JP4766539B2 - Self-priming centrifugal pump device - Google Patents

Self-priming centrifugal pump device Download PDF

Info

Publication number
JP4766539B2
JP4766539B2 JP2004370935A JP2004370935A JP4766539B2 JP 4766539 B2 JP4766539 B2 JP 4766539B2 JP 2004370935 A JP2004370935 A JP 2004370935A JP 2004370935 A JP2004370935 A JP 2004370935A JP 4766539 B2 JP4766539 B2 JP 4766539B2
Authority
JP
Japan
Prior art keywords
pipe
water
air
discharge
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004370935A
Other languages
Japanese (ja)
Other versions
JP2006177240A (en
Inventor
眞 吉野
伸浩 四宮
誠 石井
Original Assignee
株式会社電業社機械製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社電業社機械製作所 filed Critical 株式会社電業社機械製作所
Priority to JP2004370935A priority Critical patent/JP4766539B2/en
Publication of JP2006177240A publication Critical patent/JP2006177240A/en
Application granted granted Critical
Publication of JP4766539B2 publication Critical patent/JP4766539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、送水管に空気が混入した水が送水されないようにした自吸式渦巻ポンプ装置に関するものである。   The present invention relates to a self-priming centrifugal pump apparatus that prevents water mixed with air from being fed into a water pipe.

従来の自吸式渦巻ポンプ装置の一例を図10ないし図16を参照して説明する。図10は、従来の自吸式渦巻ポンプ装置の一例構造を示す縦断面図である。図11ないし図16は、図10に示す従来の自吸式渦巻ポンプ装置の自吸運転から送水運転に移行するまでの動作の変化を説明する図である。 An example of a conventional self-priming centrifugal pump device will be described with reference to FIGS. FIG. 10 is a longitudinal sectional view showing the structure of an example of a conventional self-priming centrifugal pump device. 11-16 is a figure explaining the change of operation | movement from the self-priming operation of the conventional self-priming type centrifugal pump apparatus shown in FIG. 10 until it transfers to water supply operation.

まず、図10を参照して従来の自吸式渦巻ポンプ装置の構造につき説明する。ポンプ羽根車10を囲むとともに回転自在に支持するポンプケーシング12は、上流側の吸込口12aと下流側の吐出口12bがともにポンプ羽根車10よりも高い位置に設けられている。そして、吸込口12aに吸込管14の一端が連通接続され、他端が吸込水槽16の水面下に没入されている。このポンプ羽根車10よりも上流側のポンプケーシング12と吸込管14を含んで吸込管路が形成され、その最も高い位置で管路が適当な長さで水平に配設されるとともに注水用開閉弁18が連通される。また、吐出口12bに吐出管20の一端が連通接続され、その他端が吐出弁22を介して送水管24に連通される。このポンプ羽根車10よりも下流側のポンプケーシング12と吐出管20を含んで吐出管路が形成され、その最も高い位置の上側壁に自動排気弁26が連通される。この自動排気弁26は、連通口が満水状態となると浮き子の作用により自動的に閉成される弁である。   First, the structure of a conventional self-priming centrifugal pump device will be described with reference to FIG. The pump casing 12 that surrounds the pump impeller 10 and is rotatably supported is provided with an upstream suction port 12 a and a downstream discharge port 12 b that are higher than the pump impeller 10. One end of the suction pipe 14 is connected to the suction port 12 a and the other end is immersed under the water surface of the suction water tank 16. A suction pipe is formed including a pump casing 12 upstream of the pump impeller 10 and a suction pipe 14. The pipe is horizontally arranged at an appropriate length at the highest position, and is opened and closed for water injection. Valve 18 is in communication. Further, one end of the discharge pipe 20 is connected to the discharge port 12 b and the other end is connected to the water supply pipe 24 via the discharge valve 22. A discharge pipe line is formed including the pump casing 12 and the discharge pipe 20 on the downstream side of the pump impeller 10, and the automatic exhaust valve 26 is communicated with the upper wall of the highest position. The automatic exhaust valve 26 is a valve that is automatically closed by the action of a float when the communication port becomes full.

かかる構成の従来の自吸式渦巻ポンプ装置の自吸運転から送水運転へ変化する動作につき図11ないし図16を参照して説明する。まず、注水用開閉弁18を開成させて、図11に示すごとく、この弁18を通過させてポンプケーシング12内にポンプ羽根車10がほぼ没水する所定の水位まで呼び水を注水する。この注水が終了すれば、注水用開閉弁18は閉成される。ここで、吐出弁22は、全開状態とされている。次に、吐出弁22を全開状態としたままで、ポンプを始動させると、ポンプ羽根車10の回転に伴い、図12に示すごとく、ポンプケーシング12内の呼び水が吐出管20側に移動し、吐出管路内の水面が上昇して吐出管路内の空気の一部が自動排気弁26を介して外部に排出される。また、吸込管14内に吸込水槽16から水が吸い込まれてその水面が上昇する。さらに、運転の継続により、図13に示すごとく、吐出管路内の水面はさらに上昇して吐出管路内の空気が自動排気弁26を介して外部に排出されるとともに、吸込管路内の水面も上昇して、ついには吸込管路の最も高い位置の下側内壁に達する。すると、吸込管路内の水が最も高い位置の下側内壁を越えて、ポンプケーシング12内のポンプ羽根車10が配設された位置に流下する。ここで、吸込管路の最も高い位置で管路を適当な長さで水平にすることで、吸込管路からポンプ羽根車10が配設された位置に水が滑らかに流下し得る。この吸込管路からの水の流下に伴い、図14に示すごとく、吐出管路内の水面が急激に上昇し、送水管24から送水が開始される。このとき、吸込管路の最も高い位置の上側壁の下には残留する空気により空気溜まり28が形成される。やがて、吐出管路内の水面が自動排気弁26の連通口に達し、図15に示すごとく、自動排気弁26が自動的に閉成される。ここで、吸込管路内にある空気溜まり28の空気が水の流れとともに吐出管路側に気泡となって連行移動され、空気が混入した水が送水管24に送水される。そして、図16に示すごとく、吸込管路内の空気溜まり28の空気が全て吐出管路側に連行移動されて空気溜まり28が消滅すると、自吸運転は終了し、空気が混入しない水が送水管24に送水されて送水運転となる。 An operation of the conventional self-priming centrifugal pump device having such a configuration that changes from the self-priming operation to the water supply operation will be described with reference to FIGS. First, the water injection opening / closing valve 18 is opened, and as shown in FIG. 11, priming water is injected to a predetermined water level where the pump impeller 10 is substantially submerged in the pump casing 12 through the valve 18. When this water pouring is completed, the water pouring valve 18 is closed. Here, the discharge valve 22 is fully opened. Next, when the pump is started with the discharge valve 22 fully opened, the priming water in the pump casing 12 moves to the discharge pipe 20 side as shown in FIG. The water level in the discharge pipe rises and a part of the air in the discharge pipe is discharged to the outside through the automatic exhaust valve 26. Further, water is sucked into the suction pipe 14 from the suction water tank 16, and the water surface rises. Further, as shown in FIG. 13, as the operation continues, the water level in the discharge pipe rises further, and the air in the discharge pipe is discharged to the outside through the automatic exhaust valve 26 , and in the suction pipe The water level also rises and finally reaches the lower inner wall of the highest position of the suction pipe. Then, the water in the suction pipe flows down to the position where the pump impeller 10 in the pump casing 12 is disposed over the lower inner wall at the highest position. Here, water can flow smoothly from the suction pipe to the position where the pump impeller 10 is disposed by leveling the pipe at an appropriate length at the highest position of the suction pipe. As the water flows from the suction pipe, the water level in the discharge pipe rises abruptly as shown in FIG. At this time, an air reservoir 28 is formed by the remaining air below the upper side wall of the highest position of the suction pipe. Eventually, the water surface in the discharge pipe reaches the communication port of the automatic exhaust valve 26, and the automatic exhaust valve 26 is automatically closed as shown in FIG. Here, the air in the air reservoir 28 in the suction pipe is entrained and moved along with the flow of water in the form of bubbles on the discharge pipe side, and the water mixed with the air is fed to the water feed pipe 24. Then, as shown in FIG. 16, when all the air in the air reservoir 28 in the suction conduit is moved to the discharge conduit side and the air reservoir 28 disappears, the self-priming operation is completed, and water that does not contain air enters the water supply tube. 24 is sent to the water supply operation.

上述のごとき従来の自吸式渦巻ポンプ装置にあっては、自吸運転の最終段階において空気が混入した水が送水管24に送水されることとなり、送水管24にエアーハンマー現象を生じる虞がある。特に、吸込管路が長い場合には、それだけ送水管24に流入する空気の量が多くなり、エアーハンマー現象による送水管24のダメージが大きいものとなる虞がある。   In the conventional self-priming centrifugal pump device as described above, water mixed with air is fed to the water supply pipe 24 in the final stage of the self-priming operation, and there is a possibility that an air hammer phenomenon will occur in the water supply pipe 24. is there. In particular, when the suction pipe is long, the amount of air flowing into the water supply pipe 24 increases accordingly, and the water supply pipe 24 may be greatly damaged by the air hammer phenomenon.

なお、発明者らは、先に特開2002−371985号公報にて、ポンプ羽根車から吐き出される気水混合状態の水を気液分離器によって空気と水に分離し、分離された水をポンプ羽根車の吸込側に戻すことによって、吸込管路に生ずる空気溜まりを速やかに消滅させるようにした技術を提案した。しかし、この提案技術は、自吸運転から送水運転に至る時間を短くすることはできるが、送水管側に空気が混入したみずを送水するのを改善するものでない。
特開2002−371985号公報
The inventors previously disclosed in Japanese Patent Application Laid-Open No. 2002-371985, the water in the air-water mixed state discharged from the pump impeller is separated into air and water by a gas-liquid separator, and the separated water is pumped. A technique was proposed to quickly eliminate the air pocket generated in the suction pipe by returning it to the suction side of the impeller. However, this proposed technique can shorten the time from the self-priming operation to the water supply operation, but does not improve the water supply of the water mixed with air on the water supply pipe side.
JP 2002-371985 A

本発明は、かかる従来技術の事情に鑑みてなされたもので、送水管に空気が混入した水が送水されないようにした自吸式渦巻ポンプ装置を提供することを目的とする。   The present invention has been made in view of the circumstances of the prior art, and an object of the present invention is to provide a self-priming centrifugal pump device that prevents water mixed with air from being fed into a water pipe.

本発明は上述のごとき問題点を解決するためになされたもので、本発明の自吸式渦巻ポンプ装置は、ポンプ羽根車より上流側のポンプケーシングとその吸込口に連通する吸込管を含むで形成される吸込管路の一部が前記ポンプ羽根車よりも高い位置となるようにするとともに、前記ポンプ羽根車より下流側のポンプケーシングとその吐出口に連通する吐出管を含むで形成される吐出管路の一部が前記ポンプ羽根車よりも高い位置となるようになし、前記吐出管路に開閉自在な吐出弁を設けた自吸式渦巻ポンプ装置において、前記吐出管路の最も高い位置の上側壁に排気管の一端を連通し、前記排気管に開閉自在な制御弁を設け、ポンプ吐出圧が0.12MPa以上となるように設定し、前記排気管および開成状態の前記制御弁の最小の断面積S1と前記吸込管路の空気溜まりが形成される位置の吸込管路断面積S2の比S1/S2が0.11以上となるように設定して構成されている。 The present invention has been made to solve the above-described problems, and the self-priming centrifugal pump apparatus of the present invention includes a pump casing upstream of the pump impeller and a suction pipe communicating with the suction port. A part of the suction pipe formed is positioned higher than the pump impeller and includes a pump casing on the downstream side of the pump impeller and a discharge pipe communicating with the discharge port. In the self-priming centrifugal pump device in which a part of the discharge pipe is positioned higher than the pump impeller and the discharge pipe is provided with an openable / closable discharge valve, the highest position of the discharge pipe One end of the exhaust pipe is communicated with the upper side wall, and a control valve that can be opened and closed is provided on the exhaust pipe . The pump discharge pressure is set to be 0.12 MPa or more, and the exhaust pipe and the control valve in the opened state are connected. Minimum cross-sectional area 1 and the ratio S1 / S2 of the suction pipe suction pipe position where the air reservoir is formed of a passage path cross-sectional area S2 is formed by setting so that 0.11 or more.

請求項1記載の自吸式渦巻ポンプ装置にあっては、吐出弁を閉じ制御弁を開いた状態で自吸運転を開始すると、吐出管路内にあった空気が制御弁と排気管を通って外部に排出され、さらに吸込管路内にあった空気が呼び水および吸込水槽から吸い込まれた水とともに制御弁と排気管を通って外部に排出される。そして、吸込管路内および吐出管路内にあった空気が全て外部に排出されたときに、制御弁を閉じるとともに吐出弁を開くことで、送水管には空気が混入していない水を最初から送水することができる。そして、ポンプの吐出圧力が0.12MPaであって、排気管および開成状態の制御弁の最小の断面積S1と吸込管路の空気溜まりが形成される位置の吸込管路断面積S2との比S1/S2が0.11以上となるように設定しているので、吸込管路に生ずる空気溜まりの空気が確実に外部に排出されることが、実験的に確認されている。ここで、ポンプの吐出圧力が0.12MPaよりも大きな場合には、吸込管路内の流速が大きくなり、より効果的に空気溜まりの空気を吐出管路側に連行移行させるので、より確実に空気溜まりの空気を外部に排出することができる。 In the self-priming centrifugal pump device according to claim 1, when the self-priming operation is started with the discharge valve closed and the control valve opened, air in the discharge pipe passes through the control valve and the exhaust pipe. In addition, the air in the suction pipe is discharged to the outside through the control valve and the exhaust pipe together with the priming water and the water sucked from the suction water tank. When all the air in the suction pipe and the discharge pipe is exhausted to the outside, the control valve is closed and the discharge valve is opened, so that water that is not mixed in the water supply pipe is first Can be fed from . The ratio of the minimum cross-sectional area S1 of the exhaust pipe and the open control valve to the suction pipe cross-sectional area S2 at the position where the air reservoir of the suction pipe is formed is that the pump discharge pressure is 0.12 MPa. Since S1 / S2 is set to be 0.11 or more, it has been experimentally confirmed that the air in the air reservoir generated in the suction pipe is surely discharged to the outside. Here, when the discharge pressure of the pump is larger than 0.12 MPa, the flow velocity in the suction pipe increases, and the air in the air pool is transferred to the discharge pipe side more effectively. The accumulated air can be discharged to the outside.

以下、本発明の実施例を図1ないし図9を参照して説明する。図1は、本発明の自吸式渦巻ポンプ装置の実施例の構造を示す縦断面図である。図2ないし図8は、図1に示す本発明の自吸式渦巻ポンプ装置の実施例の自吸運転から送水運転に移行するまでの動作の変化を説明する図である。図9は、ポンプの吐出圧力を0.12MPaに設定し、排気管および開成状態の制御弁の最小の断面積S1と吸込管路の空気溜まりが形成される位置の吸込管路断面積S2の比S1/S2の変化に対する空気溜まりの空気の残留量の変化を測定した結果を示す図である。図1ないし図8において、図10ないし図16に示すものと同一または均等な部材には、同じ符号を付けて重複する説明を省略する。 Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a longitudinal sectional view showing the structure of an embodiment of the self-priming centrifugal pump apparatus of the present invention. 2 to 8 are diagrams for explaining a change in operation from the self-priming operation of the embodiment of the self-priming centrifugal pump apparatus of the present invention shown in FIG. 1 to the transition to the water feeding operation. FIG. 9 shows that the discharge pressure of the pump is set to 0.12 MPa, the minimum cross-sectional area S1 of the exhaust pipe and the open control valve, and the suction pipe cross-sectional area S2 at the position where the air reservoir of the suction pipe is formed. It is a figure which shows the result of having measured the change of the residual amount of the air of the air pool with respect to the change of ratio S1 / S2. 1 to FIG. 8, the same or equivalent members as those shown in FIG. 10 to FIG.

図1に示す本発明の自吸式渦巻ポンプ装置の構造において、図10に示す従来の自吸式渦巻ポンプ装置の構造と相違するところは、以下の通りである。吐出管路の最も高い位置の上側壁に配設された自動排気弁26に代えて、排気管30の一端が連通され、この排気管30に開閉自在な制御弁32が介装される。そして、排気管30の他端が吸込水槽16の水面上に開口されるように配設されている。   The structure of the self-priming centrifugal pump apparatus of the present invention shown in FIG. 1 is different from the structure of the conventional self-priming centrifugal pump apparatus shown in FIG. 10 as follows. Instead of the automatic exhaust valve 26 disposed on the upper side wall at the highest position of the discharge pipe, one end of the exhaust pipe 30 is communicated, and a control valve 32 that can be opened and closed is interposed in the exhaust pipe 30. The other end of the exhaust pipe 30 is disposed so as to be opened on the water surface of the suction water tank 16.

かかる構成の本発明の自吸式渦巻ポンプ装置の自吸運転から送水運転へ変化する動作につき図2ないし図8を参照して説明する。まず、注水用開閉弁18を開成させて、図2に示すごとく、この注水用開閉弁18を通過させてポンプケーシング12内にポンプ羽根車10がほぼ没水する所定の水位Lまで呼び水を注水する。この注水が終了すれば、注水用開閉弁18は閉成される。ここで、制御弁32は開いた状態とされ、吐出弁22は全閉状態とされている。次に、吐出弁22を全閉状態としたままで制御弁32も開いた状態のままでポンプを始動させると、ポンプ羽根車10の回転に伴い、図3に示すごとく、ポンプケーシング12内の呼び水が吐出管20側に移動し、吐出管路内の水面が上昇して吐出管路内の空気の一部が排気管30および制御弁32を介して外部に排出される。また、吸込管14内に吸込水槽16から水が吸い込まれてその水面が上昇する。さらに、運転の継続により、図4に示すごとく、吐出管路内の水面はさらに上昇して吐出管路内の空気が排気管30および制御弁32を介して外部に排出されるとともに、吸込管路内の水面も上昇して、ついには吸込管路の最も高い位置の下側内壁に達する。すると、吸込管路内の水が最も高い位置の下側内壁を越えて、ポンプケーシング12内のポンプ羽根車10が配設された位置に流下する。この吸込管14からの水の流下に伴い、図5に示すごとく、吐出管路内の水面が急激に上昇し、排気管30の連通位置まで達し、さらに排気管30と制御弁32を介して吸込水槽16へ排出される。このとき、吸込管路の最も高い位置の上側壁の下には残留する空気により空気溜まり28が形成される。すると、図6に示すごとく、吸込管路内にある空気溜まり28の空気が水の流れとともに吐出管路側に気泡となって連行移動され、空気が混入した水が排気管30と制御弁32を介して吸込水槽16に排出され、空気溜まり28に残留する空気が減少する。そしてさらに、図7に示すごとく、吸込管路内の空気溜まり28の空気が全て吐出管路側に連行移動されて空気溜まり28が完全に消滅すると、自吸運転は終了する。そこで、図8に示すごとく、制御弁32を閉じるとともに、吐出弁22を開くことにより、空気が混入しない水が送水管24に送水されて送水運転となる。 The operation of the self-priming centrifugal pump apparatus of the present invention having such a configuration that changes from the self-priming operation to the water supply operation will be described with reference to FIGS. First, the on-off valve 18 for water injection is opened, and as shown in FIG. 2, priming water is injected to a predetermined water level L at which the pump impeller 10 is almost submerged in the pump casing 12 through the water on-off valve 18. To do. When this water pouring is completed, the water pouring valve 18 is closed. Here, the control valve 32 is opened, and the discharge valve 22 is fully closed. Next, when the pump is started with the discharge valve 22 fully closed and the control valve 32 opened, the pump impeller 10 rotates, as shown in FIG. The priming water moves to the discharge pipe 20 side, the water surface in the discharge pipe rises, and part of the air in the discharge pipe is discharged to the outside through the exhaust pipe 30 and the control valve 32. Further, water is sucked into the suction pipe 14 from the suction water tank 16, and the water surface rises. Further, as shown in FIG. 4, the water level in the discharge pipe rises further as the operation continues, and the air in the discharge pipe is discharged to the outside through the exhaust pipe 30 and the control valve 32, and the suction pipe The water level in the channel also rises and finally reaches the lower inner wall at the highest position of the suction pipe. Then, the water in the suction pipe flows down to the position where the pump impeller 10 in the pump casing 12 is disposed over the lower inner wall at the highest position. As the water flows from the suction pipe 14, as shown in FIG. 5, the water level in the discharge pipe rises rapidly and reaches the communication position of the exhaust pipe 30, and further through the exhaust pipe 30 and the control valve 32. It is discharged to the suction water tank 16. At this time, an air reservoir 28 is formed by the remaining air below the upper side wall of the highest position of the suction pipe. Then, as shown in FIG. 6, the air in the air reservoir 28 in the suction pipe is entrained and moved to the discharge pipe along with the flow of water, and the water mixed with the air passes through the exhaust pipe 30 and the control valve 32. Thus, the air discharged into the suction water tank 16 and remaining in the air reservoir 28 is reduced. Further, as shown in FIG. 7, when all the air in the air reservoir 28 in the suction pipe is moved to the discharge pipe side and the air reservoir 28 disappears completely, the self-priming operation ends. Therefore, as shown in FIG. 8, the control valve 32 is closed and the discharge valve 22 is opened, so that water not mixed with air is supplied to the water supply pipe 24 and the water supply operation is performed.

ところで、図6に示す状態で、吸込管路の空気溜まり28の空気が水流により連行移動される際に、吸込管路の空気溜まり28の水流の流速が大きいほど、空気の連行が効果的になされることが予測される。そして、この流速を大きくするには、排気管30および開成状態の制御弁32の最小の断面積を大きくして水が容易に通過し得るようにすることと、ポンプの吐出圧力を大きいくすることが要因となる。そこで、発明者らは、ポンプの吐出圧力を、一般的なポンプで用いられている最低の吐出圧力である0.12MPaに設定し、排気管30および制御弁32の最小の断面積S1と、吸込管路の空気溜まり28が形成される位置の吸込管路断面積S2の比S1/S2の変化に対する空気溜まり28の空気の残留量の変化を実験により測定した。その結果を図9に示す。これは、図6に示す状態から20分ほど運転を継続して空気溜まり28にある空気の残留量が変化しなくなった状態における測定値である。図9において、S1/S2が大きくなるほど、すなわち排気管30および開成状態の制御弁32の最小断面積S1が大きいほど空気の残留量が減少し、S1/S2が0.11で空気の残留量が0となっている。よって、S1/S2が0.11以上であれば、用空気溜まり28の空気は確実に吐出管路側に連行移動される。そして、ポンプの吐出圧力が大きいほど、空気溜まり28から空気が連行移動され易いことは明らかである。そこで、ポンプの吐出圧力が0.12MPより大きいならば、S1/S2は0.11よりも小さくて足りるが、その限界は実験により容易に測定することができる。 By the way, in the state shown in FIG. 6, when the air in the air reservoir 28 in the suction pipe is entrained by the water flow, the air entrainment becomes more effective as the flow velocity of the water flow in the air reservoir 28 in the suction pipe increases. Expected to be made. In order to increase the flow velocity, the minimum cross-sectional area of the exhaust pipe 30 and the opened control valve 32 is increased so that water can easily pass through, and the discharge pressure of the pump is increased. Is a factor. Therefore, the inventors set the discharge pressure of the pump to 0.12 MPa, which is the lowest discharge pressure used in a general pump, and the minimum cross-sectional area S1 of the exhaust pipe 30 and the control valve 32; The change in the residual amount of air in the air reservoir 28 with respect to the change in the ratio S1 / S2 of the suction pipe cross-sectional area S2 at the position where the air reservoir 28 in the suction conduit is formed was measured by experiment. The result is shown in FIG. This is a measured value in a state where the operation is continued for about 20 minutes from the state shown in FIG. 6 and the residual amount of air in the air reservoir 28 is not changed. In FIG. 9, as S1 / S2 increases, that is, as the minimum cross-sectional area S1 of the exhaust pipe 30 and the opened control valve 32 increases, the residual amount of air decreases, and the residual amount of air when S1 / S2 is 0.11. Is 0. Therefore, if S1 / S2 is 0.11 or more, the air in the working air reservoir 28 is surely moved to the discharge pipe side. Obviously, the greater the discharge pressure of the pump, the easier the air is taken from the air reservoir 28. Therefore, if the pump discharge pressure is greater than 0.12 MP, S1 / S2 may be smaller than 0.11, but the limit can be easily measured by experiment.

なお、上記実施例において、ポンプケーシング12の吸込口12aに吸込管14を直接接続して吸込管路を形成しているが、これに限られず、吸込口12aと吸込管14の間に直管または曲管を適宜に介装して吸込管路を形成しても良い。また、吐出管路において、ポンプケーシング12の吐出口12bと吐出管20の間に直管または曲管を適宜に介装しても良い。そして、上記実施例では、ポンプケーシング12の吸込口12aおよび吐出口12bがともにポンプ羽根車10よりも高い位置に設けることで、吸込管路および吐出管路の一部がポンプ羽根車10よりも高くなるようにしているが、これに限られず、吸込口12aに連通接続される吸込管14の一部をポンプ羽根車10よりも高く配設し、吐出口12bに連通接続される吐出管20の一部をポンプ羽根車10よりも高く配設しても良い。また、吸込管14や吐出管20の配管は、鋼管に限られず、プラスチック製の管や可撓性のある管およびホースなどを用いても良い。   In the above embodiment, the suction pipe 14 is directly connected to the suction port 12a of the pump casing 12 to form the suction pipe. However, the present invention is not limited to this, and a straight pipe is provided between the suction port 12a and the suction pipe 14. Alternatively, the suction pipe may be formed by appropriately interposing a curved pipe. Further, in the discharge pipe, a straight pipe or a curved pipe may be appropriately interposed between the discharge port 12 b of the pump casing 12 and the discharge pipe 20. In the above embodiment, the suction port 12 a and the discharge port 12 b of the pump casing 12 are both provided at a position higher than the pump impeller 10, so that a part of the suction conduit and the discharge conduit is more than the pump impeller 10. However, the present invention is not limited to this, and a part of the suction pipe 14 connected to the suction port 12a is arranged higher than the pump impeller 10, and the discharge pipe 20 connected to the discharge port 12b is connected. May be arranged higher than the pump impeller 10. Further, the pipes of the suction pipe 14 and the discharge pipe 20 are not limited to steel pipes, and plastic pipes, flexible pipes and hoses may be used.

本発明の自吸式渦巻ポンプ装置の実施例の構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the Example of the self-priming vortex pump apparatus of this invention. 図1に示す本発明の自吸式渦巻ポンプ装置の実施例で自吸運転を開始すべくポンプケーシング内にポンプ羽根車がほぼ没水する所定の水位まで呼び水を注水した状態の図である。FIG. 2 is a view showing a state in which priming water is poured to a predetermined water level where the pump impeller is almost submerged in the pump casing in order to start the self-priming operation in the embodiment of the self-priming centrifugal pump apparatus of the present invention shown in FIG. 制御弁を開き吐出弁を閉じた状態として、ポンプを始動させ、ポンプ羽根車の回転に伴い、ポンプケーシング内の呼び水が吐出管側に移動して吐出管路内の水面が上昇して吐出管路内の空気の一部が排気管と制御弁を通過して外部に排出され、吸込管内に吸込水槽から水が吸い込まれてその水面が上昇した状態を示す図である。With the control valve open and the discharge valve closed, the pump is started, and with the rotation of the pump impeller, the priming water in the pump casing moves to the discharge pipe side, the water level in the discharge pipe rises, and the discharge pipe It is a figure which shows the state which a part of air in a path | pass passes through an exhaust pipe and a control valve, is discharged | emitted outside, water is sucked in from the suction water tank in the suction pipe, and the water surface rose. さらなる運転の継続により、吐出管路内の水面がさらに上昇して吐出管路内の空気が排気管と制御弁を通過して外部に排出されるとともに、吸込管路内の水面も上昇して、ついには吸込管路の最も高い位置の下側内壁に達した状態の図である。As the operation continues further, the water level in the discharge pipe rises further, the air in the discharge pipe passes through the exhaust pipe and the control valve and is discharged to the outside, and the water level in the suction pipe also rises. FIG. 11 is a view of a state where the lower inner wall is finally reached at the highest position of the suction pipe. 吸込管路内の水が最も高い位置の下側内壁を越えてポンプケーシング内のポンプ羽根車が配設された位置に流下して、吐出管路内の水面が急激に上昇し、排気管と制御弁を通過して水が吸込水槽に戻され、しかも吸込管路の最も高い位置の上側壁の下には残留する空気により空気溜まりが形成されることを示す図である。The water in the suction pipe passes over the lower inner wall at the highest position and flows down to the position where the pump impeller in the pump casing is disposed, the water level in the discharge pipe rises rapidly, and the exhaust pipe and It is a figure which shows that an air pocket is formed by the air which passes through a control valve, is returned to an intake water tank, and also remains under the upper wall of the highest position of an intake pipe line. 吸込管路内にある空気溜まりの空気が水の流れとともに吐出管路側に気泡となって連行移動され、空気が混入した水が排気管と制御弁を通過して吸込水槽に戻される状態を示す図である。A state where air in the air reservoir in the suction pipe is entrained and moved to the discharge pipe along with the flow of water, and the mixed water passes through the exhaust pipe and the control valve and is returned to the suction water tank. FIG. 吸込管路内の空気溜まりの空気が全て吐出管路側に連行移動されて空気溜まりが消滅して、自吸運転は終了し、空気が混入しない水が排気管と制御弁を通過して吸込水槽に戻される状態を示す図である。All of the air in the suction pipe is moved to the discharge pipe side, the air pool disappears, the self-priming operation ends, and water that does not contain air passes through the exhaust pipe and the control valve, and the suction water tank it is a diagram showing a state to be returned to. 制御弁が閉じられるとともに吐出弁が開かれて、送水管に空気の混入していない水が送水されて送水運転となった状態を示す図である。It is a figure which shows the state which the control valve was closed and the discharge valve was opened, and the water which did not mix air was sent to the water supply pipe, and became water supply operation. ポンプの吐出圧力を0.12MPaに設定し、排気管および開成状態の制御弁の最小の断面積S1と吸込管路の空気溜まりが形成される位置の吸込管路断面積S2の比S1/S2の変化に対する空気溜まりの空気の残留量の変化を測定した結果を示す図である。The discharge pressure of the pump is set to 0.12 MPa, and the ratio S1 / S2 between the minimum cross-sectional area S1 of the exhaust pipe and the open control valve and the suction pipe cross-sectional area S2 at the position where the air reservoir of the suction pipe is formed. It is a figure which shows the result of having measured the change of the residual amount of the air of the air pool with respect to the change of. 従来の自吸式渦巻ポンプ装置の一例の構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of an example of the conventional self-priming type centrifugal pump apparatus. 図10の示す従来の自吸式渦巻ポンプ装置一例の自吸運転を開始すべくポンプケーシング内にポンプ羽根車がほぼ没水する所定の水位まで呼び水を注水した状態の図である。FIG. 11 is a view showing a state in which priming water is injected to a predetermined water level where the pump impeller is substantially submerged in the pump casing in order to start the self-priming operation of the example of the conventional self-priming centrifugal pump device shown in FIG. 10. 吐出弁を全開状態としたままで、ポンプを始動させて、ポンプ羽根車の回転に伴い、ポンプケーシング内の呼び水が吐出管側に移動して吐出管路内の水面が上昇して吐出管路内の空気の一部が自動排気弁を介して外部に排出され、吸込管内に吸込水槽から水が吸い込まれてその水面が上昇した状態を示す図である。With the discharge valve fully opened, the pump is started, and as the pump impeller rotates, the priming water in the pump casing moves to the discharge pipe side, and the water level in the discharge pipe rises to raise the discharge pipe. It is a figure which shows the state which a part of air in was discharged | emitted outside via an automatic exhaust valve, the water was drawn in into the suction pipe, and the water surface rose. さらなる運転の継続により、吐出管路内の水面がさらに上昇して吐出管路内の空気が自動排気弁を介して外部に排出されるとともに、吸込管路内の水面も上昇して、ついには吸込管路の最も高い位置の下側内壁に達した状態の図である。As the operation continues, the water level in the discharge pipe rises further and the air in the discharge pipe is discharged to the outside through the automatic exhaust valve, and the water level in the suction pipe also rises. It is a figure of the state which reached the lower inner wall of the highest position of a suction pipe line. 吸込管路内の水が最も高い位置の下側内壁を越えてポンプケーシング内のポンプ羽根車が配設された位置に流下して、吐出管路内の水面が急激に上昇し、送水管から送水が開始され、吸込管路の最も高い位置の上側壁の下には残留する空気により空気溜まりが形成されることを示す図である。The water in the suction pipe flows down to the position where the pump impeller in the pump casing is placed over the lower inner wall where the water is the highest, and the water level in the discharge pipe rises rapidly. It is a figure which shows that water supply is started and an air pocket is formed by the air which remains under the upper side wall of the highest position of a suction pipe line. 吐出管路内の水面が自動排気弁の連通口に達し、自動排気弁が自動的に閉成され、吸込管路内にある空気溜まりの空気が水の流れとともに吐出管路側に気泡となって連行移動され、空気が混入した水が送水される状態を示す図である。The water surface in the discharge pipe reaches the communication port of the automatic exhaust valve, the automatic exhaust valve is automatically closed, and air in the air reservoir in the suction pipe becomes bubbles on the discharge pipe side along with the flow of water. It is a figure which shows the state in which the water which was moved and was mixed and air was mixed is sent. 吸込管路内の空気溜まりの空気が全て吐出管路側に連行移動されて空気溜まりが消滅して、自吸運転は終了し、空気が混入しない水が送水管から送水されて送水運転となった状態を示す図である。All the air in the air reservoir in the suction pipe is moved to the discharge pipe side, the air pool disappears, the self-priming operation is completed, and water that does not contain air is fed from the water pipe and becomes the water feeding operation. It is a figure which shows a state.

10 ポンプ羽根車
12 ポンプケーシング
12a 吸込口
12b 吐出口
14 吸込管
16 吸込水槽
18 注水用開閉弁
20 吐出管
22 吐出弁
24 送水管
26 自動排気弁
28 空気溜まり
30 排気管
32 制御弁
DESCRIPTION OF SYMBOLS 10 Pump impeller 12 Pump casing 12a Suction port 12b Discharge port 14 Suction pipe 16 Suction water tank 18 Injection valve 20 Discharge pipe 22 Discharge valve 24 Water supply pipe 26 Automatic exhaust valve 28 Air reservoir 30 Exhaust pipe 32 Control valve

Claims (1)

ポンプ羽根車より上流側のポンプケーシングとその吸込口に連通する吸込管を含むで形成される吸込管路の一部が前記ポンプ羽根車よりも高い位置となるようにするとともに、前記ポンプ羽根車より下流側のポンプケーシングとその吐出口に連通する吐出管を含むで形成される吐出管路の一部が前記ポンプ羽根車よりも高い位置となるようになし、前記吐出管路に開閉自在な吐出弁を設けた自吸式渦巻ポンプ装置において、前記吐出管路の最も高い位置の上側壁に排気管の一端を連通し、前記排気管に開閉自在な制御弁を設け、ポンプ吐出圧が0.12MPa以上となるように設定し、前記排気管および開成状態の前記制御弁の最小の断面積S1と前記吸込管路の空気溜まりが形成される位置の吸込管路断面積S2の比S1/S2が0.11以上となるように設定して構成したことを特徴とする自吸式渦巻ポンプ装置。 A part of the suction pipe formed by including a pump casing upstream of the pump impeller and a suction pipe communicating with the suction port is positioned higher than the pump impeller, and the pump impeller A part of the discharge pipe formed by including the pump casing on the downstream side and the discharge pipe communicating with the discharge port is located at a position higher than the pump impeller, and can be opened and closed to the discharge pipe. In the self-priming spiral pump device provided with a discharge valve, one end of the exhaust pipe is communicated with the upper wall of the highest position of the discharge pipe, and a control valve that can be opened and closed is provided in the exhaust pipe, so that the pump discharge pressure is 0 The ratio S1 / of the suction pipe cross-sectional area S2 at the position where the minimum cross-sectional area S1 of the exhaust pipe and the opened control valve is formed and the air reservoir of the suction pipe is formed is set to be 12 MPa or more. S2 is 0.11 Self-priming centrifugal pump apparatus characterized by being configured to set so that the upper.
JP2004370935A 2004-12-22 2004-12-22 Self-priming centrifugal pump device Active JP4766539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004370935A JP4766539B2 (en) 2004-12-22 2004-12-22 Self-priming centrifugal pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004370935A JP4766539B2 (en) 2004-12-22 2004-12-22 Self-priming centrifugal pump device

Publications (2)

Publication Number Publication Date
JP2006177240A JP2006177240A (en) 2006-07-06
JP4766539B2 true JP4766539B2 (en) 2011-09-07

Family

ID=36731572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004370935A Active JP4766539B2 (en) 2004-12-22 2004-12-22 Self-priming centrifugal pump device

Country Status (1)

Country Link
JP (1) JP4766539B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2397698B1 (en) * 2010-06-17 2012-09-26 Frideco AG Conveying device
CN102506028B (en) * 2011-10-28 2014-02-26 山东农业大学 Water filling device of pump station floating ball valve type automatic sealing water tank
CN105298856A (en) * 2015-11-16 2016-02-03 辽宁格瑞特泵业有限公司 Self-suction type novel liquid sulfur pump
RU2654731C2 (en) * 2016-08-23 2018-05-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Оренбургский государственный аграрный университет" Self-suction hydraulic piston unit for water transfer
CN107524606A (en) * 2017-08-14 2017-12-29 石河子大学 A kind of water plug of automatic water filling exhaust
JP2019132135A (en) * 2018-01-29 2019-08-08 株式会社荏原製作所 Self-priming pump and pump unit
CN114620668B (en) * 2022-03-31 2024-03-22 山东京博物流股份有限公司 Asphalt unloading pump pool anti-blocking device and method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS483049Y1 (en) * 1970-04-27 1973-01-26
JPS4987501U (en) * 1972-11-21 1974-07-30
JPS5134004Y2 (en) * 1973-12-14 1976-08-23
JPS62203996U (en) * 1986-06-17 1987-12-26
JPH05187386A (en) * 1992-01-09 1993-07-27 Mitsubishi Electric Corp Motor driven pump
JPH06213190A (en) * 1993-01-18 1994-08-02 Hitachi Ltd Vertical-shaft type advanced stand-by operation pump
JP4418049B2 (en) * 1999-06-03 2010-02-17 日本電産シバウラ株式会社 Self-priming pump
JP2002371985A (en) * 2001-06-18 2002-12-26 Dmw Corp Self-priming volute pump
JP4137614B2 (en) * 2002-12-03 2008-08-20 株式会社電業社機械製作所 Self-priming pump

Also Published As

Publication number Publication date
JP2006177240A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
JP4895032B2 (en) Microbubble generator
KR102004207B1 (en) Horizontal shaft submersible pump and suction cover used for horizontal shaft submersible pump
JP4766539B2 (en) Self-priming centrifugal pump device
JP4989664B2 (en) Vertical shaft pump
KR101031030B1 (en) device for generating micro bubble
JP2013209961A (en) Pump device including separation prevention structure
KR101407652B1 (en) A pump having buoyancy guide
JP5208056B2 (en) Equipment for transporting and discharging sediments in liquids
JP5508235B2 (en) Microbubble generator
JP2006342548A (en) Sewerage system
JP3665897B2 (en) Siphoning water supply device and its water flow control device
JP2006291900A (en) Preceding stand-by type vertical shaft pump
JP2006307727A (en) Vertical shaft pump and operation method of vertical shaft pump
JP4977330B2 (en) Siphon-type water intake device
JP2012177478A (en) Safety valve
JP4644562B2 (en) Water intake method in waterway
JP2010121480A (en) Preceding standby operation pump
JP2004092527A (en) Priming pump
JP2009203806A (en) Preceding standby operation pump and method for operating same
JPS59113294A (en) Air discharging device for water discharging pump
WO2008101294A1 (en) Pump
JP2003139100A (en) Water supply device by siphon action and its branch suction device
JP2022070105A (en) Fluid transfer device
JP2020112053A (en) Pump device
JP6082977B2 (en) Self-priming pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

R150 Certificate of patent or registration of utility model

Ref document number: 4766539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250