JP4763952B2 - 固体波長変換器 - Google Patents

固体波長変換器 Download PDF

Info

Publication number
JP4763952B2
JP4763952B2 JP2001526651A JP2001526651A JP4763952B2 JP 4763952 B2 JP4763952 B2 JP 4763952B2 JP 2001526651 A JP2001526651 A JP 2001526651A JP 2001526651 A JP2001526651 A JP 2001526651A JP 4763952 B2 JP4763952 B2 JP 4763952B2
Authority
JP
Japan
Prior art keywords
light
wavelength
pulse
wavelength converter
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001526651A
Other languages
English (en)
Other versions
JP2003510649A (ja
JP2003510649A5 (ja
Inventor
マナセン・アムノン
ヤハブ・ギオラ
Original Assignee
マイクロソフト インターナショナル ホールディングス ビイ.ヴイ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロソフト インターナショナル ホールディングス ビイ.ヴイ. filed Critical マイクロソフト インターナショナル ホールディングス ビイ.ヴイ.
Publication of JP2003510649A publication Critical patent/JP2003510649A/ja
Publication of JP2003510649A5 publication Critical patent/JP2003510649A5/ja
Application granted granted Critical
Publication of JP4763952B2 publication Critical patent/JP4763952B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/253Picture signal generating by scanning motion picture films or slide opaques, e.g. for telecine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01716Optically controlled superlattice or quantum well devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0338Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect structurally associated with a photoconductive layer or having photo-refractive properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/12Materials and properties photoconductor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/12Function characteristic spatial light modulator

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Nonlinear Science (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Multimedia (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【0001】
(発明の分野)
本発明は、第2の波長によって特徴付けられる光中に符号化されたデータで、第1の波長によって特徴付けられる光を符号化する固体波長変換器に関し、詳細には、データが画像を表すときに光を符号化することに関する。
【0002】
(発明の背景)
第1の波長によって特徴付けられる光の強度に符号化される画像を、第2の波長によって特徴付けられる光中に符号化される画像に変換する固体波長変換器は、当技術分野では既知である。第1および第2の波長によって特徴付けられる光は、これ以降、それぞれ「入力光」および「出力光」と呼び、表示の明確さと簡略化のために、符号化した画像は、対象物の画像であることを仮定する。
【0003】
1つのタイプの波長変換器は、光学的および/または電気的活性材料から形成された複数の薄い連続層から成る層状の本体を備える。層の1つは、光伝導層であり、層の1つは、光変調層である。光伝導層の材料は、光伝導層を通過する光からエネルギーを吸収し、吸収したエネルギーを電子−正孔対に変換する。光変調層の材料は、光変調層を通過する光の特性、一般に強度を、変調層の電界の強さに依存する量だけ変調する。一般に、層状本体の最も外側の層は、透明な伝導材料から形成され、電極として機能する。適切な電気電源が電極に接続される。
【0004】
波長変換器が動作しているとき、電源は電極間に電位差を印加し、それによって層に電界を発生させる。画像化される対象物からの光、すなわち入力光は、光伝導層の上に合焦される。光伝導層において、入力光は、対象物の画像に対応する空間的に変動する強度を有する。入力光の光子は光伝導層で吸収され、その層で電子−正孔対を発生する。光伝導層の領域で発生された電子−正孔対の数は、その領域の入力光の強度にほぼ比例する。したがって、これ以降「入力画像」と呼ぶ、光伝導層における入力光の変動強度パターンは、発生された電子−正孔対の密度分布に「コピー」される。
【0005】
電源によって発生された電界の影響を受けて、電子−正孔対からの電子は、光変調層の方向にドリフトし、光変調層の表面近くまたは表面上で捕獲される。捕獲された電子は、これ以降「変調場」とよぶ、電界を光変調層に発生する。光伝導層に発生された電子−正孔対の密度分布は対象物を画像化するので、これ以降「電荷画像」と呼ぶ、捕獲された電子の密度分布と、捕獲された電子によって発生された変調場の大きさもまた、対象物を画像化する。
【0006】
入力光に露光した後、変換器は、適切な光源から放射されている光、すなわち出力光に露光される。出力光は、波長変換器に入射させられ、光変調層を通過した後、波長変換器を出る。光変調層は、変調場の大きさにじて出力光を変調する。変調場が強い変調層の領域を通過する出力光は、強く変調される。変調場が弱い変調層の領域を通過する出力光は、弱く変調される。したがって、変換器を出る際に、出力光は対象物の画像で符号化される。すなわち、対象物の入力画像は出力光にコピーされ、その後、出力光は、対象物の画像を提供する為に処理することができる。
【0007】
Takahashi他による米国特許第5124545号は、このタイプのいくつかの異なる波長変換器を記載している。その特許に記載されている1つの波長変換器は、カドミウム硫化物(CdS)またはビスマス・シリコン酸化物(B12SiO20)などから形成された光伝導層を備えており、この層は、「ニオブ酸リチウムの単一結晶またはネマチック液晶のような」光変調層と隣接している。入力光および出力光は、共に両方の層を通過する。したがって、出力光の光子のエネルギーは、光伝導層のバンドギャップのエネルギーより小さく選択される。このことは、波長変換器で画像化される対象物の入力画像と、変調場を発生する波長変換器内の対象物の電荷画像との間の対応関係を消滅させるであろう、光伝導層内での電子−正孔対を、出力光が発生することを防止する。その結果、このタイプの従来技術の波長変換器は、入力光の光子のエネルギーが、出力光の光子のエネルギーより大きいときに、一般的に使用される。このタイプの波長変換器は、対象物のUV入力画像を可視スペクトルでの対象物の「出力」画像に変換することには実用的であるが、対象物のIR入力画像を対象物の可視出力画像に変換するには実用的でない。
【0008】
この特許に記載されている他の波長変換器は、光伝導層と光変調層に挟まれている誘電体ミラーまたは「光絶縁フィルム」を備える。この波長変換器では、出力光が光変調層に入射し、光変調層を通過して、誘電体ミラーによって反射され、再び光変調層を通過して、波長変換器を出る。ミラーのために、出力光は、決して光伝導層に到達せず、変換器で画像化される対象物の電荷画像に影響を与えない。したがって、このタイプの波長変換器は、IR画像から可視光画像など、比較的「低エネルギー」の入力光中に符号化された画像を、比較的「高エネルギー」の出力光中に符号化された画像に変換することができる。
【0009】
しかし、ミラーを有する波長変換器では、ミラーの存在のために、波長変換器に形成される電荷画像と、波長変換器の光変調層との間の距離が増大する傾向がある。さらに、光変調層の面に垂直な方向に、電荷画像が分布する距離を増大する傾向がある。ミラーによるこの両方の影響は、電荷画像によって発生された変調場が、画像化されている対象物の入力画像に対応する鮮鋭さをぼやけさせたり、或いは低減しがちである。したがって、ミラーは、波長変換器の空間解像度を低減する傾向がある。
【0010】
多くの従来の波長変換器では、入力光の実際の強度のために、捕獲された電子の密度の変動が、出力光の満足できる変調に作用するには小さすぎることがよくある。その結果、これらの波長変換器の感度は、多くの応用に対して十分でない。増大された感度を有する波長変換器を有することが有利である。
【0011】
(発明の概要)
本発明の側面は、対象物からの入力光の強度が比較的低いとき、波長変換器からの出力光が、比較的解像度が高い対象物の画像を提供するのに使用できる様に、改善された感度を有する固体波長変換器を提供することに関する。
【0012】
本発明の好ましい実施形態による波長変換器は、光伝導層と光変調層の間に配置された電子増倍領域を備える。増倍領域は、グレーデッドバンドギャップ階段増倍器(graded-band-gap staircase-multiplier)を形成する半導体材料の層を備えることが好ましい。グレーデッドバンドギャップ階段増倍器は、Capasso他による米国特許第4476477号、および、Ripamonti他によるNuclear Instruments and Methods in Physics Research、A288(1990)99〜103ページの「Realization of a Staircase Photodiode:Towards a Solid State Photomultiplier」という名称の論文に記載されており、その開示は、参照によって本明細書に組み込まれる。
【0013】
画像化されている対象物から変換器に入射する入力光によって光伝導層内に発生される電子−正孔対からの電子は、増倍領域を通過して光変調層へとドリフトする。ドリフトする電子は、増倍領域の材料をイオン化し、電子なだれプロセスで増倍する。その結果、光変調層に到達する電子の数は、増倍領域がない場合に光変調層に到達する数に対して著しく増大する。したがって、波長変換器の感度は、従来技術の波長変換器に対して著しく増大する。
【0014】
本発明のいくつかの好ましい実施形態の側面は、入力光の光子が出力光の光子より低いエネルギーを有し、出力光が、変換器の光伝導層と光変調層の両方を通過する、波長変換器を提供することに関する。そのような波長変換器は、例えば、光伝導層と光変調層の間にミラーを提供することを必要とせずに、対象物のIR入力画像を、対象物の可視画像に変換することができる。その結果、可視画像の解像度は、上述したように、IR入力画像に応答して波長変換器に発生される変調場にミラーが生じさせる歪みによって低下することはない。
【0015】
しかし、出力光が、波長変換器の光伝導層を通過するとき、光伝導層に電子−正孔対を発生する。電子−正孔対からの電子は、上述したように、光変調層へとドリフトし、入力画像と、入力画像に応じて変換器に発生される電荷画像との対応関係を消滅させる可能性がある。その結果、変調層の変調場は歪められ、一度歪められると、対象物画像で出力光を正確に符号化することはできない。
【0016】
本発明のいくつかの好ましい実施形態の側面は、出力光の光伝導層の通過によって光伝導層に形成される電子が、出力光の変調と、入力光中に符号化された対象物の入力画像との相関を消滅させることを防止することに関する。
【0017】
本発明のいくつかの好ましい実施形態では、出力光は、光変調層を通過する前に、光伝導層を通過する。
本発明のいくつかの好ましい実施形態では、光変調層の吸収係数は、光変調層の電界が増大すると共に増大する。したがって、出力光の空間変調のパターンは、入力光の空間変調の「陰画」である。入力光の強度が比較的強いとき、出力光の強度は比較的弱く、変調出力光で形成される対象物の画像は、対象物の陰画である。電界の増大と共に吸収係数が増大する光変調層は、これ以降「陰画変調器」と呼ぶ。
【0018】
この両方の好ましい実施形態では、出力光が光変調層を通過することによって発生された電子−正孔対から発生される光伝導層内の電子密度は、入力画像と相同(homologous)でない。非相同の電子密度からの電子は、光変調層へとドリフトし、入力画像と光変調層の変調場の対応関係を消滅させる。
【0019】
変調場と入力画像の対応関係の欠如が出力光の変調に影響することを防止するために、本発明の好ましい実施形態によれば、変換器を照射する出力光は、光の短いパルスの形式で提供される。出力光のパルスのパルス幅が短いので、光伝導層でパルスによって発生された電子が光変調層に到達し、光変調層の変調場に影響を及ぼす前に、パルスはほぼ完全に変換器の光変調層を通過する。したがって、対象物からの入力光によって電荷画像が波長変換器内に発生されるとき、続いて変換器を照射する出力光は、電荷画像によってほぼ正確に変調される。出力光パルスの変調は、光伝導層を通過する際に出力光パルスが光伝導層に電子−正孔対を発生する場合でも、実質的には出力光パルスの波長変換器通過による影響を受けない。
【0020】
出力光パルスの変調は、光伝導層の通過によって影響されないが、出力光パルスの光は、部分的に光伝導層に吸収される。したがって、本発明の好ましい実施形態によれば、出力光は、光伝導層内での吸収を補償するのに十分な強度で提供される。
【0021】
本発明のいくつかの好ましい実施形態では、光変調層内での吸収係数は、光変調層の電界が増大するにつれ減少する。これらの好ましい実施形態では、出力光の空間変調のパターンは、入力光の空間変調の陽画である。入力光の強度が比較的強い場合、出力光の強度も比較的強く、変調出力光で形成される対象物の画像は、対象物の陽画である。吸収係数が電界の増大と共に減少する光変調層を、これ以降「陽画変調器」と呼ぶ。
【0022】
本発明のいくつかの好ましい実施形態では、光変調層は陽画変調器であり、出力光は、光伝導層を通過する前に光変調層を通過する。これらの本発明の好ましい実施形態では、出力光が光変調層を通過することによって発生された電子−正孔対から発生される光伝導層の電子密度は、入力画像と相同である。光変調層へとドリフトするこの電子密度からの電子は、入力画像と、光変調層の変調場との対応関係を消滅させない。代わりに、電子は、変調場と入力画像の対応関係を維持すると同時に、変調場を増幅する。
【0023】
本発明のいくつかの好ましい実施形態の側面によれば、出力光は、出力光を変調する変調場を増幅する為に用いられる。
【0024】
光変調層が陽画変調器であり、出力光が、光伝導層を通過する前に光変調層を通過する、本発明のいくつかの好ましい実施形態において、出力光の第1のパルスは、後続の出力光の第2のパルスについての変調場を増幅する為に用いられる。本発明のいくつかの好ましい実施形態では、光パルスの光伝導層の通過によって発生する電子が、光パルスが光変調層を離れてしまう前に変調場を増幅する様に、波長変換器を通過する出力光パルスは、十分に長いパルス長を有する。その結果、出力光パルスは、それ自身が増幅を行った増幅された変調場によって変調される。
【0025】
本発明のいくつかの好ましい実施形態の側面は、シャッタを備える波長変換器を提供することに関する。シャッタは、当技術分野で知られている方法を用いて、波長変換器の伝導層の1つの上に作られる。本発明の好ましい実施形態による、いくつかの波長変換器では、シャッタを使用して入力光を遮断する。本発明の好ましい実施形態による、いくつかの波長変換器では、シャッタを使用して出力光を遮断する。本発明の好ましい実施形態による、いくつかの波長変換器では、波長変換器は2つのシャッタを備える。シャッタの1つを使用して入力光を遮断し、シャッタの1つを使用して出力光を遮断する。本発明の好ましい実施形態では、シャッタは、波長変換器の2つの伝導層の1つまたは両方の上に作られる。
【0026】
本発明のいくつかの好ましい実施形態の側面は、本発明の好ましい実施形態による、波長変換器を備えるカメラを提供することに関する。カメラは、画像化されている対象物からの第1の波長によって特徴付けられる光を収集し、CCDなど、適切な感光性のある表面上に、第2の波長によって特徴付けられる光で対象物を画像化する。第1の波長によって特徴付けられる光は、波長変換器の入力光であり、第2の波長によって特徴付けられる光は、波長変換器の出力光である。本発明のいくつかの好ましい実施形態では、カメラは3Dカメラであり、これを使用して、カメラで画像化されるシーン内の対象物までの距離を測定する。
【0027】
したがって、本発明の好ましい実施形態によって提供されるのは、第1の波長によって特徴付けられる光の空間的な強度変動中に符号化された情報を、第2の波長によって特徴付けられる光中に符号化する為の方法であって、前記方法は、前記第1の波長光の空間的な強度変動と相同の第1の電子密度分布を発生することと、前記第1の電子密度分布と相同の第2の追加の電子密度を発生することと、材料中の電界に応じて該材料を通過する光の特性を変調する材料内において前記密度分布と相同の電界を発生する為に、捕獲領域内で前記第1および第2の電子密度分布からの電子を捕獲することと、前記第2の波長光を前記変調の材料中を伝達させ、それにより、前記電界に応じて前記第2の波長光を変調し、前記情報で前記2の波長光を符号化することとを含む。
【0028】
好ましくは、前記第2の追加の電子密度を発生することが、電子が電子なだれプロセスで増倍される複数のグレーデッドバンドギャップ層を含む構造に、前記第1の密度分布からの電子を通過させることを含む。
【0029】
代替として又は追加として、前記第1の電子密度を発生することが、前記第1の波長光から光子を吸収することによって電子−正孔対が発生される光伝導材料に、前記第1の波長光を伝達させることを含むことが好ましい。
【0030】
好ましくは、前記第2の追加電子密度を発生することが、前記第1の波長光の強度変動と実質的に相同の電界が前記変調の材料中に確立された後、前記光伝導材料中で電子−正孔対を発生するのに十分なエネルギーを有する光パルスを前記変調の材料中に伝達させることと、その後、前記光伝導材料中に電子−正孔対を発生する為に、前記光パルスを前記光伝導層中に伝達させることと、を含む。
【0031】
前記パルスのパルス長が十分に長く、そのため、前記パルスに応じて発生された電子が捕獲され、前記変調の材料中の電界を変化させた後、前記パルスの一部が前記変調の材料中にあることが好ましい。
【0032】
代替として、前記第2の波長光パルスによって前記光伝導層内に発生された電子が捕獲され、前記変調の材料中の電界を変化させる前に、前記第2の波長光のパルスが、実質的に完全に前記変調の材料を通過する。
【0033】
本発明のいくつかの好ましい実施形態において、前記第2の波長光を変調の材料中に伝達させることは、前記第2の波長光のパルスを前記変調の材料中に伝達させ、かつ前記光伝導材料中に伝達させることを含む。
【0034】
第2の波長光が、前記光伝導材料中に電子−正孔対を発生するのに十分なエネルギーを有することが好ましい。
【0035】
好ましくは、前記第2の追加の電子密度を発生することが、前記第1の波長光の強度変動と実質的に相同の電界が前記変調の材料中に確立された後、第2の波長光のパルスを前記変調の材料中に伝達させることと、その後、前記第2の電子密度分布を発生する為に、前記光パルスを前記光伝導層中に伝達させることと、を含む。
【0036】
本発明のいくつかの好ましい実施形態において、前記パルスのパルス長が十分に長く、そのため、前記パルスに応じて発生された電子が捕獲され、前記変調の材料中の電界を変化させた後、前記パルスの一部が前記変調の材料中にある。
【0037】
本発明のいくつかの好ましい実施形態において、前記第2の波長パルスによって前記光伝導層内に発生された電子が捕獲され、前記変調の材料中の電界を変化させる前に、前記第2の波長光のパルスが、実質的に完全に前記変調の材料を通過する。
【0038】
本発明のいくつかの好ましい実施形態において、第1および第2の電子密度を発生することは、その全てが実質的に同じ空間的な強度変動を有する前記第1の波長光パルスの列中の各光パルス毎に、第1および第2の電子密度を発生することを含み、電子を捕獲することは、同一の捕獲領域において、光パルス列中の光パルスに対して発生された密度から電子を捕獲することを含む。
【0039】
本発明の好ましい実施形態によってさらに提供されるのは、第1の波長によって特徴付けられる光の空間的な強度変動中に符号化された情報を、第2の波長によって特徴付けられる光中に符号化する方法であって、前記方法は、第1の波長光の少なくとも1つのパルスを光伝導材料中に伝達させ、それにより前記第1の波長光の空間的な強度変動と相同の電子の密度分布を発生することと、材料中の電界に応じて該材料を通過する光の特性を変調する材料中において、前記空間的な変動と相同の電界を発生する為に、前記電子の密度分布から電子を捕獲することと、光伝導層内に電子正孔対を発生するのに十分なエネルギーを有する第2の波長光のパルスを、前記変調の材料および前記光伝導材料中に伝達させ、それにより、前記電界に応じて前記パルスを変調し、前記情報で前記パルスを符号化することと、を含む。
【0040】
好ましくは、前記第2の波長パルスによって前記光伝導層内に発生された電子が捕獲され、前記変調の材料中の電界を変化させる前に、前記第2の波長光のパルスが、実質的に完全に前記変調の材料を通過する。
【0041】
代替として、前記方法は好ましくは、前記第2の波長光のパルスを始めに前記光変調層中に伝達させ、次に前記光伝導層中に伝達させることを含み、前記パルスのパルス長は、前記パルスに応じて発生された電子が捕獲され、前記変調の材料中の電界を変化させた後、前記パルスの一部が前記変調の材料中にあるようなものである。
【0042】
本発明の好ましい実施形態によってさらに提供されるのは、第1の波長によって特徴付けられる光の空間的な強度変動中に符号化された情報を、第2の波長によって特徴付けられる光中に符号化するための方法であって、前記方法は、全てが実質的に同じ空間的な強度変動パターンを有する第1の波長光の複数のパルスを受信することと、受信した各第1の波長光パルスに応じて、前記第1の波長光パルスの空間的な強度変動と相同の電子密度分布を発生することと、材料中の電界に応じて該材料を通過する光の特性を変調する材料中において前記密度分布に相同の電界を発生する為に、前記発生された電子密度分布から電子を蓄積することと、前記第2の波長光がその内部の電界に応じて変調されそれによって前記情報で符号化される変調の材料中に、前記第2の波長光を伝達させることと、を含む。
【0043】
第2の波長光を伝達させることが、第2の波長光のパルスを伝達させることを含むことが好ましい。
【0044】
本発明の好ましい実施形態によってさらに提供されるのは、第1の波長によって特徴付けられる光の空間的な強度変動中に符号化された情報を、第2の波長によって特徴付けられる光で画像化する為の方法であって、前記方法は、a)第2の波長光のパルスを符号化する為の本発明の好ましい実施形態にしたがって第2の波長のパルスを符号化することと、b)前記符号化された第2の波長光パルスを、感光表面上に画像化することと、c)a)およびb)を少なくとも2回反復することと、を含み、この場合において、受信された少なくとも1つの第1の波長光パルスが全ての反復において、実質的に同じ空間的な強度変動を有する。
【0045】
本発明の好ましい実施形態によってさらに提供されるのは、対象物を画像化する為の方法であって、前記対象物によって反射または放射された第1の波長光を収集することと、本発明の好ましい実施形態ににしたがって、前記第1の波長光中の強度変動を、第2の波長によって特徴付けられる光中に符号化することと、符号化された第2の波長光を、感光表面上に画像化することと、を含む。
【0046】
本発明の好ましい実施形態によってさらに提供されるのは、対象物までの距離を決定する為の方法であって、第1の波長によって特徴付けられる光パルスの少なくとも1つのパルス列で対象物を照射することと、前記パルス列中の光パルスが放射される時間に連動した時間に開閉されるシャッタ上で、前記対象物によって反射された前記パルス列中の光パルスからの光を受けることと、第1波長光のパルス列を第2の波長光中に符号化する為の本発明の好ましい実施形態にしたがって、前記シャッタを伝達した、反射された第1の波長光の強度変動を、第2の波長によって特徴付けられる光の強度変動中に符号化することと、符号化された第2の波長光を、感光表面上に画像化することと、表面要素を画像化する前記感光表面の領域中に記録された第2の光波長光の強度に応じて、前記対象物の表面要素までの距離を決定することと、を含む。
【0047】
前記少なくとも1つのパルス列が、複数のパルス列を含むことが好ましい。本発明のいくつかの好ましい実施形態において、前記第1の波長光の波長は、前記第2の波長光の特有の波長より長い。本発明のいくつかの好ましい実施形態において、前記第1の波長光の波長は、前記第2の波長光の特有の波長より短い。本発明のいくつかの好ましい実施形態において、前記第1の波長光の波長は、前記第2の波長光の特有の波長に実質的に等しい。
【0048】
本発明の好ましい実施形態によってさらに提供されるのは、波長変換器であって、第1の波長によって特徴付けられ且つその強度中に空間的な変動を有する光が通って前記波長変換器に入る第1のポートと、前記変換器に入る第1の波長光が通過し、且つその内部で前記空間的な変動に応じて電子密度分布が発生される光伝導層と、前記光伝導層内で発生された電子を受け取り、該受け取った電子に応じて、より多数の電子を生成する電子増倍器と、前記増倍層内で発生された電子を捕獲する捕獲領域と、第2の波長によって特徴付けられる光が通って前記波長変換器に入る第2のポートと、前記第2の波長光が通過する光変調領域であって、その内部の電界に応じて前記第2の波長光を変調し、且つその内部において、前記捕獲領域内で捕獲された電子によって発生される電界が、前記第1の波長光内の空間変動に相同の場である光変調領域と、を備える。
【0049】
前記増倍領域が、複数のグレーデッドバンドギャップ層を備えることが好ましい。追加として又は代替として、前記光変調領域が好ましくは、狭バンドギャップと広バンドギャップが交互になっている層を有するMQW構造を備える。
【0050】
本発明のいくつかの好ましい実施形態において、前記捕獲領域は、第1および第2の波長光の両方を反射する反射器を備え、変調された第2の波長光は、前記第2のポートを介して前記波長変換器を出る。前記反射層が誘電体ミラーであることが好ましい。
【0051】
本発明のいくつかの好ましい実施形態において、波長変換器は、第1の波長光を反射し且つ第2の波長光を伝達する反射器を備え、該反射器は、前記光伝導層よりも第1のポートから離れて配置され、且つ、前記波長変換器に入り前記光伝導層を通過する第1の波長光が2度前記光伝導層を通過する様に前記第1の波長光を反射する。反射器が誘電体ミラーを備えることが好ましい。
【0052】
本発明のいくつかの好ましい実施形態において、波長変換器は、変調された第2の波長光が通って前記波長変換器を出る第3のポートを備える。
【0053】
好ましくは、前記捕獲領域は、第1の波長光を伝達し且つ第2の波長光を反射する反射器を備える。前記反射器が誘電体ミラーであることが好ましい。
【0054】
本発明の好ましい実施形態によるいくつかの波長変換器は、前記波長変換器によって変調される第2の波長光のパルスを放射する光源を備え、cを光速、dを前記光伝導層の厚さ、vを前記光伝導層内での電子のドリフト速度として、前記波長変換器に入る第2の波長光パルスのパルス幅は、(cd)/vより短い。
【0055】
本発明のいくつかの好ましい実施形態において、前記第1のポートと第2のポートは同一である。
【0056】
本発明の好ましい実施形態によるいくつかの波長変換器は、前記光伝導層に結合された穿孔された金属層を備え、前記光伝導層は、前記金属層内の穿孔と位置合わせされた穴を伴って形成され、前記穴は、前記光伝導層の全幅を貫通しているか、またはほぼ貫通している。前記金属層が前記光伝導層よりも第2のポートに近いことが好ましい。
【0057】
本発明の好ましい実施形態によるいくつかの波長変換器において、前記第1のポートと第3のポートが同一である。
【0058】
本発明の好ましい実施形態によるいくつかの波長変換器は、前記第1の波長光が前記光伝導層を通過できるようにし、またそれを妨げるように動作可能な第1の波長シャッタを備える。前記第1の波長シャッタが、狭バンドギャップと広バンドギャップが交互になっている層を有するMQW構造を備えることが好ましい。
【0059】
本発明の好ましい実施形態によるいくつかの波長変換器は、前記第2の波長光が前記波長変換器に入ることができるようにし、またそれを妨げるように動作可能な第2の波長シャッタを備える。前記第1の波長シャッタが、狭バンドギャップと広バンドギャップが交互になっている層を有するMQW構造を備えることが好ましい。
【0060】
本発明の好ましい実施形態によってさらに提供されるのは、第1の波長によって特徴付けられる光の強度変動中に符号化された情報を、第2の波長によって特徴付けられる光で画像化するカメラであって、前記カメラは、本発明の好ましい実施形態による波長変換器と、感光表面と、前記波長変換器を出る第2の波長光を受け取り、それを前記感光表面上に画像化する光学部品と、を備える。
【0061】
前記カメラは、第2の波長光を放射する光源を備えることが好ましい。前記カメラは、第1の波長光が、前記波長変換器に到達することを遮断するシャッタを備えることが好ましい。前記シャッタが前記波長変換器内に備えられていることが好ましい。
【0062】
本発明の好ましい実施形態によってさらに提供されるのは、対象物までの距離を決定する3Dカメラであって、第2の波長光を放射する光源を備える本発明の好ましい実施形態によるカメラと、第1の波長光パルスの少なくとも1つのパルス列で、前記対象物を照射するパルス光源と、少なくとも1つのパルス列中の光パルスが放射される時間に連動する時間にシャッタをゲート・オープンし、前記少なくとも1つのパルス列それぞれの最後の光パルスに続いて、第2の波長光のパルスで前記波長変換器を照射するように前記第2の波長光源を制御するコントローラと、を備える。
【0063】
【発明の実施の形態】
図1は、波線矢印24で表す入力光中に符号化された画像で、直線矢印22で表す出力光を符号化する、本発明の好ましい実施形態による、固体波長変換器20の断面の概略図である。入力光24は、波線矢印24をグループにクラスタ化することによって模式的に表されている、空間的に変動する強度を有する。変動強度は、対象物の画像を符号化する。
【0064】
波長変換器20は、多量にpドープした層40と、光伝導層30と、電子増倍領域32と、第1の誘電体ミラー34と、光変調領域36と、多量にnドープした層42と、第2の誘電体ミラー38とから成る層状本体26を備えることが好ましい。電源44は、pおよびnドープ伝導層40および42を逆バイアスし、その2つの層に挟まれている層に、二重矢印46で表し、それが示す方向を有する電界を発生する。電界46は、実質的に一定な方向を有するが、層内の材料の特性によって層から層へと変動する大きさを有する。
【0065】
第1および第2の誘電体ミラー34および38は、それぞれ適切な半導体材料48および49の層を備え、それぞれ出力光22および入力光24を反射するように設計されている。第1の誘電体ミラー34は、入力光24に対しほぼ透明であり、第2の誘電体ミラー38は、出力光22に対しほぼ透明であることが好ましい。増倍領域32は、グレーデッドバンドギャップ階段増倍器を形成する複数のグレーデッドバンドギャップ層50を備えることが好ましい。光変調領域36は、複数の低および高バンドギャップの交互の層52を備えることが好ましく、この複数の層は、PCT Publication WO 99/40478に記載されているタイプのMultiple Quantum Well(MQW)変調器を形成する。この開示は、参照によって本明細書に組み込まれる。
【0066】
入力光24は、伝導層40を通って波長変換器20に入り、光伝導層30に入射する。光伝導層30では、入力光24の光子は吸収され、光伝導層30で電子−正孔対を発生する。これを「+」と「−」の符号対で表す。吸収されなかった入力光24の光子は、波長変換器20の他の層を通過して進み、第2の誘電体ミラー38に入射して反射され、再び光伝導層30を通過して、さらに電子−正孔対を発生する。第2の誘電体ミラー38で反射された入力光24の光子は、第2の誘電体ミラー38を源とする「反射入力光」の波線矢印24’によって表される。光伝導層30のある点で単位体積あたり発生された電子−正孔対の数は、その点の入力光24の強度にほぼ比例する。その結果、発生された電子−正孔対の密度は、入力光24の強度変動に符号化された対象物を画像化する。
【0067】
電子−正孔対からの電子は、増倍領域32に向って電界46内をドリフトする。増倍領域32では、電子は、電子なだれプロセスで増倍する。マイナス符号54で表された「当初の」電子についての電子なだれプロセスが、図1に模式的に示されている。当初の電子は、入力光24によって電子−正孔対が発生される光伝導層30の各領域から、増倍領域32に入る。電界46の影響下で、増倍領域32をドリフトして通る電子が、第1から第2のグレーデッドバンドギャップ層50へと通過する度に、ほぼ毎回、電子は第2のグレーデッドバンドギャップ層50の材料をイオン化し、追加の電子を発生する。すなわち、電子がグレーデッドバンドギャップ層50のある層から他の層に通過する度に、電子は「倍増」するのである。「n」グレーデッドバンドギャップ層を有する理想的なグレーデッドバンドギャップ階段増倍器は、ほぼ2(n−1)に等しい電子増倍ファクタを提供する。
【0068】
図1では、増倍領域32は、一例として、3つのグレーデッドバンドギャップ層50を含み、増倍領域32に入る各当初の電子54に対し、増倍領域32を出ていく4つの電子が示されている。理論的には、3つのグレーデッドバンドギャップ層を有する「理想的」な増倍領域32は、4に等しい「電子増倍ファクタ」を提供する。本発明の好ましい実施形態による、増倍領域32で使用するグレーデッドバンドギャップ層の数は、3と異なることができ、異なる数のグレーデッドバンドギャップ層は、異なる電子増倍ファクタを提供する。
【0069】
増倍領域32を出る電子は、第1の誘電体ミラー34で捕獲され、第1の誘電体ミラー34で、空間的に変動する電子電荷密度、すなわち「電荷画像」を発生する。第1の誘電体ミラー34で捕獲された電子は、マイナス符号で表され、そのクラスタ化は、電荷画像である変動する密度を模式的に示す。捕獲された電子の密度は、入力光24によって光伝導層30に発生された電子−正孔対の密度と実質的に相同である。したがって、電荷画像は、光伝導層30において入力光24の強度の変動によって画像化された対象物を画像化する。
【0070】
電荷画像は、光変調領域36内に、空間的に変動する電界、すなわち「変調場」を生成する。この変調場は、光変調領域36のある点で、その点にちょうど向かい合う誘電体ミラー34の領域内での電荷画像の電荷密度にほぼ比例する大きさを有する。したがって、変調場の大きさの変動もまた、光伝導層30内に入力光24によって画像化された対象物を画像化する。
【0071】
光変調領域36の材料の出力光22に対する吸収係数は、光変調領域36の電界の関数である。本発明のいくつかの好ましい実施形態において、吸収係数は、電界の大きさが増大すると共に増大し、そして、光変調領域36は陰画変調器である。本発明のいくつかの好ましい実施形態において、吸収係数は、電界の増大と共に減少し、そして、光変調領域36は陽画変調器である。
【0072】
本発明のいくつかの好ましい実施形態では、出力光22のいくつかの波長に対し、吸収係数は増大する電界と共に増大し、出力光22の他の波長に対しては、吸収係数は、増大する電界と共に減少する。この場合、光変調領域36は、出力光22のいくつかの波長に対する陽画変調器であり、出力光22の他の波長に対しては陰画変調器である。
【0073】
図2は、本発明の好ましい実施形態による、上記で参照したPCT Publication WO 99/40478に記載されているタイプのMQW変調器を備える光変調領域36についての、吸収係数の波長及び電界への依存を模式的に表すグラフ90を示している。光変調層は、光のいくつかの波長に対しては陽画変調器であり、光の他の波長に対しては、陰画変調器である。
【0074】
グラフ90では、波長を横軸にとり、吸収係数「β」を縦軸にとっている。曲線92は、光変調領域36に電界がない場合の波長と吸収係数の関係を表す。破線94は、光変調領域36に任意の電界がある場合の波長と吸収係数の関係を表す。波長λ1に対し、グラフに示したように、光変調領域36は陽画変調器であり、吸収係数βは、電界の増大と共に減少する。波長λ2に対し、光変調領域36は陰画変調器であり、βは電界の増大と共に増大する。
【0075】
光変調領域36は、出力光22を、通常、部分的に吸収しており、そして、比較的一様な電界46のみの影響下では、吸収係数は、光変調領域36内で比較的に空間的に相同である。変調場は、電界46にほぼ平行である。したがって、光変調領域36内の電界の大きさは、光変調領域36内における変調場がゼロでないところではどこでも増大する。したがって、変調場は、入力光24の強度の変動パターンに相同のパターンを有する、出力光22についての光変調領域36内の吸収係数の空間的変動を発生する。光変調層が陰画変調器の場合、電界の大きさは、入力光24の強度の変動パターンと相同のパターンの状態で、吸収係数を増加させる。光変調層が陽画変調器の場合、電界は、入力光24の強度変動パターンと相同のパターンの状態で吸収係数を減少させる。したがって、光変調領域36における吸収係数の空間的な変動パターンは、入力光24で画像化された対象物を画像化する。
【0076】
再び図1を参照すると、変調場が光変調領域36に確立された後、適切な光源(図示せず)から放射される出力光22は、層状本体26の層にほぼ垂直な方向で、第2の誘電体ミラー38上に入射させられる。出力光22を模式的に表す矢印線は、それらが波長変換器20に入って出るとき、出力光22内の光線の経路をたどる。層状本体26の外側から第2の誘電体ミラー38に入射する出力光22は、第2の誘電体ミラー38の表面上で均一な強度を有する。それは、第1の誘電体ミラー34に到達するまで、伝導層42及び光変調領域36を通過する。第1の誘電体ミラー34で、出力光22は反射され、光変調領域36と伝導層42を再び通過し、第2の誘電体ミラー38を通って波長変換器20を出る。
【0077】
光変調領域36では、出力光22の強度は、光変調領域36の吸収係数の変動によって、波長変換器20の層に平行な面において空間的に変調される。図1では、例として、光変調領域36は、陽画変調器と仮定している。波長変換器20を出て行く出力光22を表す矢印線の長さは、波長変換器20を出て行く出力光22の強度を模式的に表す。したがって、出力光22を表す、出て行く矢印線は、第1の誘電体ミラー34で捕獲された電子の密度が大きい場合、比較的長く、捕獲された電子の密度が存在しない場合、比較的短い。出力光22の空間変調パターンは、入力光24の強度、及び、誘電体ミラー34に捕獲された電子密度分布の空間変動の陽画である。
【0078】
増倍領域32の存在により、従来技術の波長変換器の感度に対し、波長変換器20の感度は著しく増大される。同じ強度の入力光に対し、波長変換器20は、従来技術の波長変換器より多くの捕獲された電子を発生し、それにより、従来技術の波長変換器より強い変調場を提供する。したがって、同じ強度の入力光に対し、波長変換器20は、従来技術の波長変換器より高い度合いにまで出力光を変調する。その結果、波長変換器20は、従来技術の変換器が必要とした強度より低い強度を有する入力光から対象物の画像を提供することができる。
【0079】
一例として、本発明の好ましい実施形態によれば、波長変換器20は、1500ナノメートルの波長を有する入力光24を受け付け、850ナノメートルの波長を有する変調された出力光22を提供するように設計されている。高度にドープされた伝導層40および42は、それぞれ400ナノメートルの厚さで、AlGaAsで形成されていることが好ましい。光伝導層30は、InGaAsで形成され、厚さが500ナノメートル程度であることが好ましい。増倍領域32のグレーデッドバンドギャップ層50は、AlGaAsで形成され、各グレーデッドバンドギャップ層50では、Alの濃度が、層の電界46によって生じた電子のドリフトの方向に、ゼロから望ましい最大値まで格付けされていることが好ましい。グレーデッドバンドギャップ層50の厚さは、約150ナノメートルであることが好ましい。増倍領域32から出てくる電子をも捕獲する第1の誘電体ミラー34内の層48は、低温のGaAsとAlGaAsの交互の層であることが好ましく、これらの層は、150ナノメートル程度の厚さであることが好ましい。光変調領域36の狭バンドギャップと広バンドギャップ層52は、GaAsおよびAlGa(1−X)で形成され、約7〜10nmの厚さであることが好ましい。第2の誘電体ミラー38の層49は、GaAsとAlGaAsの交互の層であることが好ましく、これらの層は、約200ナノメートルの厚さであることが好ましい。層49もまた、一般的な誘電体材料で形成することができる。本発明のいくつかの好ましい実施形態では、誘電体ミラー38と伝導層42の位置は、交換される。本発明のこれらの好ましい実施形態では、誘電体ミラー層49は、半導体材料で形成されることが好ましい。動作時には、電源44によって、50から100ボルトの電位差が伝導層40と42に印加され、波長変換器20に、約10volt/cm程度の場を発生する。
【0080】
上述した層の材料と厚さおよびその程度は、例証として与えられており、当業者なら層の他の材料と厚さ、およびそれについての異なる程度を思いつくであろう。またそれが有利であることがある。そのような層の材料と厚さおよびその程度は、とりわけ、入力および出力光の波長、動作電圧、及び波長変換器の所望の感度に依存する。
【0081】
図3は、入力光24に符号化されている画像で、出力光22を符号化する、他の固体波長変換器70の断面図を模式的に示している。
波長変換器70は、波長変換器20が備える同じ層を備えるが、波長変換器20の第1の誘電体ミラー34が、波長変換器70では捕獲層72に置換されている点が異なる。捕獲層72は、低温のAlGaAsで形成された200nmの層であることが好ましい。波長変換器20とは異なり、波長変換器70は、出力光22を反射するように設計された層を備えていない。電源44は、波長変換器70の層内に電界46を発生する。波長変換器70では、一例として、光変調領域36は陰画変調器であるか、または、陰画変調器として動かされている陽画又は陰画変調器として動作可能な光変調領域である。
【0082】
電子は、波長変換器20で電子が発生され増倍される方式と同様に、波長変換器70の光伝導層30および増倍領域32で発生および増倍される。入力光24は層40に入射し、光伝導層30へと通過して、そこで電子−正孔対を発生する。光伝導層30で吸収されなかった入力光24の光子は、波長変換器70の他の層を通って進み、誘電体ミラー38に到達し、反射され、再び光伝導層30を通過して、波長変換器を出る。誘電体ミラーによって反射された入力光24からの光子を、波線矢印24’によって表す。光伝導層30で発生された電子は、増倍領域32で増倍される。
【0083】
しかし、波長変換器70では、電子が増倍され増倍領域32を出た後、波長変換器70の電子は、波長変換器20の場合のように、誘電体ミラー内で捕獲されず、代わりに捕獲層72で捕獲される。(捕獲層72で捕獲された電子を、マイナス符号の集まりで表す。)捕獲層72は、波長変換器20で電子を捕獲する誘電体ミラー34より薄く、誘電体ミラー34より小さい体積に捕獲された電子を凝縮することが好ましい。その結果、波長変換器70において捕獲された電荷によって発生される変調場は、波長変換器20の変調場よりも優れた忠実度で、入力光24に符号化された入力画像を「追跡」する。
【0084】
出力光22は、誘電体ミラー38または伝導層40を通って、波長変換器70に入ることが可能である。図3では、出力光22は、一例として、誘電体ミラー38を通って波長変換器70に入る。(しかし、入力光24は、誘電体ミラー38の存在のために、伝導層40を通って波長変換器70に入らなければならない。誘電体ミラー38を通って入ることは、誘電体ミラー38が入力光24を反射するので、不可能である。本発明のいくつかの好ましい実施形態では、誘電体ミラー38は存在せず、入力光24は、伝導層40または伝導層42を通って波長変換器70に入ることができる。本発明のいくつかの好ましい実施形態では、誘電体ミラー38は、光伝導層30の左に配置され、入力光24は、右側から伝導層42通って波長変換器70に入って出て行く。)
【0085】
波長変換器70に入った後、出力光22は、伝導層42を通過して、光変調領域36を通過し、そこで、捕獲層72で捕獲された電子が発生した変調場によって変調される。変調後、出力光22は、捕獲層72と、増倍領域32と、光伝導層30とを続けて通過し、伝導層40を通って波長変換器70から出る。
【0086】
伝導層40を通って出て行く出力光22の強度を、波長変換器70を出て行く出力光22を表す矢印の長さによって模式的に示す。上述したように、光変調領域36は、陰画変調器として動作する。したがって、変調場が比較的大きい光変調領域36の領域(その光変調領域36の領域は、捕獲された電子の濃度が比較的大きい捕獲層72の領域と隣接している)を通過する出力光22は、比較的強く吸収される。変調場が比較的小さい光変調領域36の領域(すなわち、捕獲層72内の捕獲された電子の比較的小さい濃度と隣接する光変調領域)を通過する出力光22は、比較的弱く吸収される。したがって、比較的弱い強度を有する図3の変調された出力光22を示す短い直線矢印22は、入力光24が比較的強い場所、すなわち、波長変換器70に入る入力光24を表す波線矢印24の位置にある。比較的強い強度を有する変調された出力光22を表す長い直線矢印22は、入力光24が比較的弱いか存在しない領域、すなわち、波長変換器70に入る波線入力矢印24が存在しない場所にある。変調領域36を通加後の出力光22の空間変調のパターンは、入力光24の空間変調の陰画である。(しかし、陽画変調器として動作する波長範囲で光変調36を動作させることによって、入力光24の空間変調の陽画が発生され、短い直線矢印22と長い直線矢印22の位置は交換される。)
【0087】
光伝導層30を通過する際に、出力光22の光子のエネルギーが入力光24の光子のエネルギーより大きい場合、出力光22は光伝導層30に電子−正孔対を発生する。入力光24によって発生された電子−正孔対からの電子の場合のように、出力光22によって発生された電子−正孔対からの電子は、増倍領域32で増倍され、捕獲層72で捕獲される。「出力光22の捕獲された電子」は、光変調領域36の変調場を変更し、変調場と入力光24に符号化されている画像の間の対応関係を弱める。変更変調場が弱められ、そして出力光22を変調する為に用いられる場合、出力光22は、入力光24に符号化されている画像で正しく符号化されないであろう。
【0088】
光変調領域36が陰画変調器であり、出力光の変調パターンが、入力光中に符号化された画像の「陰画」なので、出力光の電子は対応関係を弱める。しかし、出力光22が伝導層40を通って変調器70に入り、光伝導層30を通過し、その後出力光22が「陰画」で変調される場合でも、出力光によって発生された電子は、依然として入力画像と変調場の対応を弱めることに留意されたい。これは、出力光22は変調される前は均一な空間強度を有すると仮定して、出力光22が光伝導層30内で均一な電子密度を発生するであろうためである。この電子密度は次に捕獲層72に均一な捕獲された電子密度を発生し、これが、捕獲層72内の捕獲された電荷画像のコントラストを歪ませ、一般的にはそのコントラストを減少させる。
【0089】
本発明の好ましい実施形態によれば、入力光24に符号化されている画像で、出力光22を正確に符号化することを確実にする為に、出力光22は、短い光のパルスで提供される。出力光22のパルスの長さは、出力光22のパルスが光伝導層30内に発生させる電子が変調場を著しく変更させる前に、パルスが光変調領域36を通過してそこから出て行くように決定される。例えば、増倍領域32は厚さ「d」を有し、電子は、ドリフト速度「v」で増倍領域32を通過すると仮定する。出力光22のパルスによって光伝導層30に発生された電子は、光のパルスが最初に光伝導層30に入った後、時間t=d/vより早く捕獲層72に到達することはできない。本発明の好ましい実施形態による、出力光22のパルスのパルス長が「t」より短い場合(光速はvよりはるかに速いと仮定する)、光伝導層30内に出力光22のパルスによって発生された電子は、出力パルスの変調に影響を与えない。本発明のいくつかの好ましい実施形態では、出力光のパルスの長さは、出力光22の変調の正確さについて妥協せずに、tより長くすることが可能である。これが可能なのは、光伝導層30に出力光22のパルスによって発生された著しい数の電子が捕獲層72に到達するまで、変調場は、一般に、著しく「損なわれ」ないからである。
【0090】
例えば、出力光22のパルスによって光伝導層30の内側に深さδで発生された光伝導層30からの電子が捕獲層72に到達するまで、変調場はほぼ変更されないと仮定する。出力光22のパルスのパルス長が、(d+δ)/vより短いかまたは等しい場合、光変調領域36のパルスの変調は、パルスが光伝導層30に発生する電子によって著しく損なわれない。例として、dが1000nmに等しく(すなわち、7つの150nmグレーデッドバンドギャップ層)、δが5000nmに等しく、vが約10cm/secに等しいとすると、t=6×10−11secである。この例で、出力光22のパルス長が60ピコ秒未満である場合、光伝導層30にパルスが発生する電子は、パルスの変調を損なわせない。
【0091】
出力光22の第1のパルスが変換器70を通過した後は、第1のパルスから捕獲された電子が、捕獲層72を逃れるのに十分な時間が経過するまで、出力光22の後続第2のパルスは、変換器70を伝達しないことが好ましい。このことは、出力光22の第2のパルスが、出力光の第1のパルスが波長変換器70を通過することによって発生された電荷が発生する変調場によって符号化されないことを保証する。通常、捕獲された電子は、約1msecの「リラクゼーション(relaxation)」で、AlGaAsで形成された捕獲層から逃れる。したがって、波長変換器70(および同様に波長変換器20)を使用して、約1ミリ秒あたり1回、入力光24に符号化されている入力画像を、出力画像に変換することができる。
【0092】
ビデオ用途に関しては、すべての出力光パルス22が実質的に同じ強度を有すると仮定して、ビデオ・フレーム・レートは、出力光パルス22に対する必要な最小強度を決定する。例えば、エネルギーEの量が、適切な感光表面上にビデオ画像を形成するために必要であると仮定する。このエネルギーが、符号化された出力光パルス22によって提供されることになる場合、波長変換器70は、毎ミリ秒約1画像のレートでシーンを画像化できることを考慮すると、最大で約30の符号化した光パルス22を使用して、必要なビデオ画像を提供することができる。τを出力光パルス22のパルス幅とし、αを、出力光パルスが光伝導層30を通過した後、残存する出力光パルス22の強度の部分であるとする。本発明の好ましい実施形態による、光パルス22のピーク強度は、約E/(30ατ)であるべきである。
【0093】
上記の議論は、出力光22のパルスが波長変換器70を通過することによって、入力画像と捕獲された電荷画像の対応関係を消滅させるという仮定に基づいている。対応関係の消滅は、出力光パルスが光変調領域36を通過するのに先立って光伝導層30を通過することの結果であるか、または、光変調領域36が陰画変調器であるためである。
【0094】
本発明のいくつかの好ましい実施形態では、光変調領域36は陽画変調器であり、出力光22は、光伝導領域36を通過する前に光変調領域36を通過する。本発明のこれらの好ましい実施形態では、光伝導層30に出力光22によって発生される電子−正孔対の密度は、入力光24によって発生される当初の電子正孔対の密度に相同となりがちである。これは、上述したように、出力光22の変調パターンが、入力光24の強度変動の陽画、すなわち、入力画像の陽画であるからである。本発明のこれらの好ましい実施形態では、出力光パルスで発生された電子は増倍され、入力光24によって発生された電荷画像の電子密度のパターンとほぼ同じパターンで、捕獲層72で捕獲される。変調された出力光が光伝導層30を通過する効果は、その形を保ち、またそれにより入力画像との対応関係を保つと同時に、捕獲された電荷画像を増幅することである。
【0095】
しかし、出力光22の強度は、容易に、光伝導層30に出力光22によって発生された電子の量が、波長変換器70を飽和することができるようなものである。出力光22が波長変換器70を飽和する場合、出力光22が光伝導層30を通過する効果は、電荷画像の形を保つと同時に電荷画像を増倍することではなく、変調場と入力光24に符号化されている入力画像の対応関係を弱めることである。したがって、本発明のいくつかの好ましい実施形態では、出力光22のパルスの強度とパルス長は、出力パルスが光伝導層22を通過することによって、波長変換器70を飽和しないように制御される。
【0096】
本発明の好ましい実施形態によれば、波長変換器70の変調領域36が陽画変調器であるとき、出力光22のパルスは、実質的に連続して波長変換器70を伝達し、波長変換器の捕獲された電荷画像を「問合せ」する。出力光パルスが波長変換器70を飽和しない限り、電荷画像は歪められず、出力光22の各問合せパルスは、電荷画像によって適切に変調される。出力光22のパルスが、電荷画像と入力画像の対応関係を損なうことなく波長変換器70を伝達し得る率は、出力光パルスのパルス長、それらの強度、及び出力光パルスが波長変換器を飽和しない条件によって決定される。しかしながら、波長変換器70によって提供されることになる画像が、波長変換器のリラクゼーション時間より短い時間で著しく変動する場合、波長変換器70を伝達する一連の出力光パルス22の間の周期的な時間遅延が必要とされる。一連の出力光パルスは、獲得される画像が実質的に変動しない間の期間のみ継続するべきである。その後、新しい画像と重なったり新しい画像を破損したりしない様にする為に、「古い画像」を十分に崩壊させることを可能とする為の時間遅延が必要とされる。もちろん、時間遅延は、波長変換器のリラクゼーション時間にほぼ等しくあるべきである。
【0097】
さらに、上述したように、波長変換器70を飽和しない出力光22のパルスは、電荷画像を問合せすると共に波長変換器内の電荷画像を増幅する。したがって、本発明のいくつかの好ましい実施形態では、出力光22の少なくとも1つのパルスが、入力光24によって発生された電子を増倍する為に用いられる。例えば、電荷画像が波長変換器70に確立された後、波長変換器を飽和しない出力光22の少なくとも1つのパルスが、電荷画像中に捕獲された電子の数を増幅する為に伝達される。(もちろん、このパルスは、問合せパルスとして機能することも可能である。)(例えば、波長変換器70を飽和し、電荷画像を弱めるであろう)出力光22の短く強いパルスは、次いで波長変換器70を伝達して、電荷画像を「読み出す」。本発明のいくつかの好ましい実施形態では、出力光22のパルスは、パルスの一部がまだ光変調層内にある間にそのパルスが電荷画像を増倍する電子を光伝導層30内で発生する様に、十分長くされる。それにより、光変調におけるパルスの一部の変調は増幅される。「パルスの前の部分は、パルスの後ろの部分の変調を増幅する。」
【0098】
電子を増倍する為に出力光22を用いることによって、本発明のいくつかの好ましい実施形態では、増倍領域32の層の数を低減すること、または、増倍領域32を削除することができる。
【0099】
本発明の好ましい実施形態によれば、電子を増倍する為に出力光22以外の光を用いることができ、また、電子を増倍する為に出力光22以外の光を用いることは有利なことであり得ることに留意されたい。本発明の好ましい実施形態によれば、上述した、出力光22を使用して電子を増倍することと同じ方式で、光伝導層30で電子−正孔対を発生するのに十分なエネルギーを有する任意の波長の光を使用して、電子を増倍することができる。
【0100】
本発明のいくつかの好ましい実施形態では、入力光24は、波長変換器に定常状態の電荷画像を確立する為に、波長変換器70に入射する。波長変換器では、入力光に応じて発生された捕獲された電荷が、捕獲層72からの捕獲された電荷の漏れと均衡している。電荷画像は、それから、上述した飽和条件次第である出力光24のパルスで正式に「問合せ」される。この問合せは、電荷画像を不安定にする。問合せの影響が減少するのに十分な時間を待った後、追加の問合せが行われる。
【0101】
「定常状態」の動作を波長変換器70について説明したが、定常状態の動作は、本発明の好ましい実施形態による、波長変換器20および他の波長変換器についても可能であり、有利になり得る。
【0102】
図4は、本発明の好ましい実施形態による、別の波長変換器80を模式的に示している。波長変換器80は波長変換器70と同様であり、波長変換器70と同じ多くの層を備える。しかし、波長変換器80は、波長変換器70には備えられている誘電体ミラー38を備えていない。さらに、薄い金属層82が、波長変換器70に備えられていた伝導層40に結合されている。金属層82は、光伝導層30へと延び、光伝導層の幅をほぼ完全に貫通しているか、または光伝導層30を完全に貫通している穴をあけられている。金属層82と光伝導層30の穴は、イオン・ビーム穿孔など、当技術分野で既知の方法を用いて形成される。
【0103】
入力光24は、伝導層42を通って波長変換器80に入り、波長変換器80の層を通過した後、光伝導層30に到達し、そこで、ほとんどの入力光24は吸収され、電子−正孔対を発生する。光伝導層30で吸収されない入力光24からの光は、続いて金属層82へと進む。金属層82に入射した光のいくらかは、金属層82によって反射され、再び光伝導層30を通過して、さらに電子−正孔対を発生する。本発明の好ましい実施形態による、他の記述した波長変換器の場合のように、光伝導層30で入力光24によって発生された電子は、増倍領域32で増倍され、捕獲領域72で捕獲されることが好ましい。捕獲された電子は、出力光22を変調する光変調領域36内に変調場を発生する。一例として、光変調領域36は、陽画変調器として動作すると仮定される。
【0104】
出力光22は、金属層と光伝導層30の穴84を通って波長変換器80に入り、波長変換器80のすべての層を通過して、伝導層42から波長変換器80を出る。したがって、出力光22は、光伝導層30の材料を通過しないか、または実質上相互作用しない。したがって、出力光22は、捕獲層72で捕獲された電荷画像と、入力光24に符号化されている入力画像の対応関係を低下させる可能性がある電子を光伝導層30内に発生しない。
【0105】
穴84は、入力光24に符号化された入力画像に一致して変調されていない出力光22を結果として生じるであろうことを予測することができる。出力光22が穴84で電子を発生しないだけでなく、入力光24も穴84で電子−正孔対を発生しない。したがって、入力画像に応じて発生された光変調領域36内の電荷画像と変調電界は、金属層82及び光伝導層30内の穴84に対応する「穴」を有すると予測される。出力光22は、穴がある場合のみ実質的に波長変換器80を通過するので、出力光22は、実質的には捕獲された電荷画像も、それが変調領域36内に発生して変調場も「見」ない。しかし、本発明の好ましい実施形態によれば、電荷画像及びその変調電界の横方向の広がりが、電荷画像及び変調電界内の予測される穴を埋める様に、穴84は十分小さい直径で形成される。その結果、電荷画像とその変調場は、比較的「無傷」であり、それらの完全性が実質的に妥協されていない状態で、横方向になめらかである。したがって、出力光22は、変調場で「穴」を「見」ず、入力画像と対応して適切に変調される。変調されない出力光22の強度は、波長変換器80に入りおよび波長変換器80で変調される出力光22の量が、許容できる入力光24の強度変動の画像を提供するのに十分である様に制御される。
【0106】
図5は、本発明の好ましい実施形態による、対象物102を画像化する図1に示した波長変換器20を備えるカメラ100を模式的に示している。図5では、以下の説明で必要な波長変換器20の特徴と要素についてのみ示している。
【0107】
カメラ100は、収集光学部品104と、シャッタ106と、波長変換器20に出力光を提供する光源108と、CCDなどの感光表面110とを備えることが好ましい。光源108は、レーザ・ダイオードであることが好ましい。シャッタ106は、上記で参照した、PCT Publication WO 99/40478に記載されているタイプの大きな開口のシャッタであることが好ましい。収集光学部品104は、カメラ100で画像化されることになる光のみ実質的に伝達させる適切なフィルタ(図示せず)で覆われていることが好ましい。制御装置(図示せず)は、シャッタ106の開閉、光源108のオン・オフ切替え、および/または光源108によって放射される光の強度を制御する。
【0108】
対象物102を画像化するために、制御装置は、波長変換器20上で対象物102を画像化する様に、波線の矢印24で表した対象物102からの光が収集光学部品104によって収集され、シャッタ106を介して伝達される間の、適切な期間の間、シャッタ106を開く。波長変換器20上に集束した対象物102からの光24は、波長変換器20への入力光であり、上述したように、波長変換器20の第1の誘電体ミラー34に、対象物102の捕獲された電子の電荷画像を発生する。電荷画像が、第1の誘電体ミラー34内の「捕獲された」マイナス符号によって模式的に表されている。
【0109】
電荷画像の形成に続いて、制御装置は、光、すなわち、矢印線22によって表す波長変換器20に対する出力光が、光源108によって放射される様に、光源108を切り替える。出力光22は、コリメーティングレンズ112によってコリメートされ、波長変換器20に入射する様に出力光22を向けるビーム・スプリッタ114に向けて伝達されるのが好ましい。
【0110】
入射する出力光22は、波長変換器20の光変調領域36で変調され、誘電体ミラー34によって波長変換器20で反射されて、再びビーム・スプリッタ114に向かう。ビーム・スプリッタ114に入射する波長変換器20からの出力光22は、対象物102の画像を生成する為に、適切な結像光学部品116によって感光表面110上に合焦される。制御装置は、感光表面110に入射する出力光22の量が対象物102の画像を提供するのに十分である様に、光源108が出力光22を放射する時間の長さおよび/または出力光22の強度を制御する。
【0111】
本発明のいくつかの好ましい実施形態では、カメラ100は、波長変換器20の入力光の波長特性を有する光で対象物102を照射する光源を備える。対象物102からの入力光は、対象物102によって反射された、光源からの光である。制御装置は、光源を制御して光源を切り替え、および/または光源によって放射される光の強度を決定する。本発明の好ましい実施形態による、上述した入力光源を備えるいくつかのカメラでは、入力光を遮断することは必要ではなく、代わりに光源をパルス化する。
【0112】
カメラ100では、シャッタ106と波長変換器20は別々の光学要素として図示されているが、本発明のいくつかの好ましい実施形態では、シャッタ106と波長変換器20は、統合して1つの光学要素を形成する。
【0113】
図6は、シャッタ106と統合して1つの光学要素を形成する波長変換器20を備える波長変換器150を模式的に示している。シャッタ106と波長変換器20は、当技術分野で既知の方法を用いて統合して作られる。シャッタ106は、上記で参照した、PCT Publication WO 99/40478に記載されているタイプのシャッタであることが好ましい。このシャッタは、波長変換器20の伝導層40上に作られる、狭バンドギャップと広バンドギャップの交互の層154から成るエピタキシャルMQW構造152を備える。伝導層155は、伝導層40と反対側のMQW構造152の端部上に形成されている。伝導層40は、波長変換器20とシャッタ106の共通電極として機能する。電源156は、波長変換器20に電圧を提供し、電源158は、層40と層155の間で電位差を発生して、シャッタ106を制御する。
【0114】
図7は、本発明の好ましい実施形態による、対象物102を画像化する、図3に示した波長変換器70を備えるカメラ170を模式的に示している。図7では、以下の説明で必要な波長変換器70の特徴と要素のみを図示している。カメラ170は、波長変換器70を備えるように図示しているが、本発明の好ましい実施形態によれば、カメラ170はまた、波長変換器70を置き換える波長変換器80を伴って使用することも可能である。
【0115】
カメラ170は、出力光22の発生源172と、感光表面174と、第1および第2のミラー176および178と、好ましくは入力光シャッタ180と出力光シャッタ182とを備える。ミラー176と178は、入力光に対してほぼ透明であり、出力光に対しては、ほぼ完全に反射する。シャッタ180と182は、PCT Publication WO 99/40478に記載されているタイプの大きな開口のシャッタであることが好ましい。制御装置(図示せず)は、シャッタ180、182と光源172を制御する。
【0116】
対象物102の画像の形成において、制御装置は、適切な時間の間シャッタ180を開き、そして波線矢印24によって表される入力光が収集光学部品104によって収集される。収集された入力光24は、入力光シャッタ180と第2のミラー178を通過して、波長変換器70の捕獲層72内に、対象物102の電荷画像(「捕獲された」マイナス符号によって表される)を発生する。
【0117】
電荷画像が形成された後、制御装置は、光源172を制御して出力光22を放射する。この出力光22は、コロメーティングレンズ184によってコリメートされ、第1のミラー176に入射するように向けられる。第1のミラー176は、出力光22を反射してシャッタ182に向ける。制御装置は、シャッタ182を制御して、出力光22を、図3の議論で記述したように決定されたパルス長を有する光のパルスにする。出力光22のパルスは、波長変換器70を通過して第2のミラーに入射し、ミラーは、出力光22の入射パルスを結像光学部品186へと反射する。結像光学部品186は、出力光22のパルスを感光表面174上へ画像化する。
【0118】
カメラ170では、出力光22のパルスは、シャッタ182を用いて形成されているが、本発明のいくつかの好ましい実施形態では、出力光22のパルスは、当技術分野で既知の方法を用いて、光源172に対するパワー入力を制御することによって形成される。さらに、図5に示したカメラ100の場合のように、本発明のいくつかの好ましい実施形態によれば、カメラ170は、対象物102を入力光24で照射する光源を備える。
【0119】
さらに、カメラ170では、波長変換器70は、シャッタ180および182から分けられて示されているが、本発明のいくつかの好ましい実施形態では、波長変換器70は、シャッタ180と182の1つまたは両方と統合して、1つの光学要素に組み合わされる。波長変換器70をシャッタ180および182の1つまたは両方と組み合わせて1つの光学要素を形成する方法は、図6の議論で説明した、波長変換器20をシャッタ106と組み合わせる方法と同様である。
【0120】
本発明のいくつかの好ましい実施形態では、カメラ170は、ゲート制御の3Dカメラとして動作する。ゲート制御の3Dカメラとその動作の仕方は、PCT Publication WO97/01111、WO97/01112、およびWO97/01113に記載されており、その開示は参照によって本明細書に組み込まれる。
【0121】
ゲート制御の3Dモードにおいて、カメラ170は、パルス光源(図示せず)と共に動かされ、シーンの3D画像を提供する。パルス光源は、シーンを照射する光パルスの列を放射する。列の各光パルスが放射された後、あらかじめ決定された時間遅延に続いて、シャッタ180はカメラ170をオン・オフにゲート制御する。シャッタ180がゲート・オンである時間中、カメラ170は、シーンの反射表面によって反射された光パルスからの光を受信する。シャッタ180が開いている間に反射表面からカメラ170に到達する各光パルスの光の量は、カメラから反射表面までの距離の関数である。反射された光は、シャッタ180を通過して、波長変換器70に入射し、捕獲層72でシーンの画像電荷を発生する。画像電荷の領域内の電子密度は、画像電荷の領域内に画像化される反射表面までの距離の関数である。
【0122】
パルス列のすべての光パルスは、捕獲層72のリラクゼーション時間(すなわち、捕獲された電子が捕獲層72から逃れ、電荷画像を消去するのにかかる時間)より十分に短い期間内に放射されることが好ましい。その結果、光パルス列の最後の光パルスからの光を収集した後、層72で捕獲された電荷の全体量は、光パルス列の各光パルスからの反射光によって発生された捕獲された電荷の合計である。捕獲層72は、シーンの対象物によって反射された光パルスからの光によって光伝導層30内に発生された電子を蓄積、事実上は統合する。
【0123】
光パルス列の最後の光パルスからの反射光を収集した後、出力光22のパルスが放射され、波長変換器70を通過し、感光表面174上に当たる。光パルスの列でシーンを照射することと、出力光パルス22を放射することとを含む、次の「照射」サイクルは、出力光パルス22の放射後の、好ましくは捕獲層72のリラクゼーション時間に等しいかまたはそれより長い遅延に続いて、反復することができる。照射サイクルは、必要な回数だけ反復され、感光表面174上にシーンの画像を形成する。画像を提供するために使用する光の量は、照射サイクルの数と、各サイクルでシーンを照射する光パルス列の光パルスの数との積に比例する。画像の領域の光強度を使用して、領域上に画像化されるシーン内の反射表面までの距離を決定する。画像の強度から距離を決定するための方法は、上記で参照したPCT Publicationに記載されている。
【0124】
本発明の好ましい実施形態による、カメラ170の3Dモードでの動作を説明する為に、カメラ170が対象物102の3Dビデオ画像を提供するように用いられていることを仮定し、また、対象物102は、カメラ170から6m〜9mの位置に配置されると仮定する。適切なパルス光源は、一例として、10nsecに等しいパルス幅と、100nsecに等しい光パルスの間の時間遅延とを有する光パルス列で、対象物102を照射する。好ましくは40nsecの時間遅延に続いて、パルス列の各光パルスが放射された後、シャッタ180は、好ましくは10nsec間ゲート・オープンされる。(40nsecの時間遅れと10nsecのパルス幅およびゲート幅は、6m〜9mの範囲で、カメラからの距離を測定するようにカメラを設定する。光パルス間に100nsecの間隔を置くことは、光パルス間に十分な時間を提供し、したがって、シャッタ180が開いているとき、実質的に1つの光パルスのみからの反射光がシャッタに到達する。)
【0125】
光パルス列の光パルスの数は、列の継続時間が、捕獲層72のリラクゼーション時間より十分に短いようなものであることが好ましい。例えば、本発明の好ましい実施形態では、光パルスの列は、1000個の光パルスを含む。その結果、光パルス列のすべての光パルスからの反射光は、0.1msecの期間内に、波長変換器70に入射する。この期間は、捕獲層72の1msecのリラクゼーション時間より十分に短いので、この期間中に反射された光によって発生された捕獲された電荷は、ほとんど漏れていかない。
【0126】
対象物102を光パルスの列で照射した後、出力光22のパルスは、レーザ装置172によって放射され、波長変換器70を通過し、感光表面174上に当たる。1msecの遅れに続いて、パルス光源からの光パルスの次の列が放射されて対象物102を照射し、再び照射サイクルが開始する。照射サイクルは、30回反復されることが好ましく、したがって、対象物102の3Dビデオ画像を形成するために使用した光パルスの合計数は、30,000である。上述した画像化の筋書きにおける、パルスとゲート幅、タイミング・シーケンス、およびパルス列のパルス数の変形が、本発明の好ましい実施形態によれば可能であり、またそれは有利であり得る。このような変形を当業者ならば思いつくであろう。
【0127】
上述した本発明による好ましい実施形態では、波長変換器70のリラクゼーション時間より十分に短い照射光パルス列を使用しているが、本発明の他の好ましい実施形態では、対象物102は、光パルス24で実質的に連続的に照射される。捕獲された電荷の蓄積と漏れは定常状態に達し、そして、上述した波長変換器70の飽和を回避すること条件として、出力光22のパルスは連続的に伝達される。
【0128】
カメラ170のみ、3Dモードで動作すること記述してきたが、カメラ100も同様に3Dモードで動作することを理解されたい。
【0129】
本出願の説明および請求項において、「備える」、「含む」、「有する」の各動詞およびその同一語源の語は、対象物または動詞の目的語が、部品、要素、または、主題または動詞の主語の要素についての、必ずしも完全な列挙ではない。
【0130】
本発明について、好ましい実施形態の非限定的な詳細な記述を用いて説明してきたが、これらの記述は、例証として提供されており、本発明の範囲を限定することを意図するものではない。記述された好ましい実施形態は異なる特徴を備えるが、そのすべてが、本発明のすべての実施形態で必要とされるわけではない。本発明のいくつかの実施形態は、いくつかの特徴のみ、または可能性のある特徴の組合せを使用する。当業者なら、記述された実施形態の変形および記述された実施形態において指摘された特徴の異なる組合せを含む実施形態を思いつくであろう。本発明の範囲は、添付の請求項によってのみ限定される。
【図面の簡単な説明】
【図1】 本発明の好ましい実施形態による、波長変換器に入射する入力光中に符号化された画像で出力光を符号化する、固体波長変換器の断面図を模式的に示す。
【図2】 本発明の好ましい実施形態による、光変調層に関する、出力光の吸収係数の、電界と出力光の波長への依存を模式的に示す。
【図3】 本発明の好ましい実施形態による、波長変換器に入射する入力光中に符号化された画像で出力光を符号化する、他の固体波長変換器の断面図を模式的に示す。
【図4】 本発明の好ましい実施形態による、波長変換器に入射する入力光中に符号化された画像で出力光を符号化する、他の固体波長変換器の断面図を模式的に示す。
【図5】 本発明の好ましい実施形態による、波長変換器を備えるカメラを模式的に示す。
【図6】 本発明の好ましい実施形態による、入力光を遮断するシャッタを備える波長変換器を模式的に示す。
【図7】 本発明の好ましい実施形態による、波長変換器を備える他のカメラを模式的に示す。
【符号の説明】
20 波長変換器
22 出力光
24 入力光
30 光伝導層
32 増倍領域
34 誘電体ミラー
36 光変調領域
38 誘電体ミラー
40 伝導層
42 伝導層
44 電源
46 電界
50 グレーデッドバンドギャップ層

Claims (33)

  1. 第1の波長によって特徴付けられる光の空間的な強度変動中に符号化された情報を、第2の波長によって特徴付けられる光中に符号化する為の方法であって、
    前記第1の波長光の空間的な強度変動と相同の(homologous)第1の電子密度分布を発生することと、
    前記第1の電子密度分布と相同の第2の追加の電子密度を発生する為に、前記第1の密度分布からの電子を、電子が電子なだれプロセスで増倍される複数のグレーデッドバンドギャップ層を備える構造に通過させることであって、前記第1の密度分布が、第1の波長の光パルスであるものと、
    材料中の電界に応じて該材料を通過する光の特性を変調する材料内において前記密度分布と相同の電界を発生する為に、捕獲領域内で前記第1および第2の電子密度分布からの電子を捕獲することと、
    前記第2の波長光を前記変調の材料中を伝達させ、それにより、前記電界に応じて前記第2の波長光を変調し、前記情報で前記2の波長光を符号化することと、を含む方法。
  2. 前記第1の密度分布の電子を発生することが、前記第1の波長光を、前記第1の波長光からの光子を吸収することによって電子−正孔対が発生される光伝導材料中に伝達させることを含む、請求項1に記載の方法。
  3. 第1および第2の電子密度を発生することが、その全てが実質的に同じ空間的な強度変動を有する前記第1の波長光パルスの列中の各光パルス毎に、第1および第2の電子密度を発生することを含み、電子を捕獲することが、同一の捕獲領域において、光パルス列中の光パルスに対して発生された密度から電子を捕獲することを含む、請求項1又は請求項2のいずれかに記載の方法。
  4. 第1の波長によって特徴付けられる光の空間的な強度変動中に符号化された情報を、第2の波長によって特徴付けられる光で画像化する為の方法であって、 a)請求項3にしたがって、第2の波長光のパルスを符号化することと、
    b)前記符号化された第2の波長光パルスを、感光表面上に画像化することと、
    c)a)およびb)を少なくとも2回反復することと、を含み、この場合において、受信された少なくとも1つの第1の波長光パルスが全ての反復において、実質的に同じ空間的な強度変動を有すること、
    を特徴とする方法。
  5. 対象物を画像化する為の方法であって、
    前記対象物によって反射または放射された第1の波長光を収集することと、
    請求項1から請求項3のいずれかにしたがって、前記第1の波長光中の強度変動を、第2の波長によって特徴付けられる光中に符号化することと、
    符号化された第2の波長光を、感光表面上に画像化することと、を含む方法。
  6. 対象物までの距離を決定する為の方法であって、
    第1の波長によって特徴付けられる光パルスの少なくとも1つのパルス列で対象物を照射することと、
    前記パルス列中の光パルスが放射される時間に連動した時間に開閉されるシャッタ上で、前記対象物によって反射された前記パルス列中の光パルスからの光を受けることと、
    請求項3にしたがって、前記シャッタを伝達した、反射された第1の波長光の強度変動を、第2の波長によって特徴付けられる光の強度変動中に符号化することと、
    符号化された第2の波長光を、感光表面上に画像化することと、
    表面要素を画像化する前記感光表面の領域中に記録された第2の光波長光の強度に応じて、前記対象物の表面要素までの距離を決定することと、を含む方法。
  7. 前記少なくとも1つのパルス列が、複数のパルス列を含む、請求項6に記載の方法。
  8. 前記第1の波長光の波長が、前記第2の波長光の特有の波長より長い、請求項1から請求項7のいずれかに記載の方法。
  9. 前記第1の波長光の波長が、前記第2の波長光の特有の波長より短い、請求項1から請求項7のいずれかに記載の方法。
  10. 前記第1の波長光の波長が、前記第2の波長光の特有の波長に実質的に等しい、請求項1から請求項7のいずれかに記載の方法。
  11. 波長変換器であって、
    第1の波長によって特徴付けられ且つその強度中に空間的な変動を有する光が通って前記波長変換器に入る第1のポートと、
    前記変換器に入る第1の波長光が通過し、且つその内部で前記空間的な変動に応じて電子密度分布が発生される光伝導層と、
    前記光伝導層内で発生された電子を受け取り、該受け取った電子に応じて、より多数の電子を生成する、複数のグレーデッドバンドギャップ層を備える電子増倍領域と、
    前記電子増倍領域内で発生された電子を捕獲する捕獲領域と、
    第2の波長によって特徴付けられる光が通って前記波長変換器に入る第2のポートと、
    前記第2の波長光が通過する光変調領域であって、その内部の電界に応じて前記第2の波長光を変調し、且つその内部において、前記捕獲領域内で捕獲された電子によって発生される電界が、前記第1の波長光内の空間変動と相同の場である光変調領域と、
    を備える波長変換器。
  12. 前記光変調領域が、狭バンドギャップと広バンドギャップが交互になっている層を有するMQW構造を備える、請求項11に記載の波長変換器。
  13. 前記捕獲領域が、第1および第2の波長光の両方を反射する反射器を備え、変調された第2の波長光が、前記第2のポートを介して前記波長変換器を出る、請求項11または請求項12に記載の波長変換器。
  14. 前記反射が誘電体ミラーである、請求項13に記載の波長変換器。
  15. 第1の波長光を反射し且つ第2の波長光を伝達する反射器を備え、該反射器は、前記光伝導層よりも第1のポートから離れて配置され、且つ、前記波長変換器に入り前記光伝導層を通過する第1の波長光が2度前記光伝導層を通過する様に前記第1の波長光を反射する、請求項11または請求項12に記載の波長変換器。
  16. 第1の波長光を反射し且つ第2の波長光を伝達する反射器が、誘電体ミラーを備える、請求項15に記載の波長変換器。
  17. 変調された第2の波長光が通って前記波長変換器を出る第3のポートを備える、請求項11、請求項12、請求項15、または請求項16に記載の波長変換器。
  18. 前記捕獲領域が、第1の波長光を伝達し且つ第2の波長光を反射する反射器を備え、前記第3のポートは第2のポートと同一である、請求項17に記載の波長変換器。
  19. 第1の波長光を伝達し且つ第2の波長光を反射する前記捕獲領域内の前記反射器が誘電体ミラーを備える、請求項18に記載の波長変換器。
  20. 前記波長変換器によって変調される第2の波長光のパルスを放射する光源を備え、cを光速、dを前記光伝導層の厚さ、vを前記光伝導層内での電子のドリフト速度として、前記波長変換器に入る第2の波長光パルスのパルス幅が、(cd)/vより短い、請求項17に記載の波長変換器。
  21. 前記第1のポートと第2のポートが同一である、請求項17から請求項20のいずれかに記載の波長変換器。
  22. 前記光伝導層に結合された穿孔された金属層を備え、前記光伝導層は、前記金属層内の穿孔と位置合わせされた穴を伴って形成され、前記穴は、前記光伝導層の全幅を貫通しているか、またはほぼ貫通している、請求項21に記載の波長変換器。
  23. 前記金属層が前記光伝導層よりも第2のポートに近い、請求項22に記載の波長変換器。
  24. 前記第1のポートと第3のポートが同一である、請求項17に記載の波長変換器。
  25. 第1の波長光が前記光伝導層を通過できるようにし、またそれを妨げるように動作可能な第1の波長シャッタを備える、請求項11から請求項24のいずれかに記載の波長変換器。
  26. 前記第1の波長シャッタが、狭バンドギャップと広バンドギャップが交互になっている層を有するMQW構造を備える、請求項25に記載の波長変換器。
  27. 前記第2の波長光が前記波長変換器に入ることができるようにし、またそれを妨げるように動作可能な第2の波長シャッタを備える、請求項25に記載の波長変換器。
  28. 前記第の波長シャッタが、狭バンドギャップと広バンドギャップが交互になっている層を有するMQW構造を備える、請求項27に記載の波長変換器。
  29. 第1の波長によって特徴付けられる光の強度変動中に符号化された情報を、第2の波長によって特徴付けられる光で画像化するカメラであって、
    請求項13、請求項14、または、請求項17から請求項24のいずれかに記載の波長変換器と、
    感光表面と、
    前記波長変換器を出る第2の波長光を受け取り、それを前記感光表面上に画像化する光学部品と、を備えるカメラ。
  30. 第1の波長光が、前記波長変換器に到達することを遮断するシャッタを備える、請求項29に記載のカメラ。
  31. 前記シャッタが前記波長変換器内に備えられている、請求項30に記載のカメラ。
  32. 第2の波長光を放射する光源を備える、請求項30または31に記載のカメラ。
  33. 対象物までの距離を決定する3Dカメラであって、
    請求項32によるカメラと、
    第1の波長光パルスの少なくとも1つのパルス列で、前記対象物を照射するパルス光源と、
    少なくとも1つのパルス列中の光パルスが放射される時間に連動する時間にシャッタをゲート・オープンし、前記少なくとも1つのパルス列それぞれの最後の光パルスに続いて、第2の波長光のパルスで前記波長変換器を照射するように前記第2の波長光源を制御するコントローラと、
    を備える3Dカメラ。
JP2001526651A 1999-09-26 1999-09-26 固体波長変換器 Expired - Fee Related JP4763952B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IL1999/000513 WO2001023947A1 (en) 1999-09-26 1999-09-26 Solid state image wavelength converter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010224509A Division JP5320369B2 (ja) 2010-10-04 2010-10-04 固体波長変換器

Publications (3)

Publication Number Publication Date
JP2003510649A JP2003510649A (ja) 2003-03-18
JP2003510649A5 JP2003510649A5 (ja) 2006-11-24
JP4763952B2 true JP4763952B2 (ja) 2011-08-31

Family

ID=11062748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001526651A Expired - Fee Related JP4763952B2 (ja) 1999-09-26 1999-09-26 固体波長変換器

Country Status (4)

Country Link
US (2) US7196390B1 (ja)
JP (1) JP4763952B2 (ja)
AU (1) AU5882699A (ja)
WO (1) WO2001023947A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7196390B1 (en) * 1999-09-26 2007-03-27 3Dv Systems Ltd. Solid state image wavelength converter
US7511996B2 (en) * 2006-11-30 2009-03-31 Mosaid Technologies Incorporated Flash memory program inhibit scheme
US8187097B1 (en) 2008-06-04 2012-05-29 Zhang Evan Y W Measurement and segment of participant's motion in game play
DE102008031996A1 (de) * 2008-07-07 2010-02-18 Osram Gesellschaft mit beschränkter Haftung Strahlungsemittierende Vorrichtung
KR101520029B1 (ko) * 2008-12-31 2015-05-15 삼성전자주식회사 고정세화 패턴을 갖는 광 변조기
US9413989B2 (en) * 2012-05-15 2016-08-09 Honeywell International Inc. Dual band imager
WO2017006307A1 (en) * 2015-07-07 2017-01-12 B.G. Negev Technologies And Applications Ltd., At Ben-Gurion University Swir to visible up-conversion optical system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4476477A (en) * 1982-02-23 1984-10-09 At&T Bell Laboratories Graded bandgap multilayer avalanche photodetector with energy step backs
EP0394674A2 (en) * 1989-03-23 1990-10-31 Victor Company Of Japan, Limited Light conversion element and an imaging device
EP0494086A2 (en) * 1986-06-30 1992-07-08 Hughes Aircraft Company Near bandgap radiation modulation spatial light modulators
US5504365A (en) * 1993-01-21 1996-04-02 Victor Company Of Japan, Ltd. Spatial light modulation device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525687A (en) 1983-02-28 1985-06-25 At&T Bell Laboratories High speed light modulator using multiple quantum well structures
US4686550A (en) 1984-12-04 1987-08-11 American Telephone And Telegraph Company, At&T Bell Laboratories Heterojunction semiconductor devices having a doping interface dipole
EP0397691B1 (en) 1988-01-06 2000-02-09 Telstra Corporation Limited Current injection laser
US4884119A (en) 1988-04-22 1989-11-28 American Telephone & Telegraph Company Integrated multiple quantum well photonic and electronic devices
JPH05289123A (ja) 1992-04-14 1993-11-05 Ricoh Co Ltd 面型光変調器
JPH0643482A (ja) * 1992-07-24 1994-02-18 Matsushita Electric Ind Co Ltd 空間光変調素子およびその製造方法
US6091905A (en) 1995-06-22 2000-07-18 3Dv Systems, Ltd Telecentric 3D camera and method
IL114278A (en) 1995-06-22 2010-06-16 Microsoft Internat Holdings B Camera and method
US6025950A (en) 1997-09-22 2000-02-15 Coretek, Inc. Monolithic all-semiconductor optically addressed spatial light modulator based on low-photoconductive semiconductors
WO1999040478A1 (en) 1998-02-08 1999-08-12 3Dv Systems Ltd. Large aperture optical image shutter
US7196390B1 (en) * 1999-09-26 2007-03-27 3Dv Systems Ltd. Solid state image wavelength converter
US6445839B1 (en) * 1999-11-05 2002-09-03 The Board Of Trustees Of The Leland Stanford Junior University Optical wavelength-division-multiplexed cross-connect incorporating optically controlled optical switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4476477A (en) * 1982-02-23 1984-10-09 At&T Bell Laboratories Graded bandgap multilayer avalanche photodetector with energy step backs
EP0494086A2 (en) * 1986-06-30 1992-07-08 Hughes Aircraft Company Near bandgap radiation modulation spatial light modulators
EP0394674A2 (en) * 1989-03-23 1990-10-31 Victor Company Of Japan, Limited Light conversion element and an imaging device
US5504365A (en) * 1993-01-21 1996-04-02 Victor Company Of Japan, Ltd. Spatial light modulation device

Also Published As

Publication number Publication date
US20070273770A1 (en) 2007-11-29
AU5882699A (en) 2001-04-30
US8063463B2 (en) 2011-11-22
WO2001023947A1 (en) 2001-04-05
JP2003510649A (ja) 2003-03-18
US7196390B1 (en) 2007-03-27

Similar Documents

Publication Publication Date Title
US8063463B2 (en) Solid state image wavelength converter
JP4195189B2 (ja) 大開口光画像シャッタ
US6794725B2 (en) Amorphous silicon sensor with micro-spring interconnects for achieving high uniformity in integrated light-emitting sources
TW526384B (en) Single photon generating device
US7638751B2 (en) Multi-element optical detectors with sub-wavelength gaps
US8928802B2 (en) Method and apparatus for producing high dynamic range (HDR) pictures, and exposure apparatuses for use therein
EP0299841B1 (fr) Détecteur d'onde électromagnétique, et analyseur d'image comportant un tel détecteur
US5521743A (en) Photon-counting spatial light modulator with APD structure
EP0131042A1 (en) USE OF THE INTENSITY OF A LIGHT RAY APPLIED TO A LAYERED SEMICONDUCTOR STRUCTURE FOR CONTROLLING THE RADIUS.
JP5320369B2 (ja) 固体波長変換器
Canoglu et al. Carrier transport in a photorefractive multiple quantum well device
US7587103B2 (en) Method for ultrafast optical deflection enabling optical recording via serrated or graded light illumination
US8013305B2 (en) Infrared wavelength imaging applications based on quantum well devices
Verlan Native centers of electron and hole traps in thin amorphous films of As2S3 and As2Se3
Miyoshi et al. Laser-induced reversion of photodarkening in CdS-doped glass
CN113433142B (zh) 适用于x射线诊断的高时空分辨光学系统
US7067793B2 (en) High speed self-pixelating low light level optical system
JPH11109298A (ja) 半導体素子
Liu et al. Single line of sight frame camera based on the RadOptic effect of ultrafast semiconductor detector
Berben et al. Photorefractive x-ray imaging
Tanaka et al. Three-dimensional optical card storage with thirty recording-layers
JP3865128B2 (ja) 受光装置及びマルチチャネル受光装置
JP2002107775A (ja) フォトリフラクティブ素子及びそれを利用した振動検出装置
JP2009015931A (ja) 情報記録再生方法、情報記録再生システム、情報記録装置、情報再生装置
Kaushik Design and application of a soft X-ray detector using GaAs multiple quantum wells

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060926

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100521

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100706

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees