JP4765747B2 - Method for producing R-Fe-B rare earth sintered magnet - Google Patents
Method for producing R-Fe-B rare earth sintered magnet Download PDFInfo
- Publication number
- JP4765747B2 JP4765747B2 JP2006115224A JP2006115224A JP4765747B2 JP 4765747 B2 JP4765747 B2 JP 4765747B2 JP 2006115224 A JP2006115224 A JP 2006115224A JP 2006115224 A JP2006115224 A JP 2006115224A JP 4765747 B2 JP4765747 B2 JP 4765747B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- sintered magnet
- earth sintered
- magnet body
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims description 92
- 150000002910 rare earth metals Chemical class 0.000 title claims description 64
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000007747 plating Methods 0.000 claims description 27
- 238000010438 heat treatment Methods 0.000 claims description 25
- 239000003960 organic solvent Substances 0.000 claims description 19
- 238000009713 electroplating Methods 0.000 claims description 15
- 150000002500 ions Chemical class 0.000 claims description 13
- 239000013078 crystal Substances 0.000 claims description 10
- 238000005868 electrolysis reaction Methods 0.000 claims description 9
- 239000012298 atmosphere Substances 0.000 claims description 8
- 238000005245 sintering Methods 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 7
- 229910052779 Neodymium Inorganic materials 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 7
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 4
- 239000012071 phase Substances 0.000 description 38
- 229910045601 alloy Inorganic materials 0.000 description 34
- 239000000956 alloy Substances 0.000 description 34
- 238000000034 method Methods 0.000 description 33
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 20
- 239000000243 solution Substances 0.000 description 19
- 239000000843 powder Substances 0.000 description 18
- 238000009792 diffusion process Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- 239000001257 hydrogen Substances 0.000 description 16
- 229910052739 hydrogen Inorganic materials 0.000 description 16
- 239000010408 film Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 230000004907 flux Effects 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 238000010298 pulverizing process Methods 0.000 description 8
- 238000000227 grinding Methods 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000006911 nucleation Effects 0.000 description 6
- 238000010899 nucleation Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 229910052692 Dysprosium Inorganic materials 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000004070 electrodeposition Methods 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910001279 Dy alloy Inorganic materials 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 238000004453 electron probe microanalysis Methods 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 230000005381 magnetic domain Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052689 Holmium Inorganic materials 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005324 grain boundary diffusion Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000006247 magnetic powder Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000007736 thin film deposition technique Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0278—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/50—Electroplating: Baths therefor from solutions of platinum group metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/54—Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0293—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Powder Metallurgy (AREA)
- Electroplating Methods And Accessories (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Hard Magnetic Materials (AREA)
Description
本発明は、R2Fe14B型化合物結晶粒(Rは希土類元素)を主相として有するR−Fe−B系希土類焼結磁石の製造方法に関し、特に、軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有し、かつ、軽希土類元素RLの一部がDyによって置換されているR−Fe−B系希土類焼結磁石の製造方法に関している。 The present invention relates to a method for producing an R—Fe—B rare earth sintered magnet having R 2 Fe 14 B type compound crystal grains (R is a rare earth element) as a main phase, and in particular, light rare earth elements RL (of Nd and Pr). The present invention relates to a method for producing an R—Fe—B rare earth sintered magnet which contains at least one kind) as a main rare earth element R, and a part of the light rare earth element RL is substituted by Dy.
Nd2Fe14B型化合物を主相とするR−Fe−B系の希土類焼結磁石は、永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)や、ハイブリッド車搭載用モータ等の各種モータや家電製品等に使用されている。R−Fe−B系希土類焼結磁石をモータ等の各種装置に使用する場合、高温での使用環境に対応するため、耐熱性に優れ、高保磁力特性を有することが要求される。 R-Fe-B rare earth sintered magnets with Nd 2 Fe 14 B type compound as the main phase are known as the most powerful magnets among permanent magnets, and are voice coil motors (VCM) for hard disk drives. In addition, it is used in various motors such as motors for mounting on hybrid vehicles, and home appliances. When R-Fe-B rare earth sintered magnets are used in various devices such as motors, they are required to have excellent heat resistance and high coercive force characteristics in order to cope with high temperature use environments.
R−Fe−B系希土類焼結磁石の保磁力を向上する手段として、Dyを原料として配合し、溶製した合金を用いることが行われている。この方法によると、希土類元素Rとして軽希土類元素RLを含有するR2Fe14B相の希土類元素RがDyで置換されるため、R2Fe14B相の結晶磁気異方性(保磁力を決定する本質的な物理量)が向上する。しかし、R2Fe14B相中における軽希土類元素RLの磁気モーメントは、Feの磁気モーメントと同一方向であるのに対して、Dyの磁気モーメントは、Feの磁気モーメントと逆方向であるため、軽希土類元素RLをDyで置換するほど、残留磁束密度Brが低下してしまうことになる。 As a means for improving the coercive force of an R—Fe—B rare earth sintered magnet, an alloy prepared by melting Dy as a raw material is used. According to this method, since the rare earth element R in the R 2 Fe 14 B phase containing the light rare earth element RL as the rare earth element R is substituted with Dy, the magnetocrystalline anisotropy (coercivity of the R 2 Fe 14 B phase) The essential physical quantity to be determined) is improved. However, the magnetic moment of the light rare earth element RL in the R 2 Fe 14 B phase is in the same direction as the magnetic moment of Fe, whereas the magnetic moment of Dy is opposite to the magnetic moment of Fe. As the light rare earth element RL is replaced with Dy, the residual magnetic flux density Br decreases.
一方、Dyは希少資源であるため、その使用量の削減が望まれている。これらの理由により、軽希土類元素RLの全体をDyで置換する方法は好ましくない。 On the other hand, since Dy is a scarce resource, it is desired to reduce its usage. For these reasons, the method of replacing the entire light rare earth element RL with Dy is not preferable.
比較的少ない量のDyを添加することにより、Dyによる保磁力向上効果を発現させるため、Dyを多く含む合金・化合物などの粉末を、軽希土類RLを多く含む主相系母合金粉末に添加し、成形・焼結させることが提案されている。この方法によると、DyがR2Fe14B相の粒界近傍に多く分布することになるため、主相外殻部におけるR2Fe14B相の結晶磁気異方性を効率よく向上させることが可能になる。R−Fe−B系希土類焼結磁石の保磁力発生機構は核生成型(ニュークリエーション型)であるため、主相外殻部(粒界近傍)にDyが多く分布することにより、結晶粒全体の結晶磁気異方性が高められ、逆磁区の核生成が妨げられ、その結果、保磁力が向上する。また、保磁力向上に寄与しない結晶粒の中心部では、Dyによる置換が生じないため、残留磁束密度Brの低下を抑制することもできる。 In order to develop a coercive force improving effect by adding a relatively small amount of Dy, an alloy / compound powder containing a large amount of Dy is added to the main phase mother alloy powder containing a large amount of light rare earth RL. It has been proposed to form and sinter. According to this method, since Dy is to distributed more in the grain boundary vicinity of the R 2 Fe 14 B phase, to improve efficiently the magnetocrystalline anisotropy of the R 2 Fe 14 B phase in the outer periphery of the main phase Is possible. Since the coercive force generation mechanism of the R—Fe—B rare earth sintered magnet is a nucleation type (nucleation type), a large amount of Dy is distributed in the outer shell portion (near the grain boundary) of the main phase. The magnetocrystalline anisotropy is increased, and the nucleation of reverse magnetic domains is hindered. As a result, the coercive force is improved. Moreover, since substitution by Dy does not occur in the center part of the crystal grains that do not contribute to the improvement of the coercive force, it is possible to suppress a decrease in the residual magnetic flux density Br.
しかしながら、実際にこの方法を実施してみると、焼結工程(工業規模で1000℃から1200℃で実行される)でDyの拡散速度が大きくなるため、Dyが結晶粒の中心部にも拡散してしまう結果、期待していた組織構造を得ることは容易でない。 However, when this method is actually carried out, the diffusion rate of Dy increases in the sintering process (executed at 1000 ° C. to 1200 ° C. on an industrial scale), so that Dy also diffuses into the center of the crystal grains. As a result, it is not easy to obtain the expected organizational structure.
