JP4760345B2 - Continuous casting method - Google Patents

Continuous casting method Download PDF

Info

Publication number
JP4760345B2
JP4760345B2 JP2005348865A JP2005348865A JP4760345B2 JP 4760345 B2 JP4760345 B2 JP 4760345B2 JP 2005348865 A JP2005348865 A JP 2005348865A JP 2005348865 A JP2005348865 A JP 2005348865A JP 4760345 B2 JP4760345 B2 JP 4760345B2
Authority
JP
Japan
Prior art keywords
slab
continuous casting
pressure water
water
nozzle hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005348865A
Other languages
Japanese (ja)
Other versions
JP2007152378A (en
Inventor
陽一 伊藤
真 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005348865A priority Critical patent/JP4760345B2/en
Publication of JP2007152378A publication Critical patent/JP2007152378A/en
Application granted granted Critical
Publication of JP4760345B2 publication Critical patent/JP4760345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋼等の各種金属を溶製して得られた溶融状態の金属(以下、溶湯という)の連続鋳造を行なうにあたって、鋳片の凝固組織を改善できる連続鋳造方法に関するものである。   The present invention relates to a continuous casting method capable of improving the solidification structure of a slab when performing continuous casting of a molten metal (hereinafter referred to as molten metal) obtained by melting various metals such as steel.

連続鋳造は、4つの側面で構成される鋳型(以下、連続鋳造用鋳型という)に、上方から溶湯を注入して冷却(いわゆる1次冷却)し、連続鋳造用鋳型内で形成された鋳片を下方に引き抜くことによって、鋳片を連続的に製造する技術である。連続鋳造用鋳型の出側では、鋳片の表層部は凝固(いわゆる凝固シェル)している。ところが鋳片の外周部に位置する凝固部の内側には未凝固の溶湯が残存しているので、連続鋳造用鋳型から引き抜いた鋳片に冷却水を吹き付けて冷却(いわゆる2次冷却)し、未凝固の溶湯を凝固させる。ここでは、外周の凝固部とその内側の未凝固部とを合わせて鋳片と記す。   Continuous casting is a slab formed in a continuous casting mold by injecting molten metal from above into a mold composed of four sides (hereinafter referred to as a continuous casting mold) and cooling (so-called primary cooling). This is a technique for continuously producing a slab by pulling out the steel sheet downward. On the exit side of the continuous casting mold, the surface layer portion of the slab is solidified (so-called solidified shell). However, since unsolidified molten metal remains inside the solidified portion located on the outer peripheral portion of the slab, cooling is performed by blowing cooling water onto the slab drawn from the continuous casting mold (so-called secondary cooling), Solidify the unsolidified molten metal. Here, the solidified part on the outer periphery and the unsolidified part on the inner side are collectively referred to as a cast piece.

鋼等の各種金属の製造工程で、溶湯の連続鋳造によって得られる鋳片の凝固組織は、最終製品の特性や材質に多大な影響を及ぼす。そのため、近年、金属製品に要求される品質が厳しさを増すにつれて、連続鋳造にて鋳片の凝固組織を制御する必要性が高まっている。特にステンレス鋼板や珪素鋼板では、リジングと呼ばれる表面欠陥の防止が重要な課題となっており、連続鋳造における操業条件を改善してリジング防止を達成するための研究が種々なされている。   In the manufacturing process of various metals such as steel, the solidification structure of the slab obtained by continuous casting of the molten metal has a great influence on the properties and materials of the final product. Therefore, in recent years, as the quality required for metal products increases, the need to control the solidification structure of the slab by continuous casting has increased. Particularly in stainless steel plates and silicon steel plates, the prevention of surface defects called ridging is an important issue, and various studies have been conducted to improve the operating conditions in continuous casting to achieve ridging prevention.

リジングと呼ばれる欠陥は、連続鋳造によって鋳片の内部まで凝固させた後、圧延して得られた鋼板に冷間加工(たとえば引張り,深絞り等)を施すことによって、鋼板の圧延方向に凹凸のある縞模様が生じる現象である。リジングが発生すると、鋼板の外観を損なうばかりでなく、電磁特性も劣化する。
鋳片の凝固組織がリジングの発生に多大な影響を及ぼすことは既に知られており、鋳片に柱状組織が発達するとリジングが発生しやすくなることが分かっている。したがって連続鋳造においては、柱状組織が生じないように鋳片を凝固させる必要がある。そこで、連続鋳造用鋳型の下方の2次冷却を行なう領域(以下、冷却帯という)に電磁攪拌装置を設置し、鋳片内部の未凝固部(すなわち未凝固の溶湯)を電磁攪拌することによって、等軸晶を生成させる技術が広く採用されている。
A defect called ridging is caused by unevenness in the rolling direction of a steel sheet by subjecting the steel sheet obtained by solidification to the inside of the slab by continuous casting and then cold working (for example, pulling, deep drawing, etc.). This is a phenomenon in which a certain striped pattern occurs. When ridging occurs, not only the appearance of the steel sheet is impaired, but also the electromagnetic characteristics are deteriorated.
It is already known that the solidification structure of the slab has a great influence on the generation of ridging, and it has been found that ridging is likely to occur when a columnar structure develops on the slab. Therefore, in continuous casting, it is necessary to solidify the slab so that a columnar structure does not occur. Therefore, an electromagnetic stirrer is installed in the area where the secondary cooling is performed below the continuous casting mold (hereinafter referred to as a cooling zone), and the unsolidified portion (that is, the unsolidified molten metal) inside the slab is electromagnetically stirred. Techniques for generating equiaxed crystals are widely adopted.

さらに等軸晶は、連続鋳造用鋳型に注入される溶湯の過熱度を20℃以下とすることによって、生成が促進されることが知られている。
その他にも連続鋳造によって得られる鋳片の凝固組織に等軸晶を生成させる技術が種々検討されている。
たとえば特許文献1には、連続鋳造用鋳型内の溶鋼に鋼線等の冷却材を添加し、かつ溶鋼の電磁攪拌を行なうことによって、鋳片の中心部に等軸晶を生成させる技術が開示されている。
Furthermore, it is known that the formation of equiaxed crystals is promoted by setting the superheat degree of the molten metal injected into the continuous casting mold to 20 ° C. or less.
In addition, various techniques for generating equiaxed crystals in the solidified structure of a slab obtained by continuous casting have been studied.
For example, Patent Document 1 discloses a technique for generating equiaxed crystals at the center of a slab by adding a coolant such as a steel wire to molten steel in a continuous casting mold and performing electromagnetic stirring of the molten steel. Has been.

特許文献2,3には、鋳片の外周の凝固部に超音波を印加して振動させ、鋳片の内部の未凝固部に等軸晶を生成させる技術が開示されている。
また特許文献4には、溶鋼の成分と温度を調整することによって、鋳片の内部の未凝固部に等軸晶を生成させる技術が開示されている。
しかしながら連続鋳造の操業においては鋳造速度や溶鋼成分,溶鋼過熱度等の稼動条件が変動しやすいので、特許文献1〜4に開示された技術は、いずれも鋳片に等軸晶のみを生成させることは難しく、部分的に柱状晶が生成するのは避けられない。
特開昭57-75275号公報 特開昭52-62130号公報 特開昭64-83350号公報 特開2002-30395号公報
Patent Documents 2 and 3 disclose techniques in which an ultrasonic wave is applied to a solidified portion on the outer periphery of a slab and vibrated to generate equiaxed crystals in an unsolidified portion inside the slab.
Patent Document 4 discloses a technique for generating equiaxed crystals in an unsolidified portion inside a slab by adjusting the composition and temperature of molten steel.
However, in continuous casting operations, the operating conditions such as casting speed, molten steel composition, molten steel superheat degree, etc. are likely to fluctuate, so all the techniques disclosed in Patent Documents 1 to 4 generate only equiaxed crystals in the slab. This is difficult, and it is inevitable that columnar crystals are partially formed.
JP-A-57-75275 JP 52-62130 A JP-A-64-83350 JP 2002-30395 A

本発明は上記のような問題を解消し、各種金属の溶湯の連続鋳造を行なうにあたって鋳片に等軸晶を安定して生成させる連続鋳造方法、特に鋳片を圧延してステンレス鋼板や電磁鋼板とし、さらに冷間加工を施す際にリジングを防止できる鋳片の連続鋳造方法を提供することを目的とする。   The present invention solves the above-described problems, and a continuous casting method in which equiaxed crystals are stably generated in a slab when performing continuous casting of various metal melts, in particular, a stainless steel plate or an electromagnetic steel plate by rolling the slab. Furthermore, an object of the present invention is to provide a continuous casting method of a slab that can prevent ridging when cold working is performed.

本発明者らは、連続鋳造によって得られる鋳片の結晶粒を微細化して、柱状晶の生成を抑制するために、等軸晶の生成過程について調査した。その結果、
(a)等軸晶を多量に生成させるためには、多数の凝固核が必要である、
(b)鋳片の凝固部と未凝固部の界面に振動を与えると、凝固部の微粒子が剥離して未凝固部を浮遊し、凝固核となる、
(c)鋳片の凝固部と未凝固部の界面近傍の温度勾配を適正に維持することによって、等軸晶の生成を促進することができる
という知見を得た。そこで本発明者らは、連続鋳造用鋳型の下方の2次冷却を行なう冷却帯にて鋳片の表面から発生する水蒸気を利用して鋳片を振動させる新たな技術を開発し、鋳片に等軸晶を安定して生成させる方法を見出した。
The present inventors investigated the process of forming equiaxed crystals in order to refine the crystal grains of the slab obtained by continuous casting and suppress the formation of columnar crystals. as a result,
(a) In order to produce a large amount of equiaxed crystals, a large number of solidification nuclei are required.
(b) When vibration is applied to the interface between the solidified part and the unsolidified part of the slab, the fine particles in the solidified part peel off and float in the unsolidified part, which becomes a solidified nucleus.
(c) It has been found that the formation of equiaxed crystals can be promoted by appropriately maintaining the temperature gradient in the vicinity of the interface between the solidified part and the unsolidified part of the slab. Therefore, the present inventors have developed a new technique for vibrating the slab using water vapor generated from the surface of the slab in a cooling zone that performs secondary cooling below the continuous casting mold. A method for stably producing equiaxed crystals has been found.

すなわち本発明は、連続鋳造用鋳型から下方に引き抜かれた鋳片が冷却される冷却帯にて鋳片の表面温度が400〜800℃となる領域で、高圧水を噴射するノズル孔と鋳片との距離を350mm以内とし、高圧水のノズル孔における流速を80m/sec以上として、高圧水を鋳片に30秒以上吹き付ける連続鋳造方法である。
本発明の連続鋳造方法においては、鋳片の未凝固部の厚みが鋳片厚みの60%以上存在する領域で、未凝固の溶湯に電磁攪拌を行なうことが好ましい。また連続鋳造用鋳型に鋳込むときの溶湯の過熱度ΔTを30℃以下とすることが好ましい。
That is, the present invention relates to a nozzle hole and a slab for injecting high-pressure water in a region where the surface temperature of the slab becomes 400 to 800 ° C. in a cooling zone in which the slab drawn downward from the continuous casting mold is cooled. Is a continuous casting method in which the high-pressure water is sprayed on the slab for 30 seconds or more, with a distance of 350 mm or less and a flow velocity in the nozzle hole of the high-pressure water being 80 m / sec or more.
In the continuous casting method of the present invention, electromagnetic stirring is preferably performed on the unsolidified molten metal in a region where the thickness of the unsolidified portion of the slab is 60% or more of the slab thickness. Further, it is preferable that the degree of superheat ΔT of the molten metal when cast into a continuous casting mold is 30 ° C. or less.

本発明によれば、連続鋳造用鋳型の下方の冷却帯にて鋳片に高速の高圧水を吹き付けて、鋳片の表面から発生する水蒸気を壊滅させることによって鋳片に振動を与え、等軸晶の生成を促進することができる。その結果、連続鋳造の鋳造速度や溶鋼過熱度の変動の影響を受けることなく、等軸晶を安定して生成することができる。   According to the present invention, high-speed high-pressure water is sprayed on the slab at the cooling zone below the continuous casting mold to destroy the water vapor generated from the surface of the slab, thereby giving vibration to the slab, Formation of crystals can be promoted. As a result, equiaxed crystals can be stably generated without being affected by fluctuations in the casting speed of continuous casting and the degree of superheated molten steel.

図1は、本発明を適用する連続鋳造設備を模式的に示す断面図である。凝固部5(すなわち凝固シェル)と未凝固部7(すなわち未凝固の溶湯)とからなる鋳片は、ピンチロール2の駆動力によって連続鋳造用鋳型1から下方に引き抜かれ、冷却帯に設置される多数のスプレイ3から噴射されるスプレイ水によって冷却されて、凝固部5の厚みを増していく。   FIG. 1 is a cross-sectional view schematically showing a continuous casting facility to which the present invention is applied. The slab comprising the solidified portion 5 (ie, solidified shell) and the unsolidified portion 7 (ie, unsolidified molten metal) is drawn downward from the continuous casting mold 1 by the driving force of the pinch roll 2 and installed in the cooling zone. The solidified portion 5 is increased in thickness by being cooled by spray water sprayed from a large number of sprays 3.

本発明においては、鋳片の表面温度が400〜800℃となる領域4(以下、高圧水噴射領域という)にて、高圧水を鋳片に噴射する。この高圧水と、その他の通常のスプレイ水との違いは、高圧水を噴射するときの鋳片の表面温度を400〜800℃とする理由と併せて後述するが、以下では高圧水とスプレイ水とを総称して冷却用水と記す。
鋳片の表面では冷却用水が蒸発することによって水蒸気が発生している。しかし高圧水噴射領域4では高圧水が水蒸気を壊滅させるので、水蒸気は放散されない。その結果、鋳片に振動が生じ、凝固部5と未凝固部7の界面にて、凝固部5から多数の微粒子が剥離して未凝固部7中を浮遊する。この微粒子が凝固核となり、等軸晶の生成が促進される。
In the present invention, high-pressure water is sprayed onto the slab in a region 4 where the surface temperature of the slab is 400 to 800 ° C. (hereinafter referred to as a high-pressure water injection region). The difference between this high-pressure water and other normal spray water will be described later together with the reason that the surface temperature of the slab when jetting high-pressure water is 400 to 800 ° C. Are collectively referred to as cooling water.
Water vapor is generated on the surface of the slab as the cooling water evaporates. However, since the high-pressure water destroys the water vapor in the high-pressure water injection region 4, the water vapor is not dissipated. As a result, the slab is vibrated, and at the interface between the solidified part 5 and the non-solidified part 7, a large number of fine particles are separated from the solidified part 5 and float in the non-solidified part 7. These fine particles serve as solidification nuclei and promote the formation of equiaxed crystals.

冷却用水を噴射するために使用するノズルのオリフィス径をdn(mm)とし、ノズルに供給される冷却用水の流量をQ(liter/min)とすると、ノズルに設けられる噴射孔(以下、ノズル孔という)における冷却用水の流速V(m/sec)は下記の (1)式で算出される。一般的な連続鋳造で使用されるノズルでは、ノズル孔における冷却用水の通常の流速が80m/sec 未満であり、流体の流量が大きくなるほど、オリフィス径が大きくなる。ここでは、ノズル孔における流速が80m/sec 未満の冷却用水をスプレイ水と記す。 When the orifice diameter of the nozzle used for injecting the cooling water is d n (mm) and the flow rate of the cooling water supplied to the nozzle is Q (liter / min), an injection hole provided in the nozzle (hereinafter, nozzle) The flow velocity V (m / sec) of the cooling water in the hole is calculated by the following equation (1). In a nozzle used in general continuous casting, the normal flow rate of cooling water in the nozzle hole is less than 80 m / sec, and the larger the fluid flow rate, the larger the orifice diameter. Here, the cooling water having a flow velocity in the nozzle hole of less than 80 m / sec is referred to as spray water.

V=400Q/〔6π(dn 2 〕 ・・・ (1)
鋳片に等軸晶を安定して生成させるには多数の凝固核を未凝固部7中に浮遊させる必要がある。そこで多数の凝固核を浮遊させるために種々の技術が検討されているが、それらの技術は下記のように、
(A)未凝固の溶湯を攪拌して柱状晶を切断し、切断した破片を未凝固部中に浮遊させる、
(B)凝固部と未凝固部の界面に振動を与えて、凝固部から剥離した微粒子を未凝固部中に浮遊させる
という2種類に大別される。
V = 400Q / [6π (d n ) 2 ] (1)
In order to stably generate equiaxed crystals in the slab, it is necessary to float a large number of solidified nuclei in the unsolidified portion 7. Therefore, various techniques have been studied to float a large number of solidification nuclei, but these techniques are as follows:
(A) Stirring the unsolidified molten metal to cut the columnar crystals, and floating the broken pieces in the unsolidified portion.
(B) It is roughly classified into two types, in which vibration is given to the interface between the solidified part and the non-solidified part, and the fine particles separated from the solidified part are suspended in the non-solidified part.

上記の(A)に該当する技術としては電磁攪拌が知られている。ところが連続鋳造の操業においては鋳造速度や溶湯過熱度等の稼動条件が変動しやすいので、電磁攪拌による溶湯の攪拌強度も変化する。攪拌強度が過剰に強い場合は、成分の負偏析(いわゆるホワイトバンド)が生じ、鋳片の材料特性が局部的に劣化する。
上記の(B)に該当する技術としては超音波振動が知られている。しかし、連続鋳造の鋳片のような重量物に超音波振動を与えるためには大規模な発振機が必要となる。しかも鋳片が高温であることを考慮すると、発振機に耐熱性を付与しなければならないので、発振機の製造コストが上昇する。
As a technique corresponding to the above (A), electromagnetic stirring is known. However, in continuous casting operations, operating conditions such as casting speed and molten metal superheat are likely to fluctuate, so the stirring intensity of the molten metal by electromagnetic stirring also changes. When the stirring strength is excessively strong, negative segregation of components (so-called white band) occurs, and the material properties of the slab are locally degraded.
As a technique corresponding to the above (B), ultrasonic vibration is known. However, a large-scale oscillator is required to apply ultrasonic vibration to a heavy object such as a continuously cast slab. Moreover, considering that the slab is hot, heat resistance must be imparted to the oscillator, which increases the manufacturing cost of the oscillator.

本発明者らは、30kg鋼塊を用いて実験を行ない、電磁攪拌や超音波振動とは全く異なる新たな手段で多数の凝固核を溶湯中に浮遊させる技術を開発した。実験で用いた小型の連続鋳造機の構成は図1と同じである。その実験について以下に説明する。
実験においては、連続鋳造用鋳型1の側面に振動計を取付けて、溶鋼(30kg鋼塊を溶解したもの)を注入する際の振動を測定した。この振動計が測定する振動は連続鋳造用鋳型1の振動であるが、連続鋳造用鋳型1の振動は鋳片が振動していることを示すので、振動計の測定結果に基づいて鋳片の振動を評価することが可能である。連続鋳造用鋳型1の下方の冷却帯には、鋳片の進行方向に沿って複数の温度計を設置して、鋳片の表面温度を測定した。
The present inventors conducted experiments using a 30 kg steel ingot and developed a technique for floating a large number of solidification nuclei in the molten metal by a new means completely different from electromagnetic stirring and ultrasonic vibration. The configuration of the small continuous casting machine used in the experiment is the same as in FIG. The experiment will be described below.
In the experiment, a vibration meter was attached to the side surface of the continuous casting mold 1 and vibrations when molten steel (30 kg steel ingot was melted) was measured. The vibration measured by this vibrometer is the vibration of the continuous casting mold 1, but the vibration of the continuous casting mold 1 indicates that the slab is vibrating. It is possible to evaluate vibration. In the cooling zone below the continuous casting mold 1, a plurality of thermometers were installed along the direction of slab travel to measure the surface temperature of the slab.

なお実験では、鋳片の表面温度が400〜800℃となる高圧水噴射領域4のノズル孔における冷却用水の流速を種々変化させて鋳片に吹き付けた。
図2は、鋳片の表面温度と振動加速度の推移を示すグラフである。冷却用水の流速は種々変化させたが、図2ではノズル孔における冷却用水の流速が80m/sec以上と80m/sec未満に分けて示す。ここでは、ノズル孔における流速が80m/sec以上の冷却用水を、従来のスプレイ水(流速80m/sec未満)と区別するために、高圧水と記す。
In the experiment, the flow rate of the cooling water in the nozzle holes in the high-pressure water injection region 4 where the surface temperature of the slab becomes 400 to 800 ° C. was varied and sprayed on the slab.
FIG. 2 is a graph showing the transition of the surface temperature and vibration acceleration of the slab. Although the flow rate of the cooling water was variously changed, in FIG. 2, the flow rate of the cooling water in the nozzle hole is divided into 80 m / sec or more and less than 80 m / sec. Here, the cooling water having a flow velocity of 80 m / sec or more in the nozzle hole is referred to as high-pressure water in order to distinguish it from conventional spray water (flow velocity of less than 80 m / sec).

図2から明らかなように、ノズル孔における流速が80m/sec以上の高圧水を鋳片に吹き付けることによって、連続鋳造用鋳型(すなわち鋳片)鋳片に振動が発生した。
この現象の機構を解明するために、本発明者らはさらに研究を行なった。その結果、図3に示すように冷却用水が鋳片の表面で蒸発することによって発生する水蒸気の挙動が関与していることを見出した。つまり、図3(a)に示すように鋳片の表面から発生する水蒸気がそのまま放散される場合は、振動は生じない。ところが、図3(b)に示すように鋳片の表面から発生する水蒸気が冷却用水の押圧力によって水蒸気が壊滅する場合は、鋳片に振動が生じる。
As is clear from FIG. 2, vibration was generated in the continuous casting mold (ie, slab) slab by spraying high pressure water having a flow velocity in the nozzle hole of 80 m / sec or more onto the slab.
In order to elucidate the mechanism of this phenomenon, the present inventors conducted further studies. As a result, it was found that the behavior of water vapor generated by the evaporation of cooling water on the surface of the slab is involved as shown in FIG. That is, when the water vapor generated from the surface of the slab is directly diffused as shown in FIG. However, as shown in FIG. 3B, when the water vapor generated from the surface of the slab is destroyed by the pressing force of the cooling water, the slab is vibrated.

冷却用水の押圧力は、ノズル孔における冷却用水の流速が大きいほど増加する。一般的な連続鋳造の操業における冷却用水の流速は、上記した通りノズル孔にて80m/sec未満(すなわちスプレイ水)であるから、強い押圧力が得られない。微視的にはノズル孔から噴射されるスプレイ水の水滴(直径100μm程度)が個別に鋳片に衝突する。そのため、水滴の運動エネルギーが分散されることが、押圧力が不足する原因である。   The pressing force of the cooling water increases as the flow rate of the cooling water in the nozzle hole increases. Since the flow rate of cooling water in a general continuous casting operation is less than 80 m / sec (that is, spray water) at the nozzle hole as described above, a strong pressing force cannot be obtained. Microscopically, water droplets (about 100 μm in diameter) sprayed from the nozzle holes individually collide with the slab. Therefore, the dispersion of the kinetic energy of the water droplets is a cause of insufficient pressing force.

これに対して、ノズル孔における流速が80m/sec以上(すなわち高圧水)になると、微細な水滴が連続的に鋳片に衝突するので、発生する水蒸気の成長を抑えることができる。つまり、鋳片の表面から発生する水蒸気を壊滅させるためには、ノズル孔にて80m/sec以上の流速が必要である。
鋳片の表面から発生する水蒸気は急速に膨張しようとするが、高圧水の押圧力によって成長が抑止されて壊滅する。本来、体積が膨張することによって消費される水蒸気のエネルギーは、高圧水によって鋳片の表面近辺に封じ込められ、鋳片を振動させることによって消費される。
On the other hand, when the flow velocity in the nozzle hole is 80 m / sec or more (that is, high-pressure water), fine water droplets continuously collide with the slab, so that the growth of the generated water vapor can be suppressed. That is, in order to destroy the water vapor generated from the surface of the slab, a flow velocity of 80 m / sec or more is required at the nozzle hole.
The water vapor generated from the surface of the slab tries to expand rapidly, but the growth is suppressed and destroyed by the pressing force of the high-pressure water. Originally, the energy of water vapor consumed by the expansion of the volume is confined in the vicinity of the surface of the slab by high-pressure water, and is consumed by vibrating the slab.

ただし鋳片の表面と高圧水を噴射するノズル孔との距離が過剰に広がると、高圧水の微細な水滴が鋳片に到達するまでに時間を要するので、その間に水蒸気が成長する。しかも、水滴が運動エネルレギーを失うので、高圧水の押圧力が減少する。そのため、水蒸気を壊滅することが困難になり、鋳片の振動が発生しない。本発明者らの研究によれば、ノズル孔と鋳片との距離が350mmを超えると、水蒸気を壊滅するのが困難になる。したがって、ノズル孔と鋳片との距離は350mm以内とする必要がある。   However, if the distance between the surface of the slab and the nozzle hole for injecting high-pressure water is excessively wide, it takes time for the fine water droplets to reach the slab, so that water vapor grows during that time. Moreover, since the water drops lose the kinetic energy, the pressing force of the high-pressure water decreases. Therefore, it becomes difficult to destroy water vapor, and vibration of the slab does not occur. According to the study by the present inventors, when the distance between the nozzle hole and the slab exceeds 350 mm, it becomes difficult to destroy the water vapor. Therefore, the distance between the nozzle hole and the slab needs to be within 350 mm.

なお、ノズル孔と鋳片との距離が50mm未満であると、鋳片から放射される輻射熱によってノズル孔が変形し、ノズル孔の径や噴射方向が変化しやすくなる。そのため、ノズル孔と鋳片との距離が50mm以上であることが好ましい。
冷却帯にて高圧水を鋳片に吹き付ける領域は、鋳片の表面温度が400〜800℃となる範囲が、最も顕著な振動が得られる。鋳片の表面温度が800℃を超えると、水蒸気が鋳片の表面に膜を形成し、高圧水で水蒸気を壊滅するのが困難になる。一方、表面温度が400℃未満では水蒸気の発生量が少ないので、水蒸気を壊滅しても鋳片の十分な振動は得られない。
If the distance between the nozzle hole and the slab is less than 50 mm, the nozzle hole is deformed by radiant heat radiated from the slab, and the nozzle hole diameter and the injection direction are likely to change. Therefore, it is preferable that the distance between the nozzle hole and the slab is 50 mm or more.
In the region where high-pressure water is sprayed on the slab in the cooling zone, the most remarkable vibration is obtained when the surface temperature of the slab is 400 to 800 ° C. When the surface temperature of the slab exceeds 800 ° C., the water vapor forms a film on the surface of the slab and it becomes difficult to destroy the water vapor with high-pressure water. On the other hand, when the surface temperature is less than 400 ° C., the amount of water vapor generated is small, so that sufficient vibration of the slab cannot be obtained even if the water vapor is destroyed.

また、高圧水を鋳片に吹き付ける時間は30秒以上とする。高圧水を吹き付ける時間が30秒未満では、鋳片が振動する時間が短いので、十分な数の凝固核を未凝固部に浮遊させることができない。したがって等軸晶の生成を十分に促進できず、柱状晶が生じるのは避けられなくなる。ただし、高圧水の吹き付け時間が300秒を超えると、鋳片の冷却速度が上昇し、凝固部と未凝固部の界面の温度勾配を適正に維持することが困難になる。そのため、高圧水の吹き付け時間は300秒以下とすることが好ましい。   Also, the time for spraying high-pressure water on the slab is 30 seconds or more. If the time for spraying high-pressure water is less than 30 seconds, the slab vibrates for a short time, so that a sufficient number of solidification nuclei cannot be suspended in the unsolidified portion. Therefore, the formation of equiaxed crystals cannot be sufficiently promoted, and it is inevitable that columnar crystals are formed. However, if the high-pressure water spraying time exceeds 300 seconds, the cooling rate of the slab increases and it becomes difficult to properly maintain the temperature gradient at the interface between the solidified part and the unsolidified part. Therefore, the high pressure water spraying time is preferably 300 seconds or less.

さらに、未凝固部の厚みが鋳片厚みの60%以上存在する領域で、未凝固部の電磁攪拌を行なうことが好ましい。その理由は、等軸晶を60%以上生成することを達成するには、未凝固部の厚みが60%以上存在する領域で柱状晶の生成を阻止することが有効であり、そのためには電磁攪拌を行なうことが効果的だからである。
タンディッシュにおける溶湯の過熱度を30℃以下とすると、等軸晶の生成が一層安定して促進されるので好ましい。
Furthermore, it is preferable to perform electromagnetic stirring of the unsolidified portion in a region where the thickness of the unsolidified portion is 60% or more of the slab thickness. The reason for this is that in order to achieve the production of 60% or more equiaxed crystals, it is effective to prevent the formation of columnar crystals in the region where the thickness of the unsolidified part is 60% or more. This is because stirring is effective.
It is preferable to set the superheat degree of the molten metal in the tundish to 30 ° C. or less because the formation of equiaxed crystals is more stably promoted.

2ストランド有するスラブ連続鋳造機を用いて、一般的なSUS430鋼ならびに珪素鋼の鋼スラブ(幅1500mm,厚さ215mm)を鋳造した。片方のストランドでは、鋳片の表面温度が400〜800℃となる高圧水噴射領域(すなわち連続鋳造用鋳型のメニスカスから3〜4mの位置)に高流速型のノズルを取付け、それ以外は通常のノズルを取付けた。この高流速型のノズルは、ノズル孔における流速を80m/sec以上とするものである。他方のストランドには、全て通常のノズルを取付けた。   Using a slab continuous casting machine with two strands, general steel SUS430 steel and silicon steel slab (width 1500 mm, thickness 215 mm) were cast. In one strand, a high flow rate nozzle is attached to a high-pressure water injection region where the surface temperature of the slab is 400 to 800 ° C. (that is, 3 to 4 m from the meniscus of the continuous casting mold). A nozzle was installed. This high flow rate type nozzle has a flow rate in the nozzle hole of 80 m / sec or more. All the other strands were fitted with normal nozzles.

タンディッシュ内の溶鋼過熱度は25〜35℃とし、鋳造速度は1.1m/minに保持した。また、高圧水噴射領域にて高圧水を噴射する時間は50秒とした。その他の条件は表1に示す通りである。   The superheat degree of the molten steel in the tundish was 25 to 35 ° C., and the casting speed was maintained at 1.1 m / min. The time for injecting high-pressure water in the high-pressure water injection region was 50 seconds. Other conditions are as shown in Table 1.

Figure 0004760345
Figure 0004760345

従来例はノズル孔における高圧水の流速が80m/sec以下の例であり、比較例は高圧水の流速が80m/sec以下の例であるが、ノズル孔と鋳片との距離が350mm以上の例であり、発明例は高圧水の流速が80m/sec以下の例であり、かつノズル孔と鋳片との距離が350mm以下の例である。また、電磁攪拌を行なう場合は、メニスカスから3〜4mの位置(すなわち未凝固部の厚みが鋳片厚みの60〜80%存在する領域)にて 750A,2Hzの一定の強度で印加した。   The conventional example is an example in which the flow rate of high-pressure water in the nozzle hole is 80 m / sec or less, and the comparative example is an example in which the flow rate of high-pressure water is 80 m / sec or less, but the distance between the nozzle hole and the slab is 350 mm or more. An example of the invention is an example in which the flow rate of high-pressure water is 80 m / sec or less, and the distance between the nozzle hole and the slab is 350 mm or less. In the case of electromagnetic stirring, it was applied at a constant intensity of 750 A and 2 Hz at a position 3 to 4 m from the meniscus (that is, a region where the thickness of the unsolidified portion is 60 to 80% of the slab thickness).

このようにして得られた鋼スラブから試料を採取し、硝酸を用いてその試料のマクロエッチングを行ない、等軸晶が生成した組織の厚みを測定した。等軸晶組織の厚みが鋼スラブ厚に占める比率(%)を等軸晶率として表1に示す。
さらに得られた鋼スラブを圧延して鋼板とし、深絞り加工を施した後、目視で観察してリジングの有無を調査した。その結果は、リジングが認められなかった鋼板を良(○)とし、軽度のリジングが認められたものを可(△)とし、重度のリジングが認められたものを不可(×)として表1に示す。不可(×)と評価された鋼板は、製品として出荷できないものに相当する。
A sample was collected from the steel slab thus obtained, and the sample was macroetched using nitric acid, and the thickness of the structure in which equiaxed crystals were formed was measured. Table 1 shows the ratio (%) of the thickness of the equiaxed crystal structure to the steel slab thickness as the equiaxed crystal ratio.
Further, the obtained steel slab was rolled into a steel plate, subjected to deep drawing, and then visually observed to investigate the presence or absence of ridging. The results are shown in Table 1 with the steel plate in which ridging was not recognized as good (◯), the one with mild ridging as acceptable (Δ), and the one with severe ridging as impossible (×). Show. A steel plate evaluated as “impossible (×)” corresponds to a product that cannot be shipped as a product.

表1から明らかなように、従来例と比較例では等軸晶率が60%未満であるのに対して、発明例では等軸晶率が60%以上であった。発明例の中でも、電磁攪拌を行なった例や、溶鋼の過熱度を30℃以下とした例では、等軸晶率が75%を超えている。したがって本発明を適用することによって等軸晶の生成が促進されることが確認された。また発明例では、リジングの発生が皆無であった。   As is apparent from Table 1, the equiaxed crystal ratio was less than 60% in the conventional example and the comparative example, whereas the equiaxed crystal ratio was 60% or more in the invention example. Among the examples of the invention, the equiaxed crystal ratio exceeds 75% in an example in which electromagnetic stirring is performed and an example in which the degree of superheat of molten steel is 30 ° C. or less. Therefore, it was confirmed that the formation of equiaxed crystals was promoted by applying the present invention. In the inventive examples, no ridging was generated.

本発明を適用する連続鋳造設備を模式的に示す断面図である。It is sectional drawing which shows typically the continuous casting installation to which this invention is applied. 鋳片の表面温度と振動加速度の推移を示すグラフである。It is a graph which shows transition of the surface temperature and vibration acceleration of a slab. 水蒸気の挙動を模式的に示す断面図である。It is sectional drawing which shows the behavior of water vapor | steam typically.

符号の説明Explanation of symbols

1 連続鋳造用鋳型
2 ピンチロール
3 スプレイ
4 高圧水噴射領域
5 凝固部
6 電磁攪拌装置
7 未凝固部
8 浸漬ノズル
DESCRIPTION OF SYMBOLS 1 Mold for continuous casting 2 Pinch roll 3 Spray 4 High pressure water injection area 5 Solidified part 6 Electromagnetic stirrer 7 Unsolidified part 8 Immersion nozzle

Claims (3)

連続鋳造用鋳型から下方に引き抜かれた鋳片が冷却される冷却帯にて前記鋳片の表面温度が400〜800℃となる領域で、高圧水を噴射するノズル孔と前記鋳片との距離を350mm以内とし、前記高圧水の前記ノズル孔における流速を80m/sec以上として、前記高圧水を前記鋳片に30秒以上吹き付けることを特徴とする連続鋳造方法。   The distance between the nozzle hole for injecting high-pressure water and the slab in a region where the surface temperature of the slab becomes 400 to 800 ° C. in the cooling zone where the slab drawn downward from the continuous casting mold is cooled. The continuous casting method is characterized in that the high-pressure water is sprayed on the slab for 30 seconds or longer, with a flow rate of 80 m / sec or higher in the nozzle hole of the high-pressure water. 前記鋳片の未凝固部の厚みが鋳片厚みの60%以上存在する領域で、未凝固の溶湯に電磁攪拌を行なうことを特徴とする請求項1に記載の連続鋳造方法。   2. The continuous casting method according to claim 1, wherein electromagnetic stirring is performed on the unsolidified molten metal in a region where the thickness of the unsolidified portion of the slab is 60% or more of the slab thickness. 前記連続鋳造用鋳型に鋳込むときの溶湯の過熱度を30℃以下とすることを特徴とする請求項1または2に記載の連続鋳造方法。   The continuous casting method according to claim 1 or 2, wherein the degree of superheat of the molten metal when cast into the continuous casting mold is 30 ° C or less.
JP2005348865A 2005-12-02 2005-12-02 Continuous casting method Active JP4760345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005348865A JP4760345B2 (en) 2005-12-02 2005-12-02 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005348865A JP4760345B2 (en) 2005-12-02 2005-12-02 Continuous casting method

Publications (2)

Publication Number Publication Date
JP2007152378A JP2007152378A (en) 2007-06-21
JP4760345B2 true JP4760345B2 (en) 2011-08-31

Family

ID=38237388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005348865A Active JP4760345B2 (en) 2005-12-02 2005-12-02 Continuous casting method

Country Status (1)

Country Link
JP (1) JP4760345B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104785739A (en) * 2015-04-21 2015-07-22 上海大学 Method and device for grain refinement in secondary cooling area in continuous casting process under steady-state magnetic field condition
CN113798463B (en) * 2021-08-18 2023-08-18 鞍钢股份有限公司 Method for evaluating cooling water distribution of continuous casting blank by utilizing isometric crystal width of continuous casting blank

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177322A (en) * 1992-01-08 1993-07-20 Kawasaki Steel Corp Method for secondary-cooling continuously cast slab
JP2005095967A (en) * 2003-09-26 2005-04-14 Jfe Steel Kk Continuous casting method for steel
JP4352838B2 (en) * 2003-09-26 2009-10-28 Jfeスチール株式会社 Steel continuous casting method

Also Published As

Publication number Publication date
JP2007152378A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP5692451B2 (en) Continuous casting mold and steel continuous casting method
WO1999029452A1 (en) Method and apparatus for casting molten metal, and cast piece
CN110035844A (en) Continuous casting process
JP4760345B2 (en) Continuous casting method
JP2010082638A (en) Method for producing continuously cast slab
JP6372527B2 (en) Manufacturing method of molten metal plating steel strip and continuous molten metal plating equipment
JP4352838B2 (en) Steel continuous casting method
JP6947737B2 (en) Continuous steel casting method
JP6365604B2 (en) Steel continuous casting method
JP4924104B2 (en) Method for producing high Ni content steel slab
JP2008254062A (en) Secondary cooling device for continuous casting machine, and secondary cooling method therefor
WO2013152946A1 (en) A method for producing shot from melt, a device for carrying out same, a device for cooling melt fragments, and a die for producing shot from melt
JP2006255729A (en) Method for cooling cast slab in continuous casting
JP3617473B2 (en) Method for producing hot dip galvanized steel sheet
WO2018056322A1 (en) Continuous steel casting method
EP0387271B1 (en) A method and apparatus for the direct casting of metals to form elongated bodies
JP2007136464A (en) METHOD FOR MANUFACTURING Al-Mg-Si SYSTEM ALUMINUM ALLOY SHEET EXCELLENT IN SURFACE QUALITY
JP4010114B2 (en) Centrifugal casting method
JPH02284744A (en) Method and device for strip casting using dooble plate strip casting means
JP2003103355A (en) Manufacturing method for forging steel ingot
JP2005095967A (en) Continuous casting method for steel
JP2018149602A (en) Method for continuously casting steel
JPH1190598A (en) Method for continuously casting stainless steel
US20220008987A1 (en) System, apparatus, and method for a direct chill casting cooling water spray pattern
JP7283633B2 (en) Steel continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4760345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250