JP4764526B2 - Permanent magnet and manufacturing method thereof, permanent magnet for motor and permanent magnet motor - Google Patents

Permanent magnet and manufacturing method thereof, permanent magnet for motor and permanent magnet motor Download PDF

Info

Publication number
JP4764526B2
JP4764526B2 JP2010514515A JP2010514515A JP4764526B2 JP 4764526 B2 JP4764526 B2 JP 4764526B2 JP 2010514515 A JP2010514515 A JP 2010514515A JP 2010514515 A JP2010514515 A JP 2010514515A JP 4764526 B2 JP4764526 B2 JP 4764526B2
Authority
JP
Japan
Prior art keywords
permanent magnet
koe
rare earth
phase
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010514515A
Other languages
Japanese (ja)
Other versions
JPWO2009145229A1 (en
Inventor
孝雄 沢
勝彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Priority to JP2010514515A priority Critical patent/JP4764526B2/en
Application granted granted Critical
Publication of JP4764526B2 publication Critical patent/JP4764526B2/en
Publication of JPWO2009145229A1 publication Critical patent/JPWO2009145229A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • H01F41/028Radial anisotropy

Description

【技術分野】
【0001】
本発明は永久磁石、特にモータ用に適した低保磁力、高角形比を具備した永久磁石およびその製造方法に関する。さらに、これらの磁石を用いた永久磁石モータに関する。
【背景技術】
【0002】
従来、永久磁石として、アルニコ磁石、フェライト磁石、Sm−Co磁石、Nd−Fe−B磁石などが知られている。これら永久磁石は、その仕様に応じた適正な磁石が、VCM、スピンドルモータなどの各種モータ、計測器、スピーカー、医療用MRI等の他、各種電気機器のキー部品に使用されている。
【0003】
これらの磁石は、多量のFeまたはCoと、希土類元素とを含有している。Fe,Coは飽和磁束密度の増大に寄与する。一方、希土類元素は、結晶場中の4f電子の挙動に由来する非常に大きな磁気異方性をもたらすため、保磁力の増大に寄与し、良好な磁石特性を実現している。
【0004】
近年、各種電気機器の小形化、省エネルギー化の要求が高まっている。これら機器のキー部品材料である永久磁石にもより高い最大エネルギー積[(BH)max]、大きな保磁力と磁石特性の温度特性改善が求められてきた。
【0005】
永久磁石の応用分野として、特にモータが省エネの観点から注目されている。これに使用すると従来の誘導型に比べ、損失を大幅に低減できるため、車載、家電応用など、各種用途の省エネ技術として広がってきている。
【0006】
一般に、永久磁石モータは大きく分けて2種類のタイプがある。回転子鉄心の外周に永久磁石を貼り付けた表面磁石型永久磁石モータと永久磁石を回転子鉄心の中に埋め込んだ埋め込み型永久磁石モータである。可変速駆動用モータには埋め込み型永久磁石モータが適している。
【0007】
図1を用いて、埋め込み型永久磁石モータ(IPM)の回転子の構成を説明する。図1において、11は回転子、12は回転子鉄心、14は高保磁力永久磁石を示している。回転子鉄心12の外周部に長方形の空洞を等配で極数の数だけ設ける。図1に示す回転子11は4極の回転子11である。回転子鉄心12に4個の空洞が設けられ、各空洞に永久磁石14が挿入される。永久磁石14は回転子の半径方向、又は、永久磁石14の断面の長方形におけるエアギャップ面に対向する辺(図1では長辺)に直角方向に磁化される。永久磁石14は負荷電流により減磁しないように保磁力の高いNdFeB永久磁石等が主に適用される。回転子鉄心12は空洞を打抜いた電磁鋼板を積層して形成する。このようなモータとして特開平11−136912号公報(特許文献1)に記載されている永久磁石式リラクタンス型回転電機が挙げられる。
【0008】
永久磁石式回転電機では、永久磁石の鎖交磁束が常に一定の割合で発生している。このため、永久磁石による誘導電圧は回転速度に比例して高くなる。低速から高速まで磁化を変化させながら運転する場合は、高速回転では永久磁石による誘導電圧が極めて高くなる。その結果、永久磁石による誘導電圧がインバータの電子部品に印加し、電子部品の耐電圧以上になると部品が絶縁破壊する。そのため、永久磁石の磁束量が耐電圧以下になるように削減された設計が行うことが考えられるが、永久磁石式回転電機の低速域での出力及び効率が低下する。
【0009】
低速から高速まで定出力に近い磁化を変化させながら運転を行う場合、永久磁石の鎖交磁束は一定である。このため、高速回転域では回転電機の電圧が電源電圧上限に達して出力に必要な電流が流れなくなる。その結果、高速域では出力が大幅に低下し、さらには高速までの広範囲で駆動できなくなるため、最近では磁化を変化させながら運転する範囲を拡大する方法として弱め磁束制御が適用されはじめた。弱め磁束制御は、d軸電流による減磁界を高保磁力永久磁石に作用させ、可逆の範囲で永久磁石の磁気的な動作点を移動させて磁束量を変化させる。このため、永久磁石には減磁界により不可逆減磁しないように高保磁力のNdFeB磁石を適用する。
【0010】
d軸電流の減磁界により永久磁石の鎖交磁束が減少するので、鎖交磁束の減少分が電圧上限値に対する電圧の余裕分をつくる。そして、電流を増加できるので高速域での出力が増加する。また、電圧余裕分だけ回転速度を上昇させることができ、磁化を変化させながら運転できる範囲が拡大される。
【0011】
しかし、永久磁石に減磁界を与え続ける必要があり、出力には寄与しないd軸電流を常時流し続けるため銅損が増加して効率は悪化する。さらに、d軸電流による減磁界は高調波磁束を生じ、高調波磁束等で生じる電圧の増加は弱め磁束制御による電圧低減の限界をつくる。これらより埋め込み型永久磁石式回転電機に弱め磁束制御を適用しても基底速度の3倍以上の可変速運転は困難である。さらに、前記の高調波磁束により鉄損が増加し、高調波磁束による電磁力で振動を発生する。
【0012】
また、ハイブリッド自動車用駆動モータに埋め込み型永久磁石モータを適用した場合、エンジンのみで駆動される状態ではモータは連れ回される。中・高速回転ではモータの永久磁石による誘導電圧が電源電圧以上になり、弱め磁束制御でd軸電流を流し続ける。この状態では、モータは損失のみを発生するので総合運転効率が悪化する。d軸電流が流れ続けることにより効率が低下することを連れまわされるという。
【0013】
このため、上述したような従来技術の問題点に対して、特開2006−280195号公報(特許文献2)では低速から高速までの広範囲で磁化を変化させながらの運転を可能とし、低速回転域の高トルク化と中・高速回転域での高出力化、効率の向上、信頼性向上を提供することのできる全体または一部の永久磁石の磁化状態を変化させることができるモータ(永久磁石式回転電機)が提案されている。
【0014】
すなわち、この永久磁石式モータは図2(特許文献2の図1)に示したような、固定子巻線を設けた固定子と、回転子鉄心中に前記固定子巻線の電流で作る磁界により不可逆的に磁束密度が変化する程度の保磁力を有する低保磁力永久磁石と前記低保磁力永久磁石の2倍以上の保磁力を有する高保磁力永久磁石とを配置した回転子とを備えたものである。すなわち、低速から高速までの広範囲で可変速運転を可能とし、低速回転域の高トルク化と中・高速回転域での高出力化、効率の向上、信頼性向上を実現した永久磁石式回転電機を提供できる。この永久磁石モータに用いられる磁石は高保磁力磁石がNdFeB磁石であり、低保磁力磁石はアルニコ磁石、あるいはFeCrCo磁石が示されている。
【0015】
特許文献2に、低保磁力永久磁石としてアルニコ磁石(AlNiCo)またはFeCrCo磁石、高保磁力永久磁石としてのNdFeB磁石を示している。アルニコ磁石の保磁力(磁束密度が0になる磁界)は60〜120kA/mである。NdFeB磁石の保磁力950kA/mに対して1/15〜1/8になる。また、FeCrCo磁石の保磁力は約60kA/mであり、NdFeB磁石の保磁力950kA/mに対して1/15になる。アルニコ磁石とFeCrCo磁石は、NdFeBの高保磁力磁石と比較してかなり低保磁力である。この低保磁力を利用して、全体または一部の永久磁石の磁化状態を変化させることができるモータを作製する。実施形態では、低保磁力永久磁石の8〜15倍の保磁力を有する高保磁力永久磁石を適用しており、これにより優れた特性の回転電機を得ることとしている。
【0016】
一方、高保磁力の開発を目的としたSmCo磁石が公開されている。
【0017】
特公平2−27426号公報(特許文献3)には、最大エネルギー積が向上するSmCo系磁石として、下記一般式で示される希土類金属含有永久磁石合金が開示されている。
【0018】
Sm1−αCeα(Co1−x−y−u−v−wFeCuTiZrMn
上記一般式において、0.1≦α≦0.90、0.10≦x≦0.30、0.05≦y≦0.15、0.002≦u≦0.03、0.002≦v≦0.03、0.005≦w≦0.08、0.01≦u+v+w≦0.10、5.7≦z≦8.1
すなわち、特にTi,Zr,Mnを必須元素として用い、1050〜1250℃の焼結につづき、1050〜1200℃で溶体化処理を行い、ついで400〜900℃で2〜20時間時効処理することで6.5kOe以上の高保磁力が得られるとしている。
【0019】
また、特公平1−22970号公報(特許文献4)には、永久磁石特性の向上、すなわち高保磁力(≧6.5kOe)と、安定化を図った製造方法が開示されている。
【0020】
すなわち、希土類元素Rと遷移金属元素MからなるR17系永久磁石合金(ただし、RはY,La,Ce,Pr,Nb,Smおよびミツシユメタルの1種又は2種以上の組合せ、MはCuとCo,FeもしくはNiのうち1種又は2種以上の組合せおよび上記Mの一部をMn,Zrの各元素のうち1種以上の元素と置換した組合せ)を溶解して鋳造する。次いで、1100〜1250℃、1〜10時間のインゴツト溶体化処理を施し、金属組織的にR17相単相となし、これを粉砕後に圧縮成型して成型体となす。次いで、成型体を50〜350Torrの減圧アルゴンガス雰囲気において1100〜1250℃の温度範囲で焼結する。さらに1100〜1200℃の温度範囲で焼結後、溶体化処理後に100℃/min以上の急速冷却を施し、時効処理を行なうことにより希土類コバルト系永久磁石を製造することを特徴とする。この特許文献4では、時効処理として、1段の場合は800℃で4時間、多段熱処理の場合は、800℃で2時間、700℃で4時間、600℃で8時間、500℃で16時間である。いずれの条件でも高保磁力化(≧6.5kOe)を図っている。
【0021】
また、特公昭62−45686号公報(特許文献5)には、高性能(高保磁力)でかつ安価な永久磁石の提供を目的としたCeリッチ希土類コバルト磁石を時効処理で400〜650℃で一旦保持した後、300℃まで2時間以上要して行う工程を含むことが開示されている。即ち、(イ)一般式:Ce1−uSm(Co1−x−y−wCuFe、(式中のMはZrおよびTiの少なくとも1種であり、0.05≦u<0.5、0.09≦x≦0.14、0.05≦y≦0.25、0.003≦w≦0.015、5.8≦z≦6.8である)で示される合金粉末の成型物を1100〜1200℃で焼結する工程、(ロ)1100℃から600℃までを5〜50分を要して冷却する工程、および(ハ)400℃〜650℃に保持した該焼結体を300℃まで2時間以上要して時効処理する工程からなる希土類含有永久磁石材料の製造方法である。
【0022】
また、特公昭62−9658号公報(特許文献6)には、高い保磁力、高エネルギー積を有する希土類コバルト永久磁石材料を提供するとともに、時効処理を省略することを目的として、以下の技術が開示されている。すなわち、希土類元素Rと遷移金属MからなるR17系磁石合金(但し、RはY、La、Ce、Pr、Nb、Sm及びミツシユメタルの1種または2種以上の組合せ、MはCuとCo、FeもしくはNiのうち、1種または2種以上の組合せ及び該Mの一部をMn、Ti、Nb、Zr、Ta、Hfの各元素のうち、1種以上の元素と置換した組合せ)を溶解して鋳造する。1150℃〜1210℃、1時間〜12時間の溶体化処理を施したのち、急速冷却を行って、金属相RM相を90%以上生成させる。さらに、該合金を粉砕、圧縮成型する。この圧縮成型体を真空中または不活性雰囲気中で焼結後、800℃以下まで20〜500℃/minの冷却速度で冷却することにより時効処理を省略するといった製造方法が開示されている。
【0023】
また、特公昭60−53107号公報(特許文献7)には保磁力の向上を目的とした技術の開示がなされている。すなわち、希土類成分R(Y、Sm、Pr、Nd、Ce等の一種または二種以上の組合せ)と遷移金属成分M(Co、Fe、Mn、Ni、Cu等)から成るRMであらわされる組成物を焼結したのち、10℃/分以下の速度で室温まで徐冷し、さらに850℃付近の温度で時効処理を施した後、時効処理温度から室温まで急冷することを特徴とする希土類磁石の製造方法である。
【先行技術文献】
【特許文献】
【0024】
【特許文献1】
特開平11−136912号公報
【特許文献2】
特開2006−280195号公報
【特許文献3】
特公平2−27426号公報
【特許文献4】
特公平1−22970号公報
【特許文献5】
特公昭62−45686号公報
【特許文献6】
特公昭62−9658号公報
【特許文献7】
特公昭60−53107号公報
【発明の概要】
【発明が解決しようとする課題】
【0025】
いずれの特許文献も、高保磁力化を目指したものである。よって、今回適用する全体または一部の永久磁石の磁化状態を変化させることができるモータにおける低保磁力磁石のコンセプトを十分発揮できるものではない。一方、全体または一部の永久磁石の磁化状態を変化させることができるモータに適用する低保磁力磁石は、アルニコ磁石を用いた場合よりも、さらに広い範囲の磁束制御による効率向上が求められていた。
【0026】
モータ、特に全体または一部の永久磁石の磁化状態を変化させることができるモータのさらなる高出力、効率向上、信頼性向上のため、所定の動作条件での最適磁束量の設定ができる必要がある。本発明は、このような設定に適した、特に低保磁力磁石に最適な永久磁石およびその製造方法を提供することを目的とする。本発明は、洗濯機、エアコンなどの家電用途、車載用途、電車用途など各種容量のモータの高効率化に極めて有効な永久磁石を提供するものである。さらに、上記のような応用に好適な永久磁石モータ及びモータ用永久磁石を提供することである。
【課題を解決するための手段】
【0027】
本発明の永久磁石は、以下の一般式を満たすとともに、室温の保磁力が0.5kOe以上5.0kOe以下、かつ10kOeの磁場での磁化に対する残留磁化の比で表した角型比が80%以上であることを特徴とする。
【0028】
一般式: Sm1−x―yCe(Co1−a―b−c−dFeCu
但し、RはLa,Nd及びPrよりなる群から選ばれる少なくとも1種で、MはTi,Zr及びHfよりなる群から選ばれる少なくとも1種で、TはMn,V,Nb,Ta,Cr,Mo,W及びNiよりなる群から選ばれる少なくとも1種で、Smを1としたときの原子比が、0≦x≦0.5、0≦y≦0.3、0≦x+y≦0.7、0.05≦a≦0.3、0.02≦b≦0.15、0.01<c≦0.04、0≦d≦0.05、6.0≦z≦8.3を満たす。
【0029】
また、室温での保磁力は0.5kOe以上3.5kOe以下であることが好ましい。前記一般式a値が0.10≦a≦0.25、b値が0.04≦b≦0.12、であることが好ましい。また、第2,3象限の平均リコイル透磁率1.00〜1.08であることが好ましい。また、CaCu相、ThZn17相、TbCu相の3相を具備することが好ましい。また、永久磁石は焼結体であることが好ましい。また、モータに搭載される永久磁石に好適である。特に、保磁力が0.5kOe以上5.0kOe以下、かつ10kOeの磁場での磁化に対する残留磁化の比で表した角型比が80%以上で、かつ第2,3象限の平均リコイル透磁率1.00〜1.08を具備する永久磁石は全体または一部の永久磁石の磁化状態を変化させることができるモータに好適である。
【0030】
また、本発明の永久磁石の製造方法は、以下の一般式を満たす合金粉末を磁場中成形することにより成形体を調整する成形工程、前記成形体を不活性雰囲気中1000℃以上1200℃以下の温度で10分以上20時間以下焼結および溶体化することにより焼結体を得る焼結工程、前記焼結体を600℃以上800℃以下の温度で10分以上20時間以下の熱処理するとともに、熱処理後の冷却速度1〜10℃/minで500℃まで冷却する時効処理工程とを具備することを特徴とするものである。
【0031】
一般式: Sm1−x―yCe(Co1−a―b−c−dFeCu
但し、RはLa,Nd及びPrよりなる群から選ばれる少なくとも1種で、MはTi,Zr及びHfよりなる群から選ばれる少なくとも1種で、TはMn,V,Nb,Ta,Cr,Mo,W及びNiよりなる群から選ばれる少なくとも1種で、Smを1としたときの原子比が、0≦x≦0.5、0≦y≦0.3、0≦x+y≦0.7、0.05≦a≦0.3、0.02≦b≦0.15、0.01<c≦0.04、0≦d≦0.05、6.0≦z≦8.3を満たす。
【0032】
時効処理の温度範囲は、好ましくは600〜750℃である。また、時効処理によってCaCu相、ThZn17相、TbCu相の3相を具備する相構成にすることが好ましい。また、永久磁石の保磁力が0.5kOe以上5.0kOe以下かつかつ10kOeの磁場での磁化に対する残留磁化の比で表した角型比が80%以上であることが好ましい。
【0033】
また、前記焼結工程後、室温あるいは前記熱処理温度までを冷却速度1〜100℃/minで冷却することが好ましい。
【0034】
本発明に係るモータ用永久磁石は、全体または一部の永久磁石の磁化状態を変化させることができるモータに用いられるモータ用永久磁石であって、
室温の保磁力が0.5kOe以上5kOe以下、10kOeの磁場での磁化に対する残留磁化の比で表した角型比80%以上で、かつ第2、3象限の平均リコイル透磁率が1.00以上1.08以下の希土類磁石であることを特徴とする。
【0035】
本発明に係る永久磁石モータは、室温の保磁力が0.5kOe以上5kOe以下、10kOeの磁場での磁化に対する残留磁化の比で表した角型比80%以上で、かつ第2、3象限の平均リコイル透磁率が1.00以上1.08以下である、磁化状態を変化させるための第1の希土類永久磁石と、
前記第1の希土類永久磁石よりも室温の保磁力が高い第2の希土類永久磁石と
を備えることを特徴とする。
【0036】
さらに、本発明によれば、以下の一般式を満たすとともに、保磁力が0.5kOe以上3.5kOe以下、かつ10kOeの磁場での磁化に対する残留磁化の比で表した角型比が80%以上であることを特徴とする永久磁石が提供される。
【0037】
また、本発明によれば、以下の一般式を満たす合金粉末を磁場中成形することにより成形体を調整する成形工程、成形体を不活性雰囲気中1000℃以上1200℃以下の温度で10分以上20時間以下焼結および溶体化することにより焼結体を得る焼結工程、焼結体を600℃以上750℃以下の温度で10分以上20時間以下熱処理するとともに、熱処理後の冷却速度1〜10℃/minで室温まで冷却する時効処理工程を具備することを特徴とする永久磁石の製造方法が提供される。
【0038】
一般式: Sm1−x―yCe(Co1−a―b−c−dFeCu
R:La,Nd,Prから選ばれる少なくとも1種
M:Ti,Zr,Hfから選ばれる少なくとも1種
T:V,Nb,Ta,Cr,Mo,W,Niから選ばれる少なくとも1種
Smを1としたときの原子比
0≦x≦0.5
0≦y≦0.3
0≦x+y≦0.7
0.05≦a≦0.3
0.02≦b≦0.15
0.01<c≦0.04
0≦d≦0.05
6.0≦z≦8.3
また、本発明によれば、保磁力が0.5kOe以上3.5kOe以下、10kOeの磁場での磁化に対する残留磁化の比で表した角型比80%以上で、かつ第2、3象限の平均リコイル透磁率1.00〜1.08を具備し、希土類元素ではSm、遷移金属ではコバルトを主として含有していることを特徴とする全体または一部の永久磁石の磁化状態を変化させることができるモータ用永久磁石が提供される。
【発明の効果】
【0039】
本発明によれば、低保磁力および高角形比を具備した永久磁石を提供できるので、モータ、特に全体または一部の永久磁石の磁化状態を変化させることができるモータの低保磁力側磁石に好適である。また、本発明の製造方法であれば低保磁力および高角形比の永久磁石を効率よく製造することができる。さらには、これらの磁石を用いることにより、高効率永久磁石モータを実現できる。
【図面の簡単な説明】
【0040】
【図1】永久磁石モータの一例を示す図。
【図2】本発明の永久磁石を用いたモータの一例を示す図。
【図3】実施形態に係る永久磁石モータを示す断面図。
【図4】別の実施形態に係る永久磁石モータを示す断面図。
【発明を実施するための形態】
【0041】
本発明の永久磁石は以下の一般式を満たすとともに、室温での保磁力が0.5kOe以上5.0kOe以下、かつ10kOeの磁場での磁化に対する残留磁化の比で表した角型比が80%以上であることを特徴とするものである。
【0042】
一般式:Sm1−x―yCe(Co1−a―b−c−dFeCu
但し、RはLa,Nd及びPrよりなる群から選ばれる少なくとも1種で、MはTi,Zr及びHfよりなる群から選ばれる少なくとも1種で、TはMn,V,Nb,Ta,Cr,Mo,W及びNiよりなる群から選ばれる少なくとも1種で、Smを1としたときの原子比が、0≦x≦0.5、0≦y≦0.3、0≦x+y≦0.7、0.05≦a≦0.3、0.02≦b≦0.15、0.01<c≦0.04、0≦d≦0.05及び6.0≦z≦8.3を満たす。
【0043】
まず、室温の保磁力は0.5kOe以上5.0kOe以下である。保磁力が0.5kOe未満では、全体または一部の永久磁石の磁化状態を変化させることができるモータにおける磁束制御範囲が狭くなる。保磁力が5.0kOeを超えると、この磁石の磁化を反転させるのに多大な電気エネルギーを必要とするため、省エネ効果が大きく低減する。そのため、好ましくは1〜3.5kOeであり、さらに好ましくは1〜3.0kOeである。永久磁石モータが150℃までの高温で動作する場合には、5kOeまでの保磁力で高効率モータが得られる。また、角型比は80%以上である。角型比を80%未満にすると、全体または一部の永久磁石の磁化状態を変化させることができるモータにおける、磁束制御範囲が狭くなるため、高効率運転できる範囲が狭くなる。角型比の好ましい値は90〜100%である。なお、本発明の角型比は10kOeの磁場での磁化に対する残留磁化の比で表した値である。10kOeを選択したのは以下の理由からである。本発明の永久磁石は保磁力が5kOe以下と低保磁力であるため、10kOeの磁場中ではほぼ磁気的に飽和しており、角型比の定義に適しているためである。永久磁石の場合、通常は残留磁化の2乗を4で割った値が最大エネルギー積の理論値である。また、実際の最大エネルギー積の値をこの値で割ったものが角型比とされている。一方、本発明の永久磁石は保磁力を比較的小さい値に制御しているため、角型性を表す新たな指標として、軟磁性材料で適用する角型比を参考に用いた。
【0044】
また、第2,3象限の平均リコイル透磁率1.00〜1.08であることが好ましい。リコイル透磁率が1.00未満は原理的にあり得ない。リコイル透磁率が1.08を超えると、全体または一部の永久磁石の磁化状態を変化させることができるモータの磁束制御量が低減してしまい、高効率運転できる範囲が狭くなる。好ましいリコイル透磁率は1.07以下である。
【0045】
リコイル透磁率は試料振動型磁力計を用いて第2、3象限での磁化の磁場による変化、たとえば15kOeから磁場ゼロに至る変化から求める。具体的には、パルス磁場60kOeで着磁した試料を着磁した方向とは逆に−15kOeまで磁場を加え、そこから0まで磁場の強さを変化させて磁化測定を行なう。この後、−14kOeまで磁場を印加したのち、同様に磁場ゼロまで変化させ、磁化を測定する。これを、1kOeごとに繰り返し、第3象限から第2象限の範囲で測定する。リコイル透磁率は直線と近似し、各磁場(−15kOe、−14kOe、…)と磁場ゼロにしたときの磁化の差を磁場変化量で割った値である。それらを平均したものが平均リコイル透磁率である。
【0046】
保磁力、角型比は通常の測定で求められる。保磁力は、最大磁場10kOeでフルループ測定したときの保磁力である。角型比は10kOeでの磁化に対する残留磁化である。
【0047】
次に一般式に示した各元素について説明する。
【0048】
SmはCoとともに本発明の永久磁石の基本となる必須元素である。CeはSmサイトを置換できる元素であり、結晶構造を保ち、本発明の特性を実現する。その量xは0.5以下であり、それを超えると磁化の低下が生じる。R元素はLa,Pr及びNdよりなる群から選ばれる少なくとも1種である。R元素は、SmとCeとともに、熱処理によって保磁力を制御するのに有効な元素である。R元素の量xは0.3以下であり、この量を超えるとCeと同様に磁化が低下してしまう。Sm,Ce,R元素の希土類元素の中で、最も含有量の多いことが好ましい元素はSmである。なお、xとyの合計は0.7以下であり、この量を超えると角型性が低下してしまうとともに、リコイル透磁率が大きくなり、可変磁束型永久磁石モータの磁束制御には不十分となる。R元素の中で好ましい元素はPr,Laである。なお、R元素またはCeの代わりに、ミッシュメタル、ジジムなど分離前の希土類元素を用いてもよい。
【0049】
Feは飽和磁化の増大に寄与する元素である。その量aは0.05未満では効果が小さく、0.3を超えると角型性の低下とリコイル透磁率が増大する。a値の好ましい範囲は、0.10≦a≦0.25、さらに好ましい範囲は0.15≦a≦0.23である。Cuは保磁力を制御するための必須元素であり、時効処理でTbCu相をCaCu相とThZn17相に2相分離させることを促進させる元素である。その量bは0.02≦b≦0.15である。0.02以上あれば、その機能を発揮し、一方0.15を超えると磁化が低下する。さらに好ましくは、0.04≦b≦0.12である。
【0050】
M元素はTi,Zr及びHfよりなる群から選ばれる少なくとも1種である。M元素は高温相であるTbCu相の安定化を促進する元素である。この元素により広い範囲で溶体化後、TbCu相の単相が得られやすくなる。その結果、600℃以上750℃以下の温度で、10分〜20時間時効処理を行うことにより、TbCu相の一部がCaCu相とThZn17相に2相分離し、最初に形成されているTbCu相を残しつつ、保磁力の制御を行い、3相を具備する構造とすることが好ましい。その量cが0.01未満では効果が現れ難い。量cが0.04を超えると、目的とするTbCu相単相が得られ難く、ThNi17相が増えすぎ、保磁力、角型性制御が困難となる。
【0051】
T元素はMn,V,Nb,Ta,Cr,Mo,W及びNiよりなる群から選ばれる少なくとも1種であり、保磁力、角型性の制御に有効な元素である。その量は0.05以下であり、それを超えると磁化が低下してしまう。その結果、残留磁化(残留磁束密度)が低下してしまい、一定の磁束量を得るには、より多くの磁石を用いることとなる。好ましくは、0.04以下である。
【0052】
z値は希土類元素に対するCo、Feなど合計の原子比である。この値によって時効処理によってTbCu相から析出する2相(CaCu相とThZn17相)の割合が異なる。この3相を具備する構成で保磁力を制御する。z値が6未満では保磁力の制御が難しい。一方、z値が8.3を超えると、角型比が低下、およびリコイル透磁率が大きくなるため、制御できる磁束量が低下する。z値の好ましい範囲は、6.1以上8.2以下である。
【0053】
上記一般式のSmCo系磁石に、0.001〜0.01wt%のB、および不可避不純物として、Cが0.05wt%以下、Oが0.5wt%以下、Al,Si,Caがそれぞれ0.06wt%以下、Snが0.005wt%以下含まれていても、本発明の特性を妨げるものではない。
【0054】
本発明の磁石は上記組成に加え、酸素が5000wtppm以下、水素が2000wtppm以下、窒素が1000wtppm以下入っていても良い。特に、水素は水素粉砕などプロセス上水素を用いる場合に、多少残留する場合があるが、特性面には問題ない。また、その他の成分(不純物含む)を合計で0.1wt%以下含有していても良い。
【0055】
本発明の永久磁石の製造方法は特に限定されるものではないが、効率よく得る方法として次のものが挙げられる。母合金は、所定の比率に調製後、高周波溶解などの方法により溶解し、鋳造あるいはストリップキャストにより作製する。鋳造法の場合は、冷却速度を十分とるために、水冷鋳型や水冷金属板上に鋳込むことが好ましい。また、ストリップキャストの場合、得られるフレークの板厚はおおよそ70μm以上2mm以下が好ましい。さらに好ましくは、100μm以上1mm以下が主体となることである。粉砕は例えばジェットミルを用いて微粉砕すればよく、その粉砕粉の平均粒径は1〜15μmが好ましい。平均粒径が1μm以下では十分な焼結密度が得られにくくなるとともに、酸化されやすくなる。一方、平均粒径が15μmを超えると、角型性が低下し始める。好ましくは2〜12μmであり、さらに好ましくは3〜10μmである。一方、水素を用いた水素粉砕でも良いが、この手法では所定の平均粒径にまで到達しないことがある。このため、複数回水素吸蔵放出を繰り返す、あるいは水素粉砕の後、ボールミルのような湿式法あるいはジェットミルのような乾式法でさらに粉砕することでもよい。
【0056】
磁場中成形は、縦磁場あるいは横磁場でも良く、その際の磁場は配向させるためには強い方が好ましいが、通常使用している20kOeあればよい。また、成形圧力は高いほうが好ましいが、これも通常使用している100kg/cm以上あればよい。
【0057】
焼結および溶体化処理は、まず室温から1〜50℃/min.の割合で昇温させ、500〜700℃で1〜2時間脱ガスする。脱ガスを行うことにより酸素、水素、窒素等のガス成分の含有量を少なくすることができる。この後、同様の昇温速度で1000〜1200℃の焼結温度までAr雰囲気中で温度を上昇させ、この温度範囲で合計10分以上20時間までの焼結、引き続き溶体化を行った。また、溶体化処理とは単相化を目的とする処理のことで、処理時間は1〜10時間程度が好ましい。また、溶体化処理は焼結温度と同じか20〜30℃程度低い温度で行うことが好ましい。その後は5〜100℃/min.の速度で冷却する。時効は焼結、溶体化に引き続き、600℃以上800℃以下の温度で、10分〜20時間行なえばよく、その後は1〜10℃/min.の冷却速度で500℃まで冷却する。1〜10℃/min.の冷却速度は室温まで行ってもよいが製造効率を考えると500℃までの冷却速度の管理で十分である。焼結・溶体化処理と時効処理の間は、いったん室温にまで冷却しても、連続で処理してもよい。また、時効は1段(1温度条件)の処理で保磁力を制御できるが、2段(2つの温度条件)以上の処理でもよい。この場合は、高い温度側から低い温度にステップを経ることが好ましく、この場合2つの温度間の冷却速度は1〜5℃/min.で行う。多段の場合、全体の時効時間が20時間以下とすればよい。
【0058】
時効温度は、好ましくは600℃以上800℃未満であり、さらに好ましくは600℃以上750℃以下である。
【0059】
このプロセスでの雰囲気は非酸化雰囲気が好ましく、Ar、窒素、真空中での処理が好ましい。なお、焼結密度は95%以上が好ましい。焼結密度は(アルキメデス法による実測値/理論密度)×100%で求める。
【0060】
上記焼結工程後、室温あるいは前述の時効処理における熱処理の温度までを冷却速度5℃/min以上100℃/min以下で冷却することが望ましい。冷却速度は、次のステップである時効処理を連続で行う場合、または一旦室温まで冷却した後に時効を行う場合で異なる。すなわち、連続処理の場合、冷却速度が速すぎるとオーバーシュートする可能性があるため、5℃/min.以上10℃/min.以下が好ましい。一旦室温まで冷却する場合は、量産性の観点から10℃/min.以上100℃/min.以下が好ましい。冷却速度が5℃/min.未満では、時効効果が起きる可能性が生じ、特性制御が困難になる。一方、100℃/min.を超える冷却速度は、速すぎるため、焼結体に歪が入りやすく、クラックなどが入る可能性がある。
【0061】
上記のプロセスで得られた磁石は、高磁気異方性のCaCu相と、高飽和磁化相であるThZn17相主相、および時効処理前に形成しているTbCu相も残留する、3相を具備する構成で上記した磁石特性を満足することが出来る。従って、焼結、溶体化処理でTbCu相の単相化、あるいは主相とすることが重要で、時効処理によりTbCu相を高飽和磁化のThZn17相と高磁気異方性のCaCu相の2相に分離することで、保磁力制御ができる。TbCu相の相割合は、体積比で30%以上が好ましく、さらに好ましくは50%以上である。また、TbCu相が100%の場合は、保磁力が極めて小さくなる。好ましくは95%以下であり、さらに好ましくは90%以下である。
【0062】
CaCu相、ThZn17相及びTbCu相に加え、ThNi17相が生成する条件は、組成および熱処理条件に依存する。ThNi17相は磁気異方性定数が小さい、あるいは面内磁気異方性をもつため、4相構成でもよい。4相構成の場合は、ThNi17相の量が10%以下が好ましい。
【0063】
TbCu相、CaCu相およびThZn17相の有無はXRD(X線回折法)により求めることができる。本発明では、各相のみ、3相以外の相構成を具備しているものを除外するものではない。また、相割合はX線回折法により求めることができる。
【0064】
評価方法はX線回折法を利用する。即ち、各相のX線回折の特徴ある回折線について、回折強度から求める。すなわち、TbCu相は溶体化後の単相でのX線回折における(200)面の回折を基準とし、これに対する強度低下で相の割合を出す。一方、ThZn17相、CaCu相、ThNi17相はそれぞれの単相を別途作製し、それぞれの(024)面、(110)面と(200)面、(203)面の回折強度に対する相対値で求める。X線回折測定の条件は、50kV,100mAの条件である。また、SEMとEPMAの観察でも同様の結果が得られるため、この手法を用いても良い。
【0065】
一方、TbCu相が全て2相分離すると、高保磁力Hcとなり、本発明の目的とする、全体または一部の永久磁石の磁化状態を変化させることができるモータへの適用は困難である。従って、好ましくはTbCu相は20%以上であり、さらに好ましくは30%以上である。
【0066】
保磁力、角形性、リコイル透磁率などの全てを満足するには、上記時効条件が好ましい。より短時間で制御が出来る場合、800℃を超えた高温側での熱処理でも問題ない。量産時の時効での時間制御を考慮すると、800℃未満が好ましく、さらに790℃以下が好ましい。
【0067】
得られた磁石は、耐酸化性は優れているが、さらに耐酸化性を持たせるためにNiめっき、Cuめっき、Alめっきなど各種表面処理を行うことにより、幅広い様々な環境下で使用することが出来る。
【0068】
また、本発明に係る永久磁石を用いた永久磁石モータは、運転モードに適した磁束にするために、一部の磁石の磁化方向を反転させて、磁束量を制御して、高効率化を図るものである。すなわち、永久磁石モータは、室温の保磁力が0.5kOe以上5kOe以下、10kOeの磁場での磁化に対する残留磁化の比で表した角型比80%以上で、かつ第2、3象限の平均リコイル透磁率が1.00以上1.08以下である、磁化状態を変化させるための第1の希土類永久磁石と、第1の希土類永久磁石よりも室温の保磁力が高い第2の希土類永久磁石とを備える。第1の希土類永久磁石は、磁化方向を反転させて磁束を制御する低保磁力磁石である。第1の希土類永久磁石は、全磁石体積の5〜70%の範囲にあることが好ましい。このような範囲にすることにより、モータの出力、効率及び信頼性を向上することができる。好ましくは10〜67%であり、さらに好ましくは、15〜50%である。
【0069】
第1の希土類永久磁石の室温での保磁力が0.5kOe以上3.5kOe以下であることが望ましい。また、第1の希土類永久磁石は、Smを含む希土類元素と、Coが主成分の遷移金属元素とを含有する組成を有することが好ましい。さらに好ましい組成は、前述した一般式で表される組成である。
【0070】
第2の希土類永久磁石は、例えば、NdFeB磁石等を挙げることができる。
【0071】
本発明の永久磁石モータは、インナーロータ型でもアウターロータ型でもどちらでもよく、また表面磁石型(SPM)でも埋め込み磁石型(IPM)のいずれの構成でもよい。表面磁石型(SPM)は、例えば、第1の希土類永久磁石及び第2の希土類永久磁石を含む永久磁石が、回転子の表面もしくは内周面に設置されるものを挙げることができる。埋め込み磁石型(IPM)は、例えば、第1の希土類永久磁石及び第2の希土類永久磁石を含む永久磁石が、回転子に埋め込まれたものを挙げることができる。
【0072】
一例として、インナーロータ方式のIPM型の例を図2に示す。図2に示すように、回転子1は、回転子鉄心2、複数の第1の希土類永久磁石(低保磁力永久磁石)3、複数の第2の希土類永久磁石(高保磁力永久磁石)4から構成されている。第1の希土類永久磁石3及び第2の希土類永久磁石4は、回転子鉄心2に埋め込まれ、回転子1の円周方向に配列している。第1の空洞5は、第1の希土類永久磁石3の両端に設けられている。第2の空洞6は、第2の希土類永久磁石4の両端に設けられている。7で示すのは、回転子鉄心2の磁極部である。
【0073】
また、図3,4には、アウターロータ方式のIPM型の永久磁石モータの実施形態を示す。図3に示すように、本実施形態の永久磁石モータにおける回転子21は、回転子鉄心22、第1の希土類永久磁石23、第2の希土類永久磁石24から構成される。回転子鉄心22は、例えば、珪素鋼板を積層して構成されている。第1の希土類永久磁石23及び第2の希土類永久磁石24は、回転子鉄心22の径方向断面に4個ずつ埋め込まれている。第1の希土類永久磁石23は回転子21のほぼ径方向に沿って配置され、その断面は台形状である。また、第1の希土類永久磁石23の磁化方向はほぼ周方向である。第2の希土類永久磁石24は、ほぼ周方向に配置され、その断面は長方形状である。また、第2の希土類永久磁石24の磁化方向はほぼ径方向である。
【0074】
第1の希土類永久磁石23及び第2の希土類永久磁石24それぞれの両端部には空洞25が設けられている。ボルト穴26は、回転子鉄心22に開口されている。そして、回転子鉄心22の磁極鉄心部27は、2個の第1の希土類永久磁石23と1個の第2の希土類永久磁石24とで取り囲まれるようにして形成される。回転子鉄心22の磁極鉄心部27の中心軸方向がd軸、磁極間の中心軸方向がq軸となる。したがって、第1の希土類永久磁石23は磁極間の中心軸となるq軸方向に配置され、第1の希土類永久磁石23の磁化方向はq軸に対して90°、又は90°方向となる。隣合う第1の希土類永久磁石23において、互いに向かい合う磁極面は同極にしてある。また、第2の希土類永久磁石24は磁極鉄心部27の中心軸となるd軸に対して直角方向に配置され、その磁化方向はd軸に対して0°、又は180°の方向となる。隣合う第2の希土類永久磁石24において、互いに磁極の向きは逆極性にしてある。
【0075】
このような回転子21は、固定子28の内部に収容されている。この固定子28は、電機子巻線29を固定子鉄心30の内側に形成されたスロットに収容することで構成されている。そして固定子28の内周面と回転子21の外周面とは、エアギャップ31を介して対向させている。
【0076】
一方、図4に示すように、本実施の形態の永久磁石モータにおける回転子41は、回転子鉄心42内に、第1の希土類永久磁石43と、第2の希土類永久磁石44とを埋め込んだ構成である。回転子鉄心42は珪素鋼板を積層して構成されている。第1の希土類永久磁石43及び第2の希土類永久磁石44は、回転子鉄心42の径方向断面に8個ずつ埋め込んである。第1の希土類永久磁石43と第2の希土類永久磁石44との8組それぞれは、回転子41の内径側に凸の形状に設置されている。第1の希土類永久磁石43と第2の希土類永久磁石44の磁化方向はともにほぼ磁石寸法の小さい方向にしてある。第1の希土類永久磁石43と第2の希土類永久磁石44の両端部には必要に応じて、磁石の磁束短絡と、応力緩和のための空洞45を設けてもよい。回転子鉄心42の磁極鉄心部46は、第1の希土類永久磁石43と第2の希土類永久磁石44とで取り囲まれるようにして形成される。なお、47は回転軸である。
【0077】
このような回転子41は、固定子48の内部に収容されている。固定子48は、電機子巻線49を固定子鉄心50の内側に形成されたスロットに収容することで構成されている。そして固定子48の内周面と回転子41の外周面とは、エアギャップ51を介して対向させている。
【0078】
本発明で用いられる永久磁石モータは、前述した図2〜図4に示す形態に限定されない。本発明は、複数個の永久磁石が規則的に配列された永久磁石モータに適用可能である。回転子の円周方向に永久磁石を配置し、高保磁力と低保磁力の磁石を交互に、あるいは上記の体積比の範囲内になるように、個数、あるいは厚みを変えて、最適仕様の永久磁石モータとすることができる。
【0079】
以下に、実施例で発明の効果を示す。
【0080】
(実施例)
(実施例1〜34)
表1A及び表1Bに示す組成について、原料粉末を調製したのち、高周波誘導加熱炉で溶解し、水冷銅板上に鋳込み、母合金とした。得られた試料を粗粉砕の後、ジェットミルで平均粒径3〜5μmに微粉砕し、所定の形状に、磁場20kOe、プレス圧0.5t/cmの条件で磁場中成形した。得られた成形体を、母相の融点より50℃低い温度(1040〜1200℃)で、3時間の条件で焼結し、引き続き焼結温度から20〜30℃低い温度で1時間保持することにより溶体化処理を行い、50℃/minの速度で室温まで冷却した。この後、奇数番号の実施例の時効処理は700℃、3時間の熱処理を行った後、10℃/minの割合で冷却することで行った。偶数番号の実施例の1段目の時効処理は、670℃、4時間の熱処理後、600℃まで5℃/min.の速度で冷却することにより行った。偶数番号の実施例の2段目の時効処理は、600℃で2時間保持した後、10℃/minの割合で冷却することにより行った。また、時効処理温度までの昇温速度は30℃/min.で統一した。なお、時効処理における冷却速度は熱処理温度から500℃までとし、その後は自然冷却とした。
【0081】
また、焼結までの昇温は真空中で5℃/minで行い、600℃で一旦キープして脱ガスを行い、その後は全てAr雰囲気中で行っている。
【0082】
いずれも、試料を100個作製し、磁石特性の評価として、残留磁束密度(Br)、保磁力(Hc)、角型比、リコイル透磁率、Hcレンジを測定した。残留磁束密度(Br)、保磁力(Hc)、角型比、リコイル透磁率については前述の方法を用いて測定し、100個の平均値とした。また、Hcレンジは保磁力のばらつきを示すもので100個測定した保磁力(Hc)の「最大値−最小値」から求めた。その結果を表1A及び表1Bに示す。
【0083】
また、それぞれの試料について、X線回折測定(Cukα、管電圧:50kV,管電流:100mA)を行い、相構成を評価した。表1A及び表1B中、◎(CaCu相、ThZn17相、TbCu相、およびThNi17相の4相を検出)、○(CaCu相、ThZn17相、TbCu相の3相を検出)、×(CaCu相およびThZn17相の2相を検出)、▲(CaCu相、ThZn17相およびThNi17相の3相を検出)、■(ThZn17相を検出)、□(ThNi17相を検出)、△(TbCu相を検出)で表した。
【表1A】

Figure 0004764526
【表1B】
Figure 0004764526
【0084】
表1A及び表1Bから分かるとおり、本実施例にかかる永久磁石では保磁力は高すぎず、小さすぎず、また保磁力のばらつきも小さく、リコイル透磁率も小さいことが分かった。また、いずれも焼結密度98%以上であった。
【0085】
(比較例)
表2A及び表2Bに比較例を示した。
【表2A】
Figure 0004764526
[表2B]
Figure 0004764526
[0086]
(比較例1,2,3)
表2Aに示す組成について、高周波溶解して得た比較例1,2,3のインゴットをブラウンミルで粒子径1〜5μmに粉砕した後、磁場中成形した。この成形体を真空中で焼結した後、冷却し、再度1100℃で溶体化し、850℃、2時間時効処理後、0.5℃/minの速度で500℃まで冷却し、時効処理を行なった。磁気特性を評価した結果、表2Aに示すとおり、いずれも保磁力が高いものが得られた。
【0087】
(比較例4,5)
純度99.9%以上のSm26.0wt%、純度99.8%のCo47.3wt%、Fe12.8wt%、Ni5.3wt%、およびCu8.6wt%からなる合金を、アルゴン雰囲気で高周波溶解・鋳造した。表2Aには原子比に換算した合金の組成比を表示する。得られた合金にアルゴン雰囲気中で1180℃、4時間インゴツト溶体化処理を施した。溶体化処理後、合金を液体窒素にて冷却速度1200℃/min.で急速冷却した。次いで、得られた試料を鉄乳鉢で粗粉砕した後、有機溶剤中でボール・ミルにより平均粒度4μmの微粉末とした。得られた微粉末を15kOeの磁界中でプレスし、圧縮成型体と成した。
【0088】
この圧縮成型体を200Torrのアルゴン雰囲気中で1210℃、2時間焼結し、ひき続いて1190℃、2時間の焼結後溶体化処理を施した後、150℃/minの冷却速度で急速冷却した。さらに800℃、4時間の時効処理を施し、比較例4とした。また、1180℃、4時間のインゴツト溶体化処理を施すことなく、上記比較例4と同様の製造方法により比較例5の永久磁石を得た。
【0089】
比較例4では、保磁力6.5kOeが得られる一方で、比較例5では保磁力4.3kOeが得られた。特に、比較例5では保磁力のばらつきが大きかった。
【0090】
(比較例6,7)
比較例6の永久磁石を以下の方法で作製した。Ce0.56Sm0.44(Co0.697Cu0.13Fe0.16Zr0.0136.2で与えられる組成の粉末を無磁場中で成形して得られた成形体を1140℃で1時間焼結し、1100℃より600℃までを15分間で通過するように室温まで冷却した。ついで、この物を600℃に15分間保持し、300℃まで8時間かけて時効したところ、表2Aに示す特性を得た。すなわち、高保磁力とそのばらつきは比較的大きい。
【0091】
また、比較例7の永久磁石を以下の方法で作製した。Ce0.85Sm0.15(Co0.702Fe0.16Cu0.13Zr0.0085.95で与えられる組成の成型物を無磁場中で成形した。得られた成型物を比較例6と同様に1120℃で1時間焼結した後、1100℃より500℃までを約60分で通過する如く室温まで冷却した。ひきつづき、500℃に20分保持した後4時間で300℃まで徐冷した。表2Aに示したように比較例6は保磁力が高すぎ、また比較例7は保磁力のばらつきが大きい。
【0092】
(比較例8,9)
比較例8の永久磁石を以下の方法で作製した。表2Aに示す合金を、アルゴンガス雰囲気中で高周波溶解し、鋳造して得られたインゴツトに1180℃、6時間の溶体化処理を施し、処理後、液体窒素中で急速冷却した。得られた合金を鉄乳鉢中で粗粉砕し、さらに有機溶剤中でボール・ミル微粉砕を行ない、2〜10μmの粉末とした。この粉末を12kOeの磁界中でプレス成型し、圧縮成型体を得た。
【0093】
次に、圧縮成型体を水素雰囲気中1200℃、2時間の焼結を行ない、焼結後、100℃/minの冷却速度で800℃以下の温度まで冷却することにより、比較例8の永久磁石を得た。
【0094】
また、比較例9の永久磁石を以下の方法で作製した。上記と同じ鋳造後のインゴツトに溶体化処理を施さずに、上記と同じ条件の粗粉砕、微粉砕、プレス成型、焼結した後、焼結後の溶体化処理を1160℃、8時間で行い、比較例9の永久磁石を得た。いずれも、試料を100個作製し、磁石特性の評価結果の平均値を表2Aに示す。
【0095】
(比較例10,11)
Sm(Ni0.18Fe0.15Co0.57Cu0.16.9で示される組成の合金をアルゴンガス雰囲気中で高周波溶解し、鉄乳鉢中で粗粉砕した。粗粉砕後の粉末をさらにヘキサン溶媒中でボールミル粉砕により平均粒度4μmの微粉末にした。得られた微粉末を12kOeの磁界中で5ton/cmの圧力で金型を用い圧縮成形した。このようにして得た圧縮体を不活性ガス雰囲気中1220℃の温度で2時間焼結し、ひき続いて30℃/minの冷却速度で500℃以下まで冷却した。
【0096】
また、比較例11では比較例10における焼結後の冷却速度のみを1000℃/minとし、その後800℃で4時間の最適時効処理を行った。いずれも、試料を100個作製し、磁石特性の評価結果の平均値を表2Aに示すが、比較例10では、保磁力8.8kOe、比較例11では2.3kOeであった。また、比較例10は保磁力が大きかった。
【0097】
(比較例12,13)
比較例12の永久磁石を以下の方法で作製した。化学式Sm(Ni0.11Fe0.19Co0.6Cu0.16.9で示される組成の合金をアルゴンガス雰囲気中で高周波溶解し、鉄乳鉢中で粗粉砕した。粗粉砕後の粉末をさらにヘキサン溶媒中でボールミル粉砕により平均粒度2〜10μmの微粉末にした。得られた微粉末を12kOeの磁界中で5ton/cmの圧力で金型を用い圧縮成形した。このようにして得た圧縮体を不活性ガス雰囲気中1210℃の温度で2時間焼結し、ひき続いて60℃/minの冷却速度で500℃以下まで冷却した。
【0098】
また、比較例13として、比較例12における焼結後の冷却速度のみを1000℃/minとし、その後、800℃×4時間の時効処理を行った。いずれも、試料を100個作製し、磁石特性を評価した結果、保磁力が大きすぎたり、小さすぎたりし、また保磁力のばらつきが大きかった。
【0099】
(比較例14,15)
比較例14の永久磁石を以下の方法で作製した。組成式Sm(Co0.60Fe0.19Ni0.11Cu0.16.9で示される組成の合金をアルゴンガス雰囲気中で高周波溶解し、鉄乳鉢中で粗粉砕した。粗粉砕後の粉末をさらにヘキサン溶媒中でボールミル粉砕により平均粒度3μmの微粉末にした。この微粉末を12kOeの磁界中で5ton/cmの圧力で金型を用いた圧縮成形した。このようにして得た圧縮体を不活性ガス雰囲気中1190℃の温度で2時間焼結し、ひき続いて200℃/minの冷却速度で500℃以下まで冷却した。
【0100】
また、比較例15として、比較例14における焼結後の冷却速度のみを1000℃/minとし、その後、800℃で2時間の最適時効処理を行った。いずれも、試料を100個作製し、磁石特性を評価した結果、保磁力のばらつきが大きかった。
【0101】
(比較例16〜36)
表2A及び表2Bに示す比較例16〜36に示す組成の合金を高周波溶解し、粗粉砕した後、ジェットミルで微粉砕した。得られた微粉末を12kOeの磁界中で5ton/cmの圧力で金型を用い圧縮成形した。このようにして得た圧縮体を不活性ガス雰囲気中で、各合金の融点の30℃下の温度で2時間焼結し、引き続いて30℃/minの冷却速度で500℃以下まで冷却した。その後、800℃で4時間時効処理を行い、5℃/minの条件で冷却した。これらの磁石特性を評価した結果を表2A及び表2Bにまとめる。いずれの磁石も製造時の保磁力のばらつきが多く、またリコイル透磁率が大きかった。
【0102】
なお、比較例22,23で使用するMMは、組成が重量比でLa60Ce10Pr20Nd10のミッシュメタルである。
【0103】
(モータへの適用)
実施例1〜34および比較例1〜36を永久磁石モータに組込んだ際の特性を評価した。評価温度は室温である。モータ特性の評価として各実施例および各比較例に係る永久磁石を、図2に示す全体または一部の永久磁石の磁化状態を変化させることができるモータの低保磁力磁石部に組み込み、また高保磁力磁石としてNdFeB磁石(Hc=21kOe、Br=12.4kG)を用いて、モータの効率評価を行った。なお、表2Bに比較例37としてアルニコ磁石を示した。
【0104】
基準とする永久磁石モータは磁石として全てNdFeB磁石(比較例38:低保磁力側も高保磁力側と同じ磁石を使用)を用いた場合の効率を基準とし、実施例、比較例の効率を相対値として示している。評価条件は、モータの高速回転(3000rpm)、中速回転(2000rpm)、低速回転(1000rpm)での効率の平均値である。これらの条件は、トルクを指標とすると低トルク、中トルク、高トルクとなっており、各動作条件での効率が反映されることになる。
【0105】
結果を表1A,表1Bおよび表2A,表2Bに併せて示すが、本実施例に係る永久磁石を用いた場合、NdFeB磁石のみの永久磁石モータに比べて、大幅に効率向上しており、またアルニコ磁石を用いた場合に比べても効率が高いことがわかる。
【0106】
なお、今回実施例として図2に示す構造の全体または一部の永久磁石の磁化状態を変化させることができるモータへの適用を行ったが、保磁力の高い磁石と比較的保磁力の小さい磁石の組合せで構成される永久磁石モータ用磁石として本実施例の磁気特性をもつ永久磁石を使用するものであれば、特にモータ構造に制限されない。
【0107】
(実施例35〜40、比較例39〜40)
次に実施例1と同様の組成を用いた原料粉末を用意し、製造条件を表3のように変えて製造を行った。得られた永久磁石について実施例1と同様の磁気特性の測定を行った。その結果を表3に示す。
【表3】
Figure 0004764526
【0108】
表3から分かるとおり、本発明の好ましい条件を満たす製造方法であれば本発明の永久磁石を効率よく得られることがわかる。また、好ましい条件を満たさない比較例39および比較例40では十分な特性が得られないことが分かった。
【0109】
なお、本実施例に用いた永久磁石モータは一例であって、インナーロータ型、アウターロータ型、またSPM型、IPM型のいずれのタイプの永久磁石モータ(一例として、前述の図3,4に示したような構造)でも高効率化を達成することができる。
【符号の説明】
【0110】
1,11,21,41…回転子、2,12,22,42…回転子鉄心、3,23,43…第1の希土類永久磁石(低保磁力永久磁石)、4,24,44…第2の希土類永久磁石(高保磁力永久磁石)、5…第1の空洞、6…第2の空洞、7,27,46…鉄心の磁極部、14…永久磁石、26…ボルト穴、28,48…固定子、29,49…電機子巻線、30,50…固定子鉄心、31,51…エアギャップ。【Technical field】
[0001]
  The present invention relates to a permanent magnet, particularly a permanent magnet having a low coercive force and a high squareness ratio suitable for a motor, and a method for manufacturing the same. Furthermore, the present invention relates to a permanent magnet motor using these magnets.
[Background]
[0002]
  Conventionally, alnico magnets, ferrite magnets, Sm—Co magnets, Nd—Fe—B magnets, and the like are known as permanent magnets. As for these permanent magnets, appropriate magnets according to the specifications are used for key parts of various electric devices in addition to various motors such as VCM, spindle motor, measuring instrument, speaker, medical MRI and the like.
[0003]
  These magnets contain a large amount of Fe or Co and rare earth elements. Fe and Co contribute to an increase in saturation magnetic flux density. On the other hand, rare earth elements bring about a very large magnetic anisotropy derived from the behavior of 4f electrons in the crystal field, thereby contributing to an increase in coercive force and realizing good magnet characteristics.
[0004]
  In recent years, there has been an increasing demand for miniaturization and energy saving of various electric devices. Higher maximum energy product [(BH) for permanent magnets, which are key parts of these devices.maxThere has been a demand for improvement in temperature characteristics of large coercive force and magnet characteristics.
[0005]
  As an application field of permanent magnets, motors are particularly attracting attention from the viewpoint of energy saving. When used for this, the loss can be greatly reduced compared to the conventional induction type, and therefore, it is spreading as an energy saving technology for various uses such as in-vehicle and home appliance applications.
[0006]
  Generally, permanent magnet motors are roughly divided into two types. These are a surface magnet type permanent magnet motor in which a permanent magnet is attached to the outer periphery of a rotor core and an embedded type permanent magnet motor in which a permanent magnet is embedded in the rotor core. An embedded permanent magnet motor is suitable for the variable speed drive motor.
[0007]
  A configuration of a rotor of an embedded permanent magnet motor (IPM) will be described with reference to FIG. In FIG. 1, 11 is a rotor, 12 is a rotor core, and 14 is a high coercivity permanent magnet. A rectangular cavity is provided in the outer peripheral portion of the rotor core 12 by the same number as the number of poles. The rotor 11 shown in FIG. 1 is a four-pole rotor 11. The rotor core 12 is provided with four cavities, and permanent magnets 14 are inserted into the cavities. The permanent magnet 14 is magnetized in the direction perpendicular to the radial direction of the rotor or the side (long side in FIG. 1) facing the air gap surface in the rectangle of the cross section of the permanent magnet 14. The permanent magnet 14 is mainly an NdFeB permanent magnet having a high coercive force so as not to be demagnetized by a load current. The rotor core 12 is formed by laminating electromagnetic steel plates punched out of cavities. An example of such a motor is a permanent magnet type reluctance type rotating electrical machine described in JP-A-11-136912 (Patent Document 1).
[0008]
  In a permanent magnet type rotating electrical machine, the flux linkage of the permanent magnet is always generated at a constant rate. For this reason, the induced voltage by a permanent magnet becomes high in proportion to a rotational speed. When driving while changing the magnetization from low speed to high speed, the induced voltage by the permanent magnet becomes extremely high at high speed rotation. As a result, the induced voltage by the permanent magnet is applied to the electronic component of the inverter, and when the voltage exceeds the withstand voltage of the electronic component, the component breaks down. For this reason, it is conceivable to perform a design in which the amount of magnetic flux of the permanent magnet is reduced so as to be equal to or lower than the withstand voltage.
[0009]
  When the operation is performed while changing the magnetization close to the constant output from the low speed to the high speed, the interlinkage magnetic flux of the permanent magnet is constant. For this reason, in the high-speed rotation region, the voltage of the rotating electrical machine reaches the upper limit of the power supply voltage and the current necessary for output does not flow. As a result, the output is greatly reduced at high speeds, and further, it becomes impossible to drive over a wide range up to high speeds. Recently, flux-weakening control has begun to be applied as a method of expanding the operating range while changing the magnetization. In the flux weakening control, a demagnetizing field due to the d-axis current is applied to the high coercive force permanent magnet, and the magnetic operating point of the permanent magnet is moved within a reversible range to change the amount of magnetic flux. For this reason, an NdFeB magnet having a high coercive force is applied to the permanent magnet so as not to be irreversibly demagnetized by a demagnetizing field.
[0010]
  Since the interlinkage magnetic flux of the permanent magnet decreases due to the demagnetizing field of the d-axis current, the decrease of the interlinkage magnetic flux creates a voltage margin with respect to the voltage upper limit value. Since the current can be increased, the output in the high speed region increases. Further, the rotational speed can be increased by the voltage margin, and the range in which the operation can be performed while changing the magnetization is expanded.
[0011]
  However, it is necessary to continue to apply a demagnetizing field to the permanent magnet, and since the d-axis current that does not contribute to the output is continuously supplied, the copper loss increases and the efficiency deteriorates. Further, the demagnetizing field due to the d-axis current generates a harmonic magnetic flux, and the increase in voltage generated by the harmonic magnetic flux or the like is weakened, creating a limit of voltage reduction by the magnetic flux control. Therefore, even if the flux-weakening control is applied to the embedded permanent magnet type rotating electric machine, it is difficult to operate at a variable speed that is three times or more the base speed. Furthermore, the iron loss is increased by the harmonic magnetic flux, and vibration is generated by the electromagnetic force generated by the harmonic magnetic flux.
[0012]
  Further, when an embedded permanent magnet motor is applied to a drive motor for a hybrid vehicle, the motor is rotated in a state where it is driven only by an engine. At medium / high speed rotation, the induced voltage of the motor's permanent magnet exceeds the power supply voltage, and the d-axis current continues to flow under the flux-weakening control. In this state, since the motor generates only a loss, the overall operation efficiency is deteriorated. The d-axis current continues to flow, leading to a decrease in efficiency.
[0013]
  For this reason, with respect to the problems of the prior art as described above, Japanese Patent Laid-Open No. 2006-280195 (Patent Document 2) enables operation while changing the magnetization in a wide range from low speed to high speed. Motors that can change the magnetization state of all or part of permanent magnets that can provide higher torque and higher output in the middle / high-speed rotation range, improved efficiency, and improved reliability (permanent magnet type) Rotating electric machines) have been proposed.
[0014]
  That is, this permanent magnet type motor includes a stator provided with a stator winding as shown in FIG. 2 (FIG. 1 of Patent Document 2), and a magnetic field generated by a current of the stator winding in a rotor core. And a rotor in which a low coercivity permanent magnet having a coercive force with which the magnetic flux density is irreversibly changed and a high coercivity permanent magnet having a coercivity more than twice that of the low coercivity permanent magnet are provided. Is. In other words, a permanent magnet rotating electrical machine that enables variable speed operation in a wide range from low speed to high speed, realizing high torque in the low-speed rotation range, high output in the medium / high-speed rotation range, improved efficiency, and improved reliability. Can provide. As the magnet used for the permanent magnet motor, a high coercive force magnet is an NdFeB magnet, and a low coercive force magnet is an alnico magnet or an FeCrCo magnet.
[0015]
  Patent Document 2 shows an Alnico magnet (AlNiCo) or FeCrCo magnet as a low coercivity permanent magnet, and an NdFeB magnet as a high coercivity permanent magnet. The coercive force of the alnico magnet (magnetic field at which the magnetic flux density becomes 0) is 60 to 120 kA / m. It becomes 1/15 to 1/8 with respect to the coercive force 950 kA / m of the NdFeB magnet. The coercive force of the FeCrCo magnet is about 60 kA / m, which is 1/15 of the coercive force of the NdFeB magnet of 950 kA / m. Alnico magnets and FeCrCo magnets have considerably lower coercivity than NdFeB high coercivity magnets. Using this low coercive force, a motor capable of changing the magnetization state of all or part of permanent magnets is produced. In the embodiment, a high coercive force permanent magnet having a coercive force 8 to 15 times that of the low coercive force permanent magnet is applied, thereby obtaining a rotating electrical machine having excellent characteristics.
[0016]
  On the other hand, SmCo magnets aimed at developing a high coercive force have been disclosed.
[0017]
  Japanese Patent Publication No. 2-27426 (Patent Document 3) discloses a rare earth metal-containing permanent magnet alloy represented by the following general formula as an SmCo-based magnet whose maximum energy product is improved.
[0018]
    Sm1-αCeα(Co1-x-y-u-v-wFexCuyTiuZrvMnw)z
  In the above general formula, 0.1 ≦ α ≦ 0.90, 0.10 ≦ x ≦ 0.30, 0.05 ≦ y ≦ 0.15, 0.002 ≦ u ≦ 0.03, 0.002 ≦ v ≦ 0.03, 0.005 ≦ w ≦ 0.08, 0.01 ≦ u + v + w ≦ 0.10, 5.7 ≦ z ≦ 8.1
  Specifically, Ti, Zr, and Mn are used as essential elements, followed by sintering at 1050 to 1250 ° C., followed by solution treatment at 1050 to 1200 ° C., followed by aging at 400 to 900 ° C. for 2 to 20 hours. It is said that a high coercive force of 6.5 kOe or more can be obtained.
[0019]
  Japanese Patent Publication No. 1-2970 (Patent Document 4) discloses a manufacturing method that improves permanent magnet characteristics, that is, a high coercive force (≧ 6.5 kOe) and stabilization.
[0020]
  That is, R composed of a rare earth element R and a transition metal element M2M17Permanent magnet alloy (where R is one or a combination of two or more of Y, La, Ce, Pr, Nb, Sm and Misty metal, M is one or more of Cu and Co, Fe or Ni) The combination and a combination in which a part of M is replaced with one or more elements of Mn and Zr) are melted and cast. Next, ingot solution treatment for 1 to 1250 ° C. for 1 to 10 hours is performed, and R2M17A single phase is formed, and this is pulverized and then compression molded to form a molded body. Next, the molded body is sintered in a temperature range of 1100 to 1250 ° C. in a reduced pressure argon gas atmosphere of 50 to 350 Torr. Furthermore, after sintering in a temperature range of 1100 to 1200 ° C., a rare earth cobalt-based permanent magnet is manufactured by performing rapid cooling at 100 ° C./min or more after solution treatment and aging treatment. In this Patent Document 4, as aging treatment, in the case of one stage, 800 ° C. for 4 hours, in the case of multi-stage heat treatment, 800 ° C. for 2 hours, 700 ° C. for 4 hours, 600 ° C. for 8 hours, 500 ° C. for 16 hours It is. Under any condition, a high coercive force (≧ 6.5 kOe) is achieved.
[0021]
  In Japanese Patent Publication No. 62-45686 (Patent Document 5), a Ce-rich rare earth cobalt magnet for the purpose of providing a permanent magnet having high performance (high coercive force) and low cost is temporarily obtained at 400 to 650 ° C. by aging treatment. It is disclosed to include a step that takes 2 hours or more to 300 ° C. after holding. That is, (a) General formula: Ce1-uSmu(Co1-x-y-wCuxFeyMw)z(Wherein M is at least one of Zr and Ti, 0.05 ≦ u <0.5, 0.09 ≦ x ≦ 0.14, 0.05 ≦ y ≦ 0.25, 0.003 ≦ w ≦ 0.015, 5.8 ≦ z ≦ 6.8), the step of sintering at 1100 to 1200 ° C. (b) from 1100 ° C. to 600 ° C. A method for producing a rare earth-containing permanent magnet material comprising: a step of cooling for 50 minutes, and (c) a step of aging treatment of the sintered body held at 400 ° C. to 650 ° C. for 2 hours or more to 300 ° C. It is.
[0022]
  Japanese Patent Publication No. 62-9658 (Patent Document 6) provides a rare earth cobalt permanent magnet material having a high coercive force and a high energy product, and has the following technique for the purpose of omitting an aging treatment. It is disclosed. That is, R composed of a rare earth element R and a transition metal M2M17Type magnet alloy (where R is Y, La, Ce, Pr, Nb, Sm and a combination of two or more of misty metals, M is one or more of Cu and Co, Fe or Ni) A combination and a part of M are combined with one or more elements of Mn, Ti, Nb, Zr, Ta, and Hf) and dissolved to cast. After a solution treatment at 1150 ° C. to 1210 ° C. for 1 to 12 hours, rapid cooling is performed, and the metal phase RM790% or more of the phase is generated. Further, the alloy is pulverized and compression molded. A manufacturing method is disclosed in which aging treatment is omitted by sintering the compression-molded body in a vacuum or in an inert atmosphere and then cooling to 800 ° C. or lower at a cooling rate of 20 to 500 ° C./min.
[0023]
  Japanese Patent Publication No. 60-53107 (Patent Document 7) discloses a technique for improving coercive force. That is, an RM comprising a rare earth component R (one or a combination of two or more of Y, Sm, Pr, Nd, Ce, etc.) and a transition metal component M (Co, Fe, Mn, Ni, Cu, etc.).5After the composition represented by sinter is sintered, it is gradually cooled to room temperature at a rate of 10 ° C./min or less, further subjected to aging treatment at a temperature around 850 ° C., and then rapidly cooled from the aging treatment temperature to room temperature. This is a method for producing a rare earth magnet.
[Prior art documents]
[Patent Literature]
[0024]
[Patent Document 1]
JP-A-11-136912
[Patent Document 2]
JP 2006-280195 A
[Patent Document 3]
Japanese Patent Publication No. 2-27426
[Patent Document 4]
Japanese Patent Publication No. 1-2970
[Patent Document 5]
Japanese Examined Patent Publication No. 62-45686
[Patent Document 6]
Japanese Patent Publication No.62-9658
[Patent Document 7]
Japanese Patent Publication No. 60-53107
SUMMARY OF THE INVENTION
[Problems to be solved by the invention]
[0025]
  All patent documents aim at high coercive force. Therefore, the concept of the low coercivity magnet in the motor that can change the magnetization state of the whole or a part of the permanent magnets applied this time cannot be sufficiently exhibited. On the other hand, low coercivity magnets applied to motors that can change the magnetization state of all or part of permanent magnets are required to improve efficiency by controlling magnetic flux in a wider range than when using alnico magnets. It was.
[0026]
  To further increase the output, efficiency, and reliability of motors, especially motors that can change the magnetization state of all or part of permanent magnets, it is necessary to be able to set the optimum amount of magnetic flux under specified operating conditions. . An object of the present invention is to provide a permanent magnet suitable for such a setting and particularly suitable for a low coercive force magnet and a method for manufacturing the same. The present invention provides a permanent magnet that is extremely effective for increasing the efficiency of motors of various capacities, such as household appliances such as washing machines and air conditioners, in-vehicle applications, and train applications. Furthermore, it is providing the permanent magnet motor and permanent magnet for motors suitable for the above applications.
[Means for Solving the Problems]
[0027]
  The permanent magnet of the present invention satisfies the following general formula, and has a coercive force at room temperature of 0.5 kOe or more and 5.0 kOe or less, and a squareness ratio expressed by a ratio of residual magnetization to magnetization in a magnetic field of 10 kOe is 80%. It is the above.
[0028]
  General formula: Sm1-xyCexRy(Co1-abc-dFeaCubMcTd)z
  However, R is at least one selected from the group consisting of La, Nd and Pr, M is at least one selected from the group consisting of Ti, Zr and Hf, and T is Mn, V, Nb, Ta, Cr, At least one selected from the group consisting of Mo, W and Ni, and the atomic ratio when Sm is 1, 0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.3, 0 ≦ x + y ≦ 0.7 0.05 ≦ a ≦ 0.3, 0.02 ≦ b ≦ 0.15, 0.01 <c ≦ 0.04, 0 ≦ d ≦ 0.05, 6.0 ≦ z ≦ 8.3 .
[0029]
  The coercive force at room temperature is preferably 0.5 kOe or more and 3.5 kOe or less. The general formula a value is preferably 0.10 ≦ a ≦ 0.25, and the b value is 0.04 ≦ b ≦ 0.12. The average recoil permeability of the second and third quadrants is preferably 1.00 to 1.08. CaCu5Phase, Th2Zn17Phase, TbCu7It is preferable to comprise three phases. The permanent magnet is preferably a sintered body. Moreover, it is suitable for the permanent magnet mounted on the motor. In particular, the coercive force is 0.5 kOe or more and 5.0 kOe or less, the squareness ratio expressed by the ratio of the residual magnetization to the magnetization in a magnetic field of 10 kOe is 80% or more, and the average recoil permeability 1 in the second and third quadrants is 1. The permanent magnet having 0.001 to 1.08 is suitable for a motor that can change the magnetization state of the whole or part of the permanent magnet.
[0030]
  Moreover, the manufacturing method of the permanent magnet of the present invention includes a molding step of adjusting a molded body by molding an alloy powder satisfying the following general formula in a magnetic field, and the molded body in an inert atmosphere at 1000 ° C. or higher and 1200 ° C. or lower. Sintering step for obtaining a sintered body by sintering and forming a solution at a temperature of 10 minutes to 20 hours, heat-treating the sintered body at a temperature of 600 ° C. to 800 ° C. for 10 minutes to 20 hours, And an aging treatment step of cooling to 500 ° C. at a cooling rate of 1 to 10 ° C./min after the heat treatment.
[0031]
  General formula: Sm1-xyCexRy(Co1-abc-dFeaCubMcTd)z
  However, R is at least one selected from the group consisting of La, Nd and Pr, M is at least one selected from the group consisting of Ti, Zr and Hf, and T is Mn, V, Nb, Ta, Cr, At least one selected from the group consisting of Mo, W and Ni, and the atomic ratio when Sm is 1, 0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.3, 0 ≦ x + y ≦ 0.7 0.05 ≦ a ≦ 0.3, 0.02 ≦ b ≦ 0.15, 0.01 <c ≦ 0.04, 0 ≦ d ≦ 0.05, 6.0 ≦ z ≦ 8.3 .
[0032]
  The temperature range of the aging treatment is preferably 600 to 750 ° C. Moreover, CaCu can be obtained by aging treatment.5Phase, Th2Zn17Phase, TbCu7It is preferable to have a phase configuration including three phases. Moreover, it is preferable that the squareness ratio represented by the ratio of the residual magnetization to the magnetization in a magnetic field of 10 kOe with a coercive force of the permanent magnet of 0.5 kOe or more and 5.0 kOe or less is 80% or more.
[0033]
  Moreover, it is preferable to cool to room temperature or the said heat processing temperature at the cooling rate of 1-100 degrees C / min after the said sintering process.
[0034]
  A permanent magnet for a motor according to the present invention is a permanent magnet for a motor used for a motor capable of changing the magnetization state of the whole or a part of the permanent magnet,
  The coercive force at room temperature is 0.5 kOe or more and 5 kOe or less, the squareness ratio expressed by the ratio of the residual magnetization to the magnetization in a magnetic field of 10 kOe is 80% or more, and the average recoil permeability in the second and third quadrants is 1.00 or more. It is a rare earth magnet of 1.08 or less.
[0035]
  The permanent magnet motor according to the present invention has a coercive force at room temperature of not less than 0.5 kOe and not more than 5 kOe, a squareness ratio represented by a ratio of residual magnetization to magnetization in a magnetic field of 10 kOe, and 80% or more in the second and third quadrants. A first rare earth permanent magnet for changing the magnetization state, having an average recoil permeability of 1.00 to 1.08;
  A second rare earth permanent magnet having a higher coercivity at room temperature than the first rare earth permanent magnet;
It is characterized by providing.
[0036]
  Furthermore, according to the present invention, the following general formula is satisfied, and the squareness ratio expressed by the ratio of the remanent magnetization to the magnetization in a magnetic field of 10 kOe is not less than 80% and the coercive force is not less than 0.5 kOe and not more than 3.5 kOe. A permanent magnet is provided.
[0037]
  Further, according to the present invention, a molding step of adjusting a molded body by molding an alloy powder satisfying the following general formula in a magnetic field, the molded body in an inert atmosphere at a temperature of 1000 ° C. or higher and 1200 ° C. or lower for 10 minutes or longer. Sintering process for obtaining a sintered body by sintering and solution treatment for 20 hours or less, and heat-treating the sintered body at a temperature of 600 ° C. to 750 ° C. for 10 minutes to 20 hours, There is provided a method for producing a permanent magnet comprising an aging treatment step of cooling to room temperature at 10 ° C / min.
[0038]
  General formula: Sm1-xyCexRy(Co1-abc-dFeaCubMcTd)z
            R: at least one selected from La, Nd, and Pr
            M: at least one selected from Ti, Zr, and Hf
            T: At least one selected from V, Nb, Ta, Cr, Mo, W, and Ni
            Atomic ratio when Sm is 1
            0 ≦ x ≦ 0.5
            0 ≦ y ≦ 0.3
            0 ≦ x + y ≦ 0.7
            0.05 ≦ a ≦ 0.3
            0.02 ≦ b ≦ 0.15
            0.01 <c ≦ 0.04
            0 ≦ d ≦ 0.05
            6.0 ≦ z ≦ 8.3
  In addition, according to the present invention, the coercive force is 0.5 kOe or more and 3.5 kOe or less, the squareness ratio represented by the ratio of the residual magnetization to the magnetization in the magnetic field of 10 kOe is 80% or more, and the average of the second and third quadrants. It has a recoil permeability of 1.00 to 1.08 and can change the magnetization state of the whole or a part of the permanent magnet, characterized in that the rare earth element mainly contains Sm and the transition metal mainly contains cobalt. A permanent magnet for a motor is provided.
【The invention's effect】
[0039]
  According to the present invention, a permanent magnet having a low coercive force and a high squareness ratio can be provided. Therefore, the low coercive force side magnet of a motor, particularly a motor capable of changing the magnetization state of the whole or a part of the permanent magnet. Is preferred. Moreover, if it is the manufacturing method of this invention, the low coercive force and the permanent magnet of a high squareness ratio can be manufactured efficiently. Furthermore, a high-efficiency permanent magnet motor can be realized by using these magnets.
[Brief description of the drawings]
[0040]
FIG. 1 is a diagram showing an example of a permanent magnet motor.
FIG. 2 is a view showing an example of a motor using the permanent magnet of the present invention.
FIG. 3 is a sectional view showing a permanent magnet motor according to the embodiment.
FIG. 4 is a cross-sectional view showing a permanent magnet motor according to another embodiment.
BEST MODE FOR CARRYING OUT THE INVENTION
[0041]
  The permanent magnet of the present invention satisfies the following general formula, and has a coercive force at room temperature of 0.5 kOe to 5.0 kOe, and a squareness ratio expressed by a ratio of residual magnetization to magnetization in a magnetic field of 10 kOe is 80%. It is the above, It is characterized by the above.
[0042]
  General formula: Sm1-xyCexRy(Co1-abc-dFeaCubMcTd)z
  However, R is at least one selected from the group consisting of La, Nd and Pr, M is at least one selected from the group consisting of Ti, Zr and Hf, and T is Mn, V, Nb, Ta, Cr, At least one selected from the group consisting of Mo, W and Ni, and the atomic ratio when Sm is 1, 0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.3, 0 ≦ x + y ≦ 0.7 0.05 ≦ a ≦ 0.3, 0.02 ≦ b ≦ 0.15, 0.01 <c ≦ 0.04, 0 ≦ d ≦ 0.05, and 6.0 ≦ z ≦ 8.3 .
[0043]
  First, the coercive force at room temperature is 0.5 kOe or more and 5.0 kOe or less. When the coercive force is less than 0.5 kOe, the magnetic flux control range in the motor that can change the magnetization state of the whole or a part of the permanent magnets becomes narrow. When the coercive force exceeds 5.0 kOe, a great amount of electric energy is required to reverse the magnetization of the magnet, so that the energy saving effect is greatly reduced. Therefore, it is preferably 1 to 3.5 kOe, and more preferably 1 to 3.0 kOe. When the permanent magnet motor operates at a high temperature up to 150 ° C., a high-efficiency motor can be obtained with a coercive force of up to 5 kOe. The squareness ratio is 80% or more. When the squareness ratio is less than 80%, the magnetic flux control range in the motor that can change the magnetization state of the whole or a part of the permanent magnets is narrowed. A preferable value of the squareness ratio is 90 to 100%. The squareness ratio of the present invention is a value expressed by the ratio of residual magnetization to magnetization in a magnetic field of 10 kOe. The reason why 10 kOe is selected is as follows. This is because the permanent magnet of the present invention has a low coercive force of 5 kOe or less and is almost magnetically saturated in a magnetic field of 10 kOe, which is suitable for defining the squareness ratio. In the case of a permanent magnet, the theoretical value of the maximum energy product is usually a value obtained by dividing the square of the residual magnetization by 4. Also, the squareness ratio is obtained by dividing the actual maximum energy product value by this value. On the other hand, since the permanent magnet of the present invention controls the coercive force to a relatively small value, the squareness ratio applied to the soft magnetic material was used as a reference as a new index representing the squareness.
[0044]
  The average recoil permeability of the second and third quadrants is preferably 1.00 to 1.08. In principle, recoil permeability is less than 1.00. If the recoil permeability exceeds 1.08, the magnetic flux control amount of the motor that can change the magnetization state of the whole or a part of the permanent magnets is reduced, and the range in which high-efficiency operation can be performed becomes narrow. A preferred recoil permeability is 1.07 or less.
[0045]
  The recoil permeability is obtained from a change of magnetization in the second and third quadrants by a magnetic field, for example, a change from 15 kOe to zero magnetic field using a sample vibration type magnetometer. Specifically, the magnetization measurement is performed by applying a magnetic field up to −15 kOe opposite to the direction of magnetizing the sample magnetized with a pulse magnetic field of 60 kOe and changing the strength of the magnetic field from there to 0. Thereafter, after applying a magnetic field up to −14 kOe, the magnetic field is similarly changed to zero and the magnetization is measured. This is repeated every 1 kOe and measured in the range from the third quadrant to the second quadrant. The recoil permeability approximates a straight line, and is a value obtained by dividing each magnetic field (-15 kOe, -14 kOe,...) And the magnetization difference when the magnetic field is zero by the magnetic field change amount. The average of them is the average recoil permeability.
[0046]
  The coercive force and the squareness ratio can be obtained by ordinary measurement. The coercive force is a coercive force when a full loop measurement is performed with a maximum magnetic field of 10 kOe. The squareness ratio is the remanent magnetization relative to the magnetization at 10 kOe.
[0047]
  Next, each element shown in the general formula will be described.
[0048]
  Sm is an essential element which is the basis of the permanent magnet of the present invention together with Co. Ce is an element capable of substituting the Sm site, maintains the crystal structure, and realizes the characteristics of the present invention. The amount x is 0.5 or less, and when it exceeds that, magnetization decreases. The R element is at least one selected from the group consisting of La, Pr and Nd. R element is an element effective together with Sm and Ce to control the coercive force by heat treatment. The amount x of the R element is 0.3 or less, and if this amount is exceeded, the magnetization will decrease as in the case of Ce. Among the rare earth elements of Sm, Ce, and R elements, Sm is the element that preferably has the highest content. Note that the sum of x and y is 0.7 or less. If this amount is exceeded, the squareness deteriorates and the recoil permeability increases, which is insufficient for the magnetic flux control of the variable magnetic flux type permanent magnet motor. It becomes. Among the R elements, preferred elements are Pr and La. Instead of R element or Ce, a rare earth element before separation such as misch metal or didymium may be used.
[0049]
  Fe is an element that contributes to an increase in saturation magnetization. When the amount a is less than 0.05, the effect is small, and when it exceeds 0.3, the squareness decreases and the recoil permeability increases. A preferable range of the a value is 0.10 ≦ a ≦ 0.25, and a more preferable range is 0.15 ≦ a ≦ 0.23. Cu is an essential element for controlling the coercive force.7Phase is CaCu5Phase and Th2Zn17It is an element that promotes phase separation into two phases. The amount b is 0.02 ≦ b ≦ 0.15. If it is 0.02 or more, the function is exhibited. More preferably, 0.04 ≦ b ≦ 0.12.
[0050]
  The M element is at least one selected from the group consisting of Ti, Zr and Hf. M element is a high temperature phase TbCu7It is an element that promotes phase stabilization. After solution with a wide range by this element, TbCu7It becomes easier to obtain a single phase. As a result, by performing aging treatment at a temperature of 600 ° C. to 750 ° C. for 10 minutes to 20 hours, TbCu7Part of the phase is CaCu5Phase and Th2Zn17TbCu formed into two phases and first formed7It is preferable to control the coercive force while leaving the phases and to have a structure having three phases. If the amount c is less than 0.01, the effect is hardly exhibited. If the amount c exceeds 0.04, the target TbCu7It is difficult to obtain a single phase, Th2Ni17There are too many phases, making it difficult to control coercivity and squareness.
[0051]
  The T element is at least one selected from the group consisting of Mn, V, Nb, Ta, Cr, Mo, W and Ni, and is an element effective for controlling coercive force and squareness. The amount is 0.05 or less, and if it exceeds that, the magnetization will decrease. As a result, the residual magnetization (residual magnetic flux density) is lowered, and more magnets are used to obtain a constant magnetic flux amount. Preferably, it is 0.04 or less.
[0052]
  The z value is the total atomic ratio of Co, Fe, etc. with respect to the rare earth element. With this value, TbCu is obtained by aging treatment.7Two phases precipitated from the phase (CaCu5Phase and Th2Zn17The ratio of the phase is different. The coercive force is controlled by a configuration having these three phases. If the z value is less than 6, it is difficult to control the coercive force. On the other hand, if the z value exceeds 8.3, the squareness ratio decreases and the recoil permeability increases, so the amount of magnetic flux that can be controlled decreases. A preferable range of the z value is 6.1 or more and 8.2 or less.
[0053]
  In the SmCo-based magnet of the above general formula, 0.001 to 0.01 wt% of B and, as unavoidable impurities, C is 0.05 wt% or less, O is 0.5 wt% or less, and Al, Si, and Ca are each 0.00%. Even if it contains 06 wt% or less and Sn is 0.005 wt% or less, it does not disturb the characteristics of the present invention.
[0054]
  In addition to the above composition, the magnet of the present invention may contain oxygen of 5000 wtppm or less, hydrogen of 2000 wtppm or less, and nitrogen of 1000 wtppm or less. In particular, when hydrogen is used in a process such as hydrogen pulverization, hydrogen may remain somewhat, but there is no problem in characteristics. Further, other components (including impurities) may be contained in a total amount of 0.1 wt% or less.
[0055]
  Although the manufacturing method of the permanent magnet of this invention is not specifically limited, The following are mentioned as a method obtained efficiently. The mother alloy is prepared at a predetermined ratio, then melted by a method such as high-frequency melting, and is produced by casting or strip casting. In the case of the casting method, it is preferable to cast on a water-cooled mold or a water-cooled metal plate in order to obtain a sufficient cooling rate. In the case of strip casting, the thickness of the obtained flakes is preferably about 70 μm or more and 2 mm or less. More preferably, it is mainly 100 μm or more and 1 mm or less. The pulverization may be finely pulverized using, for example, a jet mill, and the average particle size of the pulverized powder is preferably 1 to 15 μm. When the average particle size is 1 μm or less, it becomes difficult to obtain a sufficient sintered density, and oxidation tends to occur. On the other hand, when the average particle size exceeds 15 μm, the squareness starts to deteriorate. Preferably it is 2-12 micrometers, More preferably, it is 3-10 micrometers. On the other hand, hydrogen pulverization using hydrogen may be used, but this method may not reach a predetermined average particle size. For this reason, hydrogen storage / release may be repeated a plurality of times, or after hydrogen pulverization, further pulverization may be performed by a wet method such as a ball mill or a dry method such as a jet mill.
[0056]
  Forming in a magnetic field may be a longitudinal magnetic field or a transverse magnetic field, and the magnetic field at that time is preferably stronger in order to orient, but may be 20 kOe that is normally used. In addition, a higher molding pressure is preferable, but this is also normally used at 100 kg / cm.2That's all you need.
[0057]
  Sintering and solution treatment are first performed at room temperature to 1-50 ° C./min. The temperature is raised at a rate of 500 ° C. to 700 ° C. for 1 to 2 hours. By performing degassing, the content of gas components such as oxygen, hydrogen, and nitrogen can be reduced. Thereafter, the temperature was increased in the Ar atmosphere to a sintering temperature of 1000 to 1200 ° C. at the same temperature increase rate, and sintering was continued for a total of 10 minutes to 20 hours in this temperature range, followed by solution treatment. Further, the solution treatment is a treatment aiming at a single phase, and the treatment time is preferably about 1 to 10 hours. The solution treatment is preferably performed at the same temperature as the sintering temperature or at a temperature lower by about 20 to 30 ° C. Thereafter, 5 to 100 ° C./min. Cool at the speed of. The aging may be performed for 10 minutes to 20 hours at a temperature of 600 ° C. or higher and 800 ° C. or lower after sintering and solution treatment, and thereafter 1 to 10 ° C./min. Cool to 500 ° C. at a cooling rate of 1-10 ° C./min. The cooling rate may be up to room temperature, but considering the production efficiency, it is sufficient to control the cooling rate to 500 ° C. Between the sintering / solution treatment and the aging treatment, the treatment may be once cooled to room temperature or continuously. In addition, aging can control the coercive force by one-stage (one temperature condition) treatment, but it may be two-stage (two temperature conditions) or more treatment. In this case, it is preferable to go through a step from a higher temperature side to a lower temperature, and in this case, the cooling rate between the two temperatures is 1 to 5 ° C./min. To do. In the case of multiple stages, the entire aging time may be 20 hours or less.
[0058]
  The aging temperature is preferably 600 ° C. or higher and lower than 800 ° C., more preferably 600 ° C. or higher and 750 ° C. or lower.
[0059]
  The atmosphere in this process is preferably a non-oxidizing atmosphere, and treatment in Ar, nitrogen and vacuum is preferred. The sintered density is preferably 95% or more. The sintered density is determined by (actual measured value / theoretical density by Archimedes method) × 100%.
[0060]
  After the sintering step, it is desirable to cool at a cooling rate of 5 ° C./min to 100 ° C./min up to room temperature or the temperature of the heat treatment in the aging treatment described above. The cooling rate varies depending on whether the aging treatment, which is the next step, is performed continuously, or when aging is performed after cooling to room temperature. That is, in the case of continuous processing, if the cooling rate is too high, there is a possibility of overshooting. 10 ° C./min. The following is preferred. In the case of cooling to room temperature once, 10 ° C./min. 100 ° C./min. The following is preferred. The cooling rate is 5 ° C./min. If it is less than this, there is a possibility that an aging effect may occur, and characteristic control becomes difficult. On the other hand, 100 ° C./min. Since the cooling rate exceeding 1 is too high, the sintered body is likely to be distorted, and cracks and the like may occur.
[0061]
  The magnet obtained by the above process is CaCu with high magnetic anisotropy.5Phase and highly saturated magnetized phase Th2Zn17Phase main phase and TbCu formed before aging treatment7The above-described magnet characteristics can be satisfied with a configuration including three phases in which phases also remain. Therefore, TbCu can be obtained by sintering and solution treatment.7It is important to make the phase into a single phase or a main phase.7Highly saturated magnetization Th2Zn17Phase and high magnetic anisotropy CaCu5The coercive force can be controlled by separating the phase into two phases. TbCu7The phase ratio of the phase is preferably 30% or more, more preferably 50% or more by volume. TbCu7When the phase is 100%, the coercive force is extremely small. Preferably it is 95% or less, More preferably, it is 90% or less.
[0062]
  CaCu5Phase, Th2Zn17Phase and TbCu7In addition to the phase, Th2Ni17The conditions under which the phase is generated depend on the composition and heat treatment conditions. Th2Ni17Since the phase has a small magnetic anisotropy constant or has in-plane magnetic anisotropy, a four-phase structure may be used. For a 4-phase configuration, Th2Ni17The amount of phase is preferably 10% or less.
[0063]
  TbCu7Phase, CaCu5Phase and Th2Zn17The presence or absence of a phase can be determined by XRD (X-ray diffraction method). In the present invention, it is not excluded that only each phase has a phase configuration other than three phases. The phase ratio can be determined by X-ray diffraction.
[0064]
  The evaluation method uses an X-ray diffraction method. That is, the characteristic diffraction line of each phase is obtained from the diffraction intensity. That is, TbCu7The phase is based on the diffraction of the (200) plane in the X-ray diffraction of the single phase after solution treatment, and the ratio of the phase is obtained with a decrease in strength relative to this. On the other hand, Th2Zn17Phase, CaCu5Phase, Th2Ni17Each single phase is separately prepared, and the phase is obtained by a relative value with respect to the diffraction intensity of each (024) plane, (110) plane, (200) plane, and (203) plane. The conditions for the X-ray diffraction measurement are 50 kV and 100 mA. Moreover, since the same result is obtained also by observation of SEM and EPMA, this method may be used.
[0065]
  On the other hand, TbCu7When all phases are separated into two phases, a high coercive force Hc is obtained, and it is difficult to apply the present invention to a motor that can change the magnetization state of the whole or a part of permanent magnets. Therefore, preferably TbCu7The phase is 20% or more, more preferably 30% or more.
[0066]
  In order to satisfy all of the coercive force, the squareness, the recoil permeability, and the like, the above aging conditions are preferable. If control can be performed in a shorter time, there is no problem even with heat treatment on the high temperature side exceeding 800 ° C. Considering time control in aging at the time of mass production, it is preferably less than 800 ° C., more preferably 790 ° C. or less.
[0067]
  The obtained magnet has excellent oxidation resistance, but it can be used in a wide variety of environments by performing various surface treatments such as Ni plating, Cu plating, and Al plating in order to provide further oxidation resistance. I can do it.
[0068]
  Moreover, in order to obtain a magnetic flux suitable for the operation mode, the permanent magnet motor using the permanent magnet according to the present invention reverses the magnetization direction of some magnets and controls the amount of magnetic flux, thereby improving the efficiency. It is intended. That is, the permanent magnet motor has a coercive force at room temperature of 0.5 kOe or more and 5 kOe or less, a squareness ratio represented by a ratio of residual magnetization to magnetization in a magnetic field of 10 kOe, and an average recoil of the second and third quadrants. A first rare earth permanent magnet having a magnetic permeability of 1.00 or more and 1.08 or less and a second rare earth permanent magnet having a room temperature coercivity higher than that of the first rare earth permanent magnet; Is provided. The first rare earth permanent magnet is a low coercivity magnet that reverses the magnetization direction to control the magnetic flux. The first rare earth permanent magnet is preferably in the range of 5 to 70% of the total magnet volume. By setting it as such a range, the output of a motor, efficiency, and reliability can be improved. Preferably it is 10-67%, More preferably, it is 15-50%.
[0069]
  The coercive force at room temperature of the first rare earth permanent magnet is desirably 0.5 kOe or more and 3.5 kOe or less. The first rare earth permanent magnet preferably has a composition containing a rare earth element containing Sm and a transition metal element containing Co as a main component. A more preferable composition is a composition represented by the general formula described above.
[0070]
  An example of the second rare earth permanent magnet is an NdFeB magnet.
[0071]
  The permanent magnet motor of the present invention may be either an inner rotor type or an outer rotor type, and may have either a surface magnet type (SPM) or an embedded magnet type (IPM). As the surface magnet type (SPM), for example, a permanent magnet including a first rare earth permanent magnet and a second rare earth permanent magnet can be provided on the surface or inner peripheral surface of the rotor. An example of the embedded magnet type (IPM) is one in which a permanent magnet including a first rare earth permanent magnet and a second rare earth permanent magnet is embedded in a rotor.
[0072]
  As an example, an inner rotor type IPM type is shown in FIG. As shown in FIG. 2, the rotor 1 includes a rotor core 2, a plurality of first rare earth permanent magnets (low coercivity permanent magnets) 3, and a plurality of second rare earth permanent magnets (high coercivity permanent magnets) 4. It is configured. The first rare earth permanent magnet 3 and the second rare earth permanent magnet 4 are embedded in the rotor core 2 and arranged in the circumferential direction of the rotor 1. The first cavity 5 is provided at both ends of the first rare earth permanent magnet 3. The second cavity 6 is provided at both ends of the second rare earth permanent magnet 4. Reference numeral 7 denotes a magnetic pole portion of the rotor core 2.
[0073]
  3 and 4 show an embodiment of an outer rotor type IPM type permanent magnet motor. As shown in FIG. 3, the rotor 21 in the permanent magnet motor of this embodiment includes a rotor core 22, a first rare earth permanent magnet 23, and a second rare earth permanent magnet 24. The rotor core 22 is configured by stacking silicon steel plates, for example. Four first rare earth permanent magnets 23 and two second rare earth permanent magnets 24 are embedded in the radial cross section of the rotor core 22. The first rare earth permanent magnet 23 is disposed along the radial direction of the rotor 21 and has a trapezoidal cross section. The magnetization direction of the first rare earth permanent magnet 23 is substantially the circumferential direction. The second rare earth permanent magnet 24 is disposed substantially in the circumferential direction and has a rectangular cross section. The magnetization direction of the second rare earth permanent magnet 24 is substantially the radial direction.
[0074]
  A cavity 25 is provided at each end of each of the first rare earth permanent magnet 23 and the second rare earth permanent magnet 24. The bolt hole 26 is opened in the rotor core 22. The magnetic pole core 27 of the rotor core 22 is formed so as to be surrounded by the two first rare earth permanent magnets 23 and the one second rare earth permanent magnet 24. The central axis direction of the magnetic core part 27 of the rotor core 22 is the d axis, and the central axis direction between the magnetic poles is the q axis. Accordingly, the first rare earth permanent magnet 23 is arranged in the q-axis direction which is the central axis between the magnetic poles, and the magnetization direction of the first rare earth permanent magnet 23 is 90 ° or 90 ° with respect to the q axis. In the adjacent first rare earth permanent magnets 23, the magnetic pole faces facing each other are the same. The second rare earth permanent magnet 24 is disposed in a direction perpendicular to the d axis that is the central axis of the magnetic pole core 27, and the magnetization direction is 0 ° or 180 ° with respect to the d axis. In the adjacent second rare earth permanent magnet 24, the directions of the magnetic poles are opposite to each other.
[0075]
  Such a rotor 21 is housed inside the stator 28. The stator 28 is configured by housing the armature winding 29 in a slot formed inside the stator core 30. The inner peripheral surface of the stator 28 and the outer peripheral surface of the rotor 21 are opposed to each other through an air gap 31.
[0076]
  On the other hand, as shown in FIG. 4, the rotor 41 in the permanent magnet motor of the present embodiment has a first rare earth permanent magnet 43 and a second rare earth permanent magnet 44 embedded in a rotor core 42. It is a configuration. The rotor core 42 is configured by laminating silicon steel plates. Eight first rare earth permanent magnets 43 and two second rare earth permanent magnets 44 are embedded in the radial cross section of the rotor core 42. Each of the eight sets of the first rare earth permanent magnet 43 and the second rare earth permanent magnet 44 is installed in a convex shape on the inner diameter side of the rotor 41. The magnetization directions of the first rare earth permanent magnet 43 and the second rare earth permanent magnet 44 are both substantially smaller in magnet size. If necessary, both ends of the first rare earth permanent magnet 43 and the second rare earth permanent magnet 44 may be provided with a magnetic flux short circuit and a cavity 45 for stress relaxation. The magnetic core 46 of the rotor core 42 is formed so as to be surrounded by the first rare earth permanent magnet 43 and the second rare earth permanent magnet 44. Reference numeral 47 denotes a rotating shaft.
[0077]
  Such a rotor 41 is accommodated in the stator 48. The stator 48 is configured by accommodating the armature winding 49 in a slot formed inside the stator core 50. The inner peripheral surface of the stator 48 and the outer peripheral surface of the rotor 41 are opposed to each other through an air gap 51.
[0078]
  The permanent magnet motor used by this invention is not limited to the form shown in FIGS. The present invention is applicable to a permanent magnet motor in which a plurality of permanent magnets are regularly arranged. Permanent magnets are arranged in the circumferential direction of the rotor, and magnets with high coercive force and low coercive force are alternated or the number or thickness is changed so that the volume ratio is within the above range. It can be a magnet motor.
[0079]
  The effects of the invention will be shown below by examples.
[0080]
(Example)
(Examples 1-34)
  About the composition shown to Table 1A and Table 1B, after preparing raw material powder, it melt | dissolved in the high frequency induction heating furnace, and it casted on the water-cooled copper plate, and was set as the mother alloy. The obtained sample was coarsely pulverized and then finely pulverized with a jet mill to an average particle size of 3 to 5 μm to obtain a predetermined shape with a magnetic field of 20 kOe and a press pressure of 0.5 t / cm.2Molding was performed in a magnetic field under the following conditions. The obtained molded body is sintered at a temperature 50 ° C. lower than the melting point of the parent phase (1040 to 1200 ° C.) for 3 hours, and subsequently held at a temperature 20 to 30 ° C. lower than the sintering temperature for 1 hour. Then, the solution was treated and cooled to room temperature at a rate of 50 ° C./min. Thereafter, the aging treatment of the odd-numbered examples was performed by performing heat treatment at 700 ° C. for 3 hours and then cooling at a rate of 10 ° C./min. The first-stage aging treatment of the even-numbered examples was performed at 670 ° C. for 4 hours and then to 600 ° C. at 5 ° C./min. By cooling at a rate of The second-stage aging treatment of the even-numbered examples was performed by holding at 600 ° C. for 2 hours and then cooling at a rate of 10 ° C./min. The rate of temperature increase to the aging treatment temperature is 30 ° C./min. Unified. The cooling rate in the aging treatment was from the heat treatment temperature to 500 ° C., and then natural cooling was performed.
[0081]
  Further, the temperature rise until sintering is performed at 5 ° C./min in a vacuum, once kept at 600 ° C. for degassing, and thereafter all in an Ar atmosphere.
[0082]
  In any case, 100 samples were prepared, and the residual magnetic flux density (Br), the coercive force (Hc), the squareness ratio, the recoil permeability, and the Hc range were measured as evaluation of the magnet characteristics. The residual magnetic flux density (Br), the coercive force (Hc), the squareness ratio, and the recoil permeability were measured using the method described above, and the average value of 100 pieces was obtained. The Hc range shows the variation in coercive force, and was obtained from “maximum value−minimum value” of 100 coercive forces (Hc). The results are shown in Table 1A and Table 1B.
[0083]
  Each sample was subjected to X-ray diffraction measurement (Cukα, tube voltage: 50 kV, tube current: 100 mA) to evaluate the phase configuration. In Table 1A and Table 1B, ◎ (CaCu5Phase, Th2Zn17Phase, TbCu7Phase, and Th2Ni174 phases are detected), ○ (CaCu5Phase, Th2Zn17Phase, TbCu73 phases are detected), x (CaCu5Phase and Th2Zn17Detects two phases), ▲ (CaCu5Phase, Th2Zn17Phase and Th2Ni173 phases are detected), ■ (Th2Zn17Phase detected), □ (Th2Ni17Phase detected), △ (TbCu7The phase was detected).
[Table 1A]
Figure 0004764526
[Table 1B]
Figure 0004764526
[0084]
  As can be seen from Tables 1A and 1B, it was found that the permanent magnet according to the present example has a coercive force that is neither too high nor too small, variation in coercive force is small, and recoil permeability is also small. Moreover, all were 98% or more of sintered density.
[0085]
  (Comparative example)
  Tables 2A and 2B show comparative examples.
[Table 2A]
Figure 0004764526
[Table 2B]
Figure 0004764526
[0086]
(Comparative Examples 1, 2, 3)
  For the compositions shown in Table 2A, the ingots of Comparative Examples 1, 2, and 3 obtained by high-frequency dissolution were pulverized to a particle size of 1 to 5 μm with a brown mill and then molded in a magnetic field. The molded body was sintered in vacuum, cooled, and then melted again at 1100 ° C. After aging at 850 ° C for 2 hours, the molded body was cooled to 500 ° C at a rate of 0.5 ° C / min, and subjected to aging treatment. It was. As a result of evaluating the magnetic characteristics, as shown in Table 2A, those having a high coercive force were obtained.
[0087]
(Comparative Examples 4 and 5)
  An alloy consisting of Sm 26.0 wt% with a purity of 99.9% or more, Co 47.3 wt%, Fe 12.8 wt%, Ni 5.3 wt%, and Cu 8.6 wt% with a purity of 99.8% is high-frequency melted and cast in an argon atmosphere. did. Table 2A shows the composition ratio of the alloy in terms of atomic ratio. The obtained alloy was subjected to ingot solution treatment at 1180 ° C. for 4 hours in an argon atmosphere. After the solution treatment, the alloy was cooled with liquid nitrogen at a cooling rate of 1200 ° C./min. And cooled quickly. Next, the obtained sample was coarsely pulverized in an iron mortar, and then made into a fine powder having an average particle size of 4 μm by a ball mill in an organic solvent. The obtained fine powder was pressed in a magnetic field of 15 kOe to form a compression molded body.
[0088]
  This compression-molded body is sintered at 1210 ° C. for 2 hours in an argon atmosphere of 200 Torr, followed by 1190 ° C. for 2 hours after solution treatment, followed by rapid cooling at a cooling rate of 150 ° C./min. did. Further, an aging treatment was performed at 800 ° C. for 4 hours to obtain Comparative Example 4. Moreover, the permanent magnet of the comparative example 5 was obtained with the manufacturing method similar to the said comparative example 4 without performing the ingot solution treatment of 1180 degreeC for 4 hours.
[0089]
  In Comparative Example 4, a coercive force of 6.5 kOe was obtained, while in Comparative Example 5, a coercive force of 4.3 kOe was obtained. In particular, in Comparative Example 5, the variation in coercive force was large.
[0090]
(Comparative Examples 6 and 7)
  The permanent magnet of Comparative Example 6 was produced by the following method. Ce0.56Sm0.44(Co0.697Cu0.13Fe0.16Zr0.013)6.2The molded body obtained by molding the powder having the composition given in No. 1 in a magnetic field was sintered at 1140 ° C. for 1 hour, and then cooled to room temperature so that the temperature from 1100 ° C. to 600 ° C. was passed in 15 minutes. Next, this product was held at 600 ° C. for 15 minutes and aged to 300 ° C. over 8 hours. The characteristics shown in Table 2A were obtained. That is, the high coercive force and its variation are relatively large.
[0091]
  Moreover, the permanent magnet of Comparative Example 7 was produced by the following method. Ce0.85Sm0.15(Co0.702Fe0.16Cu0.13Zr0.008)5.95The molded product having the composition given in (1) was molded in the absence of a magnetic field. The obtained molded product was sintered at 1120 ° C. for 1 hour in the same manner as in Comparative Example 6, and then cooled to room temperature so as to pass from 1100 ° C. to 500 ° C. in about 60 minutes. Subsequently, after maintaining at 500 ° C. for 20 minutes, it was gradually cooled to 300 ° C. in 4 hours. As shown in Table 2A, Comparative Example 6 has too high coercive force, and Comparative Example 7 has a large variation in coercive force.
[0092]
(Comparative Examples 8 and 9)
  The permanent magnet of Comparative Example 8 was produced by the following method. The alloy shown in Table 2A was melted at high frequency in an argon gas atmosphere, and an ingot obtained by casting was subjected to a solution treatment at 1180 ° C. for 6 hours. After the treatment, the alloy was rapidly cooled in liquid nitrogen. The obtained alloy was coarsely pulverized in an iron mortar, and further ball milled in an organic solvent to obtain a powder of 2 to 10 μm. This powder was press-molded in a magnetic field of 12 kOe to obtain a compression molded body.
[0093]
  Next, the compression molded body was sintered in a hydrogen atmosphere at 1200 ° C. for 2 hours, and after sintering, the permanent magnet of Comparative Example 8 was cooled to a temperature of 800 ° C. or less at a cooling rate of 100 ° C./min. Got.
[0094]
  Moreover, the permanent magnet of Comparative Example 9 was produced by the following method. Without subjecting the ingot after casting as described above to solution treatment, coarse pulverization, fine pulverization, press molding and sintering under the same conditions as described above, followed by solution treatment after sintering at 1160 ° C. for 8 hours. A permanent magnet of Comparative Example 9 was obtained. In any case, 100 samples were prepared, and the average values of the evaluation results of the magnet characteristics are shown in Table 2A.
[0095]
(Comparative Examples 10 and 11)
  Sm (Ni0.18Fe0.15Co0.57Cu0.1)6.9The alloy having the composition represented by the above was melted at high frequency in an argon gas atmosphere and coarsely pulverized in an iron mortar. The coarsely pulverized powder was further made into a fine powder having an average particle size of 4 μm by ball milling in a hexane solvent. The obtained fine powder was 5 ton / cm in a magnetic field of 12 kOe.2Compression molding was performed using a mold at a pressure of. The compressed body thus obtained was sintered in an inert gas atmosphere at a temperature of 1220 ° C. for 2 hours, and subsequently cooled to 500 ° C. or less at a cooling rate of 30 ° C./min.
[0096]
  In Comparative Example 11, only the cooling rate after sintering in Comparative Example 10 was set to 1000 ° C./min, and then optimum aging treatment was performed at 800 ° C. for 4 hours. In all cases, 100 samples were prepared, and the average value of the evaluation results of the magnet characteristics is shown in Table 2A. In Comparative Example 10, the coercive force was 8.8 kOe, and in Comparative Example 11, it was 2.3 kOe. In Comparative Example 10, the coercive force was large.
[0097]
(Comparative Examples 12 and 13)
  The permanent magnet of Comparative Example 12 was produced by the following method. Chemical formula Sm (Ni0.11Fe0.19Co0.6Cu0.1)6.9The alloy having the composition represented by the above was melted at high frequency in an argon gas atmosphere and coarsely pulverized in an iron mortar. The coarsely pulverized powder was further made into a fine powder having an average particle size of 2 to 10 μm by ball milling in a hexane solvent. The obtained fine powder was 5 ton / cm in a magnetic field of 12 kOe.2Compression molding was performed using a mold at a pressure of. The compressed body thus obtained was sintered in an inert gas atmosphere at a temperature of 1210 ° C. for 2 hours and then cooled to 500 ° C. or less at a cooling rate of 60 ° C./min.
[0098]
  Moreover, as Comparative Example 13, only the cooling rate after sintering in Comparative Example 12 was set to 1000 ° C./min, and then an aging treatment was performed at 800 ° C. × 4 hours. In any case, 100 samples were prepared and the magnetic characteristics were evaluated, and as a result, the coercive force was too large or too small, and the coercive force variation was large.
[0099]
(Comparative Examples 14 and 15)
  The permanent magnet of Comparative Example 14 was produced by the following method. Composition formula Sm (Co0.60Fe0.19Ni0.11Cu0.1)6.9The alloy having the composition represented by the above was melted at high frequency in an argon gas atmosphere and coarsely pulverized in an iron mortar. The coarsely pulverized powder was further made into a fine powder having an average particle size of 3 μm by ball milling in a hexane solvent. This fine powder is 5 ton / cm in a magnetic field of 12 kOe.2Compression molding using a mold at a pressure of The compressed body thus obtained was sintered in an inert gas atmosphere at a temperature of 1190 ° C. for 2 hours, and subsequently cooled to 500 ° C. or less at a cooling rate of 200 ° C./min.
[0100]
  Moreover, as Comparative Example 15, only the cooling rate after sintering in Comparative Example 14 was set to 1000 ° C./min, and then an optimal aging treatment was performed at 800 ° C. for 2 hours. In any case, as a result of producing 100 samples and evaluating the magnet characteristics, the variation in coercive force was large.
[0101]
(Comparative Examples 16 to 36)
  Alloys having the compositions shown in Comparative Examples 16 to 36 shown in Table 2A and Table 2B were melted at high frequency, coarsely pulverized, and then finely pulverized with a jet mill. The obtained fine powder was 5 ton / cm in a magnetic field of 12 kOe.2Compression molding was performed using a mold at a pressure of. The compressed body thus obtained was sintered in an inert gas atmosphere at a temperature 30 ° C. below the melting point of each alloy for 2 hours, and subsequently cooled to 500 ° C. or less at a cooling rate of 30 ° C./min. Thereafter, an aging treatment was performed at 800 ° C. for 4 hours, and cooling was performed at 5 ° C./min. The results of evaluating these magnet characteristics are summarized in Tables 2A and 2B. All the magnets had a large variation in coercive force at the time of manufacture, and the recoil permeability was large.
[0102]
  The MM used in Comparative Examples 22 and 23 is a misch metal whose composition is La60Ce10Pr20Nd10 by weight.
[0103]
(Application to motor)
  The characteristics when Examples 1-34 and Comparative Examples 1-36 were incorporated in a permanent magnet motor were evaluated. The evaluation temperature is room temperature. As an evaluation of the motor characteristics, the permanent magnets according to the respective examples and comparative examples are incorporated in the low coercive force magnet portion of the motor capable of changing the magnetization state of all or part of the permanent magnets shown in FIG. Using a NdFeB magnet (Hc = 21 kOe, Br = 12.4 kG) as a magnetic magnet, the efficiency of the motor was evaluated. In Table 2B, an alnico magnet is shown as Comparative Example 37.
[0104]
  The permanent magnet motors used as references are all based on the efficiency when using NdFeB magnets (Comparative Example 38: the same magnet as the low coercive force side is used for the low coercive force side) as the reference, and the relative efficiency of the example and comparative example Shown as a value. The evaluation condition is an average value of efficiency at high speed rotation (3000 rpm), medium speed rotation (2000 rpm), and low speed rotation (1000 rpm) of the motor. These conditions are low torque, medium torque, and high torque when torque is used as an index, and the efficiency under each operating condition is reflected.
[0105]
  The results are shown in Table 1A, Table 1B, Table 2A, and Table 2B. When the permanent magnet according to this example is used, the efficiency is significantly improved as compared with a permanent magnet motor using only NdFeB magnets. In addition, it can be seen that the efficiency is higher than the case of using an alnico magnet.
[0106]
  In addition, although applied to the motor which can change the magnetization state of the whole or a part of permanent magnet of the structure shown in FIG. 2 as an embodiment this time, a magnet having a high coercive force and a magnet having a relatively small coercive force. As long as the permanent magnet having the magnetic characteristics of the present embodiment is used as a permanent magnet motor magnet constituted by the combination, the motor structure is not particularly limited.
[0107]
(Examples 35-40, Comparative Examples 39-40)
  Next, raw material powders having the same composition as in Example 1 were prepared, and the production conditions were changed as shown in Table 3 for production. The obtained permanent magnet was measured for the same magnetic properties as in Example 1. The results are shown in Table 3.
[Table 3]
Figure 0004764526
[0108]
  As can be seen from Table 3, it can be understood that the permanent magnet of the present invention can be obtained efficiently if the production method satisfies the preferable conditions of the present invention. In addition, it was found that sufficient characteristics cannot be obtained in Comparative Example 39 and Comparative Example 40 that do not satisfy the preferable conditions.
[0109]
  Note that the permanent magnet motor used in this embodiment is an example, and any type of permanent magnet motor of inner rotor type, outer rotor type, SPM type, or IPM type (for example, in FIGS. High efficiency can be achieved even with the structure shown).
[Explanation of symbols]
[0110]
  1, 11, 21, 41 ... rotor, 2, 12, 22, 42 ... rotor core, 3, 23, 43 ... first rare earth permanent magnet (low coercive force permanent magnet), 4, 24, 44 ... first 2 rare earth permanent magnets (high coercive force permanent magnets), 5 ... first cavity, 6 ... second cavity, 7, 27, 46 ... magnetic pole part of iron core, 14 ... permanent magnet, 26 ... bolt hole, 28,48 ... Stator, 29, 49 ... Armature winding, 30, 50 ... Stator core, 31, 51 ... Air gap.

Claims (24)

以下の一般式を満たすとともに、室温での保磁力が0.5kOe以上5.0kOe以下、かつ10kOeの磁場での磁化に対する残留磁化の比で表した角型比が80%以上であり、CaCu相、ThZn17相及びTbCu相の3相を含むことを特徴とする永久磁石。
一般式: Sm1−x―yCe(Co1−a―b−c−dFeCu
但し、RはLa,Nd及びPrよりなる群から選ばれる少なくとも1種で、MはTi,Zr及びHfよりなる群から選ばれる少なくとも1種で、TはMn,V,Nb,Ta,Cr,Mo,W及びNiよりなる群から選ばれる少なくとも1種で、Smを1としたときの原子比が、0≦x≦0.5、0≦y≦0.3、0≦x+y≦0.7、0.05≦a≦0.3、0.02≦b≦0.15、0.01<c≦0.04、0≦d≦0.05及び6.0≦z≦8.3を満たす。
In addition to satisfying the following general formula, the coercivity at room temperature is 0.5 kOe or more and 5.0 kOe or less, and the squareness ratio expressed by the ratio of the residual magnetization to the magnetization in a magnetic field of 10 kOe is 80% or more, and CaCu 5 A permanent magnet comprising three phases of a phase, a Th 2 Zn 17 phase and a TbCu 7 phase.
General formula: Sm 1-xy Ce x R y (Co 1-ab-c-D Fe a Cu b Mc T d ) z
However, R is at least one selected from the group consisting of La, Nd and Pr, M is at least one selected from the group consisting of Ti, Zr and Hf, and T is Mn, V, Nb, Ta, Cr, At least one selected from the group consisting of Mo, W and Ni, and the atomic ratio when Sm is 1, 0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.3, 0 ≦ x + y ≦ 0.7 0.05 ≦ a ≦ 0.3, 0.02 ≦ b ≦ 0.15, 0.01 <c ≦ 0.04, 0 ≦ d ≦ 0.05, and 6.0 ≦ z ≦ 8.3 .
前記保磁力が0.5kOe以上3.5kOe以下であることを特徴とする請求項1記載の永久磁石。  The permanent magnet according to claim 1, wherein the coercive force is 0.5 kOe or more and 3.5 kOe or less. 前記一般式のa値が0.10≦a≦0.25、b値が0.04≦b≦0.12であることを特徴とする請求項1または2記載の永久磁石。Claim 1 or 2 permanent magnet according a value of the general formula 0.10 ≦ a ≦ 0.25, b value is equal to or is 0.04 ≦ b ≦ 0.12. 第2,3象限の平均リコイル透磁率が1.00以上1.08以下であることを特徴とする請求項1〜3いずれか1項記載の永久磁石。The permanent magnet according to any one of claims 1 to 3 , wherein the average recoil permeability in the second and third quadrants is 1.00 or more and 1.08 or less. CaCu相、ThZn17相、TbCu相、およびThNi17相の4相を具備することを特徴とする請求項1〜いずれか1項記載の永久磁石。CaCu 5 phase, Th 2 Zn 17 phase, TbCu 7 phase, and Th 2 claims 1-4 permanent magnet according to any one, characterized by comprising a four-phase Ni 17 phase. 焼結体であることを特徴とする請求項1〜5いずれか1項記載の永久磁石。Claim 1-5 permanent magnet according to any one of which is a sintered body. モータに搭載されることを特徴とする請求項1〜6いずれか1項に記載の永久磁石。Permanent magnet according to claim 1-6 any one, characterized in that mounted on the motor. 室温での保磁力が0.5kOe以上5kOe以下で、10kOeの磁場での磁化に対する残留磁化の比で表した角型比が80%以上であり、かつCaCu相、ThZn17相及びTbCu相の3相を含む永久磁石の製造方法であって、
以下の一般式を満たす合金粉末を磁場中成形することにより成形体を調整する成形工程と、
前記成形体を不活性雰囲気中1000℃以上1200℃以下の温度で10分以上20時間以下焼結および溶体化することにより焼結体を得る焼結工程と、
前記焼結体を600℃以上800℃以下の温度で10分以上20時間以下熱処理するとともに、前記熱処理後の冷却速度1℃/min以上10℃/min以下で500℃まで冷却する時効処理工程と
を具備することを特徴とする永久磁石の製造方法。
一般式: Sm1−x―yCe(Co1−a―b−c−dFeCu
但し、RはLa,Nd及びPrよりなる群から選ばれる少なくとも1種で、MはTi,Zr及びHfよりなる群から選ばれる少なくとも1種で、TはMn,V,Nb,Ta,Cr,Mo,W及びNiよりなる群から選ばれる少なくとも1種で、Smを1としたときの原子比が、0≦x≦0.5、0≦y≦0.3、0≦x+y≦0.7、0.05≦a≦0.3、0.02≦b≦0.15、0.01<c≦0.04、0≦d≦0.05及び6.0≦z≦8.3を満たす。
The coercive force at room temperature is 0.5 kOe or more and 5 kOe or less, the squareness ratio represented by the ratio of the residual magnetization to the magnetization in a magnetic field of 10 kOe is 80% or more, and the CaCu 5 phase, Th 2 Zn 17 phase and TbCu A method for producing a permanent magnet including three phases of seven phases,
A molding process for adjusting a molded body by molding an alloy powder satisfying the following general formula in a magnetic field;
A sintering step of obtaining a sintered body by sintering and solution forming the molded body in an inert atmosphere at a temperature of 1000 ° C. to 1200 ° C. for 10 minutes to 20 hours;
An aging treatment step of heat-treating the sintered body at a temperature of 600 ° C. to 800 ° C. for 10 minutes to 20 hours and cooling to 500 ° C. at a cooling rate of 1 ° C./min to 10 ° C./min after the heat treatment; The manufacturing method of the permanent magnet characterized by comprising.
General formula: Sm 1-xy Ce x R y (Co 1-ab-c-D Fe a Cu b Mc T d ) z
However, R is at least one selected from the group consisting of La, Nd and Pr, M is at least one selected from the group consisting of Ti, Zr and Hf, and T is Mn, V, Nb, Ta, Cr, At least one selected from the group consisting of Mo, W and Ni, and the atomic ratio when Sm is 1, 0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.3, 0 ≦ x + y ≦ 0.7 0.05 ≦ a ≦ 0.3, 0.02 ≦ b ≦ 0.15, 0.01 <c ≦ 0.04, 0 ≦ d ≦ 0.05, and 6.0 ≦ z ≦ 8.3 .
前記時効処理工程の前記熱処理が600℃以上750℃以下の温度で10分以上20時間以下行われることを特徴とする請求項記載の永久磁石の製造方法。The method for manufacturing a permanent magnet according to claim 8 , wherein the heat treatment in the aging treatment step is performed at a temperature of 600 ° C or higher and 750 ° C or lower for 10 minutes or longer and 20 hours or shorter. 前記時効処理工程によってCaCu相、ThZn17相、TbCu相およびThNi17相の4相を具備する相構成にすることを特徴とする請求項8または9記載の永久磁石の製造方法。10. The permanent magnet manufacturing method according to claim 8, wherein the aging treatment step forms a phase structure including four phases of CaCu 5 phase, Th 2 Zn 17 phase, TbCu 7 phase, and Th 2 Ni 17 phase. Method. 前記焼結工程後、室温あるいは前記熱処理の温度までを冷却速度5℃/min以上100℃/min以下で冷却することを特徴とする請求項8〜10いずれか1項記載の永久磁石の製造方法。The method for producing a permanent magnet according to any one of claims 8 to 10, wherein, after the sintering step, cooling to room temperature or the temperature of the heat treatment is performed at a cooling rate of 5 ° C / min to 100 ° C / min. . 永久磁石の室温での保磁力が0.5kOe以上3.5kOe以下、かつ10kOeの磁場での磁化に対する残留磁化の比で表した角型比が80%以上であることを特徴とする請求項8〜11いずれか1項記載の永久磁石の製造方法。Claim coercive force at room temperature of the permanent magnets is more than 0.5 kOe 3.5 kOe or less, and squareness ratio, expressed as the ratio of residual magnetization for magnetization at a magnetic field of 10kOe is equal to or less than 80% 8 The manufacturing method of the permanent magnet of any one of -11 . 全体または一部の永久磁石の磁化状態を変化させることができるモータに用いられるモータ用永久磁石であって、
室温の保磁力が0.5kOe以上5kOe以下、10kOeの磁場での磁化に対する残留磁化の比で表した角型比80%以上で、かつ第2、3象限の平均リコイル透磁率が1.00以上1.08以下の希土類磁石であることを特徴とするモータ用永久磁石。
A permanent magnet for a motor used in a motor capable of changing the magnetization state of all or part of permanent magnets,
The coercive force at room temperature is 0.5 kOe or more and 5 kOe or less, the squareness ratio expressed by the ratio of the residual magnetization to the magnetization in a magnetic field of 10 kOe is 80% or more, and the average recoil permeability in the second and third quadrants is 1.00 or more. A permanent magnet for a motor, which is a rare earth magnet of 1.08 or less.
前記室温の保磁力が0.5kOe以上3.5kOe以下であることを特徴とする請求項13記載のモータ用永久磁石。The permanent magnet for motor according to claim 13, wherein the coercive force at room temperature is 0.5 kOe or more and 3.5 kOe or less. 前記希土類磁石は、Smを含む希土類元素と、Coが主成分の遷移金属元素とを含有することを特徴とする請求項13または14記載のモータ用永久磁石。15. The permanent magnet for motor according to claim 13 , wherein the rare earth magnet contains a rare earth element containing Sm and a transition metal element containing Co as a main component. 室温の保磁力が0.5kOe以上5kOe以下、10kOeの磁場での磁化に対する残留磁化の比で表した角型比80%以上で、かつ第2、3象限の平均リコイル透磁率が1.00以上1.08以下である、磁化状態を変化させるための第1の希土類永久磁石と、
前記第1の希土類永久磁石よりも室温の保磁力が高い第2の希土類永久磁石と
を備えることを特徴とする永久磁石モータ。
The coercive force at room temperature is 0.5 kOe or more and 5 kOe or less, the squareness ratio expressed by the ratio of the residual magnetization to the magnetization in a magnetic field of 10 kOe is 80% or more, and the average recoil permeability in the second and third quadrants is 1.00 or more. A first rare earth permanent magnet for changing a magnetization state, which is 1.08 or less;
A permanent magnet motor comprising: a second rare earth permanent magnet having a coercivity at room temperature higher than that of the first rare earth permanent magnet.
前記第1の希土類永久磁石の前記保磁力が0.5kOe以上3.5kOe以下であることを特徴とする請求項16記載の永久磁石モータ。The permanent magnet motor according to claim 16 , wherein the coercive force of the first rare earth permanent magnet is 0.5 kOe or more and 3.5 kOe or less. 前記第1の希土類永久磁石は、Smを含む希土類元素と、Coが主成分の遷移金属元素とを含有することを特徴とする請求項16または17記載の永久磁石モータ。18. The permanent magnet motor according to claim 16, wherein the first rare earth permanent magnet includes a rare earth element containing Sm and a transition metal element containing Co as a main component. 前記第1の希土類永久磁石の全磁石体積に占める割合は5%以上70%以下であることを特徴とする請求項16〜18いずれか1項記載の永久磁石モータ。19. The permanent magnet motor according to claim 16 , wherein a ratio of the first rare earth permanent magnet to a total magnet volume is 5% or more and 70% or less. 請求項16〜19いずれか1項記載の永久磁石モータは、インナーローター方式またはアウターローター方式であることを特徴とする永久磁石モータ。The permanent magnet motor according to any one of claims 16 to 19, wherein the permanent magnet motor is an inner rotor system or an outer rotor system. 前記第1の希土類永久磁石及び前記第2の希土類永久磁石が円周方向に配列される回転子をさらに備えることを特徴とする請求項16〜19いずれか1項記載の永久磁石モータ。The permanent magnet motor according to any one of claims 16 to 19, further comprising a rotor in which the first rare earth permanent magnet and the second rare earth permanent magnet are arranged in a circumferential direction. 前記第1の希土類永久磁石及び前記第2の希土類永久磁石が埋め込まれる回転子をさらに備えることを特徴とする請求項16〜19いずれか1項記載の永久磁石モータ。The permanent magnet motor according to any one of claims 16 to 19, further comprising a rotor in which the first rare earth permanent magnet and the second rare earth permanent magnet are embedded. 前記第1の希土類永久磁石及び前記第2の希土類永久磁石が表面に設置される回転子をさらに備えることを特徴とする請求項16〜19いずれか1項記載の永久磁石モータ。The permanent magnet motor according to any one of claims 16 to 19, further comprising a rotor on which the first rare earth permanent magnet and the second rare earth permanent magnet are installed. 前記第1の希土類永久磁石及び前記第2の希土類永久磁石が内周面に設置される回転子をさらに備えることを特徴とする請求項16〜19いずれか1項記載の永久磁石モータ。The first rare earth permanent magnet and the permanent magnet motor according to claim 16 to 19, wherein any one, characterized by further comprising a rotor to which the second rare-earth permanent magnet is installed on the inner peripheral surface.
JP2010514515A 2008-05-30 2009-05-27 Permanent magnet and manufacturing method thereof, permanent magnet for motor and permanent magnet motor Active JP4764526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010514515A JP4764526B2 (en) 2008-05-30 2009-05-27 Permanent magnet and manufacturing method thereof, permanent magnet for motor and permanent magnet motor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008142294 2008-05-30
JP2008142294 2008-05-30
JP2010514515A JP4764526B2 (en) 2008-05-30 2009-05-27 Permanent magnet and manufacturing method thereof, permanent magnet for motor and permanent magnet motor
PCT/JP2009/059713 WO2009145229A1 (en) 2008-05-30 2009-05-27 Permanent magnet and manufacturing method therefor, permanent magnet for motor and permanent magnet motor

Publications (2)

Publication Number Publication Date
JP4764526B2 true JP4764526B2 (en) 2011-09-07
JPWO2009145229A1 JPWO2009145229A1 (en) 2011-10-13

Family

ID=41377100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010514515A Active JP4764526B2 (en) 2008-05-30 2009-05-27 Permanent magnet and manufacturing method thereof, permanent magnet for motor and permanent magnet motor

Country Status (3)

Country Link
JP (1) JP4764526B2 (en)
CN (1) CN102047536B (en)
WO (1) WO2009145229A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9774219B2 (en) 2009-08-06 2017-09-26 Kabushiki Kaisha Toshiba Permanent magnet, motor and electric generator
US9774234B2 (en) * 2010-03-30 2017-09-26 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same
US11289959B2 (en) 2017-09-11 2022-03-29 Kabushiki Kaisha Toshiba Rotor and rotary electric machine

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5197669B2 (en) * 2010-03-31 2013-05-15 株式会社東芝 Permanent magnet and motor and generator using the same
JP5259668B2 (en) * 2010-09-24 2013-08-07 株式会社東芝 PERMANENT MAGNET, MANUFACTURING METHOD THEREOF, AND MOTOR AND GENERATOR USING THE SAME
JP5504233B2 (en) 2011-09-27 2014-05-28 株式会社東芝 PERMANENT MAGNET AND ITS MANUFACTURING METHOD, AND MOTOR AND GENERATOR USING THE SAME
CN102436888A (en) * 2011-12-21 2012-05-02 钢铁研究总院 Cerium-based 1:5 permanent magnet material and preparation method
CN102543340B (en) * 2011-12-30 2015-06-10 北矿磁材科技股份有限公司 High-performance samarium-cobalt magnetic powder and preparation method thereof
US9806571B2 (en) * 2012-05-28 2017-10-31 Aida Engineering, Ltd. Composite torque rotating electric machine
JP6257890B2 (en) * 2012-11-20 2018-01-10 株式会社東芝 Permanent magnet and motor and generator using the same
JP5558596B2 (en) * 2013-02-04 2014-07-23 株式会社東芝 Permanent magnet and motor and generator using the same
DE102013220452A1 (en) * 2013-10-10 2015-04-30 Volkswagen Aktiengesellschaft Method for producing a permanent magnet and permanent magnet and electric machine with such a permanent magnet
CN104700972A (en) * 2013-12-06 2015-06-10 绥中鑫源科技有限公司 High-performance and low-cost anisotropic bonding magnetic powder and preparation method thereof
US11380465B2 (en) 2015-10-08 2022-07-05 Kyushu Institute Of Technology Rare earth cobalt-based permanent magnet
CN105405554A (en) * 2015-11-26 2016-03-16 宁波科星材料科技有限公司 High-iron content and high-performance SmCo magnet
CN105427986A (en) * 2015-11-26 2016-03-23 宁波科星材料科技有限公司 High-performance SmCo permanent magnet
CN105427984A (en) * 2015-11-26 2016-03-23 宁波科星材料科技有限公司 Manufacturing process of SmCo magnet with high iron content and high performance
CN105427987A (en) * 2015-11-26 2016-03-23 宁波科星材料科技有限公司 Smco magnet
CN105427985A (en) * 2015-11-27 2016-03-23 宁波科星材料科技有限公司 High-performance samarium cobalt permanent magnet material and preparation method thereof
CN106531383B (en) * 2016-11-08 2018-11-20 中国科学院宁波材料技术与工程研究所 Samarium-cobalt alloy material, samarium-cobalt alloy powder and preparation method thereof and SmCo base magnet
CN106787516A (en) * 2017-01-17 2017-05-31 江苏新日电动车股份有限公司 A kind of manufacture method of permanent magnet machine rotor
CN108630371B (en) 2017-03-17 2020-03-27 有研稀土新材料股份有限公司 High-thermal-stability rare earth permanent magnet material, preparation method thereof and magnet containing same
KR102077147B1 (en) * 2017-09-29 2020-02-13 도요타 지도샤(주) Rare-earth magnet
GR20180100148A (en) * 2018-04-04 2019-11-28 Δημητριος Γεωργιου Νιαρχος High entropy alloys of rare earths and alloys of transition elements as structural elements for the preparation of new magnetic phases for permanent magnets
JP7318567B2 (en) * 2020-03-09 2023-08-01 トヨタ自動車株式会社 Rotating electric machine
CN111370191B (en) * 2020-03-20 2022-05-31 杭州永磁集团有限公司 Heavy rare earth element-free samarium-cobalt permanent magnet material with low coercive force temperature coefficient and high temperature and preparation method thereof
WO2023241475A1 (en) * 2022-06-14 2023-12-21 美的威灵电机技术(上海)有限公司 Rotor assembly and electric motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08214478A (en) * 1995-01-31 1996-08-20 Toshiba Corp Permanent-magnet field type dynamo electric machine
JPH1070023A (en) * 1996-08-28 1998-03-10 Tokin Corp Permanent magnet and manufacture thereof
JP2002083707A (en) * 2000-09-08 2002-03-22 Shin Etsu Chem Co Ltd Method for manufacturing rare earth sintered magnet
WO2008018354A1 (en) * 2006-08-11 2008-02-14 Kabushiki Kaisha Toshiba Permanent magnet type rotary electric device rotor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7199690B2 (en) * 2003-03-27 2007-04-03 Tdk Corporation R-T-B system rare earth permanent magnet
JP2008047962A (en) * 2006-08-10 2008-02-28 Sony Corp Information processing device, information processing method, and computer program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08214478A (en) * 1995-01-31 1996-08-20 Toshiba Corp Permanent-magnet field type dynamo electric machine
JPH1070023A (en) * 1996-08-28 1998-03-10 Tokin Corp Permanent magnet and manufacture thereof
JP2002083707A (en) * 2000-09-08 2002-03-22 Shin Etsu Chem Co Ltd Method for manufacturing rare earth sintered magnet
WO2008018354A1 (en) * 2006-08-11 2008-02-14 Kabushiki Kaisha Toshiba Permanent magnet type rotary electric device rotor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9774219B2 (en) 2009-08-06 2017-09-26 Kabushiki Kaisha Toshiba Permanent magnet, motor and electric generator
US9774234B2 (en) * 2010-03-30 2017-09-26 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same
US11289959B2 (en) 2017-09-11 2022-03-29 Kabushiki Kaisha Toshiba Rotor and rotary electric machine

Also Published As

Publication number Publication date
CN102047536A (en) 2011-05-04
JPWO2009145229A1 (en) 2011-10-13
WO2009145229A1 (en) 2009-12-03
CN102047536B (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP4764526B2 (en) Permanent magnet and manufacturing method thereof, permanent magnet for motor and permanent magnet motor
JP5107198B2 (en) PERMANENT MAGNET, PERMANENT MAGNET MANUFACTURING METHOD, AND MOTOR USING THE SAME
JP2010034522A (en) Permanent magnet, method of manufacturing the same, permanent magnet for motor, and permanent magnet motor
JP2011114236A (en) Permanent magnet, method of manufacturing the same, permanent magnet for motor, and permanent magnet motor
US7948135B2 (en) Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
CN102209796B (en) Permanent magnet and method for manufacturing same, and motor and generator employing same
JP4737431B2 (en) Permanent magnet rotating machine
JP5558447B2 (en) Permanent magnet and motor and generator using the same
JP2010045068A (en) Permanent magnet and method of manufacturing the same
JP5504233B2 (en) PERMANENT MAGNET AND ITS MANUFACTURING METHOD, AND MOTOR AND GENERATOR USING THE SAME
WO2011016089A1 (en) Permanent magnet and variable magnetic flux motor and electric generator using same
JP2009302262A (en) Permanent magnet and production process of the same
US10991491B2 (en) Permanent magnet, and motor and power generator using the same
JP2010021541A (en) Permanent magnet and method of manufacturing the same, and permanent magnet for motor and permanent magnet motor
JP4951703B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP4919109B2 (en) Permanent magnet rotating machine and method for manufacturing permanent magnet segment for permanent magnet rotating machine
JP2010062326A (en) Bond magnet
JP6613010B2 (en) Permanent magnet, rotating electric machine, and vehicle
JP2014220503A (en) Motor and power generator
JP5917601B2 (en) permanent magnet
JP2019161945A (en) Rotor, rotating electric machine, and vehicle
JP6049662B2 (en) Motors or generators, and cars
JP2019161946A (en) Rotor, rotating electric machine, and vehicle
JP4150983B2 (en) Permanent magnet having gradient function of electrical resistivity and manufacturing method thereof
US11522420B2 (en) Method of producing motor core

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4764526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150