JP4765354B2 - X-ray tomographic imaging apparatus and X-ray tomographic imaging method - Google Patents

X-ray tomographic imaging apparatus and X-ray tomographic imaging method Download PDF

Info

Publication number
JP4765354B2
JP4765354B2 JP2005077964A JP2005077964A JP4765354B2 JP 4765354 B2 JP4765354 B2 JP 4765354B2 JP 2005077964 A JP2005077964 A JP 2005077964A JP 2005077964 A JP2005077964 A JP 2005077964A JP 4765354 B2 JP4765354 B2 JP 4765354B2
Authority
JP
Japan
Prior art keywords
inspected
rotation axis
dimensional detector
focal point
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005077964A
Other languages
Japanese (ja)
Other versions
JP2006258668A (en
Inventor
康雄 篠原
稔 田中
達雄 宮澤
亜希子 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005077964A priority Critical patent/JP4765354B2/en
Publication of JP2006258668A publication Critical patent/JP2006258668A/en
Application granted granted Critical
Publication of JP4765354B2 publication Critical patent/JP4765354B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えばサブミクロンメートル等の微小サイズのX線焦点を発生させるX線管を用いるX線断層撮像装置及びその装置により行われるX線断層撮像方法に関する。   The present invention relates to an X-ray tomographic imaging apparatus using an X-ray tube that generates an X-ray focal point having a micro size such as a submicrometer, and an X-ray tomographic imaging method performed by the apparatus.

従来、半導体素子等の研究開発分野では、微小被検査体内部に存在するひび割れや断線等を検査するため非破壊3次元分析が要求されている。その非破壊3次元分析を実現するものとしてX線断層撮像装置(X線CT装置とも呼ばれる。)がある。このX線断層撮像装置は、X線源(X線管等から構成されるX線発生装置)と、このX線源よりX線焦点を経て照射され被検査体を透過したX線を検出する検出器とを備え、これらX線源及び検出器の間に載置された被検査体を所定角度変位ずつ回転させて各角度位相の透過X線を検出器により撮像する。そして、撮像した複数の投影像を画像データとして処理し再構成することで内部構造データを作成し、被検査体内部を検査、観察する(例えば、特許文献1参照。)。
特開2004−132931号公報
Conventionally, in the field of research and development of semiconductor elements and the like, non-destructive three-dimensional analysis has been required in order to inspect cracks, disconnections, and the like that exist inside a minute object to be inspected. There is an X-ray tomographic imaging apparatus (also called an X-ray CT apparatus) that realizes the non-destructive three-dimensional analysis. This X-ray tomographic imaging apparatus detects an X-ray source (an X-ray generator configured by an X-ray tube or the like) and X-rays irradiated from the X-ray source through an X-ray focal point and transmitted through an object to be inspected. A detector is provided, and the object to be inspected placed between the X-ray source and the detector is rotated by a predetermined angular displacement, and the transmitted X-rays of each angular phase are imaged by the detector. Then, internal structure data is created by processing and reconstructing a plurality of captured images as image data, and the inside of the inspection object is inspected and observed (see, for example, Patent Document 1).
JP 2004-132931 A

ところで、半導体素子等の微小部品を検査する産業用X線断層撮像装置において、一般にコーンビーム状(円錐形状)のX線が用いられる。この円錐形状のX線は、焦点サイズが小さいほど、透過X線像の拡大によるエッジ(端部)のボケが抑えられ、より精細な投影像が得られる。近年、焦点サイズがミクロン単位あるいはそれ以下のマイクロフォーカスX線源として、従来の密封型X線管に代わり、開放型X線管の開発が進んでいる。この開放型X線管は、焦点寸法が非常に小さいため、解像度が高くボケの無い鮮明な画像を得ることができる。また、X線管の構造上、拡大倍率が高い等の特徴がある。   By the way, in an industrial X-ray tomographic imaging apparatus for inspecting a micro component such as a semiconductor element, cone beam (conical) X-rays are generally used. As the focal spot size of the cone-shaped X-ray is smaller, blurring of an edge (end) due to enlargement of the transmitted X-ray image is suppressed, and a more detailed projected image can be obtained. In recent years, an open X-ray tube has been developed as a microfocus X-ray source having a focal size of a micron unit or smaller, instead of a conventional sealed X-ray tube. Since this open X-ray tube has a very small focal size, a clear image with high resolution and no blur can be obtained. In addition, the X-ray tube has a feature such as high magnification.

図10は、一般的な開放型X線管の一例を示す概略断面図である。
開放型X線管(以下、単に「X線管」と称する。)100において、カソード101から放出される円錐形状の電子ビーム(電子流)102は、コイル103等により電子収束筒104に導かれる。そして、電子収束筒104の穴を通り所定径に絞られた電子ビーム102が、タングステン等からなるターゲット105に衝突することにより制動放射線、すなわちX線が放出される。
FIG. 10 is a schematic cross-sectional view showing an example of a general open X-ray tube.
In an open X-ray tube (hereinafter simply referred to as “X-ray tube”) 100, a conical electron beam (electron stream) 102 emitted from a cathode 101 is guided to an electron converging cylinder 104 by a coil 103 or the like. . Then, when the electron beam 102, which has been narrowed to a predetermined diameter through the hole of the electron focusing tube 104, collides with the target 105 made of tungsten or the like, bremsstrahlung, that is, X-rays are emitted.

図10の要部の拡大図を、図11に示す。
上述のような開放型X線管100を搭載した産業用X線断層撮像装置の場合、図11に示すように、ターゲット105の焦点108で制動放射線が発生し第1照射野106を形成する。しかし、焦点108で発生する制動放射線ばかりでなく、ターゲット105後方(カソード側)に存在し、設計上の焦点108を1μ以下に制御するために必要不可欠な電子ビーム102を絞る電子収束筒104の金属部材(モリブデン等)に電子が衝突するので、そこでも弱い制動放射線が発生することに注意する必要がある。
FIG. 11 shows an enlarged view of the main part of FIG.
In the case of an industrial X-ray tomography apparatus equipped with the open X-ray tube 100 as described above, bremsstrahlung is generated at the focal point 108 of the target 105 to form the first irradiation field 106 as shown in FIG. However, not only the bremsstrahlung generated at the focal point 108 but also the electron converging cylinder 104 that squeezes the electron beam 102 that exists behind the target 105 (cathode side) and is indispensable for controlling the designed focal point 108 to 1 μm or less. Since electrons collide with a metal member (such as molybdenum), it should be noted that weak bremsstrahlung is generated there.

図12は、図11のX−X線に沿う断面図を示すものである。
後者の弱い制動放射線は電子収束筒部材自体に大部分吸収されるが、図12に示すように、電子収束筒104の中央には電子流が通過する細い穴(例えば、φ1.0mm〜φ1.5mm)110が空いており、その穴110の周縁111から制動放射線112が放出される。電子収束筒104の穴の周縁111全体がドーナッツ状のX線焦点(擬似焦点)109であるかのように振る舞った結果、細い穴111を通過する、細く微弱な円錐状の第2の制動放射線照射野(第2照射野)107を形成するのである。
FIG. 12 is a sectional view taken along line XX in FIG.
Although the latter weak bremsstrahlung is mostly absorbed by the electron converging cylinder member itself, as shown in FIG. 12, a thin hole (for example, φ1.0 mm to φ1. 5 mm) 110 is vacant, and bremsstrahlung 112 is emitted from the periphery 111 of the hole 110. As a result of the entire peripheral edge 111 of the hole of the electron converging cylinder 104 acting as if it is a donut-shaped X-ray focal point (pseudo-focus) 109, the thin, weak conical second bremsstrahlung passing through the thin hole 111 is obtained. An irradiation field (second irradiation field) 107 is formed.

ここで、X線管100を使用して撮像した被検査体の投影データの再構成画像について、図13〜図15を参照して説明する。
図13に示すように、まず、被検査体を、X線管100から放出されるX線の第2照射野107の影響を全面的に受ける位置103に配置するとともに、二次元検出器を、焦点108及び擬似焦点109を結ぶ直線と直交する位置102に配置して、被検査体の撮像を行なう。そして、2次元検出器で取得された被検査体の投影データを再構成計算する。
Here, reconstructed images of the projection data of the inspected object imaged using the X-ray tube 100 will be described with reference to FIGS.
As shown in FIG. 13, first, the object to be inspected is disposed at a position 103 that is totally affected by the second irradiation field 107 of the X-rays emitted from the X-ray tube 100, and the two-dimensional detector is It arrange | positions in the position 102 orthogonal to the straight line which connects the focus 108 and the pseudo | simulation focus 109, and images a to-be-inspected object. Then, the projection data of the inspection object acquired by the two-dimensional detector is reconstructed and calculated.

図14は、上述した二次元検出器から見て焦点108と擬似焦点109が直線上にあるときの被検査体の再構成画像例であり、Aは正面図、Bは断面図を表す。図14の例では、被検査体の一例としてφ6mm平行ピンの中実丸棒を選んでいる。焦点108背後にある擬似焦点109による、弱くかつ細い第2照射野107によって投影データに映り込む中実丸棒の投影は、拡大率が焦点108による投影より小さい。二つの焦点108及び擬似焦点109による投影を再構成計算し断面を観察すると、図14Aに示すように、中実の棒の中に2重にもう一本の棒111が見える。図14Bの断面図においても、中実の棒の中にもう一本の棒の断面112が確認できる。   FIG. 14 is an example of a reconstructed image of the object to be inspected when the focal point 108 and the pseudo focal point 109 are on a straight line when viewed from the above-described two-dimensional detector, where A is a front view and B is a cross-sectional view. In the example of FIG. 14, a solid round bar of φ6 mm parallel pins is selected as an example of the object to be inspected. The projection of the solid round bar reflected in the projection data by the weak and thin second irradiation field 107 by the pseudo focus 109 behind the focus 108 has a magnification ratio smaller than the projection by the focus 108. When the projections by the two focal points 108 and the pseudo focal point 109 are reconstructed and the cross section is observed, as shown in FIG. 14A, another double bar 111 can be seen in the solid bar. Also in the cross-sectional view of FIG. 14B, the cross section 112 of another bar can be confirmed in the solid bar.

図14の例の場合、再構成計算の結果からφ6mm平行ピン内側にφ4.1mmの擬似像が現れる。例えば、X線焦点108から被検査体までの距離がL1=20mmであれば、擬似焦点109の位置は、6(mm)÷4.1(mm)×20(mm)=29.27(mm)により、実際の焦点108よりも9.27mmカソード側にあると推定できる。   In the case of the example in FIG. 14, a pseudo image of φ4.1 mm appears inside the φ6 mm parallel pin from the result of the reconstruction calculation. For example, if the distance from the X-ray focal point 108 to the object to be inspected is L1 = 20 mm, the position of the pseudo focal point 109 is 6 (mm) ÷ 4.1 (mm) × 20 (mm) = 29.27 (mm ) From the actual focal point 108 can be estimated to be 9.27 mm on the cathode side.

上記擬似焦点109による2重画像は、再構成計算結果をモニタする際のコントラストの設定により、無視できる場合も多い。しかし、例えば、被検査体の外周全体が吸収係数の高い金属ケースであって、内部がそれに比べて極端に吸収係数の小さい元素で満たされているような場合、金属ケースなど吸収係数の高い物質が焦点108による再構成画像より縮小された形で2重に再構成計算される場合があって、非破壊検査に重大な支障をきたす場合が生じるという問題があった。   In many cases, the double image by the pseudo-focus 109 can be ignored by setting the contrast when monitoring the reconstruction calculation result. However, for example, when the entire outer periphery of the object to be inspected is a metal case with a high absorption coefficient, and the inside is filled with an element having an extremely small absorption coefficient, a substance with a high absorption coefficient such as a metal case However, there is a case where double reconstruction calculation is performed in a reduced form from the reconstructed image by the focal point 108, which may cause serious trouble in nondestructive inspection.

また、図13に示すように、被検査体を電子流の向きと垂直に移動させ、X線管100から放出されるX線の第2照射野107の影響を一部受ける位置103aに配置し、そして、二次元検出器が、焦点108と位置103aに移動後の被検査体とを結ぶ直線と直交する位置102aとなるように、X線管100のカソードから放出される電子流と同一軸に対して角度θ回転させる。このとき、X線焦点108から二次元検出器までの距離と同被検査体までの距離の比から算出される拡大率L0/L1は、図14の例と同じである。   Further, as shown in FIG. 13, the object to be inspected is moved perpendicularly to the direction of the electron flow, and is disposed at a position 103 a that is partially affected by the second irradiation field 107 of the X-rays emitted from the X-ray tube 100. The two-dimensional detector has the same axis as the electron flow emitted from the cathode of the X-ray tube 100 so that the two-dimensional detector is at a position 102a orthogonal to a straight line connecting the focal point 108 and the object to be inspected after moving to the position 103a. Is rotated by an angle θ. At this time, the enlargement ratio L0 / L1 calculated from the ratio of the distance from the X-ray focal point 108 to the two-dimensional detector and the distance to the object to be inspected is the same as in the example of FIG.

図15は、被検査体と二次元検出器が上述した位置にあるとき、すなわち二次元検出器から見て焦点108と擬似焦点109が直線上にないときの被検査体の再構成画像例であり、Aは正面図、Bは断面図を表す。この図15の例では、中空のステンレス(SUS)細管を被検査体に選んでいる。
この場合の二次元検出器及び被検査体の位置では、依然として被検査体の一部が第2照射野107を被っており、擬似焦点109から形成される白い影113(図15A参照)が投影像の右側に残って2重になり、再構成断面にて丸い像114(図15B参照)が現れてしまっていた。
FIG. 15 is an example of a reconstructed image of the inspection object when the inspection object and the two-dimensional detector are in the above-described positions, that is, when the focal point 108 and the pseudo-focus 109 are not on a straight line when viewed from the two-dimensional detector. Yes, A is a front view and B is a cross-sectional view. In the example of FIG. 15, a hollow stainless steel (SUS) thin tube is selected as the object to be inspected.
In this case, at the position of the two-dimensional detector and the inspection object, a part of the inspection object still covers the second irradiation field 107, and a white shadow 113 (see FIG. 15A) formed from the pseudo focus 109 is projected. A double image remained on the right side of the image, and a round image 114 (see FIG. 15B) appeared on the reconstructed cross section.

本発明は斯かる点に鑑みてなされたものであり、取得した投影データの再構成画像において、擬似焦点による2重画像を防止することを目的とする。   The present invention has been made in view of such a point, and an object thereof is to prevent a double image due to a pseudo focus in a reconstructed image of acquired projection data.

上記課題を解決するため、本発明は、ターゲット上の第1焦点を頂点とし、その中心軸がカソードから放出される電子流と略同軸上にある円錐形状に第1照射野を形成するX線源の第1焦点から、上記カソードより放出される電子流に略直交する検出面を初期姿勢とする2次元検出器へ降ろした垂線と直角に交わる被検査体回転軸を中心として、被検査体回転機構に載置した被検査体をX線源と二次元検出器の間で回転させ、被検査体の投影データを取得する際、X線源の第1焦点から初期姿勢の2次元検出器へ降ろした垂線に沿う第1方向に直交する面内で被検査体回転軸を所定距離移動させ、また、X線源のX線焦点から所定距離移動後の被検査体回転軸へ降ろした垂線と直角を成すよう2次元検出器を傾斜移動させ、X線源の第1焦点よりカソード側で電子収束筒に衝突した電子が放射して前記第1方向と同軸上に形成される、第2焦点による第2照射野の影響を受けない位置で、第1照射野により被検査体の全部又は特定部分の投影像を取得することを特徴とする。 In order to solve the above problems, the present invention provides an X-ray that forms a first irradiation field in a conical shape having a first focal point on a target as a vertex and a central axis substantially coaxial with an electron flow emitted from a cathode. An object to be inspected around a rotation axis of an object to be inspected that intersects perpendicularly to a two-dimensional detector with a detection surface substantially orthogonal to the electron flow emitted from the cathode from the first focal point of the source. When acquiring the projection data of the inspection object by rotating the inspection object placed on the rotation mechanism between the X-ray source and the two-dimensional detector, the two-dimensional detector in the initial posture from the first focus of the X-ray source The subject rotation axis is moved by a predetermined distance in a plane perpendicular to the first direction along the perpendicular line, and the perpendicular line is lowered from the X-ray focal point of the X-ray source to the inspection object rotation axis after the predetermined distance movement. The two-dimensional detector is tilted to form a right angle with the first focus of the X-ray source Ri electrons collide with the cathode to the electron converging tube is formed in the radiation to the first direction and on the same axis, with not influenced position of the second irradiation field according to the second focal point, the the first irradiation field A projection image of the whole inspection object or a specific part is acquired.

上述の構成によれば、被検査体の全部又は特定部分を、本来のX線焦点(第1焦点)による第1照射野のうち第1焦点よりカソード側にあって、電子収束筒に衝突した電子が放射して第1焦点から初期姿勢の2次元検出器へ降ろした垂線に沿う方向と同軸上に形成される擬似焦点(第2焦点)による第2照射野の影響を受けない領域に移動して、各角度位相における被検査体の投影データを取得できる。
According to the above configuration, all or a specific portion of the object to be inspected collides with the electron converging cylinder at the cathode side of the first focus in the first irradiation field by the original X-ray focus (first focus). in a region where electrons are not affected by the second irradiation field by pseudo focal formed on the same and the direction along the perpendicular dropped to the two-dimensional detector axis of the initial attitude from the first focal point and the radiation (the second focal point) It can move and can acquire projection data of a to-be-inspected object in each angle phase.

本発明によれば、擬似焦点による影響を受けない領域で被検査体の投影像を撮像するよう構成したので、再構成画像において2重画像が発生しないという効果がある。さらに、被検査体の全身投影を欠けることなく取得するので、極めて品位の高い再構成画像を得ることができるという効果がある。   According to the present invention, since the projection image of the object to be inspected is picked up in the region not affected by the pseudo focus, there is an effect that no double image is generated in the reconstructed image. Furthermore, since the whole-body projection of the object to be inspected is acquired without loss, an extremely high-quality reconstructed image can be obtained.

以下、本発明を実施するための最良の形態の例を説明するが、本発明は以下の例に限定されるものではない。   Examples of the best mode for carrying out the present invention will be described below, but the present invention is not limited to the following examples.

図1は、本発明によるX線断層撮像方法の概念を示した模式図である。図10〜図12を参照して説明したように、開放型のX線管1は、ターゲット上のX線焦点2を頂点とし、その中心軸(円錐の回転軸)がカソードから放出される電子流と略同軸(光軸主線方向4)上にある円錐形状に第1照射野2aを形成する。このとき、焦点2よりカソード側に発生する擬似焦点3により、第1照射野2aよりも狭い第2照射野3aが形成される。そこで、本発明では、被検査体5の全部又は特定部分を第2照射野3aの影響を受けない第1照射野2aと第2照射野3aの間に移動して、各角度位相における被検査体5の投影データを取得し、取得した各投影データを再構成計算して再構成画像を得るようにするものである。
なお、本発明は、例えばマイクロフォーカスX線管などのミクロン単位あるいはそれ以下の微小焦点を発生させるX線管を用い、電子収束筒の構造上2重画像が発生するX線断層撮像装置に適用される。
FIG. 1 is a schematic diagram showing the concept of an X-ray tomographic imaging method according to the present invention. As described with reference to FIGS. 10 to 12, the open X-ray tube 1 has an X-ray focal point 2 on the target as an apex, and its central axis (conical rotation axis) is emitted from the cathode. The first irradiation field 2a is formed in a conical shape substantially coaxial with the flow (in the optical axis main line direction 4). At this time, the second focal field 3a narrower than the first radiation field 2a is formed by the pseudo focal point 3 generated on the cathode side from the focal point 2. Therefore, in the present invention, all or a specific part of the inspection object 5 is moved between the first irradiation field 2a and the second irradiation field 3a which are not affected by the second irradiation field 3a, and the inspection object in each angle phase is performed. The projection data of the body 5 is acquired, and the acquired projection data is subjected to reconstruction calculation to obtain a reconstructed image.
The present invention is applied to an X-ray tomographic imaging apparatus that uses an X-ray tube that generates a micro focus on the order of microns or less, such as a microfocus X-ray tube, and generates a double image due to the structure of an electron focusing cylinder. Is done.

本例では、この第1照射野2aは例えば約120°、第2照射野3aは第1照射野2aよりも狭く例えば15°〜20°程度である。なお、第1照射野及び第2照射野の角度範囲はこの例に限るものではない。   In this example, the first irradiation field 2a is about 120 °, for example, and the second irradiation field 3a is narrower than the first irradiation field 2a, for example, about 15 ° to 20 °. The angle range of the first irradiation field and the second irradiation field is not limited to this example.

次に、図2〜図4を参照して、本発明の一実施の形態例によるX線断層撮像装置の構成について説明する。
図2は、本発明の一実施の形態例によるX線断層撮像装置の概略上面図である。また、図3は、同じくX線断層撮像装置の概略側面図である。これら図2及び図3に示す構成は、本出願人が先に出願した「特願2004−110306号」に記載の機構を、おおよそそのままの状態で流用することができる。
Next, the configuration of an X-ray tomographic imaging apparatus according to an embodiment of the present invention will be described with reference to FIGS.
FIG. 2 is a schematic top view of an X-ray tomographic imaging apparatus according to an embodiment of the present invention. FIG. 3 is a schematic side view of the same X-ray tomographic imaging apparatus. 2 and 3, the mechanism described in “Japanese Patent Application No. 2004-110306” previously filed by the present applicant can be used as it is.

図2及び図3に示されるX線断層撮像装置は、大きく分けて、X線管1、X線が照射される被検査体5を載置する回転基台12、被検査体5を透過したX線の検出面を有する二次元検出器20、そして、これらのものを支持し移動可能な各駆動機構、及びこれら一切を載置し振動除去機能を備えた定盤34から構成される。   The X-ray tomographic imaging apparatus shown in FIGS. 2 and 3 is broadly transmitted through the X-ray tube 1, the rotating base 12 on which the inspection object 5 to be irradiated with X-rays is placed, and the inspection object 5. The two-dimensional detector 20 having an X-ray detection surface, each drive mechanism supporting and moving these elements, and a surface plate 34 on which all of them are mounted and provided with a vibration removing function.

X線管1は、例えば円錐形状(コーンビーム状)のX線を発生する周知のマイクロフォーカスX線源であり、X線管1から被検査体5に対し円錐形状のX線を出射し被検査体5全体にX線を照射する。図3に示されるように、このX線管1本体は、前部筐体1aと後部筐体1bがヒンジ6により連結された構成とされ、X線焦点近傍のL字状ブラケット7とX線管1の重量重心1cの直下かつブラケット7水平面上に設けられたVブロック8とによって定盤34上に支持されている。   The X-ray tube 1 is a well-known microfocus X-ray source that generates, for example, a cone-shaped (cone beam-shaped) X-ray. The X-ray tube 1 emits a cone-shaped X-ray from the X-ray tube 1 to the object 5 to be inspected. The whole inspection object 5 is irradiated with X-rays. As shown in FIG. 3, the main body of the X-ray tube 1 is configured such that a front housing 1a and a rear housing 1b are connected by a hinge 6, and an L-shaped bracket 7 and an X-ray near the X-ray focal point. The tube 1 is supported on the surface plate 34 by the V block 8 provided immediately below the weight center of gravity 1c and on the horizontal surface of the bracket 7.

図3に示されるように、Vブロック8はブラケット7上の回動支点11を軸に回動可能なVブロック受け台10に弾性体9を介して載置される。このようにブラケット7と重心1cの直下にVブロック8を置くことにより、X線管1のカソード(図示略)の位置出しが容易となるばかりでなく、ヒンジ6による連結を解除し真空を解除してカソードを交換する際、X線管1の後部筐体1bを弾性力で支持するので、カソード座標調整などの精密な機械作業が水平置の姿勢でも容易となる。X線管1本体連結部のヒンジ6の回転軸とVブロック受け台10の回動支点11は略同軸上に配置されている。   As shown in FIG. 3, the V block 8 is placed on the V block cradle 10 that can rotate about the rotation fulcrum 11 on the bracket 7 via an elastic body 9. By placing the V block 8 immediately below the bracket 7 and the center of gravity 1c in this way, not only the positioning of the cathode (not shown) of the X-ray tube 1 is facilitated, but also the connection by the hinge 6 is released and the vacuum is released. When the cathode is replaced, the rear housing 1b of the X-ray tube 1 is supported by elastic force, so that precise mechanical work such as cathode coordinate adjustment becomes easy even in a horizontal position. The rotation axis of the hinge 6 of the X-ray tube 1 main body connecting portion and the rotation fulcrum 11 of the V block cradle 10 are arranged substantially coaxially.

図2に示される被検査体5は、被検査体5を回転させるための例えば駆動モータ及び軸受け(図示略)等より構成される回転基台12上に保持され、X線管1のX線焦点2から後述する二次元検出器20の検出面に降ろした垂線と直角に交わる回転軸を中心に回転する。また、回転基台12と締結されZ軸方向に可動するZ軸可動部13と、Y軸方向に可動するY軸可動部14と、X軸方向に可動するX軸可動部15と、定盤34に固定された直動案内部16によって、Z軸方向への駆動機構及びY軸方向への駆動機構が構成されており、Z軸可動部13に載置された被検査体5がZ軸方向及びY軸方向へ移動可能に構成される。これらの機構は、被検査体を移動させる手段として機能する。   2 is held on a rotation base 12 configured by, for example, a drive motor and a bearing (not shown) for rotating the inspection object 5, and the X-ray of the X-ray tube 1 It rotates around a rotation axis that intersects perpendicularly with a perpendicular drawn from the focal point 2 to a detection surface of a two-dimensional detector 20 described later. Also, a Z-axis movable part 13 that is fastened to the rotary base 12 and is movable in the Z-axis direction, a Y-axis movable part 14 that is movable in the Y-axis direction, an X-axis movable part 15 that is movable in the X-axis direction, and a surface plate The linear motion guide portion 16 fixed to 34 constitutes a drive mechanism in the Z-axis direction and a drive mechanism in the Y-axis direction, and the object to be inspected 5 placed on the Z-axis movable portion 13 is in the Z-axis direction. Configured to be movable in the direction and the Y-axis direction. These mechanisms function as means for moving the object to be inspected.

さらに回転基台12は、例えば空気軸受け(図示略)によって支持されて、この空気軸受けに同軸上に直結された例えば0.2分以下の角度位置決め精度を持つサーボモータ(図示略)及び回転位相検出手段(図示略)により、これらサーボモータ及び回転位相検出手段の分解能に応じた各角度変位において、再構成に必要な上記投影データの取り込み期間に同期して静止される。回転基台12の軸受けの回転軸はX線管1の焦点から二次元検出器20の検出面へ降ろした垂線と直交している。本例では回転基台12を微少角度変位制御できる空気軸受けよりなるが、これに限るものではなく、回転基台12を支持し滑らかに回転して微少角度変位制御できるものであればよい。   Further, the rotary base 12 is supported by, for example, an air bearing (not shown), and is directly coupled coaxially to the air bearing and has a servo motor (not shown) having an angular positioning accuracy of, for example, 0.2 minutes or less, and a rotation phase. The detecting means (not shown) is stationary in synchronism with the projection data capturing period necessary for reconstruction at each angular displacement corresponding to the resolution of the servo motor and the rotational phase detecting means. The rotation axis of the bearing of the rotation base 12 is orthogonal to the perpendicular line dropped from the focal point of the X-ray tube 1 to the detection surface of the two-dimensional detector 20. In this example, the rotary base 12 is composed of an air bearing capable of controlling the fine angular displacement. However, the present invention is not limited to this, and any structure may be used as long as the rotary base 12 is supported and smoothly rotated to control the fine angular displacement.

二次元検出器20は、被検査体5を透過したX線を検出し投影データを取得するのに用いられるフラットパネルディテクタ(以下、「FPD」という。)であり、本例では、例えば検出面がA4判サイズ以上の面積で、画素サイズが120μm×120μm以上、検出可能なX線管1の管電圧レンジを40〜150kVとしている。本例では二次元検出器20をFPDにより構成するものとしているが、周知技術を用いてX線を検出し画素毎に処理して画像信号を得られるものであればよい。   The two-dimensional detector 20 is a flat panel detector (hereinafter referred to as “FPD”) used to detect X-rays transmitted through the object 5 and acquire projection data, and in this example, for example, a detection surface. Is an area larger than the A4 size, the pixel size is 120 μm × 120 μm or more, and the tube voltage range of the detectable X-ray tube 1 is 40 to 150 kV. In this example, the two-dimensional detector 20 is configured by an FPD. However, any device may be used as long as it can detect an X-ray using a known technique and process it for each pixel to obtain an image signal.

二次元検出器20の検出面は支持体21によってX線管1のX線焦点2から被検査体5略中心を通る直線と直角となるように設置され、この支持体21は二次元検出器20を垂直方向に移動可能とする駆動機構を備えている。さらに、支持体21と締結された直動機構を構成する水平可動部22が直動案内部23上を水平方向に移動することによって二次元検出器20を検出面と平行な水平方向へ移動させることができる。   The detection surface of the two-dimensional detector 20 is installed by the support 21 so as to be perpendicular to the straight line passing through the approximate center of the inspection object 5 from the X-ray focal point 2 of the X-ray tube 1, and the support 21 is a two-dimensional detector. The drive mechanism which enables 20 to move to a perpendicular direction is provided. Further, the horizontal movable portion 22 constituting the linear motion mechanism fastened to the support 21 moves on the linear motion guide portion 23 in the horizontal direction, thereby moving the two-dimensional detector 20 in the horizontal direction parallel to the detection surface. be able to.

さらに、二次元検出器20を水平方向に移動させるのに使用される直動案内部23下面の端部近傍に凸部(カムフォロワー)27が設けられており、この凸部27を例えば溝を有する係合部材26と係合させ、係合部材26を検出器基台28に設けられた旋回案内部25上で直線的にスライド移動させることにより、直動案内部23上に搭載された二次元検出器20を直動案内部23と一体に、例えばY軸に対し約±30°の角度未満で回転基台12の回転軸と平行な軸を中心に旋回させることができる。このときの旋回角度は回転軸24に直結されたエンコーダ30の指示値に基づき制御される。これらの機構は二次元検出器を移動させる手段として機能する。なお、支持台29は、二次元検出器20に係る機構全体を支持するものである。   Further, a convex portion (cam follower) 27 is provided in the vicinity of the end portion of the lower surface of the linear motion guide portion 23 used for moving the two-dimensional detector 20 in the horizontal direction. The engaging member 26 is engaged with the engaging member 26, and the engaging member 26 is slid linearly on the turning guide unit 25 provided on the detector base 28, thereby being mounted on the linear guide unit 23. The dimension detector 20 can be pivoted integrally with the linear motion guide unit 23, for example, about an axis parallel to the rotation axis of the rotary base 12 at an angle of less than about ± 30 ° with respect to the Y axis. The turning angle at this time is controlled based on the indicated value of the encoder 30 directly connected to the rotating shaft 24. These mechanisms function as means for moving the two-dimensional detector. The support base 29 supports the entire mechanism relating to the two-dimensional detector 20.

本例では、二次元検出器20の旋回駆動を、従来用いられていたダイレクトドライブモータ(インデックスモータ)で行わず、より角度精度を出しやすく衝突や暴走の懸念のない例えばボールネジ駆動(直動)機構などを旋回駆動系に用いている。   In this example, the turning drive of the two-dimensional detector 20 is not performed by a conventionally used direct drive motor (index motor), for example, ball screw drive (linear motion) is easy to obtain angle accuracy and there is no fear of collision or runaway. A mechanism is used for the turning drive system.

これら二次元検出器20を載置する検出器基台28は、駆動部32を駆動させることにより駆動軸33を介してレール31上をX軸方向(光軸主線方向)に移動することができるので、X線焦点2から二次元検出器20までの距離調整が可能である。   The detector base 28 on which these two-dimensional detectors 20 are mounted can move on the rail 31 via the drive shaft 33 in the X-axis direction (optical axis main line direction) by driving the drive unit 32. Therefore, the distance from the X-ray focal point 2 to the two-dimensional detector 20 can be adjusted.

図4は、本発明の一実施の形態例によるX線断層撮像装置のブロック構成図である。X線管1は、上述したように回転基台12上に載置された被検査体5に対してX線を照射するものである。このとき照射されるX線の強度、線質等は、X線制御手段であるX線制御部41を通じて制御操作卓44により制御される。   FIG. 4 is a block diagram of an X-ray tomographic imaging apparatus according to an embodiment of the present invention. As described above, the X-ray tube 1 irradiates the inspection object 5 placed on the rotating base 12 with X-rays. The intensity and quality of the X-rays irradiated at this time are controlled by the control console 44 through the X-ray control unit 41 which is an X-ray control means.

上記被検査体5を載置する回転基台12のXYZ位置、回転角度変位、初期角度位相等は、回転基台12の位置及び動きを制御する機構制御手段である機構制御部42を通じて、制御操作卓44により制御される。回転基台12に載置された被検査体5は制御操作卓44からの制御信号により指定された角度変位で回転され、その投影像はX線2次元検出器2により撮像される。   The XYZ position, rotation angle displacement, initial angle phase, and the like of the rotation base 12 on which the inspection object 5 is placed are controlled through a mechanism control unit 42 that is a mechanism control means for controlling the position and movement of the rotation base 12. It is controlled by the console 44. The inspection object 5 placed on the rotating base 12 is rotated by the angular displacement designated by the control signal from the control console 44, and the projection image is taken by the X-ray two-dimensional detector 2.

制御操作卓44は、キーボードやマウス等の入力手段、機器動作状態や入力値等を表示するGUI(Graphical User Interface)を備えた表示手段(図示略)が接続されている。また、入力手段からの入力操作信号の処理、及びROM(Read Only Memory)等の不揮発性メモリ(図示略)に格納されたプログラムに従い後述する撮像処理等の演算・制御を行うプロセッサ等からなる制御手段を備える。
さらに、制御操作卓44は、X線管1より出射されるX線のX線強度等の情報を取り込み表示手段に表示し、また、被検査体5の適切な位置出しを行うにあたり機構制御部4221を通じて回転基台12に指令を出すなどする。
The control console 44 is connected to input means such as a keyboard and a mouse, and display means (not shown) having a GUI (Graphical User Interface) for displaying device operation states, input values, and the like. Also, a control composed of a processor or the like that performs processing of input operation signals from the input means and arithmetic / control of imaging processing described later in accordance with a program stored in a non-volatile memory (not shown) such as a ROM (Read Only Memory). Means.
Further, the control console 44 captures and displays information such as the X-ray intensity of the X-rays emitted from the X-ray tube 1 on the display means, and a mechanism control unit for appropriately positioning the object 5 to be inspected. A command is issued to the rotary base 12 through 4221.

被検査体5を透過したX線は、二次元検出器20で検出される。二次元検出器20は、検出したX線の情報である投影像をデジタルデータ化し、デジタルデータの投影データを、大容量の磁気記録装置等からなり撮像記憶手段として機能する投影像記憶部45に送出する。二次元検出器20の傾斜角(回転角)及びX軸方向への移動等の制御は、制御操作卓44から機構制御部43を通じて行なわれる。   X-rays that have passed through the inspection object 5 are detected by the two-dimensional detector 20. The two-dimensional detector 20 converts the projection image, which is detected X-ray information, into digital data, and the projection data of the digital data is stored in a projection image storage unit 45 that is composed of a large-capacity magnetic recording device or the like and functions as an imaging storage unit. Send it out. Control of the tilt angle (rotation angle) and movement of the two-dimensional detector 20 in the X-axis direction is performed from the control console 44 through the mechanism control unit 43.

送出された投影像は(制御操作卓44からの指示により、)、撮像時の角度位相や角度変位、初期角度位相、X線強度等の情報と対応して、投影像記憶部45に保存される。この投影像記憶部45は、投影データを記録できる記録容量を有するものであればこれに限るものではなく、光記録媒体や半導体メモリ等のリムーバブルな記録媒体などを含め、さまざまなものを適用することができる。   The sent projection image (according to an instruction from the control console 44) is stored in the projection image storage unit 45 in correspondence with information such as the angle phase, angular displacement, initial angle phase, and X-ray intensity at the time of imaging. The The projection image storage unit 45 is not limited to this as long as it has a recording capacity capable of recording projection data, and various types of projection image storage unit 45 including an optical recording medium and a removable recording medium such as a semiconductor memory are applied. be able to.

そして、投影像記憶部45に記憶された投影データは、これと接続された再構成手段として機能する再構成計算用計算機46に送出される。再構成計算用計算機46では入力された投影データより被検査体5の内部構造データを再構成計算し、再構成した内部構造データ(再構成データ)を投影像記憶部45あるいは外部記録媒体等に記憶する。また、図示しない表示メモリを介して表示手段である再構成結果表示装置47に出力し、CRT(Cathode Ray Tube)モニタ等のディスプレイに表示する。   And the projection data memorize | stored in the projection image memory | storage part 45 are sent out to the computer 46 for a reconstruction calculation which functions as a reconstruction means connected with this. The reconstruction calculation computer 46 reconstructs the internal structure data of the inspection object 5 from the input projection data, and stores the reconstructed internal structure data (reconstruction data) in the projection image storage unit 45 or an external recording medium. Remember. Further, it is output to a reconstruction result display device 47 as a display means via a display memory (not shown) and displayed on a display such as a CRT (Cathode Ray Tube) monitor.

再構成計算用計算機46は、投影データを収集して内部構造データを再構成できるとともに所定の制御を行なう演算・制御能力があればよく、投影像記憶部45とともに制御操作卓44内に格納してもよい。また、再構成結果表示装置47は制御操作卓44の表示手段と共用であってもよい。   The computer 46 for reconstruction calculation only needs to be able to collect projection data and reconstruct the internal structure data and have a calculation / control capability for performing predetermined control, and stores it in the control console 44 together with the projection image storage unit 45. May be. The reconstruction result display device 47 may be shared with the display means of the control console 44.

以上のような構成により、被検査体5の内部構造データが再構成結果表示装置47に入力されて内部構造が表示される。オペレータ(作業者)は、再構成結果表示装置47に表示された内部構造により、多層膜板や微小な電子部品素子等の被検査体内部のひび割れ及び断線など、欠陥の有無もしくはその状態を視覚的に確認することができる。   With the configuration described above, the internal structure data of the device under test 5 is input to the reconstruction result display device 47 and the internal structure is displayed. The operator (operator) visually recognizes the presence or absence of defects such as cracks and breaks in the inspected object such as multilayer film plates and minute electronic component elements by the internal structure displayed on the reconstruction result display device 47. Can be confirmed.

次に、上述したX線断層撮像装置による撮像処理について説明する。
まず、本発明の一実施の形態例として、図5〜図7を参照して、被検査体の撮像領域全部を、擬似焦点3による第2照射野3aの影響を受けない第1照射野2aと第2照射野3aの間に移動して、被検査体の投影データを取得する場合について説明する。
Next, imaging processing by the above-described X-ray tomographic imaging apparatus will be described.
First, as an embodiment of the present invention, referring to FIGS. 5 to 7, the entire imaging region of the object to be inspected is not affected by the second irradiation field 3 a by the pseudo-focus 3. A case where the projection data of the object to be inspected is acquired by moving between the first irradiation field 3a and the second irradiation field 3a will be described.

図5に示すように、X線管1は、ターゲット上のX線焦点2を頂点とし、その中心軸(円錐の回転軸)がカソードから放出される熱電子流と略同軸(X軸)上にある円錐形状にX線第1照射野2aを形成する。被検査体5回転軸及び二次元検出器20が各々移動前の位置103及び102にあるとき、すなわち従来、X線管1の焦点2から、X線管1カソードより放出される熱電子流(X軸)に略直交する検出面を初期姿勢とする2次元検出器20へ降ろした垂線と直角に交わる被検査体5回転軸(初期回転軸)を中心として、被検査体回転機構に載置した被検査体5をX線管1と二次元検出器20の間で回転させ、その拡大投影データを取得している。この場合、被検査体5の投影像が、擬似焦点3による第2照射野の影響を受ける。   As shown in FIG. 5, the X-ray tube 1 has an X-ray focal point 2 on the target as an apex, and its central axis (conical rotation axis) is substantially coaxial (X axis) with the thermoelectron flow emitted from the cathode. The first X-ray irradiation field 2a is formed in a conical shape. When the rotation axis of the inspection object 5 and the two-dimensional detector 20 are at the positions 103 and 102 before the movement, that is, conventionally, from the focal point 2 of the X-ray tube 1, the thermoelectron flow emitted from the cathode of the X-ray tube 1 ( Placed on the inspection object rotation mechanism centering on the rotation axis (initial rotation axis) of the inspection object 5 that intersects at right angles to the perpendicular drawn to the two-dimensional detector 20 having the detection surface substantially orthogonal to the X axis) as the initial posture. The to-be-inspected object 5 is rotated between the X-ray tube 1 and the two-dimensional detector 20, and the enlarged projection data is acquired. In this case, the projected image of the inspection object 5 is affected by the second irradiation field by the pseudo focal point 3.

図6は、再構成画像断面図の一例を示したものである。図6に示すように、被検査体5回転軸及び二次元検出器20が各々位置103及び102にあるとき、再構成画像断面に2重画像が生じていた。   FIG. 6 shows an example of a reconstructed image sectional view. As shown in FIG. 6, when the rotation axis of the object to be inspected 5 and the two-dimensional detector 20 are at the positions 103 and 102, a double image is generated in the reconstructed image section.

本例では、X線管1のカソードから放出される熱電子流の流れ(X軸)に直交するY軸方向へX軸と直行する面内で被検査体5回転軸を位置5aへ微小距離移動させ、かつX線管1のX線焦点2から微小移動後の被検査体5回転軸へ降ろした垂線と直角を成すよう2次元検出器20を角度θ傾斜させ位置20aへ移動させる。それにより、X線管1ターゲット部材上の本焦点2座標よりカソード側(後方)でX軸と略同軸上に形成される擬似焦点3による弱く細い制動放射線の円錐状第2照射野3aを2次元検出器20が完全に回避するか、又は2次元検出器20の端が上記細い第2照射野3aに入っても、被検査体5投影51の占める領域と干渉しない条件で、被検査体全身の投影データを欠けることなく取得できる。そして、取得した各角度変位毎の投影像を再構成して、被検査体の再構成画像を得る。   In this example, the rotation axis of the object to be inspected 5 is a minute distance to the position 5a in a plane perpendicular to the X axis in the Y axis direction perpendicular to the flow of the thermoelectron flow (X axis) emitted from the cathode of the X-ray tube 1. The two-dimensional detector 20 is tilted by an angle θ and moved to a position 20a so as to make a right angle to a perpendicular line dropped from the X-ray focal point 2 of the X-ray tube 1 to the rotation axis 5 of the object to be inspected after the minute movement. Accordingly, the cone-shaped second irradiation field 3a of weak and thin bremsstrahlung by the pseudo focal point 3 formed on the cathode side (rear side) and substantially coaxial with the X axis on the cathode side (rear side) on the X-ray tube 1 target member 2 is formed. Even if the dimension detector 20 completely avoids or the end of the two-dimensional detector 20 enters the thin second irradiation field 3a, the object under inspection does not interfere with the area occupied by the projection 51 of the object under inspection 5. Full-body projection data can be acquired without loss. Then, the acquired projection image for each angular displacement is reconstructed to obtain a reconstructed image of the object to be inspected.

このように、被検査体5回転軸をX線管1のカソードより放出される熱電子流(X軸)に対して直角(Y軸方向)に移動させ、かつ二次元検出器20を焦点2及び被検査体5回転軸を結ぶ直線と直交するよう傾斜移動させ、そして、擬似焦点3による第2照射野3aの影響を受けない第1照射野2aと第2照射野3aの間の領域にて二次元検出器20に被検査体5の全身投影51を収めることができる。これにより、第2照射野3aから被検査体が完全に離脱しその影響が皆無となるので、図7に示すように2重画像が消滅し、極めて品位の高い再構成画像を得ることができる。   In this way, the rotational axis of the object to be inspected 5 is moved at right angles (Y axis direction) to the thermal electron flow (X axis) emitted from the cathode of the X-ray tube 1, and the two-dimensional detector 20 is focused on the focal point 2. And the object to be inspected 5 are inclined so as to be orthogonal to the straight line connecting the rotation axes, and the region between the first irradiation field 2a and the second irradiation field 3a is not affected by the second irradiation field 3a by the pseudo-focus 3 Thus, the whole-body projection 51 of the subject 5 can be accommodated in the two-dimensional detector 20. As a result, the object to be inspected is completely detached from the second irradiation field 3a and the influence thereof is completely eliminated, so that the double image disappears as shown in FIG. 7, and a reconstructed image with extremely high quality can be obtained. .

なお、この例では、被検査体5を、擬似焦点3による第2照射野3aの影響を受けない第1照射野2aと第2照射野3aの間に移動したために、被検査体5の投影像全体を二次元検出器20の検出面に納めるために、被検査体5と焦点2との距離を移動前の値20mmよりも大きくとる必要が生じる。そのため、移動前と移動後において、投影像の拡大率は、(602mm/20mm)>(610mm/44mm)となり、移動後の投影像の拡大率が下がることがある。   In this example, since the inspection object 5 is moved between the first irradiation field 2a and the second irradiation field 3a that are not affected by the second irradiation field 3a due to the pseudo focal point 3, the projection of the inspection object 5 is performed. In order to fit the entire image on the detection surface of the two-dimensional detector 20, the distance between the object to be inspected 5 and the focal point 2 needs to be larger than the value 20 mm before the movement. Therefore, before and after the movement, the magnification ratio of the projected image becomes (602 mm / 20 mm)> (610 mm / 44 mm), and the magnification ratio of the projected image after the movement may decrease.

次に、本発明の他の実施の形態例として、被検査体5の投影を、被検査体5が第2照射野3aの影響を全く受けない位置で2分割撮像して拡大投影を得る場合について、図8を参照して説明する。   Next, as another embodiment of the present invention, when the projection of the object to be inspected 5 is divided into two at a position where the object to be inspected 5 is not affected by the second irradiation field 3a, and an enlarged projection is obtained. Will be described with reference to FIG.

図2〜図4に示す回転基台12を移動させるための駆動機構、及び二次元検出器20を旋回又は移動させるための駆動機構を利用し、被検査体5の領域を分割して撮像することで特定部位を高い空間分解能で観察することができる(特願2003−197383号参照。)。
例えば、本出願人が先に出願した「特願2003−197383号」によれば、被検査体の一部分が二次元検出器に投影されるよう回転基台及び/又は二次元検出器の位置を調整し、この被検査体の一部分を各角度位相毎に撮像して例えば左半分の部分投影像群を得、次に被検査体の残り部分が二次元検出器に投影されるよう回転基台及び/又は二次元検出器の位置を調整し、この被検査体の残り部分を各変位毎に撮像して右半分の部分投影像群を得、これら左半分及び右半分の部分投影像群から、普通に撮像された投影像と比して約2倍の被検査体全体の拡大内部構造データを算出することができる。
なお左右半分ずつの2分割でなく、左右半分をさらに分割し被検査体を4分割した投影像撮像により約4倍の拡大率の拡大内部構造データを得ることもできる。
The drive mechanism for moving the rotary base 12 shown in FIGS. 2 to 4 and the drive mechanism for turning or moving the two-dimensional detector 20 are used to divide and image the region of the inspection object 5. Thus, the specific part can be observed with high spatial resolution (see Japanese Patent Application No. 2003-197383).
For example, according to “Japanese Patent Application No. 2003-197383” filed earlier by the present applicant, the position of the rotary base and / or the two-dimensional detector is set so that a part of the inspected object is projected onto the two-dimensional detector. Adjusting and imaging a part of the object to be inspected for each angle phase to obtain a partial projection image group of the left half, for example, and then rotating the base so that the remaining part of the object to be inspected is projected onto the two-dimensional detector And / or adjusting the position of the two-dimensional detector, and imaging the remaining part of the object to be inspected for each displacement to obtain a right half partial projection image group, from these left half and right half partial projection image groups. Thus, it is possible to calculate the enlarged internal structure data of the entire object to be inspected, which is about twice as large as the projection image that is normally captured.
Note that the enlarged internal structure data having an enlargement ratio of about 4 times can be obtained by projecting a captured image in which the left and right halves are further divided and the object to be inspected is divided into four, instead of dividing the left and right halves into two.

上述のように、擬似焦点3による投影データへの影響を回避し、さらに所望の拡大率で被検査体5の投影を取得しようとすると、被検査体5の全身投影データが2次元検出器20一枚に入りきらない場合がある。そこで、上述の被検査体を2分割撮像する方法を応用する。   As described above, when it is attempted to avoid the influence of the pseudo focal point 3 on the projection data and to obtain the projection of the inspection object 5 at a desired magnification, the whole-body projection data of the inspection object 5 is converted into the two-dimensional detector 20. It may not fit in one piece. Therefore, the above-described method of imaging the subject to be divided into two parts is applied.

図8に示すように、X軸に対して線対称でかつ被検査体5が擬似焦点3による細い第2照射野3aを完全に離脱するX軸と直行する面内でY軸上2箇所の座標61a,61bへ被検査体5回転軸を移動させる。次に、それぞれの位置の被検査体5回転軸へX線本焦点2から降ろした垂線63a,63bと直角に交わるように2次元検出器20を角度θ傾斜させて2箇所の位置62a,62bへ移動させる。そして、各々の位置で被検査体5回転軸を含む被検査体5投影データを2分割で取得した後、それらを合成し、一枚の被検査体5全身投影データとする。そして、各角度変位毎の合成投影像を再構成して、被検査体の再構成画像を得る。   As shown in FIG. 8, two points on the Y axis are in a plane perpendicular to the X axis that is line symmetric with respect to the X axis and the test object 5 completely leaves the thin second irradiation field 3a by the pseudo focal point 3. The rotation axis of the inspection object 5 is moved to the coordinates 61a and 61b. Next, the two-dimensional detector 20 is inclined at an angle θ so as to intersect at right angles to the perpendiculars 63a and 63b dropped from the X-ray main focal point 2 to the rotation axis of the inspection object 5 at the respective positions, and the two positions 62a and 62b. Move to. Then, after inspecting object 5 projection data including the rotation axis of the inspecting object 5 at each position is obtained in two parts, they are combined to obtain a single inspecting object 5 whole body projection data. Then, a composite projection image for each angular displacement is reconstructed to obtain a reconstructed image of the object to be inspected.

図8に示すように、被検査体5の半分の領域のみ投影を取得すればよいから、焦点2から移動後の被検査体5回転軸までの距離dOF1を短くできる。したがって、被検査体5の移動前後における拡大率は、(dFD/dOF)<(dFD1/dOF1)であるから、移動後の投影像の拡大率が上がる。
したがって、本例によれば、普通に撮像された投影像と比して約2倍の被検査体全体の拡大内部構造データを得ることができる。なお、本例においても、特願2003−197383号と同様に、左右半分をさらに分割し被検査体を4分割した投影像撮像により約4倍の拡大率の拡大内部構造データを得ることも可能である。
As shown in FIG. 8, only the half area of the object to be inspected 5 needs to be obtained, so the distance dOF1 from the focal point 2 to the axis of rotation of the object to be inspected 5 after movement can be shortened. Accordingly, since the magnification ratio before and after the movement of the inspection object 5 is (dFD / dOF) <(dFD1 / dOF1), the magnification ratio of the projected image after the movement is increased.
Therefore, according to this example, it is possible to obtain enlarged internal structure data of the entire object to be inspected that is approximately twice that of a normally captured projection image. In this example as well, as in Japanese Patent Application No. 2003-197383, it is possible to obtain enlarged internal structure data with an enlargement ratio of about 4 times by taking a projection image obtained by further dividing the left and right halves and dividing the object to be inspected into four. It is.

次に、本発明のさらに他の実施の形態例として、被検査体5の投影のうち被検査体回転軸を含まない50%弱が第2照射野3aの影響を受ける場合の撮像方法について、図9を参照して説明する。   Next, as still another embodiment of the present invention, an imaging method in a case where a little less than 50% of the projection of the inspection object 5 does not include the inspection object rotation axis is affected by the second irradiation field 3a. This will be described with reference to FIG.

上述のように、擬似焦点3による投影データへの影響を回避し、さらに所望の拡大率で被検査体5の投影を取得しようとすると、被検査体5の全身投影データが2次元検出器20一枚に入りきらない場合がある。そこで、X軸に対して線対称でかつ被検査体5回転軸を含む少なくとも50%以上の投影が擬似焦点3による細い第2照射野3aを離脱するX軸に直行する面内のY軸上2箇所の座標71a,71bへ被検査体5回転軸を移動させ、それぞれの位置の被検査体5回転軸へX線本焦点2から降ろした垂線73a,73bと直角に交わるように2次元検出器20を角度θ傾斜させて2箇所の位置72a,72bへ移動させる。   As described above, when it is attempted to avoid the influence of the pseudo focal point 3 on the projection data and to obtain the projection of the inspection object 5 at a desired magnification, the whole-body projection data of the inspection object 5 is converted into the two-dimensional detector 20. It may not fit in one piece. Therefore, on the Y axis in the plane orthogonal to the X axis, which is axisymmetric with respect to the X axis and at least 50% or more including the rotation axis of the inspection object 5 leaves the thin second irradiation field 3a by the pseudo focal point 3. Two-dimensional detection is performed so that the rotation axis of the inspection object 5 is moved to two coordinates 71a and 71b, and perpendicular lines 73a and 73b dropped from the X-ray focal point 2 to the inspection object 5 rotation axis at the respective positions. The container 20 is moved to the two positions 72a and 72b by inclining the angle θ.

そして、各々の位置で被検査体5回転軸を含む被検査体5投影データを2分割で取得した後、それらのうちの擬似焦点3aによる細い第2照射野3aの影響を受けない部位の投影データのみを切り取って合成し、一枚の被検査体5全身投影データとする。すなわち、X線焦点2からそれぞれの位置の被検査体5回転軸へ降ろした垂線73a,73bと、それぞれの位置における被検査体5の二次元検出器20端部付近への投影74a,74bに挟まれた領域の投影データを取得する。そして、各角度変位毎の合成投影像を再構成して、被検査体の再構成画像を得る。   Then, after the inspected object 5 projection data including the rotation axis of the inspected object 5 at each position is obtained in two parts, the projection of the part not affected by the thin second irradiation field 3a by the pseudo focal point 3a among them is obtained. Only the data is cut out and combined to obtain a single inspected object 5 whole body projection data. That is, perpendicular lines 73a and 73b dropped from the X-ray focal point 2 to the rotation axis of the inspection object 5 at each position, and projections 74a and 74b near the end of the two-dimensional detector 20 of the inspection object 5 at each position. Projection data of the sandwiched area is acquired. Then, a composite projection image for each angular displacement is reconstructed to obtain a reconstructed image of the object to be inspected.

図9の例においても、焦点2から移動後の被検査体5回転軸までの距離dOF1を短くできるので、被検査体5の移動前後における拡大率は、(dFD/dOF)<(dFD1/dOF1)となり、図8の例と同様の効果が得られる。さらに、図9の例においては、図8と比べて二次元検出器20の傾斜角度が少なくて済むという利点がある。   Also in the example of FIG. 9, the distance dOF1 from the focal point 2 to the rotation axis of the inspection object 5 after the movement can be shortened, so that the enlargement ratio before and after the movement of the inspection object 5 is (dFD / dOF) <(dFD1 / dOF1). Thus, the same effect as in the example of FIG. 8 can be obtained. Furthermore, the example of FIG. 9 has an advantage that the inclination angle of the two-dimensional detector 20 is smaller than that of FIG.

なお、図9の例では、図8に示す被検査体5の180度反対側の投影が第2照射野3aの影響を受けていないが、画像を合成して完全な投影を得る方法は、図8の例における合成方法を準用することができる。   In the example of FIG. 9, the projection on the opposite side of 180 degrees of the inspected object 5 shown in FIG. 8 is not affected by the second irradiation field 3a. The synthesis method in the example of FIG. 8 can be applied mutatis mutandis.

上述実施の形態によれば、例えば、被検査体のケース部分が吸収係数の高い金属であって、その内部が軽元素で満たされているような場合、微小焦点を発生するX線管を搭載したX線断層撮装置では、擬似焦点による2重の画像が非破壊解析を非常に困難なものにする。これは焦点サイズが例えばサブミクロンメートルで空間分解能の高い再構成画像が得られるX線管、例えば開放型X線管を用いた場合の明らかなデメリットである。
しかしながら、本発明の撮像方法によれば、擬似焦点によるX線照射野の影響を受けないので、この問題は完全に解消できる。また被検査体の全身投影を欠けることなく素直に取得する撮像方法なので、極めて品位の高い再構成画像を得ることができる。
According to the above-described embodiment, for example, when the case portion of the object to be inspected is a metal having a high absorption coefficient and the inside thereof is filled with a light element, the X-ray tube that generates a micro focus is mounted. In the X-ray tomography apparatus, the double image by the pseudo focus makes the non-destructive analysis very difficult. This is an obvious demerit when using an X-ray tube, for example, an open X-ray tube, which has a focal size of, for example, submicrometer and can obtain a reconstructed image with high spatial resolution.
However, according to the imaging method of the present invention, this problem can be completely solved because it is not affected by the X-ray irradiation field due to the pseudo focus. In addition, since the imaging method can be obtained in a straightforward manner without losing the whole-body projection of the object to be inspected, a reconstructed image with extremely high quality can be obtained.

なお、本発明は、上述した各実施の形態例に限定されるものではなく、その他本発明の要旨を逸脱しない範囲において、種々の変形、変更が可能であることは勿論である。   Note that the present invention is not limited to the above-described embodiments, and various modifications and changes can be made without departing from the scope of the present invention.

本発明の概念を表した模式図である。It is a schematic diagram showing the concept of the present invention. 本発明の一実施の形態例によるX線断層撮像装置の概略上面図である。1 is a schematic top view of an X-ray tomographic imaging apparatus according to an embodiment of the present invention. 本発明の一実施の形態例によるX線断層撮像装置の概略側面図である。1 is a schematic side view of an X-ray tomographic imaging apparatus according to an embodiment of the present invention. 本発明の一実施の形態例によるX線断層撮像装置のブロック構成図である。1 is a block configuration diagram of an X-ray tomographic imaging apparatus according to an embodiment of the present invention. 本発明の一実施の形態例の説明に供する図である。It is a figure where it uses for description of one embodiment of this invention. 従来の再構成Z軸断面の一例を示した図である。It is the figure which showed an example of the conventional reconstruction Z-axis cross section. 本発明の一実施の形態例による再構成Z軸断面の一例を示した図である。It is the figure which showed an example of the reconstruction Z-axis cross section by the example of 1 embodiment of this invention. 本発明の他の実施の形態例の説明に供する図である。It is a figure where it uses for description of the other embodiment of this invention. 本発明のさらに他の実施の形態例の説明に供する図である。It is a figure where it uses for description of the further another example of embodiment of this invention. X線管の一例の概略断面図である。It is a schematic sectional drawing of an example of an X-ray tube. 図10の要部の拡大図である。It is an enlarged view of the principal part of FIG. 図11のX−X線に沿う断面図である。It is sectional drawing which follows the XX line of FIG. 従来例の説明に供する図である。It is a figure where it uses for description of a prior art example. A,Bは、従来の撮像方法による焦点と擬似焦点が直線上にあるときの画像例を示す図である。A and B are diagrams showing examples of images when a focal point and a pseudo focal point according to a conventional imaging method are on a straight line. A,Bは、従来の撮像方法による焦点と擬似焦点が直線上にないときの画像例を示す図である。A and B are diagrams illustrating an example of an image when the focus and the pseudo focus by the conventional imaging method are not on a straight line.

符号の説明Explanation of symbols

1…X線管、2…焦点、2a…第1照射野、3…擬似焦点、3a…第2照射野、4…円錐中心軸(X軸)、5…被検査体、12…回転基台、20…2次元検出器、42,43…機構制御部、44…制御操作卓、45…投影像記憶部、46…再構成計算用計算機、47…再構成結果表示装置   DESCRIPTION OF SYMBOLS 1 ... X-ray tube, 2 ... Focus, 2a ... 1st irradiation field, 3 ... Pseudo-focus, 3a ... 2nd irradiation field, 4 ... Conical center axis | shaft (X axis), 5 ... Test object, 12 ... Rotation base , 20 ... Two-dimensional detector, 42, 43 ... Mechanism control unit, 44 ... Control console, 45 ... Projection image storage unit, 46 ... Computer for reconstruction calculation, 47 ... Reconstruction result display device

Claims (6)

ターゲット上の第1焦点を頂点とし、その中心軸がカソードから放出される電子流と略同軸上にある円錐形状に第1照射野を形成するX線源の前記第1焦点から、前記カソードより放出される電子流に略直交する検出面を初期姿勢とする2次元検出器へ降ろした垂線と直角に交わる被検査体回転軸を中心として、被検査体回転機構に載置した被検査体をX線源と二次元検出器の間で回転させ、前記被検査体の投影データを取得するX線断層撮像装置において、
前記X線源の前記第1焦点から初期姿勢の2次元検出器へ降ろした垂線に沿う第1方向に直交する面内で被検査体回転軸を所定距離移動させる被検査体移動手段と、
前記X線源の前記第1焦点から所定距離移動後の被検査体回転軸へ降ろした垂線と直角を成すよう2次元検出器を傾斜移動させる二次元検出器移動手段とを備え、
前記X線源の前記第1焦点よりカソード側で電子収束筒に衝突した電子が放射して前記第1方向と同軸上に形成される、第2焦点による第2照射野の影響を受けない位置で、前記第1照射野により前記被検査体の全部又は特定部分の投影像を取得する
X線断層撮像装置。
From the first focal point of the X-ray source that forms the first irradiation field in a conical shape whose apex is the first focal point on the target and whose central axis is substantially coaxial with the electron flow emitted from the cathode, from the cathode A test object placed on a test object rotation mechanism centered on a test object rotation axis that intersects with a perpendicular line perpendicular to a two-dimensional detector whose initial position is a detection surface substantially orthogonal to the emitted electron flow. In an X-ray tomographic imaging apparatus that rotates between an X-ray source and a two-dimensional detector and acquires projection data of the inspection object,
Inspected object moving means for moving the inspected object rotation axis by a predetermined distance in a plane orthogonal to the first direction along the perpendicular line drawn from the first focus of the X-ray source to the two-dimensional detector in the initial posture;
A two-dimensional detector moving means for tilting and moving the two-dimensional detector so as to form a right angle with a perpendicular drawn to the rotation axis of the inspection object after moving a predetermined distance from the first focal point of the X-ray source;
The electrons collide with the electron converging tube at the first focal point than the cathode side of the X-ray source is formed by radiating the first direction and on the same axis, it is not affected by the second irradiation field according to the second focal point An X-ray tomographic imaging apparatus that obtains a projection image of all or a specific portion of the subject to be inspected by the first irradiation field at a position.
前記被検査体移動手段は、前記第1方向に対して線対称かつ前記被検査体が前記第2焦点による第2照射野を離脱する、前記第1方向と直交する面内で第2方向上2箇所の座標へ被検査体回転軸を移動させ、
また、前記二次元検出器移動手段は、各位置の被検査体に対し、前記第1焦点から各位置の被検査体回転軸へ降ろした垂線と直角に交わるよう前記2次元検出器を2箇所の位置で傾斜移動させ、
各々の位置で被検査体回転軸を含む前記被検査体の投影データを2分割で取得した後、分割された2つの投影データを合成し、一枚の被検査体投影データとする
請求項1に記載のX線断層撮像装置。
The inspected object moving means is line-symmetric with respect to the first direction, and the inspected object leaves the second irradiation field by the second focus, and is in a second direction within a plane orthogonal to the first direction. Move the object rotation axis to two coordinates,
Further, the two-dimensional detector moving means moves the two-dimensional detector at two positions so as to intersect at right angles to the perpendicular line dropped from the first focus to the inspection object rotation axis at each position with respect to the inspection object at each position. Tilt and move at the position
2. The projection data of the object to be inspected including the rotation axis of the object to be inspected at each position is obtained in two divisions, and then the two divided projection data are combined to form one piece of object inspection data. X-ray tomographic imaging apparatus according to claim 1.
前記被検査体移動手段は、前記第1方向に対して線対称かつ前記被検査体回転軸を含む少なくとも50%以上の投影が前記第2焦点による前記第2照射野を離脱する、前記第1方向に直交する面内の第2方向上2箇所の座標へ前記被検査体回転軸を移動させ、
また、前記二次元検出器移動手段は、前記第1焦点から各位置の被検査体回転軸へ降ろした垂線と直角に交わるように前記2次元検出器を2箇所の位置で傾斜移動させ、
各々の位置で被検査体回転軸を含む前記被検査体の投影データを2分割で取得した後、それぞれ前記第2焦点による第2照射野の影響を受けない部位の投影データのみを抽出して合成し、一枚の被検査体投影データとする
請求項1に記載のX線断層撮像装置。
The inspected object moving means is configured such that at least 50% or more of projections including line symmetry with respect to the first direction and including the inspected object rotation axis leave the second irradiation field by the second focus. The test object rotation axis is moved to two coordinates on the second direction in a plane perpendicular to the direction,
The two-dimensional detector moving means tilts and moves the two-dimensional detector at two positions so as to intersect at right angles to a perpendicular line dropped from the first focal point to the rotation axis of the inspection object at each position.
After the projection data of the inspection object including the rotation axis of the inspection object at each position is obtained in two parts, only the projection data of the part not affected by the second irradiation field by the second focus is extracted. The X-ray tomographic imaging apparatus according to claim 1, wherein the X-ray tomographic imaging apparatus is synthesized and used as a single inspected object projection data.
ターゲット上の第1焦点を頂点とし、その中心軸がカソードから放出される電子流と略同軸上にある円錐形状に第1照射野を形成するX線源の前記焦点から、前記カソードより放出される電子流に略直交する検出面を初期姿勢とする2次元検出器へ降ろした垂線と直角に交わる被検査体回転軸を中心として、被検査体回転機構に載置した被検査体をX線源と二次元検出器の間で回転させ、前記被検査体の投影データを取得するX線断層撮像方法において、
前記X線源の前記第1焦点から初期姿勢の2次元検出器へ降ろした垂線に沿う第1方向に直交する面内で被検査体回転軸を所定距離移動させ、
また、前記X線源の前記第1焦点から所定距離移動後の被検査体回転軸へ降ろした垂線と直角を成すよう2次元検出器を傾斜移動させ、
そして、前記X線源の前記第1焦点よりカソード側で電子収束筒に衝突した電子が放射して前記第1方向と同軸上に形成される、第2焦点による第2照射野の影響を受けない位置で、前記第1照射野により前記被検査体の全部又は特定部分の投影像を取得する
X線断層撮像方法。
It is emitted from the cathode from the focal point of the X-ray source that forms the first irradiation field in a conical shape having the first focal point on the target as the apex and the central axis of which is substantially coaxial with the electron flow emitted from the cathode. X-rays of the inspection object placed on the inspection object rotation mechanism centering on the inspection object rotation axis that intersects perpendicularly with the perpendicular drawn to the two-dimensional detector whose initial posture is the detection surface substantially orthogonal to the electron flow. In an X-ray tomographic imaging method of rotating between a source and a two-dimensional detector and acquiring projection data of the inspection object,
Moving the rotation axis of the object to be inspected by a predetermined distance in a plane perpendicular to the first direction along the perpendicular line dropped from the first focus of the X-ray source to the two-dimensional detector in the initial posture;
Further, the two-dimensional detector is tilted and moved so as to form a right angle with a perpendicular drawn from the first focal point of the X-ray source to the rotation axis of the inspection object after moving a predetermined distance,
Then, the electrons collide with the electron converging tube at the first focal point than the cathode side of the X-ray source is formed by radiating the first direction and on the same axis, the influence of the second irradiation field according to the second focal point An X-ray tomographic imaging method for acquiring a projection image of all or a specific portion of the subject to be inspected by the first irradiation field at a position not received.
前記第1方向に対して線対称かつ前記被検査体が前記第2焦点による第2照射野を離脱する、前記第1方向と直交する面内で第2方向上2箇所の座標へ被検査体回転軸を移動させ、
また、各位置の被検査体に対し、第1焦点から各位置の被検査体回転軸へ降ろした垂線と直角に交わるよう前記2次元検出器を2箇所の位置で傾斜移動させ、
各々の位置で被検査体回転軸を含む前記被検査体の投影データを2分割で取得した後、分割された2つの投影データを合成し、一枚の被検査体投影データとする
請求項4に記載のX線断層撮像方法。
Inspected to two coordinates in the second direction within a plane orthogonal to the first direction, the line to be inspected being symmetrical with respect to the first direction, and leaving the second irradiation field by the second focus. Move the rotation axis,
In addition, the two-dimensional detector is tilted and moved at two positions so as to intersect at right angles to the perpendicular drawn from the first focal point to the test object rotation axis at each position with respect to the test object at each position,
5. The projection data of the object to be inspected including the rotation axis of the object to be inspected at each position is obtained in two parts, and then the two divided projection data are synthesized to form one piece of object data to be inspected. An X-ray tomographic imaging method according to claim 1.
前記第1方向に対して線対称かつ前記被検査体回転軸を含む少なくとも50%以上の投影が前記第2焦点による前記第2照射野を離脱する、前記第1方向に直交する面内の第2方向上2箇所の座標へ前記被検査体回転軸を移動させ、
また、第1焦点から各位置の被検査体回転軸へ降ろした垂線と直角に交わるように前記2次元検出器を2箇所の位置で傾斜移動させ、
各々の位置で被検査体回転軸を含む前記被検査体の投影データを2分割で取得した後、それぞれ第2焦点による第2照射野の影響を受けない部位の投影データのみを抽出して合成し、一枚の被検査体投影データとする
請求項4に記載のX線断層撮像方法。
A projection in the plane perpendicular to the first direction in which at least 50% or more of the projections that are line-symmetric with respect to the first direction and include the rotation axis of the inspection object leave the second irradiation field by the second focus. The test object rotation axis is moved to two coordinates in two directions,
In addition, the two-dimensional detector is tilted and moved at two positions so as to intersect at right angles to the perpendicular line dropped from the first focal point to the rotation axis of the inspection object at each position,
After the projection data of the inspection object including the rotation axis of the inspection object at each position is obtained in two parts, only the projection data of the part not affected by the second irradiation field by the second focus is extracted and combined. The X-ray tomographic imaging method according to claim 4, wherein one piece of inspected object projection data is used.
JP2005077964A 2005-03-17 2005-03-17 X-ray tomographic imaging apparatus and X-ray tomographic imaging method Expired - Fee Related JP4765354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005077964A JP4765354B2 (en) 2005-03-17 2005-03-17 X-ray tomographic imaging apparatus and X-ray tomographic imaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005077964A JP4765354B2 (en) 2005-03-17 2005-03-17 X-ray tomographic imaging apparatus and X-ray tomographic imaging method

Publications (2)

Publication Number Publication Date
JP2006258668A JP2006258668A (en) 2006-09-28
JP4765354B2 true JP4765354B2 (en) 2011-09-07

Family

ID=37098092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005077964A Expired - Fee Related JP4765354B2 (en) 2005-03-17 2005-03-17 X-ray tomographic imaging apparatus and X-ray tomographic imaging method

Country Status (1)

Country Link
JP (1) JP4765354B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5138279B2 (en) * 2007-06-15 2013-02-06 東芝Itコントロールシステム株式会社 Computed tomography equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3191554B2 (en) * 1994-03-18 2001-07-23 株式会社日立製作所 X-ray imaging device
JP4261691B2 (en) * 1999-07-13 2009-04-30 浜松ホトニクス株式会社 X-ray tube
JP4126484B2 (en) * 2002-06-10 2008-07-30 株式会社島津製作所 X-ray equipment
JP2005037158A (en) * 2003-07-15 2005-02-10 Sony Corp Imaging method and system for computerized tomography
JP4389781B2 (en) * 2004-12-28 2009-12-24 株式会社島津製作所 X-ray generator

Also Published As

Publication number Publication date
JP2006258668A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
US7130375B1 (en) High resolution direct-projection type x-ray microtomography system using synchrotron or laboratory-based x-ray source
US7099432B2 (en) X-ray inspection apparatus and X-ray inspection method
CN102116747B (en) Scanning device for ray bundle for backscatter imaging-used ray bundle and method
US6965662B2 (en) Nonplanar x-ray target anode for use in a laminography imaging system
JP2000046760A (en) X-ray tomographic surface inspection apparatus
JP5056284B2 (en) X-ray tomographic imaging apparatus and X-ray tomographic imaging method
JP5858702B2 (en) Compound charged particle beam system
JP4765354B2 (en) X-ray tomographic imaging apparatus and X-ray tomographic imaging method
JP2006047206A (en) Compound type microscope
JP2023135623A (en) Method of generating data for reconstructing volume in flat object using x-ray system
JP4894359B2 (en) X-ray tomographic imaging apparatus and X-ray tomographic imaging method
JP4788272B2 (en) X-ray tomographic imaging apparatus and X-ray tomographic imaging method
JP5125297B2 (en) X-ray inspection apparatus and X-ray inspection method
JP2005292047A (en) X-ray tomographic imaging device, and x-ray tomographic imaging method
JP2007170926A (en) X-ray inspection device, abnormality display device for tomographic image, x-ray inspection method, abnormality display method for tomographic image, program and recording medium
JP2006266754A (en) Method and system for x-ray tomographic imaging
JP4926645B2 (en) Radiation inspection apparatus, radiation inspection method, and radiation inspection program
JP2005134213A (en) X-ray tomographic method and device
JP5138279B2 (en) Computed tomography equipment
JPH05322802A (en) X-ray ct device
JPH0675042B2 (en) X-ray tomography system
JP2004333310A (en) X-ray ct scanner
JP2713287B2 (en) X-ray tomography method and apparatus
US20240099682A1 (en) X-ray phase imaging apparatus and display method of preview image in x-ray phase imaging apparatus
WO2021215217A1 (en) Inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees