JP6133916B2 - Manufacturing method of sliding member and manufacturing method of piston - Google Patents

Manufacturing method of sliding member and manufacturing method of piston Download PDF

Info

Publication number
JP6133916B2
JP6133916B2 JP2015038150A JP2015038150A JP6133916B2 JP 6133916 B2 JP6133916 B2 JP 6133916B2 JP 2015038150 A JP2015038150 A JP 2015038150A JP 2015038150 A JP2015038150 A JP 2015038150A JP 6133916 B2 JP6133916 B2 JP 6133916B2
Authority
JP
Japan
Prior art keywords
lubricating coating
sliding member
molybdenum disulfide
lubricating
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015038150A
Other languages
Japanese (ja)
Other versions
JP2016160293A (en
Inventor
美里 岸
美里 岸
不破 良雄
良雄 不破
斉藤 浩二
浩二 斉藤
圭二 林
圭二 林
山口 一郎
一郎 山口
直人 小山石
直人 小山石
真也 寺田
真也 寺田
信幸 藤原
信幸 藤原
裕一朗 金澤
裕一朗 金澤
真 牧野
真 牧野
圭資 宮本
圭資 宮本
雅子 神保
雅子 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Art Metal Manufacturing Co Ltd
Toyota Motor Corp
Akros Co Ltd
Original Assignee
Art Metal Manufacturing Co Ltd
Toyota Motor Corp
Akros Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Art Metal Manufacturing Co Ltd, Toyota Motor Corp, Akros Co Ltd filed Critical Art Metal Manufacturing Co Ltd
Priority to JP2015038150A priority Critical patent/JP6133916B2/en
Priority to DE102016103273.5A priority patent/DE102016103273A1/en
Priority to CN201610102738.8A priority patent/CN105925347A/en
Priority to US15/053,659 priority patent/US20160251589A1/en
Publication of JP2016160293A publication Critical patent/JP2016160293A/en
Application granted granted Critical
Publication of JP6133916B2 publication Critical patent/JP6133916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/22Compounds containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/40Lubricating compositions characterised by the base-material being a macromolecular compound containing nitrogen
    • C10M107/44Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/04Resilient guiding parts, e.g. skirts, particularly for trunk pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/08Constructional features providing for lubrication
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/044Polyamides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2080/00Special pretreatment of the material to be lubricated, e.g. phosphatising or chromatising of a metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Lubricants (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、二硫化モリブデン粒子が分散し、分散した二硫化モリブデン粒子が結合樹脂で結合された潤滑被膜を、基材の表面に被覆するための潤滑被膜用組成物、これを用いた摺動部材、およびその製造方法に関する。   The present invention relates to a lubricating coating composition for coating a surface of a base material with a lubricating coating in which molybdenum disulfide particles are dispersed and the dispersed molybdenum disulfide particles are bonded with a binding resin, and sliding using the same The present invention relates to a member and a manufacturing method thereof.

従来から、摺動部材の摺動特性を向上させるために、基材の表面に潤滑被膜を被覆することがなされている。このような潤滑被膜は、たとえば、固体潤滑剤として、ポリテトラフルオロエチレン粒子、グラファイト粒子、または二硫化モリブデン粒子等を含有しており、これら粒子は、ポリアミドイミド樹脂、ポリイミド樹脂など結合樹脂(マトリクス樹脂)で結合されている。このように、固体潤滑剤を潤滑被膜に含有させることにより、摺動部材の摺動性を高めることができる。   Conventionally, in order to improve the sliding characteristics of the sliding member, the surface of the base material is coated with a lubricating film. Such a lubricating coating contains, for example, polytetrafluoroethylene particles, graphite particles, molybdenum disulfide particles or the like as a solid lubricant, and these particles may be bonded resin (matrix) such as polyamideimide resin or polyimide resin. Resin). Thus, the slidability of the sliding member can be improved by including the solid lubricant in the lubricating coating.

このような技術として、たとえば、特許文献1には、樹脂バインダーと総量で40〜60質量%の固体潤滑剤とからなる潤滑被膜が基材表面に形成された摺動部材が提案されている。ここで、固体潤滑剤は、黒鉛と二硫化モリブデンなどの粒子からなり、樹脂バインダーがポリアミドイミド樹脂、ポリベンゾイミダゾール樹脂、又はポリイミド樹脂が用いられている。   As such a technique, for example, Patent Document 1 proposes a sliding member in which a lubricant film composed of a resin binder and a solid lubricant of 40 to 60% by mass in total is formed on the surface of the base material. Here, the solid lubricant is composed of particles such as graphite and molybdenum disulfide, and the resin binder is polyamideimide resin, polybenzimidazole resin, or polyimide resin.

特開2010−196813号公報JP 2010-196813 A

ここで、図7に示すように、特許文献1等で開示される潤滑被膜など、一般的な潤滑被膜92は、金属製の基材91の表面91aに被覆されるため、潤滑被膜92の表面92aの粗さ(すなわち、摺動部材9の表面9aの粗さ)は、基材91の表面91aの粗さに依存しやすい。   Here, as shown in FIG. 7, since a general lubricating coating 92 such as the lubricating coating disclosed in Patent Document 1 is coated on the surface 91a of the metal base 91, the surface of the lubricating coating 92 The roughness of 92a (that is, the roughness of the surface 9a of the sliding member 9) tends to depend on the roughness of the surface 91a of the substrate 91.

しかしながら、潤滑被膜92に含有する固体潤滑剤として作用する粒子93の平均粒子径(潤滑被膜用組成物に含有する粒子の平均粒子径)が大きい場合、潤滑被膜92の表面粗さは、基材91の表面粗さよりも粗くなってしまうことがある。また、耐焼付性を向上させるべく、結合樹脂94に対して粒子93の量(潤滑被膜用組成物に含有する粒子の含有量)を増量した場合も、同様の現象が生じてしまう。   However, when the average particle size of the particles 93 acting as a solid lubricant contained in the lubricating coating 92 (average particle size of the particles contained in the lubricating coating composition) is large, the surface roughness of the lubricating coating 92 is the base material. It may become rougher than the surface roughness of 91. Further, when the amount of particles 93 (content of particles contained in the lubricating coating composition) is increased with respect to the binding resin 94 in order to improve seizure resistance, the same phenomenon occurs.

これにより、たとえ摺動部材の基材91の表面91aをさらに平滑化したとしても、摺動部材の摺動面が平滑になり難く、その結果、低摩擦の摺動特性を得ることが難しい場合がある。   Thereby, even if the surface 91a of the base member 91 of the sliding member is further smoothed, the sliding surface of the sliding member is difficult to be smooth, and as a result, it is difficult to obtain a low friction sliding characteristic. There is.

本発明は、このような点を鑑みてなされたものであり、その目的とするところは、摺動部材の基材表面に形成される潤滑被膜の表面粗さを低減するとともに、摺動時にその潤滑被膜の表面が平滑化され易い潤滑被膜用組成物、およびこれを用いた摺動部材、およびその製造方法を提供することにある。   The present invention has been made in view of these points, and the object of the present invention is to reduce the surface roughness of the lubricating coating formed on the surface of the base material of the sliding member and An object of the present invention is to provide a composition for a lubricating coating in which the surface of the lubricating coating is easily smoothed, a sliding member using the composition, and a method for producing the same.

前記課題を鑑みて、本発明に係る潤滑被膜用組成物は、二硫化モリブデン粒子が分散し、分散した二硫化モリブデン粒子が結合樹脂で結合された潤滑被膜を、金属製の基材の表面に被覆するための潤滑被膜用組成物であり、前記潤滑被膜用組成物は、前記二硫化モリブデン粒子と結合樹脂との総量に対して、前記二硫化モリブデン粒子を50〜70質量%含有し、前記二硫化モリブデン粒子の平均粒子径が0.1〜3.0μmの範囲にあることを特徴とする。   In view of the above problems, the lubricating coating composition according to the present invention has a lubricating coating in which molybdenum disulfide particles are dispersed and the dispersed molybdenum disulfide particles are bonded with a binding resin on the surface of a metal substrate. A lubricating coating composition for coating, wherein the lubricating coating composition contains 50 to 70 mass% of the molybdenum disulfide particles with respect to the total amount of the molybdenum disulfide particles and the binding resin, The molybdenum disulfide particles have an average particle diameter in the range of 0.1 to 3.0 μm.

本発明によれば、二硫化モリブデン粒子を50〜70質量%含有することにより、初期馴染み特性が高まり、摺動時に潤滑被膜の表面が平滑化され易い。さらに、二硫化モリブデン粒子の平均粒子径を0.1〜3.0μmとすることにより、粒子径が小さくなるので、潤滑被膜の表面が平滑化される。これにより、摺動部材を用いたときに、潤滑被膜の表面が摩耗しやすいため、潤滑被膜(摺動部材)の初期馴染み性を高めることができる。   According to the present invention, by containing 50 to 70% by mass of molybdenum disulfide particles, the initial familiarity characteristics are improved, and the surface of the lubricating coating is easily smoothed during sliding. Further, by setting the average particle diameter of the molybdenum disulfide particles to 0.1 to 3.0 μm, the particle diameter becomes small, and the surface of the lubricating coating is smoothed. Thereby, when the sliding member is used, since the surface of the lubricating coating is easily worn, the initial conformability of the lubricating coating (sliding member) can be improved.

なお、二硫化モリブデン粒子の含有量およびその平均粒子径の数値の限定理由は、後述の実施形態および実施例で詳述する。ここで、粒子同士の結合性、基材表面との密着性、潤滑被膜の耐熱性等を考慮した場合には、結合樹脂にポリアミドイミド樹脂を用いることが好ましい。   The reason for limiting the content of molybdenum disulfide particles and the numerical value of the average particle diameter will be described in detail in the following embodiments and examples. Here, it is preferable to use a polyamide-imide resin as the binding resin in consideration of the bonding property between the particles, the adhesion to the substrate surface, the heat resistance of the lubricating coating, and the like.

上述の潤滑被膜用組成物から成膜された潤滑被膜を前記基材の表面に被覆して、摺動部材とした場合、前記潤滑被膜の表面には、複数のディンプルが形成されており、前記潤滑被膜の表面の突出谷部深さRvkが0.4〜1.0μmの範囲にあり、前記潤滑被膜の表面の中心線平均粗さRaが0.4〜1.0μmの範囲にあることが好ましい。   When a lubricant film formed from the above-described lubricant film composition is coated on the surface of the base material to form a sliding member, a plurality of dimples are formed on the surface of the lubricant film, The protruding valley depth Rvk of the surface of the lubricating coating is in the range of 0.4 to 1.0 μm, and the center line average roughness Ra of the surface of the lubricating coating is in the range of 0.4 to 1.0 μm. preferable.

後述する発明者らの実験からも明らかなように、潤滑被膜の表面、すなわち摺動部材の摺動面の突出谷部深さRvkと中心線平均粗さRaとの関係を両立させたことにより、摺動部材の摺動面の初期馴染み性を高めつつ、低摩擦特性を実現することができる。   As is clear from the experiments by the inventors described later, the relationship between the surface of the lubricating coating, that is, the protrusion valley depth Rvk of the sliding surface of the sliding member and the centerline average roughness Ra is made compatible. The low friction characteristic can be realized while enhancing the initial familiarity of the sliding surface of the sliding member.

また、このような摺動部材を製造する際には、前記基材の表面に、前記基材よりも硬質の硬質粒子をショットピーニングで吹き付けることにより、前記基材の表面に、突出谷部深さRvkが1.5〜2.0μmの範囲となり、かつ、中心線平均粗さRaが1.5〜2.0μmの範囲となるように複数のディンプルを成形し、前記ディンプルが成形された表面に、前記潤滑被膜用組成物から前記潤滑被膜を成膜することが好ましい。これにより、上述した特性を有した摺動部材を容易に製造することができる。   Further, when manufacturing such a sliding member, by projecting hard particles harder than the base material to the surface of the base material by shot peening, the protruding valley portion depth is applied to the surface of the base material. A surface on which a plurality of dimples are formed such that the thickness Rvk is in the range of 1.5 to 2.0 μm and the center line average roughness Ra is in the range of 1.5 to 2.0 μm, and the dimples are formed In addition, it is preferable to form the lubricating coating from the lubricating coating composition. Thereby, the sliding member which has the characteristic mentioned above can be manufactured easily.

このような摺動部材をエンジンのピストンに適用し、該ピストンのスカート部に潤滑被膜を被覆してもよい。   Such a sliding member may be applied to an engine piston, and a lubricating coating may be applied to the skirt portion of the piston.

本発明によれば、摺動部材の基材表面に形成される潤滑被膜の表面粗さを低減するとともに、摺動時にその潤滑被膜の表面が平滑化され易い。   According to the present invention, the surface roughness of the lubricating coating formed on the substrate surface of the sliding member is reduced, and the surface of the lubricating coating is easily smoothed during sliding.

本実施形態に係る摺動部材の製造方法を説明するための模式図であり、(a)は基材の表面処理を説明するための図、(b)は表面処理された基材を示した図、(c)は基材の表面に潤滑被膜を被覆した摺動部材を示した図。It is a schematic diagram for demonstrating the manufacturing method of the sliding member which concerns on this embodiment, (a) is a figure for demonstrating the surface treatment of a base material, (b) showed the surface-treated base material. The figure which showed the sliding member which coat | covered the lubricating film on the surface of the figure and (c). 実施例1〜3および比較例1〜5に係る摺動部材の表面粗さを示した図。The figure which showed the surface roughness of the sliding member which concerns on Examples 1-3 and Comparative Examples 1-5. 実施例1〜3および比較例1〜5に係る摺動部材の摩耗試験を説明するための図。The figure for demonstrating the abrasion test of the sliding member which concerns on Examples 1-3 and Comparative Examples 1-5. 実施例1〜3および比較例1〜5に係る摺動部材の潤滑被膜の摩耗量を示した図。The figure which showed the abrasion loss of the lubricating film of the sliding member which concerns on Examples 1-3 and Comparative Examples 1-5. 実施例4、5および比較例6に係るピストンを用いたときの回転数−BMEPと、FMEPとの関係を示した図。The figure which showed the relationship between rotation speed -BMEP when using the piston which concerns on Example 4, 5 and the comparative example 6, and FMEP. 実施例5および比較例7に係るピストンを用いたときの回転数−BMEPと、FMEPとの関係を示した図。The figure which showed the relationship between rotation speed -BMEP when using the piston which concerns on Example 5 and Comparative Example 7, and FMEP. 従来の摺動部材を示した模式図。The schematic diagram which showed the conventional sliding member.

以下に、図1を用いて本発明の実施形態を説明する。図1は、本実施形態に係る摺動部材の製造方法を説明するための模式図であり、(a)は基材の表面処理を説明するための図、(b)は表面処理された基材を示した図、(c)は基材の表面に潤滑被膜を被覆した摺動部材を示した図である。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram for explaining a manufacturing method of a sliding member according to this embodiment, wherein (a) is a diagram for explaining surface treatment of a substrate, and (b) is a surface-treated substrate. The figure which showed material, (c) is the figure which showed the sliding member which coat | covered the lubricating film on the surface of the base material.

1.潤滑被膜用組成物について
本実施形態に係る潤滑被膜用組成物は、図1(c)に示すように、金属製の基材10の表面10bに潤滑被膜20を被覆するための組成物である。潤滑被膜用組成物は、二硫化モリブデン粒子とこれを結合する結合樹脂(樹脂バインダー)とを主剤として含む。
1. About the composition for lubricating films The composition for lubricating films which concerns on this embodiment is a composition for coat | covering the lubricating film 20 on the surface 10b of the metal base materials 10, as shown in FIG.1 (c). . The lubricating coating composition contains molybdenum disulfide particles and a binding resin (resin binder) that binds the molybdenum disulfide particles as a main agent.

潤滑被膜用組成物は、二硫化モリブデン粒子と結合樹脂との総量に対して、二硫化モリブデン粒子を50〜70質量%含有している。また、二硫化モリブデン粒子の平均粒子径が0.1〜3.0μmの範囲にある。   The composition for lubricating coating contains 50 to 70% by mass of molybdenum disulfide particles with respect to the total amount of molybdenum disulfide particles and binding resin. The average particle diameter of the molybdenum disulfide particles is in the range of 0.1 to 3.0 μm.

なお、本明細書でいう「粒子径」とは、レーザー回折散乱式粒度分布測定法により測定した体積累積平均粒子径(D50)を表すものであり、「中心線平均粗さRa」は、JIS B 0601−1994に準じて測定された値であり、「突出谷部深さ(油溜り深さ)Rvk」は、JIS B 0601−2001に準じて測定された値である。 As used herein, “particle diameter” refers to the volume cumulative average particle diameter (D 50 ) measured by a laser diffraction / scattering particle size distribution measurement method, and “centerline average roughness Ra” It is a value measured according to JIS B 0601-1994, and “projection valley depth (oil sump depth) Rvk” is a value measured according to JIS B 0601-2001.

本実施形態では、二硫化モリブデン粒子を50〜70質量%含有すること、および、二硫化モリブデン粒子の平均粒子径を0.1〜3.0μmとすることにより、後述する摺動部材1の基材10の表面10bに形成された潤滑被膜20の表面粗さを基材10の表面10bの粗さと同程度の表面粗さにすることができる。これにより、潤滑被膜20の表面の平滑化を図ることができる。さらに、摺動部材1を用いたときに、潤滑被膜20の表面が摩耗しやすいため、潤滑被膜20(摺動部材1)の初期馴染み性を高めることができる。   In this embodiment, 50 to 70 mass% of molybdenum disulfide particles are contained, and the average particle diameter of the molybdenum disulfide particles is 0.1 to 3.0 μm. The surface roughness of the lubricating coating 20 formed on the surface 10b of the material 10 can be set to the same level as that of the surface 10b of the substrate 10. Thereby, the surface of the lubricating coating 20 can be smoothed. Furthermore, when the sliding member 1 is used, since the surface of the lubricating coating 20 is easily worn, the initial conformability of the lubricating coating 20 (sliding member 1) can be enhanced.

ここで、二硫化モリブデン粒子の含有量が70質量%を超えた場合、または、二硫化モリブデン粒子の平均粒子径が3.0μmを超えた場合には、成膜した潤滑被膜20の表面粗さが大きくなり、摺動部材1の摺動面1aの平滑化が阻害されることがある。   Here, when the content of the molybdenum disulfide particles exceeds 70% by mass, or when the average particle diameter of the molybdenum disulfide particles exceeds 3.0 μm, the surface roughness of the formed lubricating coating 20 is obtained. May increase, and smoothing of the sliding surface 1a of the sliding member 1 may be hindered.

一方、二硫化モリブデン粒子の含有量が50質量%未満である場合には、初期馴染みの段階において、潤滑被膜20が摩耗し難いため、摺動部材1の初期馴染み性が低下する。平均粒子径が0.1μm未満の二硫化モリブデン粒子は製造し難い。   On the other hand, when the content of the molybdenum disulfide particles is less than 50% by mass, the initial conformability of the sliding member 1 is deteriorated because the lubricating coating 20 is not easily worn at the initial acclimatization stage. It is difficult to produce molybdenum disulfide particles having an average particle size of less than 0.1 μm.

ここで、平均粒子径が0.1〜3.0μmの範囲の二硫化モリブデン粒子は、市販の二硫化モリブデン粒子等を粉砕し、分級することにより容易に得ることができる。また、上述した効果をより一層期待することができる二硫化モリブデン粒子の平均粒子径は、0.5〜1.5μmである。   Here, molybdenum disulfide particles having an average particle diameter in the range of 0.1 to 3.0 μm can be easily obtained by pulverizing and classifying commercially available molybdenum disulfide particles. Moreover, the average particle diameter of the molybdenum disulfide particle which can expect further the effect mentioned above is 0.5-1.5 micrometers.

結合樹脂は、二硫化モリブデン粒子を結合することができる耐熱性樹脂であることが好ましく、たとえば、エポキシ樹脂、フェノール樹脂、ポリアミド樹脂、およびポリアミドイミド樹脂からなる群から選択された樹脂、または、これらを1種または2種以上含むポリマーアロイであってもよい。この中でも、ポリアミドイミド樹脂が、耐熱性に優れ、各種潤滑油中で用いても劣化が少なく、また摩擦摩耗特性も良好である。   The binding resin is preferably a heat-resistant resin capable of binding molybdenum disulfide particles, for example, a resin selected from the group consisting of epoxy resins, phenol resins, polyamide resins, and polyamideimide resins, or these May be a polymer alloy containing one or more of them. Among these, the polyamide-imide resin has excellent heat resistance, little deterioration even when used in various lubricating oils, and good friction and wear characteristics.

潤滑被膜を形成するために用いる潤滑被膜用組成物は、上述した二硫化モリブデン粒子および結合樹脂を、上述した配合比で調合し、適宜の有機溶媒を溶媒とし、ニーダー等を用いて攪拌・混合することにより調製することができる。なお、潤滑被膜用組成物の製造時には、結合樹脂を予め有機溶媒中に溶解させた状態で、二硫化モリブデン粒子を配合することが好ましい。   The lubricating coating composition used to form the lubricating coating is prepared by mixing the above-described molybdenum disulfide particles and the binding resin at the mixing ratio described above, using an appropriate organic solvent as a solvent, and stirring and mixing using a kneader or the like. Can be prepared. In addition, when manufacturing the composition for lubricating coatings, it is preferable to mix | blend molybdenum disulfide particle | grains in the state which melt | dissolved binder resin in the organic solvent previously.

有機溶媒としては、揮発性の非プロトン系極性溶剤類等が好適に用いられる。具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸メチル、酢酸エチル等のエステル類、トルエン、キシレン等の芳香族炭化水素類、メチルクロロホルム、トリクロロエチレン、トリクロロトリフルオロエタン等の有機ハロゲン化合物類、N−メチル−2−ピロリドン(NMP)、メチルイソピロリドン(MIP)、ジメチルホルムアミド(DMF)、またはジメチルアセトアミド(DMAC)等が例示され、N−メチル−2−ピロリドン(NMP)が特に好ましく使用できる。有機溶媒に、無極性溶剤を用いてもよい。   As the organic solvent, volatile aprotic polar solvents and the like are preferably used. Specifically, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, esters such as methyl acetate and ethyl acetate, aromatic hydrocarbons such as toluene and xylene, methyl chloroform, trichloroethylene, trichlorotrifluoroethane, etc. Organic halogen compounds such as N-methyl-2-pyrrolidone (NMP), methylisopyrrolidone (MIP), dimethylformamide (DMF), dimethylacetamide (DMAC), and the like. ) Can be used particularly preferably. A nonpolar solvent may be used as the organic solvent.

さらに、潤滑被膜用組成物には、固体潤滑剤の分散を助ける分散剤、固体潤滑剤と樹脂の密着性や樹脂の基材への密着性を向上させるシランカップリング剤、表面張力をコントロールする界面活性剤が含まれてもよい。さらに、本発明の目的を損なわない範囲において、保存安定性や被覆適性等改善のための添加剤(沈澱防止剤、増粘剤、消泡剤、レベリング剤等)を適量添加してもよい。   Furthermore, the lubricant coating composition includes a dispersant that helps disperse the solid lubricant, a silane coupling agent that improves the adhesion between the solid lubricant and the resin, and the adhesion of the resin to the substrate, and the surface tension is controlled. A surfactant may be included. Furthermore, an appropriate amount of additives (such as an anti-precipitation agent, a thickener, an antifoaming agent, and a leveling agent) for improving storage stability and coating suitability may be added within a range not impairing the object of the present invention.

2.摺動部材およびその製造方法について
まず、金属製の基材を準備する。基材としては、アルミニウム、鉄、銅、ニッケル、クロム、またはチタン等から選択される1種類以上の金属からなる基材であることが好ましく、これらを含む合金からなる基材であっても良い。さらに、所望であればアルカリ脱脂等の表面処理を行なった金属基材であっても良い。
2. Sliding member and manufacturing method thereof First, a metal base material is prepared. The substrate is preferably a substrate made of one or more metals selected from aluminum, iron, copper, nickel, chromium, titanium, and the like, and may be a substrate made of an alloy containing these metals. . Furthermore, if desired, it may be a metal substrate subjected to a surface treatment such as alkali degreasing.

ここで、金属製の基材の表面の表面粗さは、使用環境に応じて、適宜設定することがき、本実施形態では、後述する潤滑被膜用組成物から潤滑被膜を成膜した際には、潤滑被膜の表面粗さ(摺動部材の表面粗さ)は、基材の表面粗さに近い値となる。   Here, the surface roughness of the surface of the metal substrate can be appropriately set according to the use environment, and in the present embodiment, when a lubricating film is formed from the lubricating film composition described later, The surface roughness of the lubricating coating (the surface roughness of the sliding member) is close to the surface roughness of the substrate.

たとえば、図1(a)に示す金属製の基材の表面(切削または研削された表面)に潤滑被膜用組成物を塗布し、潤滑被膜を形成してもよいが、本実施形態では下地処理を行い、基材10の表面を平滑化する。具体的には、図1(a)に示すように、基材10の表面10aに、基材10よりも硬質の硬質粒子40をショットピーニングで吹き付ける。このショットピーニングにより、基材10に、突出谷部深さRvkが1.5〜2.0μmの範囲となり、かつ、中心線平均粗さRaが1.5〜2.0μmの範囲となるようにディンプルが形成された表面10bを成形する(図1(b)参照)。これにより、本実施形態に係る潤滑被膜用組成物の効果を発揮するに最適な基材10の表面10bを得ることができる。   For example, the lubricating coating composition may be formed by applying the lubricating coating composition to the surface (cut or ground surface) of the metal substrate shown in FIG. To smooth the surface of the substrate 10. Specifically, as shown in FIG. 1A, hard particles 40 harder than the base material 10 are sprayed onto the surface 10a of the base material 10 by shot peening. By this shot peening, the projecting valley depth Rvk is in the range of 1.5 to 2.0 μm and the center line average roughness Ra is in the range of 1.5 to 2.0 μm. The surface 10b on which the dimples are formed is formed (see FIG. 1B). Thereby, the surface 10b of the base material 10 optimal for exhibiting the effect of the composition for lubricating coating according to the present embodiment can be obtained.

たとえばアルミニウム合金(Ai−Si系合金)からなる基材である場合、ショットピーニングの際には、平均粒子径20〜300μmの鉄系合金の硬質粒子40を用いる。まず、酸素が存在する雰囲気下(たとえば大気中)で所定のアークハイト値となる条件で、基材10の表面10aに上述した硬質粒子40を噴射する。   For example, in the case of a base material made of an aluminum alloy (Ai-Si alloy), hard particles 40 of an iron alloy having an average particle diameter of 20 to 300 μm are used in shot peening. First, the above-described hard particles 40 are jetted onto the surface 10a of the base material 10 under a condition that a predetermined arc height value is obtained in an atmosphere in which oxygen exists (for example, in the air).

このようにして、上述した表面性状の複数のディンプルが形成された基材10の表面10bを得ることができる。なお、突出谷部深さRvkおよび中心線平均粗さRaは、ショットの粒径、噴射処理におけるショットの噴射条件等を変更することなどにより、調整することができる。   In this way, the surface 10b of the substrate 10 on which a plurality of dimples having the surface properties described above is formed can be obtained. The protruding valley depth Rvk and the centerline average roughness Ra can be adjusted by changing the shot particle size, shot injection conditions in the injection process, and the like.

次に、ディンプルが成形された基材10の表面10bに、潤滑被膜用組成物で潤滑被膜20を被覆する。基材10の表面10bへの塗工は、刷毛塗り、スプレー塗布、ロール塗布、スクリーン印刷による塗布、ナイフコーティング、パッド法による塗布、または浸漬塗布等の公知の方法により行うことができ、工業的にはエアースプレーにより塗布してもよい。   Next, the lubricant film 20 is coated with the lubricant film composition on the surface 10b of the base material 10 on which the dimples are formed. Coating on the surface 10b of the substrate 10 can be performed by a known method such as brush coating, spray coating, roll coating, screen printing, knife coating, pad coating, or dip coating, and is industrial. May be applied by air spray.

潤滑被膜用組成物を基材10の表面10bに塗工した後、加熱処理を行うことにより、組成物中の有機溶媒を除去し、図1(c)に示すように、基材10の表面に、潤滑被膜20を被覆することができる。   After the lubricating coating composition is applied to the surface 10b of the substrate 10, the organic solvent in the composition is removed by heat treatment, and the surface of the substrate 10 is removed as shown in FIG. Furthermore, the lubricating coating 20 can be coated.

得られた潤滑被膜20の表面の突出谷部深さRvkは0.4〜1.0μmの範囲となり、潤滑被膜20の表面の中心線平均粗さRaは0.4〜1.0μmの範囲となる。このような結果、摺動部材1の摺動面1aの突出谷部深さRvkと中心線平均粗さRaとの関係をともに上述した範囲としたことにより、摺動面1aの表面粗さをこれまでよりも低い状態で、摺動面1aに潤滑油の保油性を高めることができる。これにより、摺動部材1の摺動面1aの初期馴染み性を高めつつ、低摩擦特性を実現することができる。   The protruding valley depth Rvk on the surface of the obtained lubricating coating 20 is in the range of 0.4 to 1.0 μm, and the center line average roughness Ra of the surface of the lubricating coating 20 is in the range of 0.4 to 1.0 μm. Become. As a result, the relationship between the protrusion valley depth Rvk and the centerline average roughness Ra of the sliding surface 1a of the sliding member 1 is in the above-described range, so that the surface roughness of the sliding surface 1a is reduced. The oil retaining property of the lubricating oil can be enhanced on the sliding surface 1a in a lower state than before. Thereby, a low friction characteristic is realizable, improving the initial familiarity of the sliding face 1a of the sliding member 1. FIG.

ここで、潤滑被膜の膜厚は任意であるが、6〜16μmとするのが好ましい。この範囲にすることで、上述した平均粒子径の二硫化モリブデン粒子を上述した範囲で含有した場合、これを平滑化することができ、摺動面を基材の表面に依存させ、摺動面を上述した範囲にし易い。ピストンのスカート部の摺動面に潤滑被膜用組成物を適用し、潤滑被膜を成膜した際に、ピストンの熱伝導性の低下を抑えることができる。   Here, the film thickness of the lubricating coating is arbitrary, but is preferably 6 to 16 μm. By making this range, when the molybdenum disulfide particles having the above average particle diameter are contained in the above range, this can be smoothed, and the sliding surface depends on the surface of the substrate, and the sliding surface Is easily within the above-described range. When the lubricating coating composition is applied to the sliding surface of the skirt portion of the piston to form a lubricating coating, it is possible to suppress a decrease in the thermal conductivity of the piston.

ここで、従来では、基材の表面を砥石等を用いて研磨した際には、その表面は条痕形状となり実面圧が高くなることから、二硫化モリブデン粒子を多く配合し、初期馴染み性を向上させることができなかった。しかしながら、本実施形態では、上述した如き下地処理により、基材10の平滑化された表面10bに潤滑被膜20を被覆し、潤滑被膜20に含有する二硫化モリブデン粒子の平均粒子径を小さくすることで、摺動面1aの実面圧を低減し、摩耗を抑制することができる。これにより、二硫化モリブデン粒子をより多く配合させても、粒子の脱落などがなく耐摩耗性を確保され、潤滑被膜20の初期馴染み性を向上させ、早期に平滑な摺動面を形成することができる。   Here, conventionally, when the surface of the substrate is polished with a grindstone or the like, the surface becomes a streak shape and the actual surface pressure increases, so a large amount of molybdenum disulfide particles are blended, and the initial familiarity Could not be improved. However, in the present embodiment, the lubricant film 20 is coated on the smoothed surface 10b of the substrate 10 by the ground treatment as described above, and the average particle diameter of the molybdenum disulfide particles contained in the lubricant film 20 is reduced. Thus, the actual surface pressure of the sliding surface 1a can be reduced and wear can be suppressed. As a result, even when more molybdenum disulfide particles are added, wear resistance is ensured without dropping particles, the initial conformability of the lubricating coating 20 is improved, and a smooth sliding surface is formed at an early stage. Can do.

以下に、本発明の実施例を説明する。   Examples of the present invention will be described below.

〔実施例1〕
摺動部材の基材として、15.7mm×6.5mm×10.1mm、表面粗さRz0.8μm(Ra0.2μm相当)のアルニウム合金鋳物(JIS規格:AC8B)を準備し、この基材の表面を、アルカリ脱脂した。
[Example 1]
As a base material of the sliding member, an aluminum alloy casting (JIS standard: AC8B) having a surface roughness Rz 0.8 μm (equivalent to Ra 0.2 μm) is prepared as 15.7 mm × 6.5 mm × 10.1 mm. The surface was alkali degreased.

次に固体潤滑剤として平均粒子径2μmの二硫化モリブデン粒子と、これを結合する樹脂として、有機溶媒としてNMPに溶解したポリアミドイミド樹脂(PAI)と、を準備し、表1に示すように、二硫化モリブデン粒子が50質量%、ポリアミドイミド樹脂が50質量%(有機溶媒を除いた樹脂の質量%)となるように配合し、これらを混合し、潤滑被膜用組成物を作製した。次に、80℃×30分の条件で基材を予備加熱し、潤滑被膜用組成物を基材の表面にコーティングし、180℃×90分の条件でこれを加熱し、基材上に膜厚が13μmの潤滑被膜を成膜した。   Next, molybdenum disulfide particles having an average particle diameter of 2 μm as a solid lubricant, and a polyamideimide resin (PAI) dissolved in NMP as an organic solvent as a resin for binding the particles, as shown in Table 1, The composition was blended so that the molybdenum disulfide particles were 50% by mass and the polyamideimide resin was 50% by mass (mass% of the resin excluding the organic solvent), and these were mixed to prepare a lubricating coating composition. Next, the base material is preheated at 80 ° C. for 30 minutes, the lubricating coating composition is coated on the surface of the base material, and this is heated at 180 ° C. for 90 minutes to form a film on the base material. A lubricating coating having a thickness of 13 μm was formed.

ここで、二硫化モリブデン粒子の平均粒子径の測定は、レーザー回折散乱式粒度分布測定装置(日機装(株)製Microtrac MT300)を用いて、PIDS(偏光散乱強度差計測)による測定方法で測定した。平均粒子径は、NMPを用いて測定した、二硫化モリブデン粒子の体積累積平均粒子径D50である。また、二硫化モリブデン粒子およびポリアミドイミド樹脂の割合(質量%)は、秤量して測定した。 Here, the average particle size of the molybdenum disulfide particles was measured by a measurement method by PIDS (polarized light scattering intensity difference measurement) using a laser diffraction scattering type particle size distribution measuring apparatus (Microtrac MT300 manufactured by Nikkiso Co., Ltd.). . The average particle diameter was measured using NMP, the volume accumulated average particle diameter D 50 of the molybdenum disulfide particles. Further, the ratio (mass%) of the molybdenum disulfide particles and the polyamideimide resin was weighed and measured.

〔実施例2〕
実施例1と同じように摺動部材を作製した。実施例1と相違する点は、表1に示すように二硫化モリブデン粒子が60質量%、ポリアミドイミド樹脂が40質量%となるように配合し、潤滑被膜用組成物を作製した点である。
[Example 2]
A sliding member was produced in the same manner as in Example 1. The difference from Example 1 is that, as shown in Table 1, the composition for lubricating coating was prepared by blending molybdenum disulfide particles at 60% by mass and polyamideimide resin at 40% by mass.

〔実施例3〕
実施例1と同じように摺動部材を作製した。実施例1と相違する点は、表1に示すように二硫化モリブデン粒子が70質量%、ポリアミドイミド樹脂が30質量%となるように配合し、潤滑被膜用組成物を作製した点である。
Example 3
A sliding member was produced in the same manner as in Example 1. The difference from Example 1 is that, as shown in Table 1, the composition for lubricating coating was prepared by blending so that the molybdenum disulfide particles were 70% by mass and the polyamideimide resin was 30% by mass.

〔比較例1〕
実施例1と同じように摺動部材を作製した。実施例1と相違する点は、表1に示すように、ポリアミドイミド樹脂70質量%に対して、固体潤滑剤として、平均粒子径7μmの二硫化モリブデン粒子が20質量%、平均粒子径2.5μmのグラファイト粒子が7質量%、平均粒子径4μmのポリテトラフルオロエチレン粒子が(PTFE)3質量%となるように配合し、潤滑被膜用組成物を作製した点である。
[Comparative Example 1]
A sliding member was produced in the same manner as in Example 1. As shown in Table 1, the difference from Example 1 is that 20% by mass of molybdenum disulfide particles having an average particle diameter of 7 μm and an average particle diameter of 2% as a solid lubricant with respect to 70% by mass of polyamideimide resin. The lubricating coating composition was prepared by blending 7 μ% of 5 μm graphite particles and 3% by weight of polytetrafluoroethylene particles having an average particle diameter of 4 μm (PTFE).

〔比較例2〕
実施例1と同じように摺動部材を作製した。実施例1と相違する点は、表1に示すように二硫化モリブデン粒子が40質量%、ポリアミドイミド樹脂が60質量%となるように配合し、潤滑被膜用組成物を作製した点である。
[Comparative Example 2]
A sliding member was produced in the same manner as in Example 1. The difference from Example 1 is that, as shown in Table 1, the composition for lubricating coating was prepared by blending molybdenum disulfide particles at 40% by mass and polyamideimide resin at 60% by mass.

〔比較例3〕
実施例1と同じように摺動部材を作製した。実施例1と相違する点は、表1に示すように二硫化モリブデン粒子が80質量%、ポリアミドイミド樹脂が20質量%となるように配合し、潤滑被膜用組成物を作製した点である。
[Comparative Example 3]
A sliding member was produced in the same manner as in Example 1. The difference from Example 1 is that, as shown in Table 1, the composition for lubricating coating was prepared by blending molybdenum disulfide particles at 80 mass% and polyamideimide resin at 20 mass%.

〔比較例4〕
実施例1と同じように摺動部材を作製した。実施例1と相違する点は、表1に示すように比較例1で用いたグラファイト粒子が50質量%、ポリアミドイミド樹脂が50質量%となるように配合し、潤滑被膜用組成物を作製した点である。
[Comparative Example 4]
A sliding member was produced in the same manner as in Example 1. The difference from Example 1 was that, as shown in Table 1, the graphite particles used in Comparative Example 1 were blended so that the mass was 50% by mass and the polyamideimide resin was 50% by mass to prepare a lubricating coating composition. Is a point.

〔比較例5〕
実施例1と同じように摺動部材を作製した。実施例1と相違する点は、表1に示すように比較例1で用いたPTFE粒子が50質量%、ポリアミドイミド樹脂が50質量%となるように配合し、潤滑被膜用組成物を作製した点である。
[Comparative Example 5]
A sliding member was produced in the same manner as in Example 1. The difference from Example 1 was that, as shown in Table 1, the PTFE particles used in Comparative Example 1 were blended so as to be 50% by mass, and the polyamideimide resin was 50% by mass to prepare a lubricating coating composition. Is a point.

<潤滑被膜の表面粗さの測定>
実施例1〜3および比較例1〜5に係る摺動部材の潤滑被膜の表面粗さ(中心線平均粗さRa)を測定した。中心線平均粗さRaは、JIS B0601−1994に準拠して測定した値である。この結果を表1および図2に示す。図2は、実施例1〜3および比較例1〜5に係る摺動部材の表面粗さを示した図である。なお、図2に示す破線は、基材の表面粗さである。
<Measurement of surface roughness of lubricating coating>
The surface roughness (centerline average roughness Ra) of the lubricating coating of the sliding members according to Examples 1 to 3 and Comparative Examples 1 to 5 was measured. The centerline average roughness Ra is a value measured in accordance with JIS B0601-1994. The results are shown in Table 1 and FIG. FIG. 2 is a diagram illustrating the surface roughness of the sliding members according to Examples 1 to 3 and Comparative Examples 1 to 5. In addition, the broken line shown in FIG. 2 is the surface roughness of a base material.

<初期馴染み試験>
図3に示すように、上に示す実施例1〜3および比較例1〜5の摺動部材に相当するブロック試験片51、リング試験片52、および潤滑油53を組合せて、摩擦摩耗試験(ブロックオンリング試験:LFW−1試験、FALEX社製)を行った。
<Initial familiarity test>
As shown in FIG. 3, a frictional wear test (a block test piece 51, a ring test piece 52, and a lubricating oil 53 corresponding to the sliding members of Examples 1 to 3 and Comparative Examples 1 to 5 shown above are combined. Block on-ring test: LFW-1 test, manufactured by FALEX).

具体的には、リング試験片52として、ねずみ鋳鉄(JIS規格:FC250)からなる外径35mm、幅8.8mm、表面粗さRz0.8μmの試験片を準備した。リング試験片の一部が潤滑油53に浸かるように、油浴槽54に潤滑油53をはり、油温を80℃に保持した状態でリング試験片52を周速0.11m/sで回転させて、リング試験片52の表面に油膜を形成させ、リング試験片52の外周面にブロック試験片51を接触させて荷重22.5Nを負荷しながら、5分間の連続試験を行った。   Specifically, as the ring test piece 52, a test piece made of gray cast iron (JIS standard: FC250) having an outer diameter of 35 mm, a width of 8.8 mm, and a surface roughness Rz of 0.8 μm was prepared. The lubricating oil 53 is applied to the oil bath 54 so that a part of the ring test piece is immersed in the lubricating oil 53, and the ring test piece 52 is rotated at a peripheral speed of 0.11 m / s while maintaining the oil temperature at 80 ° C. Then, an oil film was formed on the surface of the ring test piece 52, the block test piece 51 was brought into contact with the outer peripheral surface of the ring test piece 52, and a continuous test for 5 minutes was performed while applying a load of 22.5N.

試験終了後のブロック試験片51である摺動部材の潤滑被膜の摩耗深さを測定し、これを摩耗量とした。なお、潤滑油には、ベース油(SAE粘度グレード0W−20の市販エンジン油)を用いた。この結果を表1、図4に示す。図4は、実施例1〜3および比較例1〜5に係る摺動部材の潤滑被膜の摩耗量を示した図である。なお、図4に示す破線は、発明者らの経験から初期馴染み性が良好となる摩耗量の下限値である。   The wear depth of the lubricating coating of the sliding member, which is the block test piece 51 after the test was completed, was measured and used as the wear amount. In addition, base oil (commercial engine oil of SAE viscosity grade 0W-20) was used for lubricating oil. The results are shown in Table 1 and FIG. FIG. 4 is a diagram illustrating the amount of wear of the lubricating coating of the sliding members according to Examples 1 to 3 and Comparative Examples 1 to 5. In addition, the broken line shown in FIG. 4 is a lower limit value of the amount of wear at which initial familiarity is good from the inventors' experience.

Figure 0006133916
Figure 0006133916

(結果1)
図2および表1に示すように、実施例1〜3に係る潤滑被膜用組成物から成膜された潤滑被膜の表面粗さは、比較例1、3、4および5のものに比べて小さかった。
(Result 1)
As shown in FIG. 2 and Table 1, the surface roughness of the lubricating coatings formed from the lubricating coating compositions according to Examples 1 to 3 was smaller than those of Comparative Examples 1, 3, 4, and 5. It was.

すなわち、比較例1、3、4および5に係る潤滑被膜用組成物で潤滑被膜を成膜した場合には、潤滑被膜の表面粗さが粗くなる。これは、比較例1、4および5の場合には、潤滑被膜用組成物に含有する固体潤滑剤の平均粒子径が、実施例1〜3のものに比べて大きいからであると考えられる。一方、比較例3の場合には、潤滑被膜用組成物に含有する固体潤滑剤(二硫化モリブデン粒子)の含有量が、実施例1〜3のものに比べて多いことが起因している。   That is, when a lubricant film is formed with the lubricant film composition according to Comparative Examples 1, 3, 4, and 5, the surface roughness of the lubricant film becomes rough. This is considered to be because, in Comparative Examples 1, 4 and 5, the average particle size of the solid lubricant contained in the lubricating coating composition is larger than those of Examples 1-3. On the other hand, in the case of Comparative Example 3, the content of the solid lubricant (molybdenum disulfide particles) contained in the lubricating coating composition is higher than those in Examples 1 to 3.

一方、図4および表1に示すように、実施例1〜3、比較例3〜5に係る摺動部材の潤滑被膜の摩耗量は、比較例1および2のものよりも多い。これは、実施例1〜3、比較例3〜5に係る摺動部材の潤滑被膜の二硫化モリブデン粒子の量が、比較例1および2のものよりも多いことが起因していると考えられる。ただし、比較例3〜5の潤滑被膜の表面粗さは、実施例1〜3のものよりも表面粗さが大きいため、その油膜形成能が低い。したがって、実施例1〜3に係る摺動部材の潤滑被膜は、比較例1〜5のものに比べて油膜形成能が高く、かつ、初期馴染み性が良いと言える。   On the other hand, as shown in FIG. 4 and Table 1, the amount of wear of the lubricating coating of the sliding members according to Examples 1 to 3 and Comparative Examples 3 to 5 is larger than those of Comparative Examples 1 and 2. This is considered due to the fact that the amount of molybdenum disulfide particles in the lubricating coating of the sliding members according to Examples 1 to 3 and Comparative Examples 3 to 5 is larger than those in Comparative Examples 1 and 2. . However, since the surface roughness of the lubricating coating of Comparative Examples 3 to 5 is larger than that of Examples 1 to 3, the oil film forming ability is low. Therefore, it can be said that the lubricating film of the sliding member according to Examples 1 to 3 has higher oil film forming ability and better initial adaptability than those of Comparative Examples 1 to 5.

以上のことから、潤滑被膜用組成物に、二硫化モリブデン粒子を50〜70質量%含有するとともに、その平均粒子径が0.1〜3.0μmの範囲にあれば、潤滑被膜は、基材の表面粗さに応じた表面粗さとなり(平滑性を有し)、初期馴染み性も良好であると考えられる。   From the above, if the lubricating film composition contains 50 to 70% by mass of molybdenum disulfide particles and the average particle diameter is in the range of 0.1 to 3.0 μm, the lubricating film is a base material. It is considered that the surface roughness according to the surface roughness (having smoothness) is good and the initial familiarity is also good.

〔実施例4〕
摺動部材として、AC8系のアルニウム合金鋳物からなる内燃機関のピストン(基材)を準備し、ピストンのスカート部の表面に対して、切削加工を行った。これにより、スカート部の表面に複数の条痕が形成された。次にスカート部の表面の複数の箇所で、JIS B 0610−2001に準拠して突出谷部深さ(油溜り深さ)Rvkを測定し、上述した方法で中心線平均粗さRaを測定した。この結果、突出谷部深さRvkの最大値は1.0μm、最小値は0.2μmであり(突出谷部深さRvk:0.2〜1.0μm)、中心線平均粗さRaの最大値は4.8μm、最小値は2.5μmであった(中心線平均粗さRa:2.5〜4.8μm)。
Example 4
As a sliding member, a piston (base material) of an internal combustion engine made of an AC8 series aluminum alloy casting was prepared, and the surface of the piston skirt was cut. Thereby, a plurality of streaks were formed on the surface of the skirt portion. Next, the protrusion valley depth (oil sump depth) Rvk was measured in accordance with JIS B 0610-2001 at a plurality of locations on the surface of the skirt portion, and the centerline average roughness Ra was measured by the method described above. . As a result, the maximum value of the protrusion valley depth Rvk is 1.0 μm, and the minimum value is 0.2 μm (protrusion valley depth Rvk: 0.2 to 1.0 μm), and the center line average roughness Ra is the maximum. The value was 4.8 μm, and the minimum value was 2.5 μm (center line average roughness Ra: 2.5 to 4.8 μm).

この表面に対して、実施例1と同じ潤滑被膜用組成物を用いて、実施例1と同じ条件で、潤滑被膜を成膜した。成膜後の潤滑被膜の表面(摺動面)の複数の箇所において、突出谷部深さRvkと中心線平均粗さRaを上述した方法と同様の方法で測定した。この結果、突出谷部深さRvkは0.2〜1.0μm、中心線平均粗さRaは2.5〜4.8μmの範囲にあった。   A lubricating coating was formed on this surface using the same lubricating coating composition as in Example 1 under the same conditions as in Example 1. At a plurality of locations on the surface (sliding surface) of the lubricant film after film formation, the protruding valley depth Rvk and the centerline average roughness Ra were measured by the same method as described above. As a result, the protruding valley depth Rvk was in the range of 0.2 to 1.0 μm, and the centerline average roughness Ra was in the range of 2.5 to 4.8 μm.

〔実施例5〕
実施例4と同じ、AC8系のアルニウム合金鋳物からなる内燃機関のピストン(基材)を準備し、ピストンのスカート部の表面に対して表面処理を行った。具体的には、基材のよりも硬質の硬質粒子(具体的には平均粒子径50μmの鉄系の材質からなるショット)を用いて、ショットピーニングでスカート部の表面に複数のディンプルを形成した。
Example 5
As in Example 4, a piston (base material) for an internal combustion engine made of an AC8-based aluminum alloy casting was prepared, and surface treatment was performed on the surface of the piston skirt. Specifically, a plurality of dimples were formed on the surface of the skirt portion by shot peening using hard particles harder than the base material (specifically, a shot made of an iron-based material having an average particle diameter of 50 μm). .

次にスカート部の表面の複数の箇所で、突出谷部深さ(油溜り深さ)Rvkおよび中心線平均粗さRaを測定した。この結果、突出谷部深さRvkの最大値は2.0μm、最小値は1.5μmであり(突出谷部深さRvk:1.5〜2.0μm)、中心線平均粗さRaの最大値は2.0μm、最小値は1.5μmであった(中心線平均粗さRa:1.5〜2.0μm)。   Next, the protruding valley depth (oil sump depth) Rvk and the centerline average roughness Ra were measured at a plurality of locations on the surface of the skirt portion. As a result, the maximum value of the protrusion valley depth Rvk is 2.0 μm, and the minimum value is 1.5 μm (protrusion valley depth Rvk: 1.5 to 2.0 μm), and the center line average roughness Ra is the maximum. The value was 2.0 μm, and the minimum value was 1.5 μm (center line average roughness Ra: 1.5 to 2.0 μm).

この表面に対して、実施例1と同じ潤滑被膜用組成物を用いて、実施例1と同じ条件で、潤滑被膜を成膜した。成膜後の潤滑被膜の表面(摺動面)の複数の箇所において、突出谷部深さRvkと中心線平均粗さRaを上述した方法と同様の方法で測定した。この結果、突出谷部深さRvkは0.4〜1.0μm、中心線平均粗さRaは0.4〜1.0μmの範囲にあった。   A lubricating coating was formed on this surface using the same lubricating coating composition as in Example 1 under the same conditions as in Example 1. At a plurality of locations on the surface (sliding surface) of the lubricant film after film formation, the protruding valley depth Rvk and the centerline average roughness Ra were measured by the same method as described above. As a result, the protrusion valley depth Rvk was in the range of 0.4 to 1.0 μm, and the center line average roughness Ra was in the range of 0.4 to 1.0 μm.

〔比較例6〕
実施例4と同じ、AC8系のアルニウム合金鋳物からなる内燃機関のピストン(基材)を準備し、ピストンのスカート部の表面に対して、実施例4と同じように切削加工を行った。これにより、スカート部の表面に、複数の条痕が形成された。なお、スカート部の表面の突出谷部深さRvk、中心線平均粗さRaは、実施例4のものと同じ範囲であった。
[Comparative Example 6]
A piston (base material) for an internal combustion engine made of an AC8-based aluminum alloy casting as in Example 4 was prepared, and the surface of the skirt portion of the piston was cut in the same manner as in Example 4. Thereby, a plurality of streaks were formed on the surface of the skirt portion. The protruding valley depth Rvk and the centerline average roughness Ra on the surface of the skirt were in the same range as those in Example 4.

この表面に対して、比較例1と同じ潤滑被膜用組成物を用いて、比較例1と同じ条件で、潤滑被膜を成膜した。成膜後の潤滑被膜の表面(摺動面)の複数の箇所において、突出谷部深さRvkと中心線平均粗さRaを測定した。比較例6の突出谷部深さRvkと中心線平均粗さRaは、実施例4のものと同じ範囲であった。   A lubricating film was formed on this surface under the same conditions as in Comparative Example 1 using the same lubricating film composition as in Comparative Example 1. The protruding valley depth Rvk and the centerline average roughness Ra were measured at a plurality of locations on the surface (sliding surface) of the lubricating coating after film formation. The protruding valley depth Rvk and centerline average roughness Ra of Comparative Example 6 were in the same range as those of Example 4.

〔比較例7〕
実施例5と同じ、AC8系のアルニウム合金鋳物からなる内燃機関のピストン(基材)を準備し、ピストンのスカート部の表面に対して、ショットピーニングでスカート部の表面に複数のディンプルを形成した。スカート部の表面の突出谷部深さRvk、中心線平均粗さRaは、実施例5のものと同じ範囲であった。
[Comparative Example 7]
As in Example 5, a piston (base material) for an internal combustion engine made of an AC8 series aluminum alloy casting was prepared, and a plurality of dimples were formed on the surface of the skirt portion by shot peening on the surface of the skirt portion of the piston. . The protruding valley depth Rvk and the centerline average roughness Ra on the surface of the skirt portion were the same as those in Example 5.

この表面に対して、比較例1と同じ潤滑被膜用組成物を用いて、比較例1と同じ条件で、潤滑被膜を成膜した。成膜後の潤滑被膜の表面(摺動面)の複数の箇所において、突出谷部深さRvkと中心線平均粗さRaを測定した。比較例7の突出谷部深さRvkと中心線平均粗さRaは、実施例5のものと同じ範囲であった。   A lubricating film was formed on this surface under the same conditions as in Comparative Example 1 using the same lubricating film composition as in Comparative Example 1. The protruding valley depth Rvk and the centerline average roughness Ra were measured at a plurality of locations on the surface (sliding surface) of the lubricating coating after film formation. The protruding valley depth Rvk and centerline average roughness Ra of Comparative Example 7 were in the same range as those of Example 5.

<実機試験>
実施例4、5および比較例6、7に係るピストンを用いて、実機試験を行った。具体的には、排気量約660cc、シリンダボア径94mm、ストローク95mmであり、エンジンオイルに0W−20を使用し、油水温を80℃±1℃に設定した。次に、回転数を2000rpmまで段階的に増加させるとともに、正味平均有効圧(BMEP)を変化させながら、摩擦平均有効圧力(FMEP)を測定した。これらの結果を、図5および図6に示す。図5は、実施例4、5および比較例6に係るピストンを用いたときの回転数−BMEPと、FMEPとの関係を示した図である。図6は、実施例5および比較例7に係るピストンを用いたときの回転数−BMEPと、FMEPとの関係を示した図である。
<Real machine test>
Using the pistons according to Examples 4 and 5 and Comparative Examples 6 and 7, actual machine tests were performed. Specifically, the displacement was about 660 cc, the cylinder bore diameter was 94 mm, the stroke was 95 mm, 0 W-20 was used for engine oil, and the oil water temperature was set to 80 ° C. ± 1 ° C. Next, the friction average effective pressure (FMEP) was measured while gradually increasing the rotation speed to 2000 rpm and changing the net average effective pressure (BMEP). These results are shown in FIG. 5 and FIG. FIG. 5 is a diagram showing the relationship between the rotational speed -BMEP and the FMEP when the pistons according to Examples 4 and 5 and Comparative Example 6 are used. FIG. 6 is a diagram showing the relationship between the rotational speed -BMEP and the FMEP when the pistons according to Example 5 and Comparative Example 7 are used.

(結果2)
図5に示すように、実施例4および実施例5の摩擦平均有効圧力(FMEP)は、比較例6のものよりも低く、特に、実施例5の摩擦平均有効圧力(FMEP)は、実施例4のものよりも低かった。また、図6に示すように、実施例5の摩擦平均有効圧力(FMEP)は、比較例7のものよりも低かった。
(Result 2)
As shown in FIG. 5, the friction average effective pressure (FMEP) of Example 4 and Example 5 is lower than that of Comparative Example 6, and in particular, the friction average effective pressure (FMEP) of Example 5 is It was lower than 4. As shown in FIG. 6, the friction average effective pressure (FMEP) of Example 5 was lower than that of Comparative Example 7.

このことから、実施例4および5では、実施例1に係る潤滑被膜用組成物を用いたことにより、これに二硫化モリブデン粒子を含有していたとしても、基材の表面粗さよりも大きくすることなく、潤滑被膜を形成することができたからであると考えられる。これにより、実施例4および5の潤滑被膜は油膜を形成しやすいため、実施例4および5のFMEPは、比較例6のものよりも低くなったと考えられる。   From this, in Examples 4 and 5, by using the lubricating coating composition according to Example 1, even if it contains molybdenum disulfide particles, it is made larger than the surface roughness of the substrate. This is probably because the lubricating coating could be formed without any problems. As a result, the lubricating coatings of Examples 4 and 5 are likely to form an oil film, so the FMEP of Examples 4 and 5 is considered to be lower than that of Comparative Example 6.

特に、実施例5の潤滑被膜の場合には、実施例4のものよりも、その中心線平均粗さRaが小さいにも拘わらず、その突出谷部深さ(油溜り深さ)Rvkは大きい。これにより、実施例5の場合には、実施例4のものよりも、より厚い油膜が形成されやすく、実施例5のFMEPは、実施例4のものよりも低くなったと考えられる。しかしながら、比較例7の場合には、比較例1に係る潤滑被膜用組成物を用いたので、基材の表面状態に依存し難く、比較例7のFMEPは、実施例5のものよりも大きくなったと考えられる。   In particular, in the case of the lubricating coating of Example 5, the protruding valley depth (oil sump depth) Rvk is larger than that of Example 4 although the center line average roughness Ra is smaller. . Thereby, in the case of Example 5, a thicker oil film is more easily formed than that of Example 4, and the FMEP of Example 5 is considered to be lower than that of Example 4. However, in the case of Comparative Example 7, since the lubricating coating composition according to Comparative Example 1 was used, it was difficult to depend on the surface state of the substrate, and the FMEP of Comparative Example 7 was larger than that of Example 5. It is thought that it became.

さらに、実機試験後のスカート部の潤滑被膜の表面粗さを複数測定したところ、実施例4に係る潤滑被膜の表面粗さ(たとえばRa2.1μm)は、比較例6のもの(たとえばRa2.3μm)よりも小さかった。同様に、実施例5に係る潤滑被膜の表面粗さ(たとえばRa0.72μm)は、比較例7のもの(たとえばRa1.01μm)よりも小さかった。これらの表面粗さの関係は、実機試験前の関係と同じ関係にあった。この結果と、上述したFMEPの結果から、実施例4および5に係る摺動部材は、比較例6および7のものに比べて初期馴染み性がより高いと考えられる。   Furthermore, when a plurality of surface roughnesses of the lubricant film on the skirt portion after the actual machine test were measured, the surface roughness (for example, Ra 2.1 μm) of the lubricant film according to Example 4 was that of Comparative Example 6 (for example, Ra 2.3 μm). ). Similarly, the surface roughness (for example, Ra 0.72 μm) of the lubricating coating according to Example 5 was smaller than that of Comparative Example 7 (for example, Ra 1.01 μm). These surface roughness relationships were the same as those before the actual machine test. From this result and the above-described FMEP result, it is considered that the sliding members according to Examples 4 and 5 have higher initial familiarity than those of Comparative Examples 6 and 7.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲および明細書に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。   The embodiment of the present invention has been described in detail above. However, the present invention is not limited to the above-described embodiment, and is within the scope of the present invention described in the claims and the specification. Various design changes can be made.

1:摺動部材、1a:摺動面、10:基材、10b:基材の表面、20:潤滑被膜 1: sliding member, 1a: sliding surface, 10: substrate, 10b: surface of substrate, 20: lubricating coating

Claims (3)

二硫化モリブデン粒子が分散し、分散した二硫化モリブデン粒子が結合樹脂で結合された潤滑被膜を、金属製の基材の表面に被覆するための潤滑被膜用組成物であり、前記潤滑被膜用組成物は、前記二硫化モリブデン粒子と結合樹脂との総量に対して、前記二硫化モリブデン粒子を50〜70質量%含有し、前記二硫化モリブデン粒子の平均粒子径が0.1〜3.0μmの範囲にある滑被膜用組成物から前記潤滑被膜を、前記基材の表面に成膜する摺動部材の製造方法であって、
前記基材の表面に、前記基材よりも硬質の硬質粒子をショットピーニングで吹き付けることにより、前記基材の表面に、突出谷部深さRvkが1.5〜2.0μmの範囲となり、かつ、中心線平均粗さRaが1.5〜2.0μmの範囲となるように複数のディンプルを成形し、
前記ディンプルが成形された表面に、前記潤滑被膜用組成物から前記潤滑被膜を成膜することを特徴とする摺動部材の製造方法。
A lubricating coating composition for coating a surface of a metal base material with a lubricating coating in which molybdenum disulfide particles are dispersed and the dispersed molybdenum disulfide particles are bonded with a binding resin, the lubricating coating composition The product contains 50 to 70% by mass of the molybdenum disulfide particles with respect to the total amount of the molybdenum disulfide particles and the binding resin, and the molybdenum disulfide particles have an average particle diameter of 0.1 to 3.0 μm. the lubricant film from lubrication coating composition is in the range, a manufacturing method of a sliding member to be formed on the surface of the substrate,
By spraying hard particles harder than the base material on the surface of the base material by shot peening, the protrusion valley depth Rvk is in the range of 1.5 to 2.0 μm on the surface of the base material, and And molding a plurality of dimples so that the center line average roughness Ra is in the range of 1.5 to 2.0 μm,
A method for producing a sliding member, comprising forming the lubricating coating from the lubricating coating composition on a surface on which the dimples are formed.
前記結合樹脂が、ポリアミドイミド樹脂であることを特徴とする請求項1に記載の摺動部材の製造方法The method for manufacturing a sliding member according to claim 1, wherein the binding resin is a polyamide-imide resin. 請求項1または2に記載の摺動部材の製造方法により、前記摺動部材をピストンとして前記ピストンを製造する方法であって、
前記ピストンのスカート部の表面に前記複数のディンプルを成形後、前記ディンプルが成形された表面に前記潤滑被膜を被覆することを特徴とするピストンの製造方法。
A method for producing the piston by using the sliding member as a piston by the method for producing a sliding member according to claim 1 or 2 ,
A method for manufacturing a piston, comprising forming the plurality of dimples on a surface of a skirt portion of the piston and then covering the surface on which the dimples are formed with the lubricating coating.
JP2015038150A 2015-02-27 2015-02-27 Manufacturing method of sliding member and manufacturing method of piston Active JP6133916B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015038150A JP6133916B2 (en) 2015-02-27 2015-02-27 Manufacturing method of sliding member and manufacturing method of piston
DE102016103273.5A DE102016103273A1 (en) 2015-02-27 2016-02-24 A lubricating film composition, lubricating member for which the lubricating film composition is used, and methods for producing the lubricating film composition
CN201610102738.8A CN105925347A (en) 2015-02-27 2016-02-24 Composition for lubricating film, sliding member using the composition for lubricating film, and method of manufacturing the composition for lubricating film
US15/053,659 US20160251589A1 (en) 2015-02-27 2016-02-25 Composition for lubricating film, sliding member using the composition for lubricating film, and method of manufacturing the composition for lubricating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015038150A JP6133916B2 (en) 2015-02-27 2015-02-27 Manufacturing method of sliding member and manufacturing method of piston

Publications (2)

Publication Number Publication Date
JP2016160293A JP2016160293A (en) 2016-09-05
JP6133916B2 true JP6133916B2 (en) 2017-05-24

Family

ID=56682700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015038150A Active JP6133916B2 (en) 2015-02-27 2015-02-27 Manufacturing method of sliding member and manufacturing method of piston

Country Status (4)

Country Link
US (1) US20160251589A1 (en)
JP (1) JP6133916B2 (en)
CN (1) CN105925347A (en)
DE (1) DE102016103273A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017099245A1 (en) * 2015-12-11 2018-10-04 東レ・ダウコーニング株式会社 Noise reduction method for sliding members, parts, and mechanical devices excluding those applied to image forming apparatuses
JP6813341B2 (en) 2016-11-17 2021-01-13 大豊工業株式会社 Resin composition and sliding member
JP7390774B2 (en) * 2016-11-17 2023-12-04 大豊工業株式会社 sliding member
JP7222690B2 (en) 2018-12-17 2023-02-15 大豊工業株式会社 sliding member
DE102020124723A1 (en) 2020-09-22 2022-03-24 Bayerische Motoren Werke Aktiengesellschaft Friction-optimized piston, reciprocating engine and motor vehicle
CN112251135A (en) * 2020-11-02 2021-01-22 中国科学院兰州化学物理研究所 High-strength long-life solid lubricating coating for main fuel pump of aircraft engine
JP2022094593A (en) 2020-12-15 2022-06-27 スズキ株式会社 Piston of internal combustion engine and manufacturing method thereof
JP2023080767A (en) 2021-11-30 2023-06-09 スズキ株式会社 Piston for internal combustion engine and method for manufacturing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118709A (en) * 1993-10-21 1995-05-09 Taiho Kogyo Co Ltd Sliding material
JP3133209B2 (en) * 1994-03-10 2001-02-05 トヨタ自動車株式会社 Composition for forming lubricating film and sliding bearing using the same
JP3245064B2 (en) * 1996-07-18 2002-01-07 大豊工業株式会社 Plain bearing
JP4507028B2 (en) * 1999-07-23 2010-07-21 株式会社リケン Coating composition for sliding member and piston ring for internal combustion engine
JP2002039186A (en) * 2000-07-27 2002-02-06 Taiho Kogyo Co Ltd Slide bearing
JP3927358B2 (en) * 2000-09-01 2007-06-06 トヨタ自動車株式会社 Composition for sliding member
JP2006161563A (en) * 2004-12-02 2006-06-22 Honda Motor Co Ltd Piston for internal combustion engine
JP4921894B2 (en) * 2006-08-30 2012-04-25 住鉱潤滑剤株式会社 Multi-layer lubricating coating composition, multi-layer lubricating coating and piston having the coating
JP5060223B2 (en) * 2007-09-12 2012-10-31 トヨタ自動車株式会社 Piston for internal combustion engine
JP5117986B2 (en) * 2008-10-08 2013-01-16 アート金属工業株式会社 Surface treatment method for piston skirt for internal combustion engine and piston for internal combustion engine
JP2010196813A (en) 2009-02-25 2010-09-09 Daido Metal Co Ltd Sliding member
CN102199474B (en) * 2011-04-29 2013-05-29 安徽工业大学 Dry film lubricant used for metal parts

Also Published As

Publication number Publication date
US20160251589A1 (en) 2016-09-01
DE102016103273A1 (en) 2016-09-01
CN105925347A (en) 2016-09-07
JP2016160293A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6133916B2 (en) Manufacturing method of sliding member and manufacturing method of piston
JP4921894B2 (en) Multi-layer lubricating coating composition, multi-layer lubricating coating and piston having the coating
US7634963B2 (en) Piston ring comprising a coated running surface, and coating agent
JP4151379B2 (en) Sliding member
JP5248379B2 (en) Piston of internal combustion engine provided with multi-layer coating composition and surface treatment method of the piston
JP2009068390A (en) Sliding member coating composition, sliding member, and piston for internal combustion engine
JP4767234B2 (en) Sliding coating structure
JP7368359B2 (en) Sliding coating, method for producing it, sliding element with it and use thereof
KR101771660B1 (en) sliding member sliding damper coating method using the coating composition and this
JP5391327B2 (en) Sliding member
JP6211924B2 (en) Sliding resin composition
JP6973708B2 (en) The dry lubricating film composition and the sliding member constituting the sliding layer by the dry lubricating film composition.
JP6650870B2 (en) Sliding member with coating film and method for forming coating film
JP3844206B2 (en) Sliding member
JP6114180B2 (en) Coating composition for sliding member
JP5307208B2 (en) Piston for internal combustion engine provided with multi-layer coating composition
JP7146833B2 (en) Coating composition for forming dry lubricating coating, dry lubricating coating, and sliding member
CN114250099A (en) Bearing material with solid lubricant
CN114616404A (en) Sliding element comprising a polymer overlayer
JP7315153B2 (en) Coating composition for sliding member and sliding member
JP3613500B2 (en) Piston ring coating
JP2018188621A (en) Coat for slide members and slide member having the same
JP2005170960A (en) Sliding member, lubricating coating film, coating material for the film, and method for coating surface of sliding member
JP7376513B2 (en) Composition, coating formed using the same, sliding member having the coating, and manufacturing method thereof
JP5568666B2 (en) Piston of internal combustion engine provided with multi-layer coating composition and surface treatment method of the piston

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170420

R151 Written notification of patent or utility model registration

Ref document number: 6133916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250