さらにR−Fe−B系希土類焼結磁石の別の保磁力向上手段として、焼結磁石の段階でDyを含む金属、合金、化合物等を磁石表面に被着後、熱処理、拡散させることによって、残留磁束密度をそれほど低下させずに保磁力を回復または向上させることが検討されている(特許文献1、特許文献2、及び特許文献3)。 Further, as another means for improving the coercive force of the R-Fe-B rare earth sintered magnet, after depositing a metal, alloy, compound, etc. containing Dy on the magnet surface at the stage of the sintered magnet, heat treatment and diffusion are performed. It has been studied to recover or improve the coercive force without significantly reducing the residual magnetic flux density (Patent Document 1, Patent Document 2, and Patent Document 3).
特許文献1は、Ti、W、Pt、Au、Cr、Ni、Cu、Co、Al、Ta、Agのうち少なくとも1種を1.0原子%〜50.0原子%含有し、残部R´(R´はCe、La、Nd、Pr、Dy、Ho、Tbのうち少なくとも1種)からなる合金薄膜層を焼結磁石体の被研削加工面に形成することを開示している。 Patent Document 1 contains 1.0 atomic% to 50.0 atomic% of at least one of Ti, W, Pt, Au, Cr, Ni, Cu, Co, Al, Ta, and Ag, and the balance R ′ ( R ′ discloses that an alloy thin film layer made of Ce, La, Nd, Pr, Dy, Ho, and Tb is formed on the ground surface of the sintered magnet body.
特許文献2は、小型磁石の最表面に露出している結晶粒子の半径に相当する深さ以上に金属元素R(このRは、Y及びNd、Dy、Pr、Ho、Tbから選ばれる希土類元素の1種又は2種以上)を拡散させ、それによって加工変質損傷部を改質して(BH)maxを向上させることを開示している。 Patent Document 2 states that a metal element R (the R is a rare earth element selected from Y and Nd, Dy, Pr, Ho, and Tb) exceeds the depth corresponding to the radius of the crystal grains exposed on the outermost surface of the small magnet. 1 type or 2 types or more) is diffused, thereby modifying the damaged part of work-affected damage and improving (BH) max.
特許文献3は、厚さ2mm以下の磁石の表面に希土類元素を主体とする化学気相成長膜を形成し、磁石特性を回復させることを開示している。 Patent Document 3 discloses that a chemical vapor deposition film mainly composed of rare earth elements is formed on the surface of a magnet having a thickness of 2 mm or less to recover the magnet characteristics.
一方、Dy層を焼結磁石表面に形成する他の方法として、ディッピング(溶融めっき)法が提案されている。特許文献4は、Dy−FeなどのDy合金の溶湯中に磁石を浸漬し、その後、時効処理を行うことを開示している。
特許文献1、特許文献2及び特許文献3に開示されている従来技術は、いずれも、加工劣化した焼結磁石表面の回復を目的としているため、表面から内部に拡散される金属元素の拡散範囲は、焼結磁石の表面近傍に限られている。このため、厚さ3mm以上の磁石では、保磁力の向上効果がほとんど得られない。 The conventional techniques disclosed in Patent Document 1, Patent Document 2 and Patent Document 3 are all intended to recover the surface of a sintered magnet that has been deteriorated by processing. Is limited to the vicinity of the surface of the sintered magnet. For this reason, the effect of improving the coercive force is hardly obtained with a magnet having a thickness of 3 mm or more.
また、特許文献1から3の方法のいずれも、Dy層を焼結磁石体上に成長させる過程で、成膜装置内部の磁石以外の部分(例えば真空チャンバーの内壁)にも多量に希土類金属が堆積するため、貴重資源である重希土類元素の省資源化に反することになる。 In any of the methods of Patent Documents 1 to 3, a large amount of rare earth metal is also present in a portion other than the magnet inside the film forming apparatus (for example, the inner wall of the vacuum chamber) in the process of growing the Dy layer on the sintered magnet body. Since it accumulates, it is contrary to the resource saving of the heavy rare earth element which is a valuable resource.
これに対して、特許文献4に開示されている方法によれば、磁石以外の装置部分にDy金属が付着する量が少なく、原理的には高歩留まりが期待できる。しかしながら、Dyを溶融するには、Dyの融点以上の温度に加熱する必要があり、そのような高温の溶湯中に希土類焼結磁石を浸すと、希土類焼結磁石の粒界相が溶け出してしまい、磁石特性が劣化する。このような問題を回避するには、Dy溶湯の温度を低下させる必要があるが、そのためには、Dy単体ではなくDy合金(例えばDy−Fe)を用いる必要がある。しかし、このような合金溶湯に希土類焼結磁石を浸すと、Dy以外の金属成分(例えばFe)を含有する合金層しか焼結磁石上に形成できない。このような合金層から焼結磁石中に拡散を行うと、Dy以外の金属成分の存在により、Dyの拡散効率が低下してしまう。 On the other hand, according to the method disclosed in Patent Document 4, the amount of Dy metal adhering to the device portion other than the magnet is small, and in principle, a high yield can be expected. However, in order to melt Dy, it is necessary to heat to a temperature equal to or higher than the melting point of Dy. When a rare earth sintered magnet is immersed in such a high temperature molten metal, the grain boundary phase of the rare earth sintered magnet is melted. As a result, the magnet characteristics deteriorate. In order to avoid such a problem, it is necessary to lower the temperature of the molten Dy. To that end, it is necessary to use a Dy alloy (for example, Dy-Fe) instead of Dy alone. However, when a rare earth sintered magnet is immersed in such a molten alloy, only an alloy layer containing a metal component (for example, Fe) other than Dy can be formed on the sintered magnet. When diffusion is performed from such an alloy layer into the sintered magnet, the diffusion efficiency of Dy is reduced due to the presence of metal components other than Dy.
また、特許文献4に開示されているようなディッピング法では、希土類磁石の表面に形成される合金層の厚さを高精度に制御することが困難であり、必要以上に厚い膜が不均一に形成されてしまう。このため、ディッピング法に焼結磁石表面の厚膜合金を均一に薄膜化する表面研削加工が必要になり、製造コストが増加してしまう。 In addition, in the dipping method disclosed in Patent Document 4, it is difficult to control the thickness of the alloy layer formed on the surface of the rare earth magnet with high accuracy, and a film that is thicker than necessary is not uniform. Will be formed. For this reason, a surface grinding process for uniformly thinning the thick film alloy on the surface of the sintered magnet is required for the dipping method, which increases the manufacturing cost.
本発明は、上記課題を解決するためになされたものであり、その目的とするところは、製造コストを増加させることなく、少ない量のDyを効率よく焼結磁石体の内部に拡散させ、保磁力が向上したR−Fe−B系希土類焼結磁石の製造方法を提供することにある。 The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to efficiently diffuse and maintain a small amount of Dy inside the sintered magnet body without increasing the manufacturing cost. An object of the present invention is to provide a method for producing an R—Fe—B rare earth sintered magnet with improved magnetic force.
本発明によるR−Fe−B系希土類焼結磁石の製造方法は、軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有する少なくとも1つのR−Fe−B系希土類焼結磁石体を用意する工程(A)と、有機溶媒およびDyイオンを含むめっき液中で電解めっきを行うことにより、前記R−Fe−B系希土類焼結磁石体の表面にDyを電析させる工程(B)と、前記Dyが表面に電析したR−Fe−B系希土類焼結磁石体を加熱することにより、前記R−Fe−B系希土類焼結磁石体の内部にDyを拡散させる工程(C)とを包含する。 The method for producing an R—Fe—B rare earth sintered magnet according to the present invention mainly comprises R 2 Fe 14 B type compound crystal grains containing a light rare earth element RL (at least one of Nd and Pr) as a main rare earth element R. Step (A) of preparing at least one R—Fe—B rare earth sintered magnet body having a phase, and performing electroplating in a plating solution containing an organic solvent and Dy ions, A step (B) of depositing Dy on the surface of the rare earth sintered magnet body, and heating the R—Fe—B rare earth sintered magnet body on which the Dy is electrodeposited. And a step (C) of diffusing Dy inside the B-based rare earth sintered magnet body.
好ましい実施形態において、前記工程(B)において、前記めっき液を加熱しない状態で電解を行う。 In a preferred embodiment, in the step (B), electrolysis is performed without heating the plating solution.
好ましい実施形態において、前記工程(C)において、前記R−Fe−B系希土類焼結磁石体の加熱温度を700℃以上1000℃以下の範囲内に設定する。 In a preferred embodiment, in the step (C), the heating temperature of the R—Fe—B rare earth sintered magnet body is set in the range of 700 ° C. or more and 1000 ° C. or less.
好ましい実施形態において、前記工程(C)において、前記処理室内を真空または不活性雰囲気で満たした状態で加熱処理を行う。 In a preferred embodiment, in the step (C), heat treatment is performed in a state where the processing chamber is filled with a vacuum or an inert atmosphere.
好ましい実施形態において、前記工程(B)における前記電解めっきはパルス電解めっきである。 In a preferred embodiment, the electrolytic plating in the step (B) is pulse electrolytic plating.
好ましい実施形態において、前記めっき液は、無水Dy塩化物を前記有機溶媒に溶解することによって調整されている。 In a preferred embodiment, the plating solution is prepared by dissolving anhydrous Dy chloride in the organic solvent.
好ましい実施形態において、前記工程(B)において、1μm以上10μm以下の厚さを有するDy層を前記R−Fe−B系希土類焼結磁石体の表面に形成する。 In a preferred embodiment, in the step (B), a Dy layer having a thickness of 1 μm to 10 μm is formed on the surface of the R—Fe—B rare earth sintered magnet body.
本発明によれば、有機溶媒およびDyイオンを含むめっき液中で電解めっきを行うことにより、R−Fe−B系希土類焼結磁石体の表面にDyを電析させた後、焼結磁石体の内部にDyを拡散させる。このため、Dyを無駄に消費してしまうことなく、極めて効率的に磁石体の内部に拡散させることが可能になる。 According to the present invention, after electroplating in a plating solution containing an organic solvent and Dy ions, Dy is electrodeposited on the surface of the R-Fe-B rare earth sintered magnet body, and then the sintered magnet body Dy is diffused inside For this reason, it is possible to diffuse the inside of the magnet body extremely efficiently without consuming Dy wastefully.
有機溶媒中の電解めっきは、R−Fe−B系希土類焼結磁石体の粒界相を溶かし出すような高温で行う必要がなく、例えば室温で好適に実行することが可能である。また、焼結磁石体の表面に析出するDyの層厚の制御も容易であるため、その後にDy層の研磨工程は不要である。また、焼結磁石体の表面に形成されるDy層は、実質的に合金化しておらず、主としてDyから形成される。このため、Dyを焼結磁石体の内部にも効率的に拡散させることができる。 Electroplating in an organic solvent does not need to be performed at such a high temperature that the grain boundary phase of the R—Fe—B rare earth sintered magnet body is melted, and can be suitably executed at room temperature, for example. Moreover, since it is easy to control the layer thickness of Dy deposited on the surface of the sintered magnet body, a polishing step for the Dy layer is not required after that. Further, the Dy layer formed on the surface of the sintered magnet body is not substantially alloyed and is mainly formed of Dy. For this reason, Dy can also be efficiently diffused into the sintered magnet body.
Dyの拡散により、希土類焼結磁石体中では主相外殻部において軽希土類元素RLをDyで置換することができるため、残留磁束密度Brの低下を抑制しつつ、保磁力HcJを上昇させることが可能になる。 Due to the diffusion of Dy, the light rare earth element RL can be replaced with Dy in the main phase outer shell in the rare earth sintered magnet body, so that the coercive force HcJ is increased while suppressing the decrease in the residual magnetic flux density Br. Is possible.
本発明によるR−Fe−B系希土類焼結磁石の製造方法では、まず、R−Fe−B系希土類焼結磁石体を用意する。このR−Fe−B系希土類焼結磁石体は、R2Fe14B型化合物結晶粒(主相)と希土類リッチな粒界相とを含んでいる。この段階におけるR−Fe−B系希土類焼結磁石体は軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有する。 In the method for producing an R—Fe—B rare earth sintered magnet according to the present invention, first, an R—Fe—B rare earth sintered magnet body is prepared. This R—Fe—B rare earth sintered magnet body includes R 2 Fe 14 B type compound crystal grains (main phase) and rare earth-rich grain boundary phases. The R—Fe—B rare earth sintered magnet body at this stage contains a light rare earth element RL (at least one of Nd and Pr) as a main rare earth element R.
次に、有機溶媒およびDyイオンを含むめっき液中にR−Fe−B系希土類焼結磁石体を浸しめっき液中で電解めっきを行う。この電解めっきにより、有機溶媒中のDyイオンがR−Fe−B系希土類焼結磁石体の表面に集まり、R−Fe−B系希土類焼結磁石体の表面にDyが電析する。こうしてDyが表面に電析した状態のR−Fe−B系希土類焼結磁石体をめっき液から取り出した後、炉などの加熱処理室内に挿入する。加熱処理室内でR−Fe−B系希土類焼結磁石体に対する加熱処理を行うことにより、R−Fe−B系希土類焼結磁石体の表面から内部にDyを拡散させる。 Next, the R—Fe—B rare earth sintered magnet body is immersed in a plating solution containing an organic solvent and Dy ions, and electrolytic plating is performed in the plating solution. By this electrolytic plating, Dy ions in the organic solvent gather on the surface of the R—Fe—B rare earth sintered magnet body, and Dy is electrodeposited on the surface of the R—Fe—B rare earth sintered magnet body. After the R—Fe—B rare earth sintered magnet body with Dy electrodeposited on the surface is taken out of the plating solution, it is inserted into a heat treatment chamber such as a furnace. By performing the heat treatment on the R—Fe—B rare earth sintered magnet body in the heat treatment chamber, Dy is diffused from the surface to the inside of the R—Fe—B rare earth sintered magnet body.
従来技術では、Dy層を焼結磁石体上に成長させる過程で、Dyの成膜材料供給源を極めて非効率的に消費してしまうことになる。例えばスパッタリング法によってDy層を焼結磁石体上に堆積する場合、Dyのターゲットを焼結磁石体に対向する位置に配置した状態でスパッタリングする必要がある。このとき、ターゲットからスパッタされたDyは、スパッタ装置内において焼結磁石体が存在しない部分にも衝突し、そこにも堆積してゆく。同様のことが、Dyの他の薄膜堆積技術(蒸着法など)を用いる場合にも生じる。すなわち、従来の薄膜堆積技術による場合、焼結磁石体に薄膜を堆積する工程でDyの多く(例えば80〜90%)が無駄に消費されてしまうという問題がある。 In the prior art, in the process of growing the Dy layer on the sintered magnet body, the Dy film-forming material supply source is consumed very inefficiently. For example, when a Dy layer is deposited on a sintered magnet body by a sputtering method, it is necessary to perform sputtering in a state where a Dy target is disposed at a position facing the sintered magnet body. At this time, Dy sputtered from the target collides with a portion where the sintered magnet body does not exist in the sputtering apparatus and accumulates there. The same thing occurs when using other thin film deposition techniques (such as vapor deposition) of Dy. That is, according to the conventional thin film deposition technique, there is a problem that much (for example, 80 to 90%) of Dy is wasted in the process of depositing the thin film on the sintered magnet body.
これに対し、本発明では、めっき液中の電解めっきによりDyイオンをR−Fe−B系希土類焼結磁石体の表面に引き寄せることができるため、Dyを次に行う拡散に無駄なく効率的に利用することが可能になる。また、Dy合金の溶湯にR−Fe−B系希土類焼結磁石体を浸す従来技術に比べると、厚さの制御されたDy層を形成できる有利な効果が得られる。 On the other hand, in the present invention, Dy ions can be attracted to the surface of the R—Fe—B rare earth sintered magnet body by electrolytic plating in a plating solution. It becomes possible to use. Further, as compared with the conventional technique in which the R—Fe—B rare earth sintered magnet body is immersed in the molten Dy alloy, an advantageous effect that a Dy layer having a controlled thickness can be formed.
本発明者は、R−Fe−B系希土類焼結磁石のより効率的な(RH歩留まり高い)高保磁力化プロセスについて、鋭意検討の結果、高歩留まりの成膜方法として、電気めっきに注目した。しかしながら、Dyは酸化還元電位が卑であるため、一般的な水溶液中で電気めっきを行うと、水の電解が優先的に起こり、Dyを電析させることができない。発明者はDy塩化物を含む有機溶媒中めっきを行うことにより、希土類磁石の表面にDyを析出させることができることを見出した。しかし、有機溶媒溶液といえども、めっき液中には微量の水分が残存し、それを完全に取り除くことは困難であった。また有機溶媒中にはDy塩化物は溶けにくく、Dyイオンが高濃度に溶解しためっき液を作製するのは困難であった。その結果,一般的な水溶液めっき液に比べ導電率が低いめっき液となり、一般的な定電流電解を行うと、陰極である希土類磁石の表面付近でDyイオンの供給が追いつかずに、還元電流は残存した微量水分の電解に費やされるため、発生した水素による希土類磁石の特性劣化を引き起こし、結局は希土類磁石表面にDy被膜はほとんど成膜しないことがわかった。 As a result of intensive studies on a more efficient (higher RH yield) and higher coercivity process of the R—Fe—B rare earth sintered magnet, the present inventor has focused attention on electroplating as a high yield film forming method. However, since Dy has a low oxidation-reduction potential, when electroplating is performed in a general aqueous solution, water electrolysis occurs preferentially and Dy cannot be electrodeposited. The inventor has found that Dy can be deposited on the surface of the rare earth magnet by plating in an organic solvent containing Dy chloride. However, even in an organic solvent solution, a trace amount of water remains in the plating solution, and it is difficult to completely remove it. Further, Dy chloride is hardly dissolved in the organic solvent, and it is difficult to prepare a plating solution in which Dy ions are dissolved at a high concentration. As a result, the plating solution has a lower conductivity than that of a general aqueous plating solution. When a general constant current electrolysis is performed, the supply of Dy ions does not catch up near the surface of the rare earth magnet that is the cathode, and the reduction current is It was found that, due to the electrolysis of the remaining trace amount of water, the generated hydrogen caused the characteristics of the rare earth magnet to deteriorate, and eventually the Dy film was hardly formed on the surface of the rare earth magnet.
そこで、本発明者は、パルス電解を行うことにより、陰極付近のDyイオンの供給を確保し、水素ガス発生による希土類磁石の特性劣化を引き起こすことなく、歩留まり高く、均一なDy被膜を磁石表面に成膜でき、その後熱処理を行うことにより、高い残留磁束密度と高い保磁力とを兼ね備えた高性能希土類磁石の開発に成功した。 Therefore, the present inventor has ensured the supply of Dy ions near the cathode by performing pulse electrolysis, and has a high yield and uniform Dy film on the magnet surface without causing deterioration of the characteristics of the rare earth magnet due to hydrogen gas generation. We succeeded in developing a high-performance rare earth magnet that combines high residual magnetic flux density and high coercive force by film formation and subsequent heat treatment.
本発明で用いるめっき液は、Dy塩化物(DyCl3)を有機溶媒に溶解させて調整する。めっき液中に極力水分を含ませないようにするためには、Dy塩化物(DyCl3)は無水物を使用するのが好ましい。無水DyCl3は溶解させるのに時間がかかるため、露点−50℃以下の乾燥Arなどの不活性ガスをバブリングしながら攪拌溶解させるのが好ましい。 The plating solution used in the present invention is prepared by dissolving Dy chloride (DyCl 3 ) in an organic solvent. In order to prevent moisture from being contained in the plating solution as much as possible, it is preferable to use an anhydrous Dy chloride (DyCl 3 ). Since anhydrous DyCl 3 takes time to dissolve, it is preferable to stir and dissolve the inert gas such as dry Ar having a dew point of −50 ° C. or less while bubbling.
有機溶媒としては、極力導電性が高く、Dy塩化物を均一に溶解させるために、ホルムアミド、ジメチルホルムアミドなどの極性溶媒が好ましい。 As the organic solvent, polar solvents such as formamide and dimethylformamide are preferable in order to have high conductivity as much as possible and to dissolve Dy chloride uniformly.
めっき液中のDyイオン濃度は0.01mol/l以上が好ましい。めっき液中のDyイオン濃度が0.01mol/l未満であると、電析効率が低く、実用的でないと共に、陰極である希土類磁石の表面付近でDyイオンの供給が追いつかずに、還元電流は残存した微量水分の電解に費やされ、水素ガスが発生しやすくなり、磁石が水素を取り込んで脆化することにより特性劣化する恐れがある。 The Dy ion concentration in the plating solution is preferably 0.01 mol / l or more. If the concentration of Dy ions in the plating solution is less than 0.01 mol / l, the electrodeposition efficiency is low and impractical, and the supply of Dy ions does not catch up near the surface of the rare earth magnet that is the cathode. It is expended in the electrolysis of the remaining trace amount of water, hydrogen gas is likely to be generated, and there is a risk that the characteristics will deteriorate due to the magnet taking in hydrogen and embrittlement.
パルスめっき条件は、最大電流(CDmax)1.0〜5.0A/dm2、最小電流密度(CDmin)0〜1.0A/dm2、最大電流密度値の継続時間(Ton)1〜100ms、最小電流密度値の継続時間(Toff)1〜100msといったパルス波形の電流を用い、浴温5〜50℃で行うのが好ましい。このような条件で行うことにより、磁石表面付近で極力水素ガスを発生することなく、最も効率よく成膜することができる。 Pulse plating conditions are: maximum current (CD max ) 1.0-5.0 A / dm 2 , minimum current density (CD min ) 0-1.0 A / dm 2 , maximum current density value duration (T on ) 1 It is preferable to use a pulse waveform current of ˜100 ms, minimum current density value duration (T off ) of 1 to 100 ms, and a bath temperature of 5 to 50 ° C. By performing under such conditions, the film can be formed most efficiently without generating as much hydrogen gas as possible near the magnet surface.
こうしてR−Fe−B系焼結磁石体の表面にDy層を形成した後、Dyを表面から内部に拡散させるための熱処理を行う。 After forming the Dy layer on the surface of the R-Fe-B sintered magnet body in this way, heat treatment is performed to diffuse Dy from the surface to the inside.
本発明によれば、成膜のためにDy供給源をスパッタリングしたり、蒸発させる必要がないため、有機溶媒に溶解させたDyを磁石体の内部に効率よく拡散させることが可能であり、貴重資源であるDyの省資源化に大いに寄与することとなる。 According to the present invention, since it is not necessary to sputter or evaporate the Dy supply source for film formation, it is possible to efficiently diffuse Dy dissolved in the organic solvent into the magnet body, which is valuable. This greatly contributes to resource saving of Dy, which is a resource.
本発明における拡散処理により、R2Fe14B主相結晶粒に含まれる軽希土類元素RLの一部を焼結体表面から粒界拡散によって内部に浸透させたDyで置換し、R2Fe14B主相の外殻部にDyが相対的に濃縮した層(厚さは例えば1nm)を形成することができる。 By the diffusion treatment in the present invention, a part of the light rare earth element RL contained in the R 2 Fe 14 B main phase crystal grains is substituted with Dy that has penetrated from the sintered body surface by grain boundary diffusion, and R 2 Fe 14 A layer (thickness is, for example, 1 nm) in which Dy is relatively concentrated can be formed on the outer shell of the B main phase.
R−Fe−B系希土類焼結磁石の保磁力発生機構はニュークリエーション型であるため、主相外殻部における結晶磁気異方性が高められると、主相における粒界相の近傍で逆磁区の核生成が抑制される結果、主相全体の保磁力HcJが効果的に向上する。本発明では、焼結磁石体の表面に近い領域だけでなく、磁石表面から奥深い領域においても重希土類置換層を主相外殻部に形成することができるため、磁石全体にわたって結晶磁気異方性が高められ、磁石全体の保磁力HcJが充分に向上することになる。したがって、本発明によれば、消費するDyの量が少なくとも、焼結体の内部までDyを拡散・浸透させることができ、主相外殻部で効率良くDy2Fe14Bを形成することにより、残留磁束密度Brの低下を抑制しつつ保磁力HcJを向上させることが可能になる。 Since the coercive force generation mechanism of the R—Fe—B rare earth sintered magnet is a nucleation type, if the magnetocrystalline anisotropy in the outer shell of the main phase is increased, a reverse magnetic domain is formed in the vicinity of the grain boundary phase in the main phase. As a result, the coercive force HcJ of the entire main phase is effectively improved. In the present invention, since the heavy rare earth substitution layer can be formed in the outer shell portion of the main phase not only in the region close to the surface of the sintered magnet body but also in the region deep from the magnet surface, And the coercive force HcJ of the whole magnet is sufficiently improved. Therefore, according to the present invention, the amount of Dy consumed can be at least diffused and permeated into the sintered body, and by efficiently forming Dy 2 Fe 14 B in the main phase outer shell portion Thus, it is possible to improve the coercive force HcJ while suppressing a decrease in the residual magnetic flux density Br.
上記説明から明らかなように、本発明では、原料合金の段階においてDyを添加しておく必要はない。すなわち、希土類元素Rとして軽希土類元素RL(NdおよびPrの少なくとも1種)を含有する公知のR−Fe−B系希土類焼結磁石を用意し、その表面から重希土類元素を磁石内部に拡散する。本発明は、原料合金の段階においてDyが幾らか添加されているR−Fe−B系焼結磁石に対して適用しても同様の効果が得られる。 As is clear from the above description, in the present invention, it is not necessary to add Dy in the raw material alloy stage. That is, a known R—Fe—B rare earth sintered magnet containing a light rare earth element RL (at least one of Nd and Pr) as a rare earth element R is prepared, and heavy rare earth elements are diffused from the surface into the magnet. . Even if the present invention is applied to an R—Fe—B based sintered magnet to which some Dy is added in the raw material alloy stage, the same effect can be obtained.
表面に電析したDyは、磁石界面におけるDy濃度の差を駆動力として、粒界相中を磁石内部に向かって拡散する。このとき、R2Fe14B相中の軽希土類元素RLの一部が、磁石表面から拡散浸透してきたDyによって置換される。その結果、R2Fe14B相の外殻部にDyが濃縮された層が形成される。 Dy electrodeposited on the surface diffuses in the grain boundary phase toward the inside of the magnet using the difference in Dy concentration at the magnet interface as a driving force. At this time, a part of the light rare earth element RL in the R 2 Fe 14 B phase is replaced by Dy that has diffused and penetrated from the magnet surface. As a result, a layer in which Dy is concentrated is formed in the outer shell of the R 2 Fe 14 B phase.
このようなDy濃縮層の形成により、主相外殻部の結晶磁気異方性が高められ、保磁力HcJが向上することになる。すなわち、少ないDy金属の使用により、磁石内部の奥深くにまでDyを拡散浸透させ、主相外殻部のみを効率的にDy2Fe14Bに変換するため、残留磁束密度Brの低下を抑制しつつ、磁石全体にわたって保磁力HcJを向上させることが可能になる。 By forming such a Dy enriched layer, the magnetocrystalline anisotropy of the main phase outer shell is increased, and the coercive force HcJ is improved. That is, by using a small amount of Dy metal, Dy is diffused and penetrated deep inside the magnet, and only the main phase outer shell portion is efficiently converted to Dy 2 Fe 14 B. However, the coercive force HcJ can be improved over the entire magnet.
なお、実験によると、Dyの拡散浸透に伴って軽希土類元素RLは焼結磁石体内部から表面に向かって拡散し、磁石体表面にRL濃化層を形成することがわかった。このため、焼結磁石体内部における希土類元素の総量(主相の体積比率)は、ほとんど変化せず、残留磁束密度の低下が抑制される。 According to the experiment, it was found that the light rare earth element RL diffuses from the inside of the sintered magnet body toward the surface as Dy diffuses and penetrates to form an RL concentrated layer on the surface of the magnet body. For this reason, the total amount of rare earth elements inside the sintered magnet body (volume ratio of the main phase) hardly changes, and a decrease in residual magnetic flux density is suppressed.
前述のように、R−Fe−B系焼結磁石は、ニュークリエーションによる保磁力発生機構を有しているため、主相外殻部における結晶磁気異方性が高められることにより、主相の粒界相近傍における逆磁区の核生成が抑制され、保磁力HcJが高まる。 As described above, since the R—Fe—B based sintered magnet has a coercive force generation mechanism by nucleation, the crystal magnetic anisotropy in the main phase outer shell is increased, so that the main phase Nucleation of reverse magnetic domains in the vicinity of the grain boundary phase is suppressed, and the coercive force HcJ is increased.
また、拡散するDyの含有量は、磁石全体の重量比で0.1%以上1.5%以下の範囲に設定することが好ましい。1.5%を超えると、拡散に要する処理時間が長くなりすぎる可能性があり、0.1%未満では、保磁力HcJの向上効果が不充分だからである。上記の温度領域で、30〜180分熱処理することにより、0.1%〜1.5%の拡散量が達成できる。 Further, the content of Dy that diffuses is preferably set in a range of 0.1% to 1.5% by weight ratio of the whole magnet. If it exceeds 1.5%, the processing time required for diffusion may become too long, and if it is less than 0.1%, the effect of improving the coercive force HcJ is insufficient. A diffusion amount of 0.1% to 1.5% can be achieved by heat treatment in the above temperature range for 30 to 180 minutes.
焼結磁石体の表面状態はDyが拡散浸透しやすいよう、より金属状態の近い方が好ましく、電析前に酸洗浄やブラスト処理等の活性化処理を行った方がよいが、焼結磁石体の表面は、例えば切断加工が完了した後の酸化が進んだ状態にあってもよい。 The surface state of the sintered magnet body is preferably closer to the metal state so that Dy can easily diffuse and penetrate, and it is better to perform an activation treatment such as acid washing or blasting before electrodeposition. The surface of the body may be in a state where oxidation has progressed after the cutting process is completed, for example.
本発明によれば、僅かな量のDyを用いて残留磁束密度Brおよび保磁力HcJの両方を高め、高温でも磁気特性が低下しない高性能磁石を提供することができる。このような高性能磁石は、超小型・高出力モータの実現に大きく寄与する。粒界拡散を利用した本発明の効果は、厚さが10mm以下の磁石において特に顕著に発現する。 According to the present invention, it is possible to provide a high-performance magnet that increases both the residual magnetic flux density Br and the coercive force HcJ using a small amount of Dy, and does not deteriorate the magnetic characteristics even at high temperatures. Such a high-performance magnet greatly contributes to the realization of an ultra-small and high-power motor. The effect of the present invention using the grain boundary diffusion is particularly remarkable in a magnet having a thickness of 10 mm or less.
以下、本発明によるR−Fe−B系希土類焼結磁石を製造する方法の好ましい実施形態を説明する。 Hereinafter, a preferred embodiment of a method for producing an R—Fe—B rare earth sintered magnet according to the present invention will be described.
[原料合金]
まず、25質量%以上40質量%以下の軽希土類元素RLと、0.6質量%以上〜1.6質量%のB(硼素)と、残部Fe及び不可避的不純物とを含有する合金を用意する。Bの一部はC(炭素)によって置換されていてもよいし、Feの一部(50原子%以下)は、他の遷移金属元素(例えばCoまたはNi)によって置換されていてもよい。この合金は、種々の目的により、Al、Si、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択された少なくとも1種の添加元素Mを0.01〜1.0質量%程度含有していてもよい。
[Raw material alloy]
First, an alloy containing a light rare earth element RL of 25% by mass or more and 40% by mass or less, B (boron) of 0.6% by mass to 1.6% by mass, the remainder Fe and inevitable impurities is prepared. . A part of B may be substituted by C (carbon), and a part of Fe (50 atomic% or less) may be substituted by another transition metal element (for example, Co or Ni). This alloy is suitable for a variety of purposes, including Al, Si, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and About 0.01 to 1.0% by mass of at least one additive element M selected from the group consisting of Bi may be contained.
上記の合金は、原料合金の溶湯を例えばストリップキャスト法によって急冷して好適に作製され得る。以下、ストリップキャスト法による急冷凝固合金の作製を説明する。 The above-mentioned alloy can be suitably produced by rapidly cooling a molten raw material alloy by, for example, a strip casting method. Hereinafter, preparation of a rapidly solidified alloy by a strip casting method will be described.
まず、上記組成を有する原料合金をアルゴン雰囲気中において高周波溶解によって溶融し、原料合金の溶湯を形成する。次に、この溶湯を1350℃程度に保持した後、単ロール法によって急冷し、例えば厚さ約0.3mmのフレーク状合金鋳塊を得る。こうして作製した合金鋳片を、次の水素粉砕前に例えば1〜10mmの大きさのフレーク状に粉砕する。なお、ストリップキャスト法による原料合金の製造方法は、例えば、米国特許第5、383、978号明細書に開示されている。 First, a raw material alloy having the above composition is melted by high frequency melting in an argon atmosphere to form a molten raw material alloy. Next, after holding this molten metal at about 1350 ° C., it is rapidly cooled by a single roll method to obtain, for example, a flake-shaped alloy ingot having a thickness of about 0.3 mm. The alloy slab thus produced is pulverized into flakes having a size of 1 to 10 mm, for example, before the next hydrogen pulverization. In addition, the manufacturing method of the raw material alloy by a strip cast method is disclosed by US Patent 5,383,978 specification, for example.
[粗粉砕工程]
上記のフレーク状に粗く粉砕された合金鋳片を水素炉の内部へ収容する。次に、水素炉の内部で水素脆化処理(以下、「水素粉砕処理」と称する場合がある)工程を行なう。水素粉砕後の粗粉砕合金粉末を水素炉から取り出す際、粗粉砕粉が大気と接触しないように、不活性雰囲気下で取り出し動作を実行することが好ましい。そうすれば、粗粉砕粉が酸化・発熱することが防止され、磁石の磁気特性が向上するからである。
[Coarse grinding process]
The alloy slab coarsely crushed into flakes is accommodated in the hydrogen furnace. Next, a hydrogen embrittlement process (hereinafter sometimes referred to as “hydrogen pulverization process”) is performed inside the hydrogen furnace. When the coarsely pulverized alloy powder after hydrogen pulverization is taken out from the hydrogen furnace, it is preferable to perform the take-out operation in an inert atmosphere so that the coarsely pulverized powder does not come into contact with the atmosphere. This is because the coarsely pulverized powder is prevented from oxidizing and generating heat, and the magnetic properties of the magnet are improved.
水素粉砕によって、希土類合金は0.1mm〜数mm程度の大きさに粉砕され、その平均粒径は500μm以下となる。水素粉砕後、脆化した原料合金をより細かく解砕するとともに冷却することが好ましい。比較的高い温度状態のまま原料を取り出す場合は、冷却処理の時間を相対的に長くすれば良い。 By the hydrogen pulverization, the rare earth alloy is pulverized to a size of about 0.1 mm to several mm, and the average particle size becomes 500 μm or less. After the hydrogen pulverization, the embrittled raw material alloy is preferably crushed more finely and cooled. In the case where the raw material is taken out in a relatively high temperature state, the cooling process time may be relatively long.
[微粉砕工程]
次に、粗粉砕粉に対してジェットミル粉砕装置を用いて微粉砕を実行する。本実施形態で使用するジェットミル粉砕装置にはサイクロン分級機が接続されている。ジェットミル粉砕装置は、粗粉砕工程で粗く粉砕された希土類合金(粗粉砕粉)の供給を受け、粉砕機内で粉砕する。粉砕機内で粉砕された粉末はサイクロン分級機を経て回収タンクに集められる。こうして、0.1〜20μm程度(典型的には3〜5μm)の微粉末を得ることができる。このような微粉砕に用いる粉砕装置は、ジェットミルに限定されず、アトライタやボールミルであってもよい。粉砕に際して、ステアリン酸亜鉛などの潤滑剤を粉砕助剤として用いてもよい。
[Fine grinding process]
Next, the coarsely pulverized powder is finely pulverized using a jet mill pulverizer. A cyclone classifier is connected to the jet mill crusher used in the present embodiment. The jet mill pulverizer is supplied with the rare earth alloy (coarse pulverized powder) coarsely pulverized in the coarse pulverization step, and pulverizes in the pulverizer. The powder pulverized in the pulverizer is collected in a collection tank through a cyclone classifier. Thus, a fine powder of about 0.1 to 20 μm (typically 3 to 5 μm) can be obtained. The pulverizer used for such fine pulverization is not limited to a jet mill, and may be an attritor or a ball mill. In grinding, a lubricant such as zinc stearate may be used as a grinding aid.
[プレス成形]
本実施形態では、上記方法で作製された磁性粉末に対し、例えばロッキングミキサー内で潤滑剤を例えば0.3wt%添加・混合し、潤滑剤で合金粉末粒子の表面を被覆する。次に、上述の方法で作製した磁性粉末を公知のプレス装置を用いて配向磁界中で成形する。印加する磁界の強度は、例えば1.5〜1.7テスラ(T)である。また、成形圧力は、成形体のグリーン密度が例えば4〜4.5g/cm3程度になるように設定される。
[Press molding]
In this embodiment, for example, 0.3 wt% of a lubricant is added to and mixed with the magnetic powder produced by the above method in a rocking mixer, and the surface of the alloy powder particles is coated with the lubricant. Next, the magnetic powder produced by the above-described method is molded in an orientation magnetic field using a known press machine. The intensity of the applied magnetic field is, for example, 1.5 to 1.7 Tesla (T). The molding pressure is set so that the green density of the molded body is, for example, about 4 to 4.5 g / cm 3 .
[焼結工程]
上記の粉末成形体に対して、650〜1000℃の範囲内の温度で10〜240分間保持する工程と、その後、上記の保持温度よりも高い温度(例えば1000〜1200℃)で焼結を更に進める工程とを順次行なうことが好ましい。焼結時、特に液相が生成されるとき(温度が650〜1000℃の範囲内にあるとき)、粒界相中のRリッチ相が融け始め、液相が形成される。その後、焼結が進行し、焼結磁石体が形成される。焼結後、必要に応じて、時効処理(500〜1000℃)が行われる。
[Sintering process]
With respect to said powder molded object, the process hold | maintained for 10 to 240 minutes at the temperature within the range of 650-1000 degreeC, and sintering further by the temperature (for example, 1000-1200 degreeC) higher than said holding temperature after that. It is preferable to sequentially perform the proceeding steps. During sintering, particularly when a liquid phase is generated (when the temperature is in the range of 650 to 1000 ° C.), the R-rich phase in the grain boundary phase begins to melt and a liquid phase is formed. Then, sintering progresses and a sintered magnet body is formed. After sintering, an aging treatment (500 to 1000 ° C.) is performed as necessary.
[Dy電析工程]
次に、有機溶媒にDyイオンを溶解させためっき液中で電解めっきを行い、焼結磁石体の表面にDyを効率良く形成する。
[Dy electrodeposition process]
Next, electrolytic plating is performed in a plating solution in which Dy ions are dissolved in an organic solvent to efficiently form Dy on the surface of the sintered magnet body.
適切な量のDyを磁石体中に拡散させるためには、表面に電析するDy層の厚さを1〜10μmの範囲に設定することが好ましい。そのためには、パルス電解により0.5〜5時間のめっき処理を行うことが好ましい。 In order to diffuse an appropriate amount of Dy into the magnet body, the thickness of the Dy layer deposited on the surface is preferably set in the range of 1 to 10 μm. For this purpose, it is preferable to perform a plating treatment for 0.5 to 5 hours by pulse electrolysis.
本実施形態によれば、Dyをスパッタリングしたり、蒸発させたりすることなく、磁石表面に歩留まり良く、成膜できるため、少ないDy量で、高い保磁力の高性能希土類磁石を得ることができる。また、特許文献4におけるような処理後の研削工程などの必要もない。 According to this embodiment, since film formation can be performed on the magnet surface with good yield without sputtering or evaporating Dy, a high-performance rare earth magnet having a high coercive force can be obtained with a small amount of Dy. Further, there is no need for a grinding process after the treatment as in Patent Document 4.
[拡散工程]
次に、焼結磁石体の表面から内部にDyを拡散浸透させて、保磁力HcJを向上させる。具体的には、表面にDyが析出した状態の焼結磁石体を処理室内に配置し、加熱により、Dyを焼結磁石体の表面から内部に拡散させる。
[Diffusion process]
Next, Dy is diffused and penetrated from the surface of the sintered magnet body to improve the coercive force HcJ. Specifically, a sintered magnet body having Dy deposited on the surface is disposed in the processing chamber, and Dy is diffused from the surface of the sintered magnet body to the inside by heating.
拡散のための熱処理は、R−Fe−B系希土類焼結磁石体を処理室内に静置させた状態で処理室の雰囲気全体を加熱することによって行っても良いし、高周波誘導加熱等により、焼結磁石体を直接加熱することによって行っても良い。 The heat treatment for diffusion may be performed by heating the entire atmosphere of the processing chamber in a state where the R-Fe-B rare earth sintered magnet body is left in the processing chamber, or by high-frequency induction heating or the like, You may carry out by heating a sintered magnet body directly.
処理室内の加熱温度は700℃〜1000℃が好ましく、850℃〜950℃がより好ましい。この温度領域であれば、Dyが焼結磁石体の粒界相を伝って内部へ効率よく拡散する。上記温度領域で拡散を行う場合、30〜180分程度の熱処理により、焼結磁石体の重量に対して0.1%〜1%の比率でDyを含有するように拡散を行うことができる。 The heating temperature in the treatment chamber is preferably 700 ° C to 1000 ° C, and more preferably 850 ° C to 950 ° C. In this temperature region, Dy diffuses efficiently through the grain boundary phase of the sintered magnet body. When diffusion is performed in the above temperature range, the diffusion can be performed by heat treatment for about 30 to 180 minutes so that Dy is contained at a ratio of 0.1% to 1% with respect to the weight of the sintered magnet body.
なお、本明細書における「処理室」は、焼結磁石体を含み得る空間を広く含むものであり、熱処理炉の処理室を意味する場合もあれば、そのような処理室内に収容される処理容器を意味する場合もある。 In addition, the “processing chamber” in this specification includes a space that can include a sintered magnet body, and may mean a processing chamber of a heat treatment furnace, or may be a process accommodated in such a processing chamber. It may also mean a container.
熱処理時における処理室内は不活性雰囲気であることが好ましい。本明細書における「不活性雰囲気」とは、真空、また不活性ガスで満たされた状態を含むものとする。また、「不活性ガス」は、例えばアルゴン(Ar)などの希ガスであるが、焼結磁石体との間で化学的に反応しないガスであれば、「不活性ガス」に含まれ得る。 The inside of the treatment chamber during the heat treatment is preferably an inert atmosphere. The “inert atmosphere” in this specification includes a state filled with a vacuum or an inert gas. The “inert gas” is a rare gas such as argon (Ar), for example, but may be included in the “inert gas” as long as it does not chemically react with the sintered magnet body.
本実施形態における拡散工程は、焼結磁石体の表面状況に敏感ではなく、拡散工程の前に焼結磁石体の表面にZnやSnなどからなる膜が形成されていてもよい。ZnやSnは、低融点金属であり、しかも、少量であれば磁石特性を劣化させず、また上記の拡散の障害ともならないからである。 The diffusion process in this embodiment is not sensitive to the surface condition of the sintered magnet body, and a film made of Zn, Sn, or the like may be formed on the surface of the sintered magnet body before the diffusion process. This is because Zn and Sn are low melting point metals, and if they are in a small amount, they do not deteriorate the magnetic properties and do not hinder the diffusion described above.
まず、Nd:31.8、B:0.97、Co:0.92、Cu:0.1、Al:0.24、残部:Fe(質量%)の組成を有するように配合した合金のインゴットをストリップキャスト装置により溶融し、冷却することによって凝固した。こうして、厚さ0.2〜0.3mmの合金薄片を作製した。 First, an ingot of an alloy blended so as to have a composition of Nd: 31.8, B: 0.97, Co: 0.92, Cu: 0.1, Al: 0.24, and the balance: Fe (% by mass) Was melted by a strip casting apparatus and solidified by cooling. Thus, alloy flakes having a thickness of 0.2 to 0.3 mm were produced.
次に、この合金薄片を容器内に充填し、水素処理装置内に収容した。そして、水素処理装置内に圧力500kPaの水素ガス雰囲気で満たすことにより、室温で合金薄片に水素吸蔵させた後、放出させた。このような水素処理を行うことにより、合金薄片を脆化し、大きさ約0.15〜0.2mmの不定形粉末を作製した。 Next, this alloy flake was filled in a container and accommodated in a hydrogen treatment apparatus. Then, the hydrogen treatment apparatus was filled with a hydrogen gas atmosphere at a pressure of 500 kPa, so that hydrogen was occluded in the alloy flakes at room temperature and then released. By performing such a hydrogen treatment, the alloy flakes were embrittled to produce an amorphous powder having a size of about 0.15 to 0.2 mm.
上記の水素処理により作製した粗粉砕粉末に対し粉砕助剤として0.05wt%のステアリン酸亜鉛を添加し混合した後、ジェットミル装置による粉砕工程を行うことにより、粉末粒径が約3μmの微粉末を製作した。 After adding 0.05 wt% zinc stearate as a grinding aid to the coarsely pulverized powder produced by the hydrogen treatment described above and mixing, a pulverization step using a jet mill device is performed, so that the powder particle size is about 3 μm. Powder was produced.
こうして作製した微粉末をプレス装置により成形し、粉末成形体を作製した。具体的には、印加磁界中で粉末粒子を磁界配向した状態で圧縮し、プレス成形を行った。その後、成形体をプレス装置から抜き出し、真空炉により1020℃で4時間の焼結工程を行った。こうして、15mm角の立方体形状を有する焼結体ブロックを作製したあと、この焼結体ブロックを機械的に加工することにより、厚さ(磁化方向サイズ)1mm×縦10mm×横10mmの焼結磁石体を複数個作製した。 The fine powder thus produced was molded by a press apparatus to produce a powder compact. Specifically, the powder particles were compressed in a magnetic field-oriented state in an applied magnetic field and pressed. Thereafter, the molded body was extracted from the press apparatus and subjected to a sintering process at 1020 ° C. for 4 hours in a vacuum furnace. Thus, after producing a sintered body block having a 15 mm square cube shape, the sintered body block is mechanically processed to obtain a sintered magnet having a thickness (magnetization direction size) of 1 mm × length of 10 mm × width of 10 mm. Several bodies were made.
次に、この焼結磁石体に対し、以下の表1に示す条件でDyめっきを行った。 Next, Dy plating was performed on the sintered magnet body under the conditions shown in Table 1 below.
有機溶媒(ホルムアミドまたはジメチルホルムアミド)50mlを露点-60℃以下に乾燥したAr300ml/minでバブリングしながら,所定量のDyCl3を有機溶媒にゆっくり加えた。DyCl3の全てが溶解するまで、約3日間、有機溶媒の攪拌を行った。 While bubbling 50 ml of an organic solvent (formamide or dimethylformamide) with Ar 300 ml / min dried at a dew point of −60 ° C. or lower, a predetermined amount of DyCl 3 was slowly added to the organic solvent. The organic solvent was stirred for about 3 days until all of the DyCl 3 was dissolved.
複数の焼結磁石体を治具に固定した状態で有機溶媒中に浸し、表1に示す条件でパルス電解によるめっき処理を行った。 A plurality of sintered magnet bodies were immersed in an organic solvent in a state of being fixed to a jig, and plated by pulse electrolysis under the conditions shown in Table 1.
めっき処理後の焼結磁石体の表面にはDy層が形成された。めっき液から焼結磁石体を取り出した後、焼結磁石体をエタノールによって洗浄した。 A Dy layer was formed on the surface of the sintered magnet body after the plating treatment. After removing the sintered magnet body from the plating solution, the sintered magnet body was washed with ethanol.
次に、得られた試料を真空熱処理炉にて900℃、60min、1.0×10-2Paの条件で熱処理した後、500℃、60min、2Paの条件で時効処理を行った。 Next, the obtained sample was heat-treated in a vacuum heat treatment furnace under the conditions of 900 ° C., 60 min, and 1.0 × 10 −2 Pa, and then subjected to aging treatment under the conditions of 500 ° C., 60 min, and 2 Pa.
次に、B−Hトレーサを用いて磁石特性(残留磁束密度:Br、保磁力:HcJ)を測定した。また、Dyの電析状況や拡散状況はEPMA(島津製作所製EPM−810)にて評価した。 Next, magnet characteristics (residual magnetic flux density: Br, coercive force: HcJ) were measured using a B-H tracer. Moreover, the electrodeposition state and diffusion state of Dy were evaluated by EPMA (EPM-810, manufactured by Shimadzu Corporation).
表2および図1に磁石特性を示す。これらの結果からわかるように、本実施例の方法によれば、保磁力が向上した。ここで、「比較例」は、試料1〜4と同様にして製造された焼結磁石体であるが、Dy層の形成およびDy拡散を行わなかった点で試料1〜4と異なっている。これらの結果からわかるように、本実施例の方法によれば、保磁力が向上していることがわかる。 Table 2 and FIG. 1 show the magnet characteristics. As can be seen from these results, the coercive force was improved by the method of this example. Here, the “Comparative Example” is a sintered magnet body manufactured in the same manner as Samples 1 to 4, but differs from Samples 1 to 4 in that the formation of the Dy layer and Dy diffusion were not performed. As can be seen from these results, the coercive force is improved according to the method of this example.
図2は、試料2のDyめっき後における表面EPMA分析結果を示す写真である。図2から、Dyが焼結磁石体内部の粒界相へ拡散していることがわかる。 FIG. 2 is a photograph showing the results of surface EPMA analysis after Dy plating of Sample 2. FIG. 2 shows that Dy has diffused into the grain boundary phase inside the sintered magnet body.
本発明によれば、Dyを無駄に消費することなく、焼結磁石体の内部に効率よく拡散し、主相結晶粒の外殻部にDyが濃縮することができるため、高い残留磁束密度と高い保磁力とを兼ね備えた高性能磁石を提供することができる。 According to the present invention, Dy can be efficiently diffused inside the sintered magnet body without wasting Dy, and Dy can be concentrated in the outer shell portion of the main phase crystal grains. A high-performance magnet having a high coercive force can be provided.
Claims (6)
有機溶媒およびDyイオンを含むめっき液中で電解めっきを行うことにより、前記R−Fe−B系希土類焼結磁石体の表面にDyを電析させる工程(B)と、
前記Dyが表面に電析したR−Fe−B系希土類焼結磁石体を加熱することにより、前記R−Fe−B系希土類焼結磁石体の内部にDyを拡散させる工程(C)と、
を包含し、
前記工程(B)における前記電解めっきはパルス電解めっきであり、
前記パルス電解めっきは、最大電流密度1.0〜5.0A/dm 2 、最小電流密度0〜1.0A/dm 2 、最大電流密度値の継続時間1〜100ms、最小電流密度値の継続時間1〜100msのパルス波形の電流を用い、浴温5〜50℃で行う、R−Fe−B系希土類焼結磁石の製造方法。 At least one R—Fe—B rare earth sintered magnet body having R 2 Fe 14 B type compound crystal grains containing a light rare earth element RL (at least one of Nd and Pr) as a main rare earth element R as a main phase. Step (A) to be prepared,
A step (B) of depositing Dy on the surface of the R—Fe—B rare earth sintered magnet body by performing electroplating in a plating solution containing an organic solvent and Dy ions;
A step (C) of diffusing Dy inside the R-Fe-B rare earth sintered magnet body by heating the R-Fe-B rare earth sintered magnet body on which the Dy is electrodeposited;
It encompasses,
The electrolytic plating in the step (B) is pulse electrolytic plating,
In the pulse electrolytic plating, the maximum current density is 1.0 to 5.0 A / dm 2 , the minimum current density is 0 to 1.0 A / dm 2 , the duration of the maximum current density value is 1 to 100 ms, and the duration of the minimum current density value is A method for producing an R—Fe—B rare earth sintered magnet, wherein a current of a pulse waveform of 1 to 100 ms is used and a bath temperature is 5 to 50 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006115224A JP4765747B2 (en) | 2006-04-19 | 2006-04-19 | Method for producing R-Fe-B rare earth sintered magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006115224A JP4765747B2 (en) | 2006-04-19 | 2006-04-19 | Method for producing R-Fe-B rare earth sintered magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007288020A JP2007288020A (en) | 2007-11-01 |
JP4765747B2 true JP4765747B2 (en) | 2011-09-07 |
Family
ID=38759483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006115224A Active JP4765747B2 (en) | 2006-04-19 | 2006-04-19 | Method for producing R-Fe-B rare earth sintered magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4765747B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101495899B1 (en) * | 2007-07-02 | 2015-03-02 | 히다찌긴조꾸가부시끼가이사 | R-fe-b type rare earth sintered magnet and process for production of the same |
KR101474946B1 (en) * | 2007-07-27 | 2014-12-19 | 히다찌긴조꾸가부시끼가이사 | R-Fe-B RARE EARTH SINTERED MAGNET |
NL1036543A1 (en) * | 2008-02-20 | 2009-08-24 | Asml Netherlands Bv | Lithographic apparatus including a magnet, method for the protection of a magnet in a lithographic apparatus and device manufacturing method. |
JP5093215B2 (en) | 2009-11-26 | 2012-12-12 | トヨタ自動車株式会社 | Method for producing sintered rare earth magnet |
JP6107546B2 (en) * | 2012-08-31 | 2017-04-05 | 信越化学工業株式会社 | Rare earth permanent magnet manufacturing method |
MY172195A (en) | 2012-08-31 | 2019-11-15 | Shinetsu Chemical Co | Production method for rare earth permanent magnet |
KR102137754B1 (en) * | 2012-08-31 | 2020-07-24 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Production method for rare earth permanent magnet |
DE102013202254A1 (en) * | 2013-02-12 | 2014-08-14 | Siemens Aktiengesellschaft | Process for the production of high energy magnets |
DE102013224108A1 (en) * | 2013-11-26 | 2015-06-11 | Siemens Aktiengesellschaft | Permanent magnet with increased coercive field strength |
CN103617884A (en) * | 2013-12-11 | 2014-03-05 | 北京科技大学 | Heavy rear earth adhering method of sintered NdFeB magnet |
JP6090589B2 (en) | 2014-02-19 | 2017-03-08 | 信越化学工業株式会社 | Rare earth permanent magnet manufacturing method |
JP6191497B2 (en) | 2014-02-19 | 2017-09-06 | 信越化学工業株式会社 | Electrodeposition apparatus and method for producing rare earth permanent magnet |
DE102014218369A1 (en) * | 2014-09-12 | 2016-03-31 | Siemens Aktiengesellschaft | Electrochemical deposition of neodymium to increase the coercivity of rare earth permanent magnets |
CN105839152A (en) * | 2015-10-21 | 2016-08-10 | 北京中科三环高技术股份有限公司 | Electrodeposition method, electrodeposition solution and method for preparation of rare earth permanent magnetic material by electrodeposition |
CN106782980B (en) * | 2017-02-08 | 2018-11-13 | 包头天和磁材技术有限责任公司 | The manufacturing method of permanent-magnet material |
CN106887323A (en) * | 2017-03-07 | 2017-06-23 | 北京科技大学 | A kind of method that grain boundary decision prepares high-coercive force neodymium iron boron magnetic body |
CN108109833A (en) * | 2017-12-20 | 2018-06-01 | 赣州新瑞迪奥磁性材料有限公司 | A kind of method that high-performance rare-earth permanent-magnetic body is produced by grain boundary decision method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS639108A (en) * | 1986-06-30 | 1988-01-14 | Seiko Instr & Electronics Ltd | Surface treating method for magnet |
JPH01272787A (en) * | 1988-04-25 | 1989-10-31 | Ishihara Chem Co Ltd | Iron-dysprosium alloy plating solution |
JPH0645913B2 (en) * | 1989-05-25 | 1994-06-15 | 石原薬品株式会社 | Rare earth metal plating solution |
JP2750902B2 (en) * | 1989-06-21 | 1998-05-18 | 株式会社トーキン | Rare earth metal-transition metal alloy plating method |
JPH03260084A (en) * | 1990-03-09 | 1991-11-20 | Katsuhisa Sugimoto | Cobalt-samarium binary alloy plating liquid |
JPH05217744A (en) * | 1992-02-06 | 1993-08-27 | Tdk Corp | Plated magnetic film and manufacture thereof |
JP3897724B2 (en) * | 2003-03-31 | 2007-03-28 | 独立行政法人科学技術振興機構 | Manufacturing method of micro, high performance sintered rare earth magnets for micro products |
JP4605437B2 (en) * | 2004-03-26 | 2011-01-05 | Tdk株式会社 | Rare earth magnet manufacturing method |
-
2006
- 2006-04-19 JP JP2006115224A patent/JP4765747B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007288020A (en) | 2007-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4765747B2 (en) | Method for producing R-Fe-B rare earth sintered magnet | |
JP4742966B2 (en) | Method for producing R-Fe-B rare earth sintered magnet | |
JP4748163B2 (en) | Rare earth sintered magnet and manufacturing method thereof | |
JP4831074B2 (en) | R-Fe-B rare earth sintered magnet and method for producing the same | |
JP4548673B2 (en) | Grain boundary modification method for Nd-Fe-B magnet | |
CN106024253B (en) | R-Fe-B sintered magnet and preparation method thereof | |
JP4241900B2 (en) | R-Fe-B rare earth sintered magnet and method for producing the same | |
JP4788427B2 (en) | R-Fe-B rare earth sintered magnet and method for producing the same | |
JP4811143B2 (en) | R-Fe-B rare earth sintered magnet and method for producing the same | |
JP4677942B2 (en) | Method for producing R-Fe-B rare earth sintered magnet | |
JP4962198B2 (en) | R-Fe-B rare earth sintered magnet and method for producing the same | |
JP4788690B2 (en) | R-Fe-B rare earth sintered magnet and method for producing the same | |
JP5146552B2 (en) | R-Fe-B rare earth sintered magnet and method for producing the same | |
JP4179973B2 (en) | Manufacturing method of sintered magnet | |
JP2011233554A (en) | Method of manufacturing r-t-b based sintered magnet | |
JP5187411B2 (en) | Method for producing R-Fe-B rare earth sintered magnet | |
JP2016169438A (en) | R-t-b-based rare earth sintered magnet and alloy for r-t-b-based rare earth sintered magnet | |
JP5036207B2 (en) | Magnet member | |
EP1494250A1 (en) | Rare earth sintered magnet and method for production thereof | |
JPH06151134A (en) | Manufacture of magnet powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090305 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110517 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110530 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4765747 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140624 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |