粒度分布測定法により測定した前記二硫化モリブデンの平均粒子径が、0.7〜2.7μmの範囲であるような潤滑被膜を形成させることにより得ることができる。   The sliding coating structure of the present invention comprises a heat-resistant resin having a polyamideimide resin and molybdenum disulfide particles on the surface of the metal substrate having the specific centerline average roughness (Ra) (base), The weight percentage of the heat-resistant resin in the lubricating coating is 52 to 84 wt%, the weight percentage of the molybdenum disulfide particles is 48 to 16 wt%, and the average of the molybdenum disulfide measured by the laser diffraction scattering particle size distribution measurement method It can be obtained by forming a lubricating coating having a particle size in the range of 0.7 to 2.7 μm.

該金属基材はその表面(下地)の中心線平均粗さ(Ra)が、0.2〜0.6μmの範囲であれば、その種類や形状についていかなる限定もされるものではなく、本発明の摺動用被覆構造を形成させる摺動部材の種類に応じて適宜選択することができる。特に、アルミニウム、鉄、銅、ニッケル、クロム、チタン等から選択される1種類以上の金属を含む金属基材であることが好ましく、これらを含む合金からなる金属基材であっても良い。さらに、所望であればアルカリ脱脂等の表面処理を行なった金属基材であっても良い。   As long as the center line average roughness (Ra) of the surface (base) of the metal base material is in the range of 0.2 to 0.6 μm, the type and shape of the metal base material are not limited. The sliding covering structure can be selected as appropriate according to the type of sliding member. In particular, it is preferably a metal substrate containing one or more kinds of metals selected from aluminum, iron, copper, nickel, chromium, titanium and the like, and may be a metal substrate made of an alloy containing these metals. Furthermore, if desired, it may be a metal substrate subjected to a surface treatment such as alkali degreasing.

本発明の摺動用被覆構造にかかる潤滑被膜は、該潤滑被膜を構成する成分が重量百分率で52〜84wt%のポリアミドイミド樹脂を有する耐熱性樹脂と48〜16wt%の二硫化モリブデン粒子とから実質的に成り、レーザー回折散乱式粒度分布測定法により測定した前記二硫化モリブデンの平均粒子径が、0.7〜2.7μmの範囲にある潤滑被覆組成物を硬化させてなることを特徴とするものである。
ここで、前記の「潤滑被膜を形成する成分」は、前記ポリアミドイミド樹脂を有する耐熱性樹脂および二硫化モリブデン粒子等の不揮発性成分であって、硬化前にこれらの成分を分散させるための溶媒を含まない。
The lubricating film according to the sliding coating structure of the present invention is substantially composed of a heat-resistant resin having a polyamideimide resin having a weight percentage of 52 to 84 wt%, and 48 to 16 wt% molybdenum disulfide particles. The lubricating coating composition having an average particle diameter of the molybdenum disulfide measured by a laser diffraction / scattering particle size distribution measuring method in a range of 0.7 to 2.7 μm is cured. Is.
Here, the “component for forming a lubricating coating” is a non-volatile component such as a heat-resistant resin having the polyamide-imide resin and molybdenum disulfide particles, and a solvent for dispersing these components before curing. Not included.

ポリアミドイミド樹脂を有する耐熱性樹脂は潤滑被膜を形成する結合剤であり、耐熱性に優れる潤滑被膜を形成する。該耐熱性樹脂は実質的にポリアミドイミド樹脂のみからなることが好ましいが、所望により任意の1種類または2種類以上の他の耐熱性樹脂を含む混合物であってもよい。他の耐熱性樹脂としてポリイミド樹脂、ポリエーテルイミド樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、フェノール樹脂又はエポキシ樹脂からなる群から選択される耐熱性樹脂の1種類または2種類以上を好適に用いることができる。ポリアミドイミド樹脂と他の耐熱性樹脂の混合比は重量部で100:0〜80:20の範囲にあることが好ましく、混合比が100:0、すなわち、耐熱性樹脂が実質的にポリアミドイミド樹脂のみからなることが最も好ましい。また、該耐熱性樹脂は有機溶媒に溶解した形態で前記潤滑被覆組成物に配合することが好ましい。該有機溶媒の種類および、耐熱性樹脂の濃度は任意であるが、有機溶媒は揮発性の非プロトン系極性溶剤類等であることが好ましい。また、ポリアミドイミド樹脂を有する耐熱性樹脂は10〜50wt%の濃度で有機溶媒に分散させた状態で部材上に塗布して潤滑被膜を形成させることが好ましく、有機溶媒としてN−メチル−2−ピロリドン(NMP)を選択することが、得られる潤滑被膜の均一性の点から特に好ましい。   A heat-resistant resin having a polyamide-imide resin is a binder that forms a lubricating film, and forms a lubricating film having excellent heat resistance. The heat-resistant resin is preferably substantially composed only of a polyamideimide resin, but may be a mixture containing one or two or more other heat-resistant resins as desired. As the other heat-resistant resin, one or more kinds of heat-resistant resins selected from the group consisting of polyimide resin, polyetherimide resin, polyethersulfone resin, polyetherketone resin, phenol resin, and epoxy resin are preferably used. be able to. The mixing ratio of the polyamide-imide resin and the other heat-resistant resin is preferably in the range of 100: 0 to 80:20 by weight, and the mixing ratio is 100: 0, that is, the heat-resistant resin is substantially a polyamide-imide resin. Most preferably, it consists of only. Moreover, it is preferable to mix | blend this heat resistant resin with the said lubricating coating composition in the form melt | dissolved in the organic solvent. The type of the organic solvent and the concentration of the heat-resistant resin are arbitrary, but the organic solvent is preferably a volatile aprotic polar solvent or the like. The heat-resistant resin having a polyamideimide resin is preferably applied on the member in a state of being dispersed in an organic solvent at a concentration of 10 to 50 wt% to form a lubricating film, and N-methyl-2- It is particularly preferable to select pyrrolidone (NMP) from the viewpoint of the uniformity of the resulting lubricating coating.

本発明の摺動用被覆構造を形成するために用いる潤滑被覆組成物は、前記のポリアミドイミド樹脂および粒子径が0.7〜2.7μmの範囲である二硫化モリブデンを所定の量調合し、適宜の有機溶剤を溶媒とし、機械力を用いて均一に攪拌・混合することにより調製することができる。なお、該組成物の製造時に、ポリアミドイミド樹脂は予め有機溶剤中に溶解した形態で潤滑被覆組成物に配合することが好ましい。   A lubricating coating composition used for forming the sliding coating structure of the present invention is prepared by preparing a predetermined amount of the above-mentioned polyamideimide resin and molybdenum disulfide having a particle diameter in the range of 0.7 to 2.7 μm. These organic solvents can be used as a solvent, and can be prepared by stirring and mixing uniformly using mechanical force. In addition, it is preferable to mix | blend a polyamideimide resin with the lubricating coating composition in the form previously melt | dissolved in the organic solvent at the time of manufacture of this composition.

該潤滑被覆組成物の調製に供される有機溶剤としては、揮発性の非プロトン系極性溶剤類等が好適に用いられる。具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸メチル、酢酸エチル等のエステル類、トルエン、キシレン等の芳香族炭化水素類、メチルクロロホルム、トリクロロエチレン、トリクロロトリフルオロエタン等の有機ハロゲン化合物類、N−メチル−2−ピロリドン(NMP)、メチルイソピロリドン(MIP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAC)が例示され、N−メチル−2−ピロリドン(NMP)が特に好ましく使用できる。また、これら有機溶剤は単独あるいは混合して使用することができる。   As the organic solvent used for the preparation of the lubricating coating composition, volatile aprotic polar solvents and the like are preferably used. Specifically, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, esters such as methyl acetate and ethyl acetate, aromatic hydrocarbons such as toluene and xylene, methyl chloroform, trichloroethylene, trichlorotrifluoroethane, etc. Examples of the organic halogen compounds are N-methyl-2-pyrrolidone (NMP), methylisopyrrolidone (MIP), dimethylformamide (DMF), and dimethylacetamide (DMAC), and N-methyl-2-pyrrolidone (NMP) is It can be particularly preferably used. These organic solvents can be used alone or in combination.

該潤滑被覆組成物を調製するための機械力を得るための装置、均一に攪拌・混合するために必要な処理時間は、該潤滑被覆組成物の製造量、工程に応じて適宜選択することができ、溶解・分散に用いられる装置として、ニーダー、ディゾルバー、ミキサー、高速ディスパーザー、サンドミル、ロールミル、ボールミル、アトライター、ダイノミル、GPミル、ホモジナイザー、超音波分散機、ビーズミル、バンバリーミキサー、石臼式ミルが例示できる。これらの装置は単独あるいは組み合わせて使用することができる。ニーダー等の装置により、0.5〜3時間の攪拌・混合処理を行うことが特に好ましい。   The apparatus for obtaining the mechanical force for preparing the lubricating coating composition, and the processing time required for uniform stirring and mixing can be appropriately selected according to the production amount and process of the lubricating coating composition. Can be used for dissolution and dispersion as kneaders, dissolvers, mixers, high-speed dispersers, sand mills, roll mills, ball mills, attritors, dyno mills, GP mills, homogenizers, ultrasonic dispersers, bead mills, Banbury mixers, millstone mills Can be illustrated. These devices can be used alone or in combination. It is particularly preferable to perform the stirring and mixing treatment for 0.5 to 3 hours using an apparatus such as a kneader.

なお、本発明の摺動用被覆構造を構成する潤滑被膜は、ポリアミドイミド樹脂を有する耐熱性樹脂と二硫化モリブデン粒子とからなるものである。一方、潤滑被膜を該形成するために用いる潤滑被覆組成物は、本発明の目的を損なわない範囲において、保存安定性や被覆適性等改善のための添加剤(分散剤、沈澱防止剤、増粘剤、消泡剤、レベリング剤等)を適量添加することができる。また、これらの添加剤が得られた潤滑被膜全体質量に対して0〜5wt%の範囲内で残存することを妨げない。しかし、粒子径が3.0μmをこえる固体潤滑剤等の粒子成分(特に粒子径が3.0μmをこえるグラファイトからなる固体潤滑剤)を添加した場合、該摺動部材被覆組成物から形成される樹脂被覆層の表面粗さが増加し、摩擦係数の増加や摩耗量の増加という問題が発生する。このため、かかる大粒子径の成分の添加は本発明の技術的効果を損なう場合があり、本発明の潤滑被覆組成物に配合することができない。   The lubricating coating constituting the sliding coating structure of the present invention is composed of a heat-resistant resin having a polyamideimide resin and molybdenum disulfide particles. On the other hand, the lubricating coating composition used for forming the lubricating coating is an additive (dispersant, anti-precipitation agent, thickening agent) for improving storage stability, coating suitability, etc. within the range not impairing the object of the present invention. An appropriate amount of an agent, an antifoaming agent, a leveling agent, and the like). Moreover, it does not prevent that these additives remain within the range of 0 to 5 wt% with respect to the total mass of the obtained lubricating coating. However, when a particle component such as a solid lubricant having a particle size exceeding 3.0 μm (particularly a solid lubricant made of graphite having a particle size exceeding 3.0 μm) is added, it is formed from the sliding member coating composition. The surface roughness of the resin coating layer increases, causing problems such as an increase in the coefficient of friction and an increase in the amount of wear. For this reason, the addition of such a component having a large particle size may impair the technical effect of the present invention and cannot be blended in the lubricating coating composition of the present invention.

本発明の摺動用被覆構造を形成するために用いる潤滑被覆組成物は、金属基材表面に塗工して硬化させることにより、該基材表面に潤滑被膜を形成することができる。金属基材表面への塗工は、刷毛塗り、スプレー塗布、ロール塗布、スクリーン印刷による塗布、ナイフコーティング、パッド法による塗布または浸漬塗布等の公知の方法により行うことができ、工業的にはエアースプレーにより塗布することが好ましい。   The lubricating coating composition used to form the sliding coating structure of the present invention can form a lubricating coating on the surface of the base material by coating and curing on the surface of the metal base material. The coating on the surface of the metal substrate can be performed by a known method such as brush coating, spray coating, roll coating, screen printing, knife coating, pad method coating or dip coating. It is preferable to apply by spraying.

本発明の摺動用被覆構造を形成するために用いる潤滑被覆組成物は、金属基材表面に塗工した後、加熱処理を行うことにより、組成物中の有機溶媒を除去し、金属基材表面に潤滑被膜を形成することができる。本実施の形態に係る潤滑被膜を形成する条件は、100〜280℃で60〜240分間加熱処理することが好適であり、150〜200℃で加熱処理を行うことが好ましい。さらに、本実施の形態に係る潤滑被膜を形成する際に、60〜100℃で5〜120分間して前記有機溶媒を除去した後、さらに100〜280℃で60〜240分間加熱処理して潤滑被膜を形成することができる。   The lubricating coating composition used to form the sliding coating structure of the present invention is applied to the surface of the metal substrate, and then subjected to a heat treatment to remove the organic solvent in the composition, thereby removing the surface of the metal substrate. A lubricating coating can be formed. The conditions for forming the lubricating coating according to the present embodiment are preferably heat treatment at 100 to 280 ° C. for 60 to 240 minutes, and preferably heat treatment at 150 to 200 ° C. Furthermore, when forming the lubricating film according to the present embodiment, the organic solvent is removed at 60 to 100 ° C. for 5 to 120 minutes, and then further heated at 100 to 280 ° C. for 60 to 240 minutes for lubrication. A film can be formed.

本実施の形態に係る潤滑被膜の膜厚は任意であるが、4〜15μmとするのが好ましく、4〜12μmとすることが特に好ましい。潤滑被膜の膜厚が4〜15μmの範囲にあるとき、潤滑被膜と基材の密着性が高い摺動用被覆構造を得ることができる。   The thickness of the lubricating coating according to the present embodiment is arbitrary, but is preferably 4 to 15 μm, and particularly preferably 4 to 12 μm. When the film thickness of the lubricating coating is in the range of 4 to 15 μm, a sliding coating structure having high adhesion between the lubricating coating and the substrate can be obtained.

以下、実施例および比較例を示して本発明をさらに詳述するが、本発明はこれらの実施例に限定されるものではない。また、下記実施の形態及び実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is further explained in full detail, this invention is not limited to these Examples. In addition, constituent elements in the following embodiments and examples include those that can be easily assumed by those skilled in the art or those that are substantially the same.

本実施例等において、二硫化モリブデン粒子等の固体潤滑剤の平均粒子径の測定は、以下に示す機器および測定条件により、レーザー回折散乱式粒度分布測定法で体積累積平均粒子径(D50)を測定することにより行なった。
レーザー回折散乱式粒度分布測定装置:モデルLS−230(ベックマンコールター社製)
測定値:体積累積平均粒子径(D50
測定方法:PIDS(偏光散乱強度差計測)
分散媒:キシレン
サンプル濃度:0.5wt%
[固体潤滑剤の平均粒子径の測定条件]
測定用サンプルとして、各固体潤滑剤のキシレン分散液(0.5wt%濃度)を調製した。
室温下、上記測定用サンプルをレーザー回折散乱式粒度分布測定装置:モデルLS−230のフローセル内に循環させ、固体潤滑剤サンプルの体積累積平均粒子径(D50)を測定した。
In this example and the like, the average particle size of the solid lubricant such as molybdenum disulfide particles is measured by the laser diffraction scattering type particle size distribution measuring method (D 50 ) according to the following equipment and measurement conditions. Was measured.
Laser diffraction / scattering particle size distribution analyzer: Model LS-230 (manufactured by Beckman Coulter)
Measured value: Volume cumulative average particle size (D 50 )
Measurement method: PIDS (polarized light scattering intensity difference measurement)
Dispersion medium: Xylene Sample concentration: 0.5 wt%
[Measurement conditions for average particle size of solid lubricant]
As a measurement sample, a xylene dispersion (0.5 wt% concentration) of each solid lubricant was prepared.
The sample for measurement was circulated in a flow cell of a laser diffraction / scattering particle size distribution analyzer: Model LS-230 at room temperature, and the volume cumulative average particle size (D 50 ) of the solid lubricant sample was measured.

〔試験例1〕
以下に示す方法により、アルミニウム基材の表面にポリアミドイミド樹脂(PAI)と二硫化モリブデン(MoS2)とから成る潤滑被膜を備えた試験板を作成した。また、各表面粗さRaは、JIS B0601−1994の中心線平均粗さ(Ra)の測定方法に準じて測定した。
[潤滑被膜を備えた試験板の作成]
アルカリ脱脂したAC8Bアルミニウム坂(表面粗さRa 0.2μm)表面に、表1に示す潤滑被膜を形成する各潤滑被覆組成物をナイフコーティングし、80℃×30分にて乾燥した後、180℃×90分によるの条件で該アルミニウム基材上に潤滑被膜を形成させることにより試験板を作成した。該潤滑被膜の厚さは13μmであった。
[Test Example 1]
By the method shown below, a test plate provided with a lubricating coating composed of polyamideimide resin (PAI) and molybdenum disulfide (MoS 2 ) on the surface of an aluminum substrate was prepared. Moreover, each surface roughness Ra was measured according to the measuring method of the centerline average roughness (Ra) of JIS B0601-1994.
[Preparation of test plate with lubricating coating]
Each lubricating coating composition for forming the lubricating coating shown in Table 1 is knife coated on the surface of AC8B aluminum slope (surface roughness Ra 0.2 μm) degreased with alkali, dried at 80 ° C. × 30 minutes, and then 180 ° C. A test plate was prepared by forming a lubricating film on the aluminum substrate under the condition of × 90 minutes. The thickness of the lubricating coating was 13 μm.

表1に示すように、潤滑被膜の組成および潤滑被膜を構成する二硫化モリブデン粒子の粒子径を種々に変えた。基材表面は研削により表面粗さRa 0.4μmに揃えた。ただし、サンプルNo.3は研削後さらにラッピング仕上げを施して表面粗さRa 0.2μmとした。
なお、表1中、PAIはポリアミドイミド樹脂を表す。
As shown in Table 1, the composition of the lubricating coating and the particle size of the molybdenum disulfide particles constituting the lubricating coating were variously changed. The surface of the substrate was ground to a surface roughness Ra of 0.4 μm. However, sample no. No. 3 was lapped after grinding to have a surface roughness Ra of 0.2 μm.
In Table 1, PAI represents a polyamideimide resin.

Figure 0004767234
Figure 0004767234

このようにして作製した各試験板サンプルについて、以下に示す荷重往復動試験を行なった。試験結果を表1に示す。
[荷重往復動試験]
作成した試験板の表面にエンジンオイル5W−20を1.0mg塗布し、ローラーをセットし、以下の条件で荷重往復動を行なうことにより、該試験板の摩擦係数(μ)を測定した。
<軽荷重往復軌試験の試験条件>
荷重:9.8N、29.4N
往復勤速度:120cpm
ストローク:100mm
繰了:7200サイクル
試験温度:25℃(室温)
オイル:浸漬または塗布
試験ローラー:φ7mmローラー
Each test plate sample thus produced was subjected to the following load reciprocation test. The test results are shown in Table 1.
[Load reciprocation test]
1.0 mg of engine oil 5W-20 was applied to the surface of the prepared test plate, a roller was set, and the load was reciprocated under the following conditions to measure the friction coefficient (μ) of the test plate.
<Test conditions for light load reciprocating gauge test>
Load: 9.8N, 29.4N
Round trip speed: 120 cpm
Stroke: 100mm
Completion: 7200 cycles Test temperature: 25 ° C (room temperature)
Oil: Immersion or application test roller: φ7mm roller

表1に示したように、本発明の被膜組成(PAI:MoS2=52:48〜84:16)の範囲内であり、二硫化モリブデン(MoS2)の粒子径が0.7〜2.7μmの範囲であるサンプルNo.1、2、3、5は、摩擦係数(μ)値が0.025〜0.033の範囲内であり、その他のサンプルに比して、0.040以下の低い摩擦係数(μ)の値を実現していた。 As shown in Table 1, it is within the range of the coating composition of the present invention (PAI: MoS 2 = 52: 48 to 84:16), and the particle diameter of molybdenum disulfide (MoS 2 ) is 0.7 to 2 . Sample No. in the range of 7 μm. 1, 2, 3, and 5 have a friction coefficient (μ) value in the range of 0.025 to 0.033, and a low friction coefficient (μ) value of 0.040 or less compared to other samples. Was realized.

これに対して、被膜組成または二硫化モリブデン(MoS2)の粒子径の少なくともいずれか一方が本発明の範囲外であるサンプルNo.4、6、7、8、9は、摩擦係数(μ)が0.046〜0.075の範囲内であり、0.040以下の低い摩擦係数(μ)の値を実現できなかった。 On the other hand, Sample No. in which at least one of the coating composition and the particle diameter of molybdenum disulfide (MoS 2 ) is outside the scope of the present invention. 4, 6, 7, 8, and 9 had a friction coefficient (μ) in the range of 0.046 to 0.075, and a low friction coefficient (μ) value of 0.040 or less could not be realized.

なお、表1中に示した各サンプルの潤滑被膜の表面粗さRaは、被膜を構成する二硫化モリブデン(MoS2)の粒子径と金属基材(下地)の表面粗さRaとの複合した結果であろうと考えられる。本発明の範囲内のサンプルNo.1、2、3、5は潤滑被膜の表面粗さRaが0.14〜0.21(μm)と小さい値であるのに対して、被膜組成または二硫化モリブデン(MoS2)の粒子径の少なくともいずれか一方が本発明の範囲外であるサンプルNo.4、6、7、8、9は被膜表面粗さRaが0.53〜1.85(μm)と非常に大きい値となっており、被膜の表面粗さRaと摩擦係数(μ)の間に強い相関性が認められた。 The surface roughness Ra of the lubricating coating of each sample shown in Table 1 is a composite of the particle diameter of molybdenum disulfide (MoS 2 ) constituting the coating and the surface roughness Ra of the metal substrate (base). The result is considered. Sample No. within the scope of the present invention. 1, 2, 3, and 5 have a surface roughness Ra of the lubricant coating as small as 0.14 to 0.21 (μm), whereas the coating composition or the particle diameter of molybdenum disulfide (MoS 2 ). Sample No. at least one of which is outside the scope of the present invention. 4, 6, 7, 8, and 9 have a coating surface roughness Ra of 0.53 to 1.85 (μm), which is a very large value, between the coating surface roughness Ra and the friction coefficient (μ). A strong correlation was observed.

〔試験例2〕
試験例1のサンプルNo.2と同じ被膜組成および二硫化モリブデン(MoS2)の粒子径を有する潤滑被膜を有し、基材の表面粗さRaを表2に示す通り、0.2〜1.6(μm)の範囲で種々に変えた試験板を試験例1同様の方法により作成した。これらのサンプルについて、試験例1と同様の方法で、該試験板の摩擦係数(μ)を測定した。結果を表2に示す。
[Test Example 2]
Sample No. 1 of Test Example 1 2 having a lubricating coating having the same coating composition and molybdenum disulfide (MoS 2 ) particle diameter, and the surface roughness Ra of the substrate is in the range of 0.2 to 1.6 (μm) as shown in Table 2. Test plates varied in various ways were prepared in the same manner as in Test Example 1. For these samples, the friction coefficient (μ) of the test plate was measured in the same manner as in Test Example 1. The results are shown in Table 2.

Figure 0004767234
Figure 0004767234

表2に示すように、試験した範囲全体に亘って、基材の表面粗さRaが大きくなるに従って摩擦係数(μ)は増加し、Raが0.4μmから0.8μmまで増大するのに伴い、摩擦係数(μ)が0.035から0.045に上昇している。この区間(Ra=0.4〜0.8μm)でRaの増大と摩擦係数(μ)の上昇とを直線関係で近似すると、基材の表面粗さRaが0.6(μm)以下であれば、摩擦係数(μ)が0.040以下の低い値になると考えられる。   As shown in Table 2, the coefficient of friction (μ) increases as the surface roughness Ra of the substrate increases over the entire tested range, with Ra increasing from 0.4 μm to 0.8 μm. The coefficient of friction (μ) is increased from 0.035 to 0.045. If the increase in Ra and the increase in the friction coefficient (μ) are approximated by a linear relationship in this section (Ra = 0.4 to 0.8 μm), the surface roughness Ra of the base material should be 0.6 (μm) or less. For example, the friction coefficient (μ) is considered to be a low value of 0.040 or less.

〔試験例3〕
試験例1のサンプルNo.2を、特許文献1に開示された従来技術に従って作製したサンプルと比較して、摩擦係数(μ)と摩耗量(μm)について試験した結果を表3に示す。
[摩耗量]
各摺動部材被覆組成物(試料)から形成される被覆樹脂層を有するアルミニウム合金AC8Bの試験板に対し、前記の摩擦係数測定(荷重往復動試験)の前後で、該被覆樹脂層の表面粗さRaを上記の方法により測定した。さらに、試験前後の表面粗さRaの差から該被覆樹脂層の摩耗量(μm)を測定した。
[Test Example 3]
Sample No. 1 of Test Example 1 Table 3 shows the results of testing the friction coefficient (μ) and the wear amount (μm) in comparison with the sample manufactured in accordance with the prior art disclosed in Patent Document 1.
[Abrasion amount]
For a test plate of aluminum alloy AC8B having a coating resin layer formed from each sliding member coating composition (sample), the surface roughness of the coating resin layer was measured before and after the friction coefficient measurement (load reciprocation test). Ra was measured by the above method. Further, the wear amount (μm) of the coating resin layer was measured from the difference in surface roughness Ra before and after the test.

Figure 0004767234
Figure 0004767234

表3の結果から、固体潤滑剤として粒子径が1.7μmである二硫化モリブデン(MoS2)を含む潤滑被膜を有する試験板(サンプルNo.2)は、固体潤滑剤として粒子径が9.4μmである二硫化モリブデン(MoS2)、グラファイトおよびポリテトラフルオロエチレン(PTFE)の3種類を含む潤滑被膜を有する試験板(サンプルNo.31)に比して、摩擦係数(μ)および摩耗量(μm)のいずれも大幅に低減されていた。 From the results in Table 3, the test plate (sample No. 2) having a lubricating coating containing molybdenum disulfide (MoS 2 ) having a particle diameter of 1.7 μm as a solid lubricant has a particle diameter of 9. Compared with a test plate (sample No. 31) having a lubricating coating containing 4 types of molybdenum disulfide (MoS 2 ), graphite and polytetrafluoroethylene (PTFE), the friction coefficient (μ) and the amount of wear (Μm) was significantly reduced.

比較例のサンプルNo.32、33はそれぞれ固体潤滑剤としてグラファイトのみ、ポリテトラフルオロエチレン(PTFE)のみからなる潤滑被膜を有する試験板の特性値である。粒子径が1.7μmである二硫化モリブデン(MoS2)を含む潤滑被膜を有する試験板(サンプルNo.2)に比べて、グラファイトのみのサンプルNo.32は摩擦係数(μ)および摩耗量(μm)のいずれも大幅に劣る結果を得た。また、PTFEのみを用いたサンプルNo.33は摩擦係数(μ)の値はサンプルNo.2と同等であったが、摩耗量(μm)が大幅に劣った。 Sample No. of Comparative Example Reference numerals 32 and 33 are characteristic values of a test plate having a lubricating coating made of only graphite and only polytetrafluoroethylene (PTFE) as a solid lubricant. Compared with a test plate (sample No. 2) having a lubricating coating containing molybdenum disulfide (MoS 2 ) having a particle diameter of 1.7 μm, sample No. 2 containing only graphite. For No. 32, both the coefficient of friction (μ) and the amount of wear (μm) were significantly inferior. Sample No. using only PTFE. 33 shows the friction coefficient (μ) value of sample No. However, the amount of wear (μm) was significantly inferior.

〔試験例4〕
試験例1のサンプルNo.2(本発明の被覆構造)および試験例3のサンプルNo.31(従来の被覆構造)と同じ基材表面粗さおよび同じ潤滑被膜をガソリンエンジンのピストンスカートに適用して実機試験を行ない、燃料消費率、モータリングフリクション、ファイヤリングフリクションを測定した結果を、それぞれ図1、図2、図3に示す。試験条件は下記のとおりであった。
[Test Example 4]
Sample No. 1 of Test Example 1 2 (coating structure of the present invention) and Sample No. The same substrate surface roughness and the same lubricating coating as 31 (conventional coating structure) were applied to a piston skirt of a gasoline engine, an actual machine test was conducted, and the results of measuring the fuel consumption rate, motoring friction, and firing friction were They are shown in FIGS. 1, 2, and 3, respectively. The test conditions were as follows.

<実機試験条件>
単気筒エンジンを使用し、排気量は約660cc/シリンダ、ボアー径94mm、ストローク95mm、エンジンオイルは0W−20を使用し、油水温は80℃±1℃に設定。燃費およびファイヤリングフリクション測定時のエンジン回転数は2000rpmとし、負荷を変化させて試験を行なった。
図示したように、本発明は従来技術に比べて、試験したトルク値またはエンジン回転数の全域において、燃料消費率、モータリングフリクション、ファイヤリングフリクションがいずれも大幅に向上していることが確認された。
<Real machine test conditions>
A single cylinder engine is used, the displacement is about 660cc / cylinder, the bore diameter is 94mm, the stroke is 95mm, the engine oil is 0W-20, and the oil temperature is set to 80 ℃ ± 1 ℃. The test was performed by changing the load at an engine speed of 2000 rpm when measuring fuel consumption and firing friction.
As shown in the figure, it is confirmed that the fuel consumption rate, motoring friction, and firing friction are significantly improved in the present invention over the entire range of the torque value or the engine speed tested as compared with the prior art. It was.

本発明によれば、従来技術に比べて更に潤滑効果を高め、優れた摺動特性を有する摺動用被覆構造が提供される。   According to the present invention, there is provided a sliding coating structure that further enhances the lubricating effect as compared with the prior art and has excellent sliding characteristics.

本発明の被覆構造と従来の被覆構造をそれぞれガソリンエンジンのピストンスカートに適用した際の燃料消費率とトルクとの関係を示すグラフ。The graph which shows the relationship between the fuel consumption rate at the time of applying the coating structure of this invention, and the conventional coating structure to the piston skirt of a gasoline engine, respectively, and a torque. 本発明の被覆構造と従来の被覆構造をそれぞれガソリンエンジンのピストンスカートに適用した際のモータリングフリクションとエンジン回転数との関係を示すグラフ。The graph which shows the relationship between the motoring friction at the time of applying the coating structure of this invention, and the conventional coating structure to the piston skirt of a gasoline engine, respectively, and an engine speed. 本発明の被覆構造と従来の被覆構造をそれぞれガソリンエンジンのピストンスカートに適用した際のファイヤリングフリクションとトルクとの関係を示すグラフ。The graph which shows the relationship between the fire friction and torque at the time of applying the coating structure of this invention, and the conventional coating structure to the piston skirt of a gasoline engine, respectively.

Claims (1)

金属基材と、該金属基材の表面を覆う潤滑被膜とから成る摺動用被覆構造であって、
上記潤滑被膜は、ポリアミドイミド樹脂を有する耐熱性樹脂と二硫化モリブデン粒子とから成り、上記潤滑被膜中の耐熱性樹脂の重量百分率が52〜84wt%であり、二硫化モリブデン粒子の重量百分率が48〜16wt%であり、かつ、レーザー回折散乱式粒度分布測定法により測定した前記二硫化モリブデン粒子の平均粒子径が0.7〜2.7μmの範囲であり、および
上記金属基材は、その中心線平均粗さRaが0.2〜0.6μmの範囲であることを特徴とする摺動用被覆構造。
A sliding coating structure comprising a metal substrate and a lubricating coating covering the surface of the metal substrate,
The lubricating coating is composed of a heat-resistant resin having a polyamide-imide resin and molybdenum disulfide particles, the weight percentage of the heat-resistant resin in the lubricating coating is 52 to 84 wt%, and the weight percentage of molybdenum disulfide particles is 48. And the average particle diameter of the molybdenum disulfide particles measured by a laser diffraction / scattering particle size distribution measurement method is in the range of 0.7 to 2.7 μm, and the metal substrate has its center A sliding covering structure characterized in that the line average roughness Ra is in the range of 0.2 to 0.6 μm.
JP2007236998A 2007-09-12 2007-09-12 Sliding coating structure Expired - Fee Related JP4767234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007236998A JP4767234B2 (en) 2007-09-12 2007-09-12 Sliding coating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007236998A JP4767234B2 (en) 2007-09-12 2007-09-12 Sliding coating structure

Publications (2)

Publication Number Publication Date
JP2009068584A JP2009068584A (en) 2009-04-02
JP4767234B2 true JP4767234B2 (en) 2011-09-07

Family

ID=40605066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007236998A Expired - Fee Related JP4767234B2 (en) 2007-09-12 2007-09-12 Sliding coating structure

Country Status (1)

Country Link
JP (1) JP4767234B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102803694B (en) 2010-03-19 2014-12-31 本田技研工业株式会社 Piston for internal combustion engine
JP5605129B2 (en) * 2010-09-27 2014-10-15 新日鐵住金株式会社 Estimation method of coke extrusion load in coke oven.
DE112012005520B4 (en) 2011-12-28 2022-11-17 Honda Motor Co., Ltd. Pistons for internal combustion engines
JP6201664B2 (en) 2013-11-13 2017-09-27 アイシン精機株式会社 Sliding component for internal combustion engine and method for manufacturing sliding component for internal combustion engine
JP6599756B2 (en) * 2015-12-22 2019-10-30 大同メタル工業株式会社 Sliding member
JP6941476B2 (en) * 2017-05-22 2021-09-29 大豊工業株式会社 Resin material for sliding members and sliding members
GB2569158B (en) * 2017-12-07 2020-08-05 Mahle Engine Systems Uk Ltd Bearing material, bearing element and method
JP7140667B2 (en) * 2018-12-17 2022-09-21 大豊工業株式会社 sliding member

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3017626B2 (en) * 1993-08-03 2000-03-13 トヨタ自動車株式会社 Sliding resin composition
JPH0942447A (en) * 1995-08-04 1997-02-14 Nippon Parkerizing Co Ltd Combination of sliding member
JPH09184079A (en) * 1995-10-30 1997-07-15 Riken Corp Wear resistant member
JPH10331970A (en) * 1997-06-04 1998-12-15 Nissan Motor Co Ltd Piston and piston ring groove surface improving method
JP3858375B2 (en) * 1997-09-19 2006-12-13 石川島播磨重工業株式会社 Cylinder liner
JPH11106779A (en) * 1997-10-03 1999-04-20 Taiho Kogyo Co Ltd Solid lubricating film composition and plain bearing material using the same
US5884600A (en) * 1998-02-20 1999-03-23 General Motors Corporation Aluminum bore engine having wear and scuff-resistant aluminum piston
JPH11270678A (en) * 1998-03-25 1999-10-05 Tokico Ltd Cylinder device, and manufacture of piston rod used for it
JP3891732B2 (en) * 1999-06-24 2007-03-14 株式会社リケン Sliding member
JP4306084B2 (en) * 2000-03-28 2009-07-29 日産自動車株式会社 Cylinder block blasting method and blasting apparatus
JP4021607B2 (en) * 2000-08-15 2007-12-12 大豊工業株式会社 Plain bearing
JP2003254155A (en) * 2002-02-27 2003-09-10 Teikoku Piston Ring Co Ltd Combination oil ring
JP2004137535A (en) * 2002-10-16 2004-05-13 Nissan Motor Co Ltd Hard carbon film slide member
JP4151379B2 (en) * 2002-10-29 2008-09-17 トヨタ自動車株式会社 Sliding member
JP4212954B2 (en) * 2003-05-23 2009-01-21 日産自動車株式会社 Hard carbon coating sliding member
JP2005330941A (en) * 2004-05-21 2005-12-02 Toyota Motor Corp Piston and its method of manufacture
JP4788115B2 (en) * 2004-06-02 2011-10-05 東洋紡績株式会社 Polyamideimide resin composition for sliding member and sliding member using the same
JP5102952B2 (en) * 2004-10-27 2012-12-19 株式会社豊田自動織機 Sliding member and method of manufacturing sliding member
JP2006152256A (en) * 2004-10-29 2006-06-15 Kuraray Co Ltd Polyamide resin composition and molding comprising the same
JP4993908B2 (en) * 2005-12-21 2012-08-08 日産自動車株式会社 Resin composition, sliding member and sliding device
CN101384841B (en) * 2006-02-28 2012-07-04 日本活塞环株式会社 Piston ring

Also Published As

Publication number Publication date
JP2009068584A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP5060223B2 (en) Piston for internal combustion engine
JP4767234B2 (en) Sliding coating structure
JP5199670B2 (en) Piston ring having a coated sliding surface and coating agent
JP4359066B2 (en) Sliding part coating composition
JP4921894B2 (en) Multi-layer lubricating coating composition, multi-layer lubricating coating and piston having the coating
JP6012843B2 (en) Sliding member
KR101000428B1 (en) Sliding bearing
JP6133916B2 (en) Manufacturing method of sliding member and manufacturing method of piston
JP5483349B2 (en) Lubricating film forming resin composition
CN111094468B (en) Antifriction varnish, method for the production thereof, sliding element comprising such an antifriction varnish and use thereof
WO2013168453A1 (en) Composition for sliding member
GB2552997A (en) Sliding component and method
JP6973708B2 (en) The dry lubricating film composition and the sliding member constituting the sliding layer by the dry lubricating film composition.
WO2011111668A1 (en) Sliding member
JP2007145894A (en) Multi-layer sliding member
JPH0859991A (en) Sliding material
EP4010602B1 (en) Sliding element comprising polymer overlay
JP5816121B2 (en) Slide bearing and manufacturing method thereof
JP2005170960A (en) Sliding member, lubricating coating film, coating material for the film, and method for coating surface of sliding member
JP2020164805A (en) Coating composition for forming dry lubrication film, dry lubrication film, and slide member
JP3962285B2 (en) Composite plating film
JP7315153B2 (en) Coating composition for sliding member and sliding member
KR102628582B1 (en) Composition, film formed from the composition, sliding member having the film, and method of producing the same
WO2020116390A1 (en) Composition, film formed from the composition, sliding member having the film, and method for producing the same
JPH02178353A (en) Sliding material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110614

R151 Written notification of patent or utility model registration

Ref document number: 4767234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees