JP4764047B2 - Light emitting element - Google Patents

Light emitting element Download PDF

Info

Publication number
JP4764047B2
JP4764047B2 JP2005101955A JP2005101955A JP4764047B2 JP 4764047 B2 JP4764047 B2 JP 4764047B2 JP 2005101955 A JP2005101955 A JP 2005101955A JP 2005101955 A JP2005101955 A JP 2005101955A JP 4764047 B2 JP4764047 B2 JP 4764047B2
Authority
JP
Japan
Prior art keywords
copper
compound
light
atom
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005101955A
Other languages
Japanese (ja)
Other versions
JP2006286749A (en
JP2006286749A5 (en
Inventor
克明 久家
明 坪山
伸二郎 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005101955A priority Critical patent/JP4764047B2/en
Publication of JP2006286749A publication Critical patent/JP2006286749A/en
Publication of JP2006286749A5 publication Critical patent/JP2006286749A5/ja
Application granted granted Critical
Publication of JP4764047B2 publication Critical patent/JP4764047B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、有機化合物を用いた発光素子に関するものであり、さらに詳しくは、金属配位化合物を発光材料として用いた発光素子に関するものである。   The present invention relates to a light-emitting element using an organic compound, and more particularly to a light-emitting element using a metal coordination compound as a light-emitting material.

有機EL素子は、高速応答性や高効率の発光素子として、応用研究が精力的に行われている(非特許文献1)。   Organic EL devices have been vigorously studied for application as light-emitting devices with high-speed response and high efficiency (Non-Patent Document 1).

銅配位化合物は、原料が安価なため、比較的安価に製造することが可能であり、銅配位化合物の性能を十分に引き出せば低コスト高性能な有機EL素子が可能になる。   Since the copper coordination compound is inexpensive, it can be produced at a relatively low cost. If the performance of the copper coordination compound is sufficiently extracted, a low-cost and high-performance organic EL device can be obtained.

特許文献1、非特許文献2には、銅配位化合物を用いた有機EL素子が開示されている。しかしながら、これらのEL素子は、発光効率が著しく低く、素子の効率の記載が不十分であり、銅配位化合物の特性が十分引き出せているとは考えにくく、ディスプレイや照明などに用いるには十分な性能のものではない。また、非特許文献2に用いられている銅配位化合物の発光材料の分子量が1600以上であり、分子量が大きすぎて昇華性が悪く、素子作成に真空蒸着を用いようとした場合には、不向きである。   Patent Document 1 and Non-Patent Document 2 disclose organic EL elements using a copper coordination compound. However, these EL devices have remarkably low luminous efficiency, the description of the device efficiency is insufficient, and it is unlikely that the properties of the copper coordination compound can be sufficiently extracted, and are sufficient for use in displays and illumination. It is not a thing of the performance. In addition, when the molecular weight of the light emitting material of the copper coordination compound used in Non-Patent Document 2 is 1600 or more, the molecular weight is too large and the sublimation property is poor, and when vacuum deposition is used for device creation, It is unsuitable.

また、非特許文献3〜5には、本発明の一部の化合物と同じ構造を有する銅配位化合物が開示されているが、発光に関しては記載が全くない。   Non-Patent Documents 3 to 5 disclose copper coordination compounds having the same structure as some of the compounds of the present invention, but there is no description regarding light emission.

非特許文献6には、3核の銅配位化合物に関する記載があり、それは発光性を有し、有機LEDへの応用が示唆されている。しかし、複核の配位化合物は不安定性の要因となる金属中心、金属間結合および金属−配位子結合を多く有することから、配位化合物自体の安定性に問題があることがある。また、この3核銅配位化合物は、蒸着は可能であるが、素子の発光特性(効率)や安定性は悪い。   Non-Patent Document 6 describes a trinuclear copper coordination compound, which has light-emitting properties and suggests application to organic LEDs. However, since the binuclear coordination compound has many metal centers, intermetallic bonds, and metal-ligand bonds that cause instability, there may be a problem in the stability of the coordination compound itself. Moreover, although this trinuclear copper coordination compound can be vapor-deposited, the light emitting characteristics (efficiency) and stability of the device are poor.

特許第2940514号公報Japanese Patent No. 2940514 Macromol.Symp.125,1〜48(1997)Macromol. Symp. 125,1-48 (1997) Advanced materials 1999 11 No10 p852 Y.Ma et al.Advanced materials 1999 11 No10 p852 Y.A. Ma et al. Journal of Chemical Society Dalton Transaction 1991 p2859Journal of Chemical Society Dalton Transaction 1991 p2859 Journal of Chemical Society Dalton Transaction 1983 p1419Journal of Chemical Society Dalton Transaction 1983 p1419 Journal of Chemical Society Dalton Transaction 2001 p3069Journal of Chemical Society Dalton Transaction 2001 p3069 Journal of American Chemical Society, 2003 125(40) p12072Journal of American Chemical Society, 2003 125 (40) p12072

本発明は、高発光効率・高安定性・低コストである発光材料を用いた発光素子を提供することを目的とする。   An object of the present invention is to provide a light-emitting element using a light-emitting material having high luminous efficiency, high stability, and low cost.

すなわち、本発明の発光素子は、下記一般式(1)で示される部分構造を有する単核の銅配位化合物のうち下記いずれかの構造式で示される銅配位化合物を発光材料として用いること特徴とする。

Figure 0004764047
That is, the light emitting device of the present invention uses a copper coordination compound represented by any one of the following structural formulas as a light emitting material among mononuclear copper coordination compounds having a partial structure represented by the following general formula (1). Features.
Figure 0004764047

Figure 0004764047
Figure 0004764047

[Cuは銅イオンであり、PR12APR1’R2’は2座のホスフィン配位子である。 [Cu is a copper ion, and PR 1 R 2 APR 1 'R 2 ' is a bidentate phosphine ligand.

1およびL2は炭素、酸素、リン、硫黄、ハロゲンから選ばれる元素を配位原子とする配位子であり、それぞれ同じでも異なっていても良い。] L 1 and L 2-carbon, oxygen, phosphorus, sulfur, a ligand and elements of the coordinating atoms selected from halogen, may be the same or different. ]

1およびL2は炭素、窒素、酸素、リン、硫黄、ハロゲンから選ばれる元素を配位原子とする配位子であり、それぞれ同じでも異なっていても良い。] L 1 and L 2 are ligands having an element selected from carbon, nitrogen, oxygen, phosphorus, sulfur, and halogen as a coordination atom, and may be the same or different. ]

本発明で用いる銅配位化合物は、高い発光効率を有するのみならず、真空蒸着プロセスや溶液にして塗布するスピンコートプロセスや、インクジェットノズルを用いた塗布方式にも適するし、素子作成工程における分解などのダメージがなく安定した素子作成が可能になる。そのため、本発明の発光素子は、高発光効率・高安定性を示すと共に、低コストで製造可能である。   The copper coordination compound used in the present invention is not only high in luminous efficiency, but also suitable for a vacuum coating process, a spin coating process that is applied as a solution, and a coating method that uses an inkjet nozzle. This makes it possible to create a stable element without any damage. Therefore, the light emitting device of the present invention exhibits high light emission efficiency and high stability and can be manufactured at low cost.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明の発光材料である銅配位化合物の特徴から説明する。   First, it demonstrates from the characteristic of the copper coordination compound which is a luminescent material of this invention.

本発明に用いる銅配位化合物は、上記一般式(1)で示される部分構造、好ましくは下記一般式(2)で示される部分構造を有する単核の銅配位化合物である。   The copper coordination compound used in the present invention is a mononuclear copper coordination compound having a partial structure represented by the general formula (1), preferably a partial structure represented by the following general formula (2).

Figure 0004764047
Figure 0004764047

[X1BX2は2座配位子であり、X1およびX2は、炭素、酸素、リン、硫黄から選ばれる原子であり、それぞれ同じでも異なっていても良い。] [A X 1 BX 2 is a bidentate ligand, X 1 and X 2 is an atom selected from carbon-containing, oxygen, phosphorus, sulfur, may be the same or different. ]

一般的に金属配位化合物の安定性において、中心金属もしくは金属−配位子間の結合に対する、例えば酸素や水といった外的な小分子の攻撃によって結合解裂が起こり分解するというプロセスが重要な要因の一つとなる。本発明の銅配位化合物は、4配位の銅配位化合物であり、中心金属周りを囲むように配位子が配置されるため、中心金属を立体的に保護することができ、配位化合物を安定化できる。さらには2つの2座配位子が銅原子に結合した単核の銅配位化合物であれば最適である。本発明の銅配位化合物は、熱的に安定で、高い発光効率を示し発光材料に適している。特に固体粉末状態において他の化合物と比べ強い発光を示すことが特徴である。   In general, in the stability of metal coordination compounds, a process in which bond cleavage occurs and breaks down by the attack of an external small molecule such as oxygen or water on the bond between the central metal or metal-ligand is important. One of the factors. The copper coordination compound of the present invention is a tetracoordinate copper coordination compound, and since the ligand is arranged so as to surround the central metal, the central metal can be three-dimensionally protected. The compound can be stabilized. Furthermore, it is most suitable if it is a mononuclear copper coordination compound in which two bidentate ligands are bonded to a copper atom. The copper coordination compound of the present invention is thermally stable and exhibits high luminous efficiency and is suitable for a light emitting material. In particular, it is characterized in that it emits stronger light than other compounds in the solid powder state.

一般には希薄溶液で強く発光する化合物でも固体粉末状態においては、発光が極端に弱くなる物が多い。これらは、発光材料分子間の相互作用によって、基底状態において会合体を形成する、あるいは、励起会合体を形成し、本来の発光特性が得られなくなる現象であり、これは「濃度消光」現象として知られている。本発明における銅配位化合物は、濃度消光に強い発光材料といえる。従って、発光素子中の発光層を考えるとき、一般には、ホスト材料中に発光材料を少量ゲスト材料として加えることで濃度消光を回避するのであるが、本発明の銅配位化合物は、この濃度消光の制約がないため、濃度を濃くする、あるいは、100%の発光層を形成することができ、高い発光効率を有し、かつ、生産性のよい発光素子を製造することができる。また発光特性の濃度依存性が小さいため、生産ばらつきなどが抑えられ、この観点からも生産性の高い発光素子を作成することが可能である。   In general, there are many compounds that emit light strongly in a dilute solution, but the emission becomes extremely weak in a solid powder state. These are phenomena in which aggregates are formed in the ground state by interaction between luminescent material molecules, or excited aggregates are formed, and the original light emission characteristics cannot be obtained. This is a “concentration quenching” phenomenon. Are known. The copper coordination compound in the present invention can be said to be a light emitting material that is strong against concentration quenching. Therefore, when considering the light-emitting layer in the light-emitting device, concentration quenching is generally avoided by adding a small amount of light-emitting material as a guest material in the host material. However, the copper coordination compound of the present invention has this concentration quenching. Therefore, the concentration can be increased or a 100% light emitting layer can be formed, and a light emitting element having high light emission efficiency and high productivity can be manufactured. In addition, since the concentration dependency of the light emission characteristics is small, production variation and the like can be suppressed, and a light-emitting element with high productivity can be manufactured from this viewpoint.

銅配位化合物の中心金属の銅イオンはプラス1価を用いることが好ましい。銅原子の電子配置から考えると、プラス1価の銅は、d電子が10個含まれる。一般に、遷移金属で偶数個のd電子の場合には、良好な発光特性を示す場合が多い。   It is preferable to use a positive monovalent copper ion as the central metal of the copper coordination compound. Considering the electron arrangement of copper atoms, plus monovalent copper contains 10 d electrons. In general, a transition metal having an even number of d electrons often shows good emission characteristics.

真空蒸着法は、安定で膜質の良い薄膜を作成できるため、有機LED素子の作成方法として一般によく用いられる。我々の実験から、分子量が大きくなると、昇華性が落ち、この蒸着法を用いることができない。我々の実験では、真空蒸着を可能にするためには、化合物の分子量は、好ましくは1500以下、さらに好ましいのは1200以下が必要である。特に単核の配位化合物は複核の配位化合物と比較して分子量を小さく抑えることができるため、真空蒸着法を用いる場合は一般的に非常に有利である。   The vacuum deposition method is generally used as a method for producing an organic LED element because a thin film having a stable and good film quality can be produced. From our experiments, as the molecular weight increases, the sublimation properties drop and this vapor deposition method cannot be used. In our experiments, in order to enable vacuum deposition, the molecular weight of the compound is preferably 1500 or less, and more preferably 1200 or less. In particular, a mononuclear coordination compound can be suppressed in molecular weight as compared with a binuclear coordination compound, and therefore it is generally very advantageous when a vacuum deposition method is used.

本発明の銅配位化合物に用いる配位子に関して説明する。   The ligand used for the copper coordination compound of the present invention will be described.

本発明に用いることのできる配位子の化学構造式を以下にあげる。この構造式のまま用いることもできるし、これらにさらに置換基を付与して用いても良い。例えば、下記構造式は、縮合環基、ハロゲン原子、直鎖状、分岐状または環状のアルキル基(アルキル基のCH2基は、−O−または−NR−(Rはアルキル基または、置換されても良い芳香環基)に置換されても良く、また、H原子は芳香環基またはハロゲン原子に置換されても良い。)、または、置換基を有しても良い芳香環基を有しても良い。 The chemical structural formulas of ligands that can be used in the present invention are listed below. These structural formulas may be used as they are, or they may be used with further substituents. For example, the following structural formula is a condensed ring group, a halogen atom, a linear, branched or cyclic alkyl group (the CH 2 group of the alkyl group is —O— or —NR— (where R is an alkyl group or substituted) May be substituted with an aromatic ring group), and the H atom may be substituted with an aromatic ring group or a halogen atom), or an aromatic ring group which may have a substituent. May be.

Figure 0004764047
Figure 0004764047

Figure 0004764047
Figure 0004764047

Figure 0004764047
Figure 0004764047

Figure 0004764047
Figure 0004764047

Figure 0004764047
Figure 0004764047

Figure 0004764047
Figure 0004764047

Figure 0004764047
Figure 0004764047

Figure 0004764047
Figure 0004764047

化3〜化8に示した配位子は0価のホスフィン2座配位子である。   The ligands shown in Chemical Formulas 3 to 8 are zero-valent phosphine bidentate ligands.

化9で示した配位子は、構造式中に示した「CH」、「CH2」、「NH」、「SH」または「OH」の水素原子が引き抜かれ、マイナス1価の2座配位子となる。これらの配位子の銅原子に対する配位原子は、炭素原子、窒素原子、硫黄原子、リン原子および酸素原子である。また、G12〜G19は「NH」、「SH」または「OH」の水素原子を引き抜くこと無く用いることによって、0価の単座配位子ともなる。これらの配位子の銅原子に対する配位原子はリン原子である。 In the ligand represented by Chemical Formula 9, the hydrogen atom of “CH”, “CH 2 ”, “NH”, “SH” or “OH” shown in the structural formula is extracted, and a minus monovalent bidentate is formed. Become a rank. The coordination atom with respect to the copper atom of these ligands is a carbon atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and an oxygen atom. G12 to G19 can also be converted to zero-valent monodentate ligands by using “NH”, “SH” or “OH” without extracting hydrogen atoms. The coordination atom for the copper atom of these ligands is a phosphorus atom.

化10で示した配位子は、H01〜H12は0価の単座配位子である。これらの配位子の銅原子に対する配位原子はリン原子、炭素原子および窒素原子である。H13〜H15に示した配位子は「SH」または「OH」の水素原子が引き抜かれ、マイナス1価の単座配位子となる。これらの配位子の銅原子に対する配位原子は、硫黄原子および酸素原子である。H16〜H18はハロゲン原子がそのままマイナス1価の単座配位子として働く。   In the ligand represented by Chemical formula 10, H01 to H12 are zero-valent monodentate ligands. The coordination atom for the copper atom of these ligands is a phosphorus atom, a carbon atom and a nitrogen atom. In the ligands represented by H13 to H15, a hydrogen atom of “SH” or “OH” is withdrawn and becomes a monovalent monodentate ligand. The coordination atom with respect to the copper atom of these ligands is a sulfur atom and an oxygen atom. In H16 to H18, the halogen atom acts as a minus monovalent monodentate ligand as it is.

以下に、本発明の金属配位化合物の具体例を示す(表中、2座配位子PR12APR1’R2’はAと、X1BX2はBと表記してある)。 Specific examples of the metal coordination compound of the present invention are shown below (in the table, the bidentate ligand PR 1 R 2 APR 1 'R 2 ' is represented as A and X 1 BX 2 is represented as B). .

表1〜表3には、0価のホスフィン2座配位子を1つ、マイナス1価の2座配位子を1つ有し、全体の電価が0価である銅配位化合物を示す。   Tables 1 to 3 show copper coordination compounds having one zero-valent phosphine bidentate ligand and one minus monovalent bidentate ligand, and having an overall valence of zero. Show.

表4〜表10には、0価のホスフィン2座配位子を1つ、0価の単座配位子を1つ、マイナス1価の単座配位子を1つ有し、全体の電価が0価である銅配位化合物を示す。   Tables 4 to 10 have one zero-valent phosphine bidentate ligand, one zero-valent monodentate ligand, and one minus monovalent monodentate ligand. Represents a zero-valent copper coordination compound.

表11、表12には、0価のホスフィン2座配位子を2つ有し、全体の電価がプラス1価である銅配位化合物を示す。これらイオン性の銅配位化合物の場合、カウンターアニオンとして、PF6 -、ClO4 -、BF4 -、ハロゲンイオンなどを用いることができる。 Tables 11 and 12 show copper coordination compounds having two zero-valent phosphine bidentate ligands and having a total monovalence of plus one. In the case of these ionic copper coordination compounds, PF 6 , ClO 4 , BF 4 , halogen ions and the like can be used as counter anions.

Figure 0004764047
Figure 0004764047

Figure 0004764047
Figure 0004764047

Figure 0004764047
Figure 0004764047

Figure 0004764047
Figure 0004764047

Figure 0004764047
Figure 0004764047

Figure 0004764047
Figure 0004764047

Figure 0004764047
Figure 0004764047

Figure 0004764047
Figure 0004764047

Figure 0004764047
Figure 0004764047

Figure 0004764047
Figure 0004764047

Figure 0004764047
Figure 0004764047

Figure 0004764047
Figure 0004764047

上記具体例のうち、好ましい銅配位化合物の構造式を以下に示す。   Among the specific examples, the structural formulas of preferred copper coordination compounds are shown below.

Figure 0004764047
Figure 0004764047

Figure 0004764047
Figure 0004764047

本発明者の検討により、例示化合物1067はX線結晶構造解析により擬似的なテトラヘドラル構造を有する[Cu(PPh264PPh2)PPh2(C64O)]であることが確認された。また例示化合物2073もX線結晶構造解析により擬似的なテトラヘドラル構造を有する[Cu(PPh264PPh2)PPh2(C64OH)Cl]であることが確認された。 According to the study of the present inventor, the exemplified compound 1067 is [Cu (PPh 2 C 6 H 4 PPh 2 ) PPh 2 (C 6 H 4 O)] having a pseudo tetrahedral structure by X-ray crystal structure analysis. confirmed. The exemplified compound 2073 was also confirmed to be [Cu (PPh 2 C 6 H 4 PPh 2 ) PPh 2 (C 6 H 4 OH) Cl] having a pseudo tetrahedral structure by X-ray crystal structure analysis.

また配位子は単座で銅原子に配位するものと2座で銅に配位するものが示してあるが、単座配位子に比べ、2座配位子が銅に配位している単核の4配位の銅配位化合物の方がキレート効果(2座、3座配位子といった多座配位子が金属に配位する時、キレート環が形成される結果、錯体の安定度が増大する効果)の影響で安定性が向上する。さらに表1〜表3、表11、表12に示したような、2座の配位子が二つ配位した単核の4配位の銅配位化合物はさらにその安定性が増すためさらに好ましい。   In addition, ligands that are monodentate coordinate to the copper atom and those that coordinate to copper in the bidentate are shown, but the bidentate ligand is coordinated to copper compared to the monodentate ligand. The mononuclear tetracoordinate copper coordination compound has a chelate effect (when a multidentate ligand such as a bidentate or a tridentate ligand is coordinated to a metal, a chelate ring is formed, resulting in the stability of the complex. The stability is improved due to the effect of increasing the degree). Furthermore, as shown in Tables 1 to 3, Table 11, and Table 12, mononuclear tetracoordinate copper coordination compounds in which two bidentate ligands are coordinated further increase the stability. preferable.

本発明の発光材料は、固体中で良く発光するため、発光層中で、高濃度で用いることができる。しかしながら、配位化合物を同じ配位子で構成する場合、その配位化合物は比較的結晶化しやすく、発光素子として用いる場合、劣化しやすいなど問題が起こる可能性がある。そのため、分子の対称性を落として結晶化を抑制することができる。表1〜表10、表12に示した単核の4配位の銅配位化合物は構造の異なる複数の配位子を有するため、分子構造の対称性が低い。このような分子構造を有するものは、アモルファス性が高く、結晶性が低いため有機LED素子の発光材料には、より望ましい。   Since the light emitting material of the present invention emits light well in a solid, it can be used at a high concentration in the light emitting layer. However, when the coordination compound is composed of the same ligand, the coordination compound is relatively easily crystallized, and when used as a light-emitting element, there is a possibility that problems such as deterioration easily occur. Therefore, crystallization can be suppressed by reducing the symmetry of the molecule. Since the mononuclear tetracoordinate copper coordination compounds shown in Tables 1 to 10 and Table 12 have a plurality of ligands having different structures, the symmetry of the molecular structure is low. Those having such a molecular structure are more desirable for a light-emitting material of an organic LED element because of high amorphousness and low crystallinity.

本発明の銅配位化合物の発光メカニズムについては幾つかの可能性が考えられる。
(1)LMCT(ligand−to−metal−charge−transfer)励起状態
(2)MLCT(metal−to−ligand−charge−transfer)励起状態
(3)金属中心励起状態
(4)配位子中心(ππ*)励起状態
There are several possibilities for the light emission mechanism of the copper coordination compound of the present invention.
(1) LMCT (ligand-to-metal-charge-transfer) excited state (2) MLCT (metal-to-ligand-charge-transfer) excited state (3) metal center excited state (4) ligand center (ππ * ) Excited state

以下に示す発光に関する記述に関しては、我々の発光メカニズムに関する一つのモデルである。本発明の銅配位化合物の発光性最低励起状態は、特にホスフィン配位子に代表されるような強い電子ドナー配位子のみを有する場合、LMCT(配位子から金属への電荷移動)により生じる3重項状態であることが予想される。もしくは金属中心励起状態も考えられる。   The following description of light emission is a model for our light emission mechanism. The luminescent minimum excited state of the copper coordination compound of the present invention is caused by LMCT (charge transfer from ligand to metal), particularly when it has only a strong electron donor ligand as typified by a phosphine ligand. The resulting triplet state is expected. Or a metal center excited state is also considered.

ピリジン、ピラジン、ピリミジン、ピリダジン、キノリン、イソキノリン環などN原子を介して直接銅原子に配位しているものの場合、励起状態になるとき、基底状態から、電子が上位の軌道に遷移するが、上記複素環は、電子欠乏性のため、電子を受け入れやすい。そのため、銅原子から励起遷移時に複素環が電子を受け入れる場合が多い。これら、複素環を有する配位子が励起遷移時に銅原子から電子を受け入れる。励起遷移時に、金属から配位子に電子が電荷移動する場合に、その励起状態をMLCT励起状態と呼ぶ。配位子中心(ππ*)励起状態も考えられる。 In the case of those directly coordinated to a copper atom via an N atom, such as pyridine, pyrazine, pyrimidine, pyridazine, quinoline, and isoquinoline ring, an electron transitions from the ground state to a higher orbital when it enters an excited state. The heterocycle is easy to accept electrons due to electron deficiency. Therefore, the heterocyclic ring often accepts electrons at the time of excitation transition from the copper atom. These ligands having a heterocyclic ring accept electrons from a copper atom during excitation transition. When electrons are transferred from the metal to the ligand during the excitation transition, the excited state is referred to as an MLCT excited state. A ligand center (ππ * ) excited state is also conceivable.

本発明の配位化合物の中には電子欠乏性の複素環であるピリジン、ピラジン、ピリミジン、ピリダジン、キノリン、イソキノリン環などがN原子を介して直接銅原子に配位しているものもあるが、この場合上記の幾つかの発光性最低励起状態((1)〜(4))の可能性を考えなくてはならない。   Among the coordination compounds of the present invention, there are those in which an electron-deficient heterocyclic ring such as a pyridine, pyrazine, pyrimidine, pyridazine, quinoline, or isoquinoline ring is directly coordinated to a copper atom via an N atom. In this case, it is necessary to consider the possibility of the above-mentioned several luminescent minimum excited states ((1) to (4)).

本発明の銅配位化合物の発光寿命は、固体状態で0.1μs〜100μsであり、3重項励起状態を経由した発光であり、遅延蛍光または燐光である。   The light emission lifetime of the copper coordination compound of the present invention is 0.1 μs to 100 μs in the solid state, light emitted via the triplet excited state, and delayed fluorescence or phosphorescence.

高発光効率のためには、基底状態と励起状態の構造変化を抑制するような配位子構造にすることが重要である。本発明の銅配位化合物は、溶液に比べ固体中では上記構造変化が抑制されるため、強い発光が得られると考えられる。これが銅配位化合物が、固体でよく発光する一つの理由である。   For high luminous efficiency, it is important to have a ligand structure that suppresses the structural change between the ground state and the excited state. The copper coordination compound of the present invention is considered to produce strong light emission because the above structural change is suppressed in a solid compared to a solution. This is one reason why the copper coordination compound emits light well in a solid state.

これまで、用いられてきたアルミキノリノール誘導体、クマリン誘導体、キナクリドン誘導体などは、溶液中で非常に強い発光が得られ、その強発光特性がそのまま固体分散中でも保持される。この特性が有機EL素子においても有効に働き、素子の高発光効率が得られた。しかしながら本発明の銅配位化合物では溶液中の発光に比べて固体中の発光は非常に強い。本発明者らはこの特性に着眼し有機EL素子の高効率で安定発光に有用であることを見出した。   The aluminum quinolinol derivatives, coumarin derivatives, quinacridone derivatives, and the like that have been used so far can obtain very strong luminescence in a solution, and the strong luminescence properties are maintained as they are even in solid dispersion. This characteristic worked effectively also in the organic EL element, and high luminous efficiency of the element was obtained. However, in the copper coordination compound of the present invention, light emission in a solid is much stronger than light emission in a solution. The present inventors focused on this characteristic and found that the organic EL device is useful for high-efficiency and stable light emission.

本発明の銅配位化合物は有機EL素子の発光材料に有用である。高い発光効率を有することは言うまでもなく、真空蒸着プロセスや溶液にして塗布するスピンコートプロセスや、インクジェットノズルを用いた塗布方式にも適する。   The copper coordination compound of the present invention is useful as a light emitting material for an organic EL device. Needless to say, it has high luminous efficiency, and is also suitable for a vacuum deposition process, a spin coat process in which a solution is applied, and a coating method using an inkjet nozzle.

次に、本発明の発光素子について説明する。本発明の発光素子は、上記発光材料が発光層に含まれることが好ましい。   Next, the light emitting device of the present invention will be described. In the light emitting device of the present invention, the light emitting material is preferably contained in the light emitting layer.

本発明の有機EL素子の基本的な構成を図1(a)〜(d)に示した。   The basic structure of the organic EL device of the present invention is shown in FIGS.

図1に示したように、一般に有機EL素子は、透明基板15上に透明電極14と金属電極11とに挟持された単層または複数層の有機膜層から構成される。   As shown in FIG. 1, the organic EL element is generally composed of a single layer or a plurality of organic film layers sandwiched between a transparent electrode 14 and a metal electrode 11 on a transparent substrate 15.

図1(a)は、最も単純な構成で、有機層が発光層12のみからなるものである。   FIG. 1A shows the simplest configuration in which the organic layer is composed only of the light emitting layer 12.

図1(b)と(c)は、有機層が2層からなり、それぞれ発光層12とホール輸送層13と、発光層12と電子輸送層16からなる。   In FIG. 1B and FIG. 1C, the organic layer is composed of two layers, which are composed of the light emitting layer 12, the hole transport layer 13, the light emitting layer 12 and the electron transport layer 16, respectively.

図1(d)は、有機層が3層からなりホール輸送層13、発光層12および電子輸送層16からなるものである。   In FIG. 1D, the organic layer is composed of three layers, and is composed of the hole transport layer 13, the light emitting layer 12, and the electron transport layer 16.

発光層12には、電子輸送性と発光特性を有するアルミキノリノール錯体など(代表例は、以下に示すAlq)が用いられる。   For the light emitting layer 12, an aluminum quinolinol complex having electron transporting properties and light emitting properties (a typical example is Alq shown below) is used.

発光層12には、キャリア輸送材料中に本発明の発光性銅配位化合物を混入するゲストホストタイプや、その発光性銅配位化合物のみを100%で用いる方法や、その発光性銅配位化合物が主成分で、少量の添加剤(キャリア輸送材料や結晶化防止材料など)を加えることもできる。さらに、ゲストホストタイプの中でも、ゲストに電子輸送性とホール輸送性の2つのキャリア輸送材料を用い、その中に発光性銅配位化合物を添加することもできる。従って、本発明の発光層は、性能の向上や生産性を考慮して、1成分または2成分以上の材料から構成することができる。   For the light-emitting layer 12, a guest host type in which the light-emitting copper coordination compound of the present invention is mixed in the carrier transport material, a method of using only the light-emitting copper coordination compound at 100%, or the light-emitting copper coordination A compound is a main component, and a small amount of additives (such as a carrier transport material and an anti-crystallization material) can also be added. Furthermore, among the guest host types, two carrier transport materials of electron transport property and hole transport property can be used for the guest, and a luminescent copper coordination compound can be added therein. Therefore, the light emitting layer of the present invention can be composed of a material having one component or two or more components in consideration of performance improvement and productivity.

ホール輸送層13には、例えばトリフェニルアミン誘導体(代表例は、以下に示すαNPD)が主に用いられる。また高分子の場合、PVKが用いられる。PVKは、主にホール輸送性であり、PVK自体が青色のEL発光を示す。   For the hole transport layer 13, for example, a triphenylamine derivative (a typical example is αNPD shown below) is mainly used. In the case of a polymer, PVK is used. PVK is mainly hole transportable, and PVK itself exhibits blue EL emission.

電子輸送層16としては、例えば、オキサジアゾール誘導体など、または、以下に示すAlq、BphenやBCPを用いることができる。   As the electron transport layer 16, for example, an oxadiazole derivative or the like, or Alq, Bphen, or BCP shown below can be used.

Figure 0004764047
Figure 0004764047

<製造例1(例示化合物1067の製造)>
窒素雰囲気下、50mlフラスコにCuCl(100mg,1.0mmol)とトルエン(10ml)を加えた。この溶液に1,2−ジフェニルホスフィノベンゼン(450mg,1.0mmol)を加えて2時間攪拌しながら加熱還流した。溶液は徐々に黄色懸濁液となった。生成した黄色懸濁液をろ過後、得られた黄色固体をトルエンおよびへキサンの順で洗浄し、減圧下乾燥させた。この黄色固体を少量の塩化メチレンに溶かし、その溶液の上に静かにヘキサンを乗せ,再結晶することにより、以下に示す化合物(A)[Cu(PPh264PPh2)Cl]2を収率75%(413mg)で得た。
<Production Example 1 (Production of Exemplified Compound 1067)>
Under a nitrogen atmosphere, CuCl (100 mg, 1.0 mmol) and toluene (10 ml) were added to a 50 ml flask. To this solution was added 1,2-diphenylphosphinobenzene (450 mg, 1.0 mmol), and the mixture was heated to reflux with stirring for 2 hours. The solution gradually became a yellow suspension. After the produced yellow suspension was filtered, the obtained yellow solid was washed with toluene and hexane in this order, and dried under reduced pressure. This yellow solid is dissolved in a small amount of methylene chloride, and hexane is gently placed on the solution and recrystallized, whereby the following compound (A) [Cu (PPh 2 C 6 H 4 PPh 2 ) Cl] 2 is obtained. Was obtained in a yield of 75% (413 mg).

Figure 0004764047
Figure 0004764047

窒素雰囲気下50mlフラスコに化合物(A)(110mg,0.2mmol)とトルエン(10ml)を加えた。この溶液にPPh2(C64OH)(56mg,0.2mmol)を加えて室温で1時間攪拌した。溶液は徐々に均一の透明溶液となった。溶媒を留去後、得られた白色固体を少量のへキサンで洗浄し、減圧下乾燥させることにより例示化合物2073[Cu(PPh264PPh2)ClPPh2(C64OH)]を収率69%(110mg)で得た。 Compound (A) (110 mg, 0.2 mmol) and toluene (10 ml) were added to a 50 ml flask under a nitrogen atmosphere. PPh 2 (C 6 H 4 OH) (56 mg, 0.2 mmol) was added to this solution and stirred at room temperature for 1 hour. The solution gradually became a homogeneous clear solution. After distilling off the solvent, the obtained white solid was washed with a small amount of hexane, and dried under reduced pressure, whereby exemplary compound 2073 [Cu (PPh 2 C 6 H 4 PPh 2 ) ClPPh 2 (C 6 H 4 OH) ] Was obtained in a yield of 69% (110 mg).

窒素雰囲気下50mlフラスコに例示化合物2073(110mg,0.2mmol)とテトラヒドロフラン(10ml)を加えた。この溶液を−40℃に冷却した後、ノルマルブチルリチウム−ヘキサン溶液(1.6M)をゆっくり加え、徐々に室温まで昇温し、1時間攪拌した。得られた溶液の溶媒を留去することで得られた淡黄色固体を少量の塩化メチレンに溶かし、その溶液の上に静かにヘキサンを乗せ,再結晶することにより例示化合物1067[Cu(PPh264PPh2)PPh2(C64O)]を収率55%(53mg)で得た。 Exemplified compound 2073 (110 mg, 0.2 mmol) and tetrahydrofuran (10 ml) were added to a 50 ml flask under a nitrogen atmosphere. After cooling this solution to -40 degreeC, the normal butyl lithium-hexane solution (1.6M) was added slowly, and it heated up gradually to room temperature, and stirred for 1 hour. The pale yellow solid obtained by distilling off the solvent of the obtained solution was dissolved in a small amount of methylene chloride, and hexane was gently put on the solution and recrystallized to re-exemplify Exemplified Compound 1067 [Cu (PPh 2 C 6 H 4 PPh 2 ) PPh 2 (C 6 H 4 O)] was obtained in a yield of 55% (53 mg).

<製造例2(例示化合物2520の製造)>
窒素雰囲気下、50mlフラスコにCuI(190mg,1.0mmol)とトルエン(10ml)を加えた。この溶液に1,2−ジフェニルホスフィノベンゼン(450mg,1.0mmol)を加えて2時間攪拌しながら加熱還流した。溶液は徐々に黄色懸濁液となった。生成した黄色懸濁液をろ過後、得られた黄色固体をトルエンおよびへキサンの順で洗浄し、減圧下乾燥させた。この黄色固体を少量の塩化メチレンに溶かし、その溶液の上に静かにヘキサンを乗せ,再結晶することにより、以下に示す化合物(B)[Cu(PPh264PPh2)I]2を収率71%(454mg)で得た。
<Production Example 2 (Production of Exemplified Compound 2520)>
Under a nitrogen atmosphere, CuI (190 mg, 1.0 mmol) and toluene (10 ml) were added to a 50 ml flask. To this solution was added 1,2-diphenylphosphinobenzene (450 mg, 1.0 mmol), and the mixture was heated to reflux with stirring for 2 hours. The solution gradually became a yellow suspension. After the produced yellow suspension was filtered, the obtained yellow solid was washed with toluene and hexane in this order, and dried under reduced pressure. This yellow solid was dissolved in a small amount of methylene chloride, and hexane was gently put on the solution, followed by recrystallization, whereby the following compound (B) [Cu (PPh 2 C 6 H 4 PPh 2 ) I] 2 In 71% yield (454 mg).

Figure 0004764047
Figure 0004764047

窒素雰囲気下50mlフラスコに化合物(B)(130mg,0.2mmol)とトルエン(10ml)を加えた。この溶液にPPh3(53mg,0.2mmol)を加えて室温で1時間攪拌した。溶液は徐々に均一の透明溶液となった。溶媒を留去後、得られた白色固体を少量のへキサンで洗浄し、減圧下乾燥させることにより例示化合物2520[Cu(PPh264PPh2)IPPh3]を収率90%(165mg)で得た。 Compound (B) (130 mg, 0.2 mmol) and toluene (10 ml) were added to a 50 ml flask under a nitrogen atmosphere. PPh 3 (53 mg, 0.2 mmol) was added to this solution and stirred at room temperature for 1 hour. The solution gradually became a homogeneous clear solution. After distilling off the solvent, the obtained white solid was washed with a small amount of hexane, and dried under reduced pressure to obtain Exemplified Compound 2520 [Cu (PPh 2 C 6 H 4 PPh 2 ) IPPh 3 ] in a yield of 90% ( 165 mg).

<製造例3(例示化合物3004の製造)>
窒素雰囲気下、50mlフラスコに[Cu(CH3CN)4]PF6(185mg,0.5mmol)とアセトニトリル(10ml)を加えた。この溶液に1,2−ジフェニルホスフィノベンゼン(450mg,1.0mmol)を加え、室温で2時間攪拌した。得られた反応溶液から溶媒を留去することで得られた固体をクロロホルム/ヘキサンから再結晶することで、例示化合物3004のPF6塩体である[Cu(PPh264PPh22](PF6)を収率80%(432mg)で得た。
<Production Example 3 (Production of Exemplary Compound 3004)>
Under a nitrogen atmosphere, [Cu (CH 3 CN) 4 ] PF 6 (185 mg, 0.5 mmol) and acetonitrile (10 ml) were added to a 50 ml flask. To this solution was added 1,2-diphenylphosphinobenzene (450 mg, 1.0 mmol), and the mixture was stirred at room temperature for 2 hours. The solid obtained by distilling off the solvent from the obtained reaction solution was recrystallized from chloroform / hexane to give a PF 6 salt of Exemplary Compound 3004 [Cu (PPh 2 C 6 H 4 PPh 2 ). 2 ] (PF 6 ) was obtained in a yield of 80% (432 mg).

<化合物の発光特性>
製造例1〜3で製造した化合物の粉末状態での発光特性の測定を、日立F4500蛍光光度計を用いて行った。結果を表13に示す。また、各々の発光スペクトルを図2に示す。
<Luminescent properties of compound>
The emission characteristics in the powder state of the compounds produced in Production Examples 1 to 3 were measured using a Hitachi F4500 fluorometer. The results are shown in Table 13. Each emission spectrum is shown in FIG.

Figure 0004764047
Figure 0004764047

<実施例1>
本実施例では、素子構成として、図1(d)に示す有機層が3層の素子を使用した。
<Example 1>
In this example, an element having three organic layers as shown in FIG. 1D was used as the element structure.

ガラス基板(透明基板15)上に100nmのITO(透明電極14)をパターニングして、対向する電極面積が3mm2になるようにした。そのITO基板上に、以下の有機層と電極層を10-4Paの真空チャンバー内で抵抗加熱による真空蒸着し、連続製膜した。
ホール輸送層13(40nm):化合物FL1
発光層12(40nm):例示化合物1067
電子輸送層16(50nm):BPhen
金属電極層11−1(1nm):KF
金属電極層11−2(120nm):Al
尚、化合物FL1の構造式を以下に示す。
100 nm ITO (transparent electrode 14) was patterned on the glass substrate (transparent substrate 15) so that the opposing electrode area was 3 mm 2 . On the ITO substrate, the following organic layer and electrode layer were vacuum-deposited by resistance heating in a vacuum chamber of 10 −4 Pa to form a continuous film.
Hole transport layer 13 (40 nm): Compound FL1
Light emitting layer 12 (40 nm): exemplary compound 1067
Electron transport layer 16 (50 nm): BPhen
Metal electrode layer 11-1 (1 nm): KF
Metal electrode layer 11-2 (120nm): Al
The structural formula of compound FL1 is shown below.

Figure 0004764047
Figure 0004764047

<実施例2>
本実施例では、素子構成として、図1(d)に示す有機層が3層の素子を使用した。
<Example 2>
In this example, an element having three organic layers as shown in FIG. 1D was used as the element structure.

実施例1と同様にして作製したITO基板上に、ホール輸送層13として、バイエル社製のPEDOT(有機EL用)を40nmの膜厚に1000rpm(20秒)でスピンコートで塗布し、120℃の真空チャンバーで1時間乾燥した。   On the ITO substrate produced in the same manner as in Example 1, PEDOT (for organic EL) manufactured by Bayer was applied as a hole transport layer 13 to a film thickness of 40 nm by spin coating at 1000 rpm (20 seconds), and 120 ° C. For 1 hour.

その上に、以下の溶液を用いて、窒素雰囲気下で2000rpm、20秒間でスピンコートすることで、50nmの膜厚の発光層12を形成し、ホール輸送層13製膜時と同じ条件で乾燥した。
脱水クロロベンゼン:10g
ポリビニルカルバゾール(平均分子量9600):92mg
例示化合物2520:8mg
A light emitting layer 12 having a film thickness of 50 nm is formed thereon by spin-coating with the following solution at 2000 rpm for 20 seconds in a nitrogen atmosphere, and dried under the same conditions as those for forming the hole transport layer 13. did.
Dehydrated chlorobenzene: 10g
Polyvinylcarbazole (average molecular weight 9600): 92 mg
Illustrative compound 2520: 8 mg

この基板を真空蒸着チャンバーに装着して、電子輸送層16として、Bphenを40nmの膜厚に真空蒸着製膜した。   This substrate was mounted in a vacuum deposition chamber, and Bphen was deposited as a film having a thickness of 40 nm as the electron transport layer 16.

次に、以下のような構成の陰極(金属電極11)を形成した。
金属電極層11−1(15nm):AlLi合金(Li含有量1.8重量%)
金属電極層11−2(100nm):Al
<素子の特性>
金属電極11をマイナス、透明電極14をプラスにしてDC電圧を印加して素子特性を評価した。
Next, a cathode (metal electrode 11) having the following configuration was formed.
Metal electrode layer 11-1 (15 nm): AlLi alloy (Li content 1.8 wt%)
Metal electrode layer 11-2 (100 nm): Al
<Element characteristics>
The device characteristics were evaluated by applying a DC voltage with the metal electrode 11 minus and the transparent electrode 14 plus.

電圧電流特性は、良好な整流性を示した。発光スペクトルと発光強度は、トプコン社製、スペクトル測定機SR1及びBM7で測定した。電圧印加時の電流値は、ヒューレッドパッカード社製の4140Bで測定した。発光輝度と電流測定値から、発光効率cd/Aを計算した。結果を表14に示す。   The voltage / current characteristics showed good rectification. The emission spectrum and emission intensity were measured with a spectrum measuring machine SR1 and BM7 manufactured by Topcon Corporation. The current value at the time of voltage application was measured with 4140B manufactured by Hured Packard. The light emission efficiency cd / A was calculated from the light emission luminance and the current measurement value. The results are shown in Table 14.

Figure 0004764047
Figure 0004764047

実施例1において、EL発光は、600cd/cm2で発光させた時、良好な発光を示した。 In Example 1, EL light emission showed good light emission when emitted at 600 cd / cm 2 .

また、実施例2のEL発光スペクトルは、図2に示した例示化合物2520の固体状態における発光スペクトルと同様なスペクトルを与え、良好かつ安定した発光を示した。   Further, the EL emission spectrum of Example 2 gave a spectrum similar to the emission spectrum of the exemplary compound 2520 shown in FIG. 2 in the solid state, and showed good and stable emission.

本発明の発光素子の一例を示す断面図である。It is sectional drawing which shows an example of the light emitting element of this invention. 実施例で製造した例示化合物の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the exemplary compound manufactured in the Example.

符号の説明Explanation of symbols

11 金属電極
12 発光層
13 ホール輸送層
14 透明電極
15 透明基板
16 電子輸送層
11 Metal electrode 12 Light emitting layer 13 Hole transport layer 14 Transparent electrode 15 Transparent substrate 16 Electron transport layer

Claims (2)

下記いずれかの構造式で示される銅配位化合物を発光材料として用いること特徴とする発光素子。
Figure 0004764047
Emitting device characterized by using a copper coordination compound following Ru indicated by any one of structural formulas as the luminescent material.
Figure 0004764047
前記銅配位化合物が、下記いずれかの構造式で示されること特徴とする請求項1に記載の発光素子。
Figure 0004764047
The light-emitting element according to claim 1, wherein the copper coordination compound is represented by any one of the following structural formulas .
Figure 0004764047
JP2005101955A 2005-03-31 2005-03-31 Light emitting element Expired - Fee Related JP4764047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005101955A JP4764047B2 (en) 2005-03-31 2005-03-31 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101955A JP4764047B2 (en) 2005-03-31 2005-03-31 Light emitting element

Publications (3)

Publication Number Publication Date
JP2006286749A JP2006286749A (en) 2006-10-19
JP2006286749A5 JP2006286749A5 (en) 2008-04-24
JP4764047B2 true JP4764047B2 (en) 2011-08-31

Family

ID=37408353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101955A Expired - Fee Related JP4764047B2 (en) 2005-03-31 2005-03-31 Light emitting element

Country Status (1)

Country Link
JP (1) JP4764047B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008048336A1 (en) * 2008-09-22 2010-03-25 Merck Patent Gmbh Mononuclear neutral copper (I) complexes and their use for the production of optoelectronic devices
JP5361821B2 (en) * 2010-07-22 2013-12-04 株式会社東芝 Novel compound and organic electroluminescent element, display device and lighting device using the same
WO2012056931A1 (en) * 2010-10-28 2012-05-03 住友化学株式会社 Phosphorescent light-emitting element
WO2012144530A1 (en) * 2011-04-22 2012-10-26 住友化学株式会社 Copper complex
DE102011079847A1 (en) * 2011-07-26 2013-01-31 Eberhard-Karls-Universität Tübingen Complexes with anionic ligands with two P donors and their use in the opto-electronic domain
JP6468689B2 (en) * 2012-04-13 2019-02-13 株式会社半導体エネルギー研究所 LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, ELECTRONIC DEVICE, AND LIGHTING DEVICE
JP6158542B2 (en) 2012-04-13 2017-07-05 株式会社半導体エネルギー研究所 LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, ELECTRONIC DEVICE, AND LIGHTING DEVICE
EP2749563A1 (en) * 2012-12-27 2014-07-02 cynora GmbH Binuclear metal(I) complexes for use in optoelectronics

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4557651B2 (en) * 2003-10-01 2010-10-06 キヤノン株式会社 Luminescent copper coordination compound and organic light emitting device

Also Published As

Publication number Publication date
JP2006286749A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP5796049B2 (en) Phosphorescent material
KR102015580B1 (en) 5-substituted 2-phenylquinoline complexes materials for light emitting diode
EP3473634B1 (en) Heteroleptic iridium carbene complexes and light emitting device using them
KR102146174B1 (en) Phosphorescent materials
US7759490B2 (en) Phosphorescent Osmium (II) complexes and uses thereof
EP3404736B1 (en) Organic light emitting diodes with phosphorescent materials
JP4328702B2 (en) Organic EL device
US20100145044A1 (en) Organometallic Complex and Light-Emitting Element, Light-Emitting Device, and Electronic Device Using the Same
TWI541322B (en) Organic light emitting materials
JP4764047B2 (en) Light emitting element
KR20150003670A (en) Ancillary ligands for organometallic complexes
WO2004016711A1 (en) Organic light emitting materials and devices
KR20130019346A (en) Materials for organic light emitting diode
JP4557651B2 (en) Luminescent copper coordination compound and organic light emitting device
JP2008007500A (en) Metal complex and organic light emitting element
KR101369662B1 (en) New Compounds, KL Host Material And Organic Light Emitting Device
KR102012047B1 (en) Highly efficient phosphorescent materials
JP2013545754A (en) Metal complexes containing ligands with a combination of donor and acceptor substituents
Ahn et al. Synthesis and photophysical studies of iridium complexes of new 2, 3-diphenylquinoxaline derivatives for organic light-emitting diodes
JP2005332747A (en) Light emitting device
KR100705982B1 (en) Blue light-emitting compound and display device adopting blue light-emitting compound
井川茂 Development of Novel Phosphorescent Organoiridium (III) Complexes Applicable to Organic Light-emitting Diodes

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees