JP4763942B2 - Inflated vermiculite for molding and manufacturing method thereof - Google Patents

Inflated vermiculite for molding and manufacturing method thereof Download PDF

Info

Publication number
JP4763942B2
JP4763942B2 JP2001283426A JP2001283426A JP4763942B2 JP 4763942 B2 JP4763942 B2 JP 4763942B2 JP 2001283426 A JP2001283426 A JP 2001283426A JP 2001283426 A JP2001283426 A JP 2001283426A JP 4763942 B2 JP4763942 B2 JP 4763942B2
Authority
JP
Japan
Prior art keywords
vermiculite
temperature
hydrogen peroxide
ore
iron compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001283426A
Other languages
Japanese (ja)
Other versions
JP2003095638A (en
Inventor
公一 墨田
一彰 利倉
伸一 山元
信彦 粟屋
Original Assignee
日光化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日光化成株式会社 filed Critical 日光化成株式会社
Priority to JP2001283426A priority Critical patent/JP4763942B2/en
Publication of JP2003095638A publication Critical patent/JP2003095638A/en
Application granted granted Critical
Publication of JP4763942B2 publication Critical patent/JP4763942B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軽量性、断熱性および高保水性を特徴とする、鉱物由来の多孔質膨積材料の製造方法に関する。
【0002】
【従来の技術】
膨積バーミキュライトは、一般に、バーミキュライト原石の結晶構造中に含まれる水酸基や結晶水を膨積させることによって製造される鉱物由来の多孔質膨積材料である。これは、優れた軽量性、断熱性、高保水性およびイオン交換性などを特徴とすることから、工業用材料、建築用材、保温断熱材、荷造り材および人工土壌成形品などに多用されている。
【0003】
膨積方法としては、バーミキュライト原石を約800℃以上の温度へ急加熱する方法が最も一般的であるが、このような高温までの急加熱は非常に高いエネルギーを必要とする。
【0004】
別法として、特公昭55-6600号公報には、バーミキュライト原石に酸の存在下で過酸化水素を作用させて、100℃以下の温度で膨積を行う方法が提案されている。この特公昭55-6600号公報に記載の方法によれば、より低温で膨積できるため、省エネルギーが達成できる。しかし、バーミキュライト原石の重量に対して5重量%程度の酸を作用させるため、膨積後のバーミキュライトのpHは、前記の高温急加熱法で得られるものと比べると著しく低くなる。低いpHの膨積材料は、植物の育成には適さないため、人工土壌成形品の製造に利用できず、用途を限定する要因となりうる。
加えて、特公昭55-6600号公報記載の方法では、バーミキュライト原石の重量に対して約3.5〜45重量%の水が必要であり、これが所望の膨積率が得られるまでの時間を遅らせる原因となっている。
【0005】
【課題を解決するための手段】
本発明者らは、鋭意研究を重ねた結果、バーミキュライト原石を、濃硫酸または濃塩酸の存在下、鉄化合物と過酸化水素水を作用させて膨積する際に、発熱反応が生じ、最高温度が約90℃以上に達するという知見を得た。更に、本発明者らは、高濃度の酸の使用量を低減できるため、得られる膨積バーミキュライトのpH値をより高くできること、水を必須成分として別途添加する必要がなく、さらに過酸化水素水を添加する前に系を加温することで所望の膨積率が得られるまでの時間を大幅に短縮できることを見出し、本発明を完成するに至った。
すなわち、本発明は、バーミキュライト原石に、該バーミキュライト原石1000gに対して0.05〜0.5モルの濃硫酸または濃塩酸および前記バーミキュライト原石の重量に対して0.1〜0.5重量%の量の鉄化合物を添加して混合し、該混合物を40〜100℃の温度で一定時間保持した後、冷却し、その後、過酸化水素水を添加して膨積する、膨積バーミキュライトの製造方法である。
【0006】
【発明の実施の形態】
本発明の膨積バーミキュライトの製造方法は、図1に示すように、基本的には以下の3工程から構成される。
工程1:バーミキュライト原石に、濃硫酸または濃塩酸および鉄化合物を添加する工程
工程2:40〜100℃の温度で一定時間保持した後、冷却する工程
工程3:過酸化水素水を添加してバーミキュライト原石を膨積する工程
【0007】
工程1
本発明では、先ず、バーミキュライト原石に高濃度の酸と鉄化合物を添加する。
使用されるバーミキュライト原石は、例えばナトリウムイオン、アンモニウムイオンなどのカチオンでバーミキュライト中のマグネシウムイオンを交換して製造された、いわゆるイオン交換バーミキュライトであってもよく、これらは着色または染色されていてもよい。バーミキュライト原石の寸法は、製造される膨積バーミキュライトの利用目的によって異なるが、通常、0号(約0.1mm角)〜4号(約7mm角)のものが好ましく使用される。
【0008】
バーミキュライト原石に添加される酸の濃度が高いほどバーミキュライト原石の膨積率が高くなることは特公昭55-6600号公報から公知である。本発明では、特に、通常市販されている95〜98%の濃硫酸または35%以上の濃塩酸を酸として使用する。最も好ましくは、約98%の濃硫酸を使用する。
濃硫酸または濃塩酸の添加量は、後述の鉄化合物の種類に依存して決定されるが、一般には、従来法よりも少ない量で、好ましくはバーミキュライト原石1000gに対して0.05〜0.5モル、好ましくは前記原石1000gに対して0.1〜0.3モルであってよい。
【0009】
前記濃硫酸または濃塩酸のバーミキュライト原石への添加と同時にまたは添加後に、鉄化合物を添加し、これらを攪拌して混合する。最も好ましくは、前記鉄化合物を、バーミキュライト原石と濃硫酸または濃塩酸との混合物に添加して、攪拌して混合する。
【0010】
本発明の特徴的な成分である鉄化合物は、硫酸第一鉄、硫酸第二鉄、塩化第一鉄および塩化第二鉄から選択される少なくとも1種であってよい。前記鉄化合物は、水和物であってもよい。
【0011】
最も好ましくは、鉄化合物として硫酸第二鉄を使用する。
【0012】
鉄化合物は、使用されるバーミキュライト原石の重量に対して0.1〜0.5重量%、より好ましくは0.2〜0.3重量%の量で添加される。高濃度の酸と鉄化合物を併用することによる作用は明確ではないが、鉄化合物の添加量が0.5重量%を超えると、得られる膨積バーミキュライトの膨積率が低下する。
【0013】
工程2
工程1で得られた混合物を40〜100℃、好ましくは60〜80℃の温度で一定時間保持した後、周囲温度室温まで冷却する。具体例としては、混合物を60℃で12時間程度保持した後、室温まで冷却する。
本工程では、通常使用される加熱および冷却手段がいずれも使用できる。
工程2における加熱効果は、添加された酸や鉄化合物のバーミキュライト原石全体への浸透を促進することである。そして、これにより、後続の工程3において90℃以上の発熱反応温度が達成され、バーミキュライト原石の膨積時間が短縮されるものと考えられる。
【0014】
工程3
周囲温度まで冷却された混合系へ過酸化水素水を添加する。
過酸化水素水は、好ましくは市販の約1〜35%水溶液、最も好ましくは15%以上の水溶液であってよい。過酸化水素水の添加量は、その濃度、および使用される酸の量や所望の膨積率に依存して変化してよい。例えば過酸化水素水は、過酸化水素がバーミキュライト原石1000gに対して2モル〜5モル、好ましくは前記原石1000gに対して3モル〜4モルの量となるように添加される。
【0015】
過酸化水素水の添加後、混合物は直ちに発熱反応を生じて先ず約40℃付近まで急に昇温する。そこから約60℃まで緩やかに昇温した後、急速に90℃以上の温度に達した後、徐々に下がる。このような発熱反応は、過酸化水素と鉄化合物による第1の反応段階と(〜約40℃付近)、その後、過酸化水素とバーミキュライト原石との間で爆発的に生じる第2の反応段階(〜90℃以上)から成ると考えられる。この間、バーミキュライト原石の膨積は、過酸化水素水の添加直後から開始し、発熱温度が90℃以上に達するとその大部分の膨積が生じて、所望の膨積率に達する。
【0016】
特公昭55-6600号公報などに開示されている従来法では、バーミキュライト原石に酸存在下、過酸化水素を作用させると、ゆっくりと発熱反応が生じて、最高約45℃に発熱するが、それ以上の温度、特に90℃以上の高温には成り得なかった。これに対し、本発明では、鉄化合物の使用と、前記加熱工程2との併用により、高濃度の酸の存在下で過酸化水素をバーミキュライト原石に作用させることによって、最高90℃以上の温度を達成できる。
また、前記従来法によれば、最高温度である約45℃まで例えば約20分かけてゆっくりと昇温する。しかしながら、本発明では、前記工程3における過酸化水素水の添加直後に約40℃に達する。さらに、本発明では、過酸化水素添加後から、混合物の温度が90℃以上に達するまでの時間が通常1分〜5分の間、特に好ましくは2分〜4分の間であることを特徴とする。これにより、本発明によれば、バーミキュライト原石の膨積が所望の膨積率に達するまでの時間を、従来法に比べて大幅に短縮できるものである。
【0017】
本発明によれば、バーミキュライト原石は約10倍以上に膨積される。
【0018】
また、本発明で得られる膨積バーミキュライトのpHは、3.5以上、特に4以上である。
【0019】
本発明の方法で得られる膨積バーミキュライトは、軽量性および断熱性に優れており、更には保水性が高いことから、工業用材料、建築用材、保温断熱材、荷造り材および人工土壌成形品などの成形に好ましく利用される。
【0020】
【実施例】
実施例
以下の通り、本発明の方法に従って、バーミキュライト原石の膨積を行った。
バーミキュライト原石(粒径3号、約5mm角)1.3kgに、先ず、98%濃硫酸19.5g(バーミキュライト原石重量の1.5重量%)と、鉄化合物2.6g(硫酸第二鉄、バーミキュライト原石重量の0.2重量%)を順に添加し、リボンブレンダーを用いて十分に混合した。混合系を熱風循環乾燥機を用いて約60℃に加熱し、この温度で12時間保持した後、室温まで冷却した。
その後、35重量%過酸化水素水0.43kgを添加したところ、添加直後に混合物の温度は約45℃に昇温し、その後60℃付近までゆっくりと昇温した後、ある時点で一気に約90℃以上の温度に達した。この結果、過酸化水素水を添加してから約4分後に約90℃までの昇温が達成され、バーミキュライト原石は12倍まで膨積した。得られた膨積バーミキュライトのpHは3.95であった。
【0021】
比較例
比較例として、特公昭55-6600号公報の実施例1に記載の手順に従って、バーミキュライトの膨積を行った。
すなわち、バーミキュライト原石(粒径3号、約5mm角)500gに98%濃硫酸25mLを加えて良く攪拌し、そこへ35重量%過酸化水素水100mLを加えたところ、20分後にバーミキュライト原石の12倍まで膨積したが、混合物の温度は最高45℃までしか上がらなかった。得られた膨積バーミキュライトのpHは2.49であった。
【0022】
実施例および比較例の結果より、本発明の方法では、バーミキュライト原石の膨積が所望の膨積率に達するまでの時間が公知の方法に比べて極めて速いことと、それによって得られる膨積バーミキュライトのpHがより高いことが分かる。
【0023】
【発明の効果】
本発明の方法によれば、高濃度の酸と鉄化合物の存在下で過酸化水素水を作用させることにより、バーミキュライト原石の膨積を、数百℃に亙る高温急加熱を行わず、化学反応に伴う発熱によって行うことができる。特に本発明では、発生する発熱温度が最高約90℃以上に達すること、そして所望の膨積率に達するまでの時間が5分間と、膨積時間を大幅に短縮できることを特徴とする。
さらに、本発明の方法によれば、高濃度の酸の使用量を低減できることから、pH3.5以上の膨積バーミキュライトが得られる。
【図面の簡単な説明】
【図1】 本発明の方法を具体的に表す工程フロー図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a mineral-derived porous swelling material characterized by lightness, heat insulation and high water retention.
[0002]
[Prior art]
Expanded vermiculite is a mineral-derived porous expanded material generally produced by expanding a hydroxyl group or crystal water contained in the crystal structure of vermiculite ore. Since this is characterized by excellent lightness, heat insulation, high water retention and ion exchange properties, it is frequently used for industrial materials, building materials, heat insulation materials, packing materials and artificial soil molded products.
[0003]
As a method of swelling, a method of rapidly heating vermiculite ore to a temperature of about 800 ° C. or more is most common, but such rapid heating to a high temperature requires very high energy.
[0004]
As another method, Japanese Examined Patent Publication No. 55-6600 proposes a method in which vermiculite ore is subjected to hydrogen peroxide in the presence of an acid and expanded at a temperature of 100 ° C. or lower. According to the method described in Japanese Patent Publication No. 55-6600, energy can be saved because it can be expanded at a lower temperature. However, since an acid of about 5% by weight is caused to act on the weight of the raw vermiculite, the pH of the vermiculite after the expansion is significantly lower than that obtained by the high temperature rapid heating method. Since the low pH swelling material is not suitable for plant growth, it cannot be used for the production of artificial soil molded products, and may be a factor that limits the application.
In addition, the method described in Japanese Patent Publication No. 55-6600 requires about 3.5 to 45% by weight of water based on the weight of the raw vermiculite, and it takes time to obtain a desired swelling ratio. It is a cause of delay.
[0005]
[Means for Solving the Problems]
As a result of intensive research, the inventors have conducted an exothermic reaction when vermiculite ore is expanded by the action of an iron compound and hydrogen peroxide in the presence of concentrated sulfuric acid or concentrated hydrochloric acid, and the maximum temperature Was found to reach about 90 ° C. or higher. Furthermore, the present inventors can reduce the amount of high-concentration acid used, so that the pH value of the resulting expanded vermiculite can be further increased, there is no need to add water as an essential component, and hydrogen peroxide water is further added. It has been found that the time until the desired expansion rate can be obtained can be greatly shortened by warming the system before adding, and the present invention has been completed.
That is, according to the present invention, the vermiculite ore is mixed with 0.05 to 0.5 mol of concentrated sulfuric acid or concentrated hydrochloric acid with respect to 1000 g of the vermiculite ore and 0.1 to 0.5% by weight based on the weight of the vermiculite ore. A method for producing expanded vermiculite, wherein an amount of an iron compound is added and mixed, the mixture is kept at a temperature of 40 to 100 ° C. for a certain period of time, then cooled, and then hydrogen peroxide solution is added to expand the mixture. It is.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing the expanded vermiculite of the present invention basically comprises the following three steps as shown in FIG.
Step 1: Step of adding concentrated sulfuric acid or concentrated hydrochloric acid and iron compound to vermiculite ore Step 2: Step of cooling after holding at a temperature of 40 to 100 ° C. for a certain time Step 3: Adding vermiculite by adding hydrogen peroxide Process of expanding the rough stone [0007]
Process 1
In the present invention, first, a high concentration acid and iron compound are added to the raw vermiculite.
The raw vermiculite used may be so-called ion exchange vermiculite produced by exchanging magnesium ions in vermiculite with cations such as sodium ion and ammonium ion, and these may be colored or dyed. . The size of the raw vermiculite varies depending on the purpose of use of the expanded vermiculite to be produced, but normally, those of No. 0 (about 0.1 mm square) to No. 4 (about 7 mm square) are preferably used.
[0008]
It is known from Japanese Patent Publication No. 55-6600 that the higher the concentration of the acid added to the vermiculite ore, the higher the expansion rate of the vermiculite ore. In the present invention, 95-98% concentrated sulfuric acid or 35% or more concentrated hydrochloric acid, which is usually commercially available, is used as the acid. Most preferably, about 98% concentrated sulfuric acid is used.
The amount of concentrated sulfuric acid or concentrated hydrochloric acid to be added is determined depending on the type of iron compound described later, but is generally less than that of the conventional method, and preferably 0.05 to 0.00 with respect to 1000 g of raw vermiculite. The amount may be 5 mol, preferably 0.1 to 0.3 mol based on 1000 g of the raw stone.
[0009]
At the same time or after the addition of the concentrated sulfuric acid or concentrated hydrochloric acid to the raw vermiculite ore, an iron compound is added, and these are stirred and mixed. Most preferably, the iron compound is added to a mixture of vermiculite ore and concentrated sulfuric acid or concentrated hydrochloric acid and mixed with stirring.
[0010]
The iron compound that is a characteristic component of the present invention may be at least one selected from ferrous sulfate, ferric sulfate, ferrous chloride, and ferric chloride. The iron compound may be a hydrate.
[0011]
Most preferably, ferric sulfate is used as the iron compound.
[0012]
The iron compound is added in an amount of 0.1 to 0.5% by weight, more preferably 0.2 to 0.3% by weight, based on the weight of the vermiculite used. The effect of using a high concentration acid and iron compound in combination is not clear, but when the amount of iron compound added exceeds 0.5% by weight, the expansion rate of the resulting expanded vermiculite decreases.
[0013]
Process 2
The mixture obtained in step 1 is kept at a temperature of 40 to 100 ° C., preferably 60 to 80 ° C. for a certain period of time, and then cooled to an ambient temperature of room temperature. As a specific example, the mixture is kept at 60 ° C. for about 12 hours and then cooled to room temperature.
In this step, any commonly used heating and cooling means can be used.
The heating effect in the process 2 is to promote the penetration of the added acid or iron compound into the entire vermiculite ore. Thus, it is considered that an exothermic reaction temperature of 90 ° C. or higher is achieved in the subsequent step 3, and the swelling time of the vermiculite raw stone is shortened.
[0014]
Process 3
Hydrogen peroxide solution is added to the mixed system cooled to ambient temperature.
The hydrogen peroxide solution may preferably be a commercially available about 1-35% aqueous solution, most preferably a 15% or higher aqueous solution. The amount of hydrogen peroxide added may vary depending on its concentration, the amount of acid used and the desired swelling rate. For example, the hydrogen peroxide solution is added so that hydrogen peroxide is in an amount of 2 mol to 5 mol with respect to 1000 g of the vermiculite ore, preferably 3 mol to 4 mol with respect to 1000 g of the original ore.
[0015]
After the addition of aqueous hydrogen peroxide, the mixture immediately undergoes an exothermic reaction and first rapidly rises to about 40 ° C. After gradually increasing the temperature to about 60 ° C., the temperature rapidly reaches 90 ° C. or higher and then gradually decreases. Such an exothermic reaction consists of a first reaction stage with hydrogen peroxide and an iron compound (˜about 40 ° C.), followed by a second reaction stage that occurs explosively between hydrogen peroxide and the raw vermiculite ( ~ 90 ° C or higher). During this time, the expansion of the vermiculite ore starts immediately after the addition of the hydrogen peroxide solution. When the exothermic temperature reaches 90 ° C. or more, most of the expansion occurs, and the desired expansion rate is reached.
[0016]
In the conventional method disclosed in Japanese Patent Publication No. 55-6600, etc., when hydrogen peroxide is allowed to act on vermiculite ore in the presence of acid, a slow exothermic reaction occurs, and the maximum heat is generated at about 45 ° C. The above temperature, especially 90 ° C. or higher could not be achieved. On the other hand, in the present invention, the combined use of the iron compound and the heating step 2 allows hydrogen peroxide to act on the raw vermiculite in the presence of a high concentration of acid, so that a temperature of 90 ° C. or higher can be achieved. Can be achieved.
Further, according to the conventional method, the temperature is slowly raised to about 45 ° C. which is the maximum temperature, for example, over about 20 minutes. However, in the present invention, the temperature reaches about 40 ° C. immediately after the addition of the hydrogen peroxide solution in Step 3. Furthermore, in the present invention, the time from the addition of hydrogen peroxide until the temperature of the mixture reaches 90 ° C. or higher is usually 1 minute to 5 minutes, particularly preferably 2 minutes to 4 minutes. And As a result, according to the present invention, the time until the expansion of the vermiculite ore reaches a desired expansion rate can be significantly reduced as compared with the conventional method.
[0017]
According to the present invention, the vermiculite ore is expanded about 10 times or more.
[0018]
Moreover, the pH of the expanded vermiculite obtained by the present invention is 3.5 or more, particularly 4 or more.
[0019]
The expanded vermiculite obtained by the method of the present invention is excellent in light weight and heat insulation, and further has high water retention, so that it is an industrial material, building material, heat insulation material, packing material, artificial soil molded product, etc. It is preferably used for molding.
[0020]
【Example】
Examples The vermiculite rough was expanded according to the method of the present invention as follows.
To 1.3 kg of vermiculite rough (particle size 3, approx. 5 mm square), first, 19.5 g of 98% concentrated sulfuric acid (1.5 wt% of the weight of vermiculite rough) and 2.6 g of iron compound (ferric sulfate, Vermiculite ore weight of 0.2% by weight) was added in order and mixed well using a ribbon blender. The mixed system was heated to about 60 ° C. using a hot air circulating dryer, kept at this temperature for 12 hours, and then cooled to room temperature.
Thereafter, 0.43 kg of 35 wt% aqueous hydrogen peroxide was added, and immediately after the addition, the temperature of the mixture was raised to about 45 ° C., and then slowly raised to about 60 ° C. Reached a temperature above ℃. As a result, about 4 minutes after the addition of the hydrogen peroxide solution, the temperature was raised to about 90 ° C., and the vermiculite ore expanded to 12 times. The pH of the obtained expanded vermiculite was 3.95.
[0021]
Comparative example As a comparative example, vermiculite was expanded according to the procedure described in Example 1 of JP-B-55-6600.
That is, 25 mL of 98% concentrated sulfuric acid was added to 500 g of rough vermiculite (particle size No. 3, approximately 5 mm square) and stirred well, and 100 mL of 35 wt% hydrogen peroxide was added thereto. Although swelled up to twice, the temperature of the mixture only increased to a maximum of 45 ° C. The pH of the obtained expanded vermiculite was 2.49.
[0022]
From the results of Examples and Comparative Examples, in the method of the present invention, the time required for the expansion of the vermiculite ore to reach the desired expansion rate is extremely fast compared to the known method, and the expanded vermiculite obtained thereby. It can be seen that the pH of the is higher.
[0023]
【The invention's effect】
According to the method of the present invention, by allowing hydrogen peroxide water to act in the presence of a high concentration of acid and iron compound, the swelling of vermiculite ore is not subjected to high-temperature rapid heating up to several hundred degrees C. This can be done by the heat generated by the process. In particular, the present invention is characterized in that the generated exothermic temperature reaches a maximum of about 90 ° C. or more, and the time required to reach a desired expansion rate is 5 minutes, so that the expansion time can be greatly shortened.
Furthermore, according to the method of the present invention, since the amount of high-concentration acid used can be reduced, expanded vermiculite having a pH of 3.5 or higher can be obtained.
[Brief description of the drawings]
FIG. 1 is a process flow diagram specifically illustrating the method of the present invention.

Claims (6)

バーミキュライト原石に、該バーミキュライト原石1000gに対して0.05〜0.5モルの濃硫酸または濃塩酸および前記バーミキュライト原石の重量に対して0.1〜0.5重量%の量の鉄化合物を添加して混合し、該混合物を40〜100℃の温度で一定時間保持した後、冷却し、その後、過酸化水素水を添加して膨積する、膨積バーミキュライトの製造方法。To the vermiculite ore, 0.05 to 0.5 mol of concentrated sulfuric acid or concentrated hydrochloric acid with respect to 1000 g of the vermiculite ore and an iron compound in an amount of 0.1 to 0.5% by weight based on the weight of the vermiculite ore A method for producing expanded vermiculite, wherein the mixture is kept at a temperature of 40 to 100 ° C. for a certain period of time, cooled, and then expanded by adding hydrogen peroxide. 鉄化合物が、硫酸第一鉄、硫酸第二鉄、塩化第一鉄および塩化第二鉄から選択される少なくとも1種である請求項1記載の膨積バーミキュライトの製造方法。The method for producing expanded vermiculite according to claim 1, wherein the iron compound is at least one selected from ferrous sulfate, ferric sulfate, ferrous chloride, and ferric chloride. 過酸化水素水の添加により、最高温度が90℃以上の発熱反応が生じる請求項1記載の膨積バーミキュライトの製造方法。The method for producing expanded vermiculite according to claim 1, wherein an exothermic reaction with a maximum temperature of 90 ° C. or more occurs by addition of hydrogen peroxide. 過酸化水素水の添加後、5分以内に90℃以上の温度まで昇温する請求項1記載の膨積バーミキュライトの製造方法。The method for producing expanded vermiculite according to claim 1, wherein the temperature is raised to a temperature of 90 ° C or higher within 5 minutes after the addition of the hydrogen peroxide solution. 膨積バーミキュライトのpHが3.5以上である請求項1記載の膨積バーミキュライトの製造方法。The method for producing expanded vermiculite according to claim 1, wherein the pH of the expanded vermiculite is 3.5 or more. 請求項1〜5のいずれかに記載の方法で製造される成型用膨積バーミキュライト。An expanded vermiculite for molding produced by the method according to claim 1.
JP2001283426A 2001-09-18 2001-09-18 Inflated vermiculite for molding and manufacturing method thereof Expired - Fee Related JP4763942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001283426A JP4763942B2 (en) 2001-09-18 2001-09-18 Inflated vermiculite for molding and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001283426A JP4763942B2 (en) 2001-09-18 2001-09-18 Inflated vermiculite for molding and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003095638A JP2003095638A (en) 2003-04-03
JP4763942B2 true JP4763942B2 (en) 2011-08-31

Family

ID=19106911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001283426A Expired - Fee Related JP4763942B2 (en) 2001-09-18 2001-09-18 Inflated vermiculite for molding and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4763942B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918353B1 (en) * 1970-02-18 1974-05-09
JPS4918717B1 (en) * 1970-12-05 1974-05-11
JPS556600B2 (en) * 1971-08-12 1980-02-18
JPS5119448B2 (en) * 1971-12-27 1976-06-17

Also Published As

Publication number Publication date
JP2003095638A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
EP0347156A3 (en) Process for manufacturing building construction steel having excellent fire resistance and low yield ratio, and construction steel obtained thereby
JP4763942B2 (en) Inflated vermiculite for molding and manufacturing method thereof
CN109054763B (en) Hydrated sulfate composite phase-change material and preparation method thereof
CN109020243B (en) Method for preparing microcrystalline foam glass from vanadium-titanium magnet tailings
JPH07505112A (en) Synthesis method of smectite clay minerals
CN113403686B (en) Preparation method of potassium titanate whisker for friction material
CN105347773B (en) A kind of magnesia oxychloride cement of suitable use in winter and preparation method thereof
CN110627479B (en) Method for preparing foamed ceramic by using water-quenched nickel-iron slag
JP3379204B2 (en) Method for producing iron-based inorganic coagulant
JPH09263402A (en) Production of hexagonal boron nitride powder
JP3583170B2 (en) Gypsum manufacturing method
JPS62284047A (en) Manufacture of shape memory alloy
CN107793034A (en) A kind of principal crystalline phase is Li2SiO3Fluoride-doped oxygen nitrogen devitrified glass and preparation method thereof
KR101448241B1 (en) Composition for producing the high-purity silicon carbide powder and method for producing the high-purity silicon carbide powder used it
CN106747560A (en) A kind of porous thermal insulating composite ceramic material
JPS54152058A (en) Production of water-soluble gelatin composition
CN106566128A (en) Triethyl phosphate composite environment-friendly stabilizer for PVC and preparation method thereof
CN107512864B (en) Low-sensitivity foam concrete foaming agent and preparation method thereof
JPS627246B2 (en)
CN107325299B (en) Method for preparing water-in-water type nonionic polyacrylamide
CN109400103A (en) A kind of insulation board material and preparation method thereof
JPH05125502A (en) Manufacture of aluminum alloy material for bending
RU2081131C1 (en) Composition for preparing foam plastic
JPH01123043A (en) Shape memory alloy and production thereof
JPH0616406A (en) Production of thermally expandable graphite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4763942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees