JP4759699B2 - Secondary battery housing for electric vehicles that also serves as a bus bar - Google Patents

Secondary battery housing for electric vehicles that also serves as a bus bar Download PDF

Info

Publication number
JP4759699B2
JP4759699B2 JP2001023913A JP2001023913A JP4759699B2 JP 4759699 B2 JP4759699 B2 JP 4759699B2 JP 2001023913 A JP2001023913 A JP 2001023913A JP 2001023913 A JP2001023913 A JP 2001023913A JP 4759699 B2 JP4759699 B2 JP 4759699B2
Authority
JP
Japan
Prior art keywords
secondary battery
bus bar
temperature
anodized film
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001023913A
Other languages
Japanese (ja)
Other versions
JP2002231203A (en
Inventor
浩 清水
美津男 伊豫田
義嗣 今澤
Original Assignee
浩 清水
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浩 清水 filed Critical 浩 清水
Priority to JP2001023913A priority Critical patent/JP4759699B2/en
Publication of JP2002231203A publication Critical patent/JP2002231203A/en
Application granted granted Critical
Publication of JP4759699B2 publication Critical patent/JP4759699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、電気自動車に搭載する多数の二次電池を載置する筐体に関し、特には二次電池周りのブスバーを兼用した二次電池収納筐体に関する。
【0002】
【従来の技術】
環境問題に配慮して、排ガスの出ない電気自動車が注目されてきている。二次電池を利用した電気自動車では、二次電池の種類によって異なるとはいえ、電池重量が占める割合は一般に非常に大きく、車体重量の軽量化に対する要求が過酷になる。
二次電池は、通常、筐体に複数個収納され、筐体が車体に固定される。二次電池は、筐体内に直列にブスバーを用いて結線され、さらに筐体単位に直列または並列に結線されて、モーターへと出力される。
【0003】
【発明が解決しようとする課題】
従来、ブスバーとしては電気抵抗の小さいものであることが重視されるため、Cuが用いられ、一方、筐体としては強度と絶縁性・熱伝導性・熱放散性が重要視され、両者は別体のものとされてきた。
しかし、筐体とブスバーとを別体のものとするのでは、それだけ重量が嵩み、電気自動車の軽量化の要請に必ずしも十分に応えることはできない。そこで本発明では、この筐体とブスバーとを兼用させることを課題とし、筐体及びブスバーとして必要な基礎的な諸条件を明らかにすることを課題とする。
【0004】
【課題を解決するための手段】
本発明の電気自動車用二次電池収納筐体は、上記の課題を解決するために、硬質陽極酸化皮膜を施した、ブスバーとして兼用するアルミニウム合金製の電気自動車用二次電池収納筐体とする。前記硬質陽極酸化皮膜の厚みが20〜100μmであることが好ましい。
【0005】
【発明の実施の形態】
電気自動車用の仕様としては、例えば、リチウム電池を用いた一例では、放電時起電力4Vのリチウム電池4個単位7組を筐体内に直列に設置し、筐体を3個直列に結線してチャンネルとし、2チャンネルで電気自動車用動力源とするものがある。これによれば、電池の駆動用起電力としては常用300V(放電初期時336V)、通常運転時の駆動用電流は約200〜250A程度、発進・高加速時の最大許容電流1200Aが一応の目安となっている。
【0006】
電気自動車用に用いられる二次電池収納筐体としては、強度と共に、電気絶縁性と、電池からの放電中(走行中)に発生する熱の放散性、さらに、電池からの万一の電解質漏洩に対する、および/または自然腐食に対する耐食性を有する必要があり、ブスバーとして兼用させる観点からは比抵抗の小さいことも必要である。全体として軽量であることも望ましい。
それらの諸条件を兼ね備えた材料として、アルミニウム合金材に陽極酸化皮膜処理を施したものが好適であることを見出し、本発明に至った。
以下、順次説明する。
【0007】
初めに、アルミニウム表面の陽極酸化皮膜厚さと絶縁破壊電圧との関係を調べた。
A1050材に厚みを変えて硫酸系陽極酸化皮膜を施し、未封孔のものと純水30分の封孔処理を施したものの絶縁破壊電圧を測定した。図1に未封孔のものの、また、図2に純水封孔処理したものの測定結果を示す。両図中、実線は表面−表面間の、点線は表面−素地間の絶縁破壊電圧測定結果である。絶縁破壊電圧は500V以上、好ましくは1000V以上必要である。この測定結果から、封孔処理をした陽極酸化皮膜は、通常建材等に適用される5〜10μmでは不足気味で、20μm以上、好ましくは25μm以上、さらに好ましくは50μm程度以上であれば、電気自動車用の二次電池トレーとして用いられ得ることが判る。
【0008】
アルミニウム材の表面に施される陽極酸化皮膜は、絶縁性と耐摩耗性を備えているものとして知られているが、熱放散性については知られていなかった。
A6061材に100×100×10mm板の一面に、▲1▼:硫酸系陽極酸化皮膜(約55μm)に純水封孔30分、▲2▼:吹き付け黒色塗装22.6μm、および▲3▼:無処理の3枚の試料を準備し、室温雰囲気約22.5℃中で、60℃にセットしたホットプレート上に乗せて1分ごとに各試料の表面温度を測定した結果を図3に示す。
【0009】
図3から明らかなように、初期の1〜2分で▲2▼の塗装アルミ板では、塗膜が保温膜として働くために、温度が高くなり、▲1▼の封孔処理アルマイト板では熱放散で温度は低い。そして、いずれの試料も約10分で表面温度はほぼ一定となった。
一定となったときの温度は、▲3▼の無処理板では59.3℃、▲2▼の塗装アルミ板では59.1℃となったのに対して、▲1▼の封孔処理アルマイト板では58.4℃と、約1℃の温度低下を示した。このことから、封孔処理アルマイト板の表面からの熱放散は、無処理のアルミニウム板よりも十分に大きいことが判った。なお、ホットプレートの温度を60℃としたのは、リチウム電池では電池温度が50℃を超えると電池寿命の低下が著しくなる、といわれていることに鑑み、近似する温度での熱放散の評価を試みたものである。
【0010】
次に、電気自動車用二次電池収納筐体を構成する仮想トレーを試作し、電流を流してその表面温度等の変化を調べた。この場合、トレーに二次電池を載置・固定し、トレーは筐体の一壁をなすか、あるいは、筐体の内部に収納される。本発明においては、トレーを含めて筐体と呼ぶ。
試作トレーは、材質6N01の押出型材で、T6処理、硫酸系陽極酸化皮膜50μm厚、Ni酢酸塩封孔(30分)+加圧蒸気封孔のダブル封孔処理を施した、トレー幅175mm(内法171mm)、幅両端の立ち上がり22mm、肉厚2mm、長さ2000mmの試作トレーを、内寸法250×250mmの木製風洞内中央に垂直に設置し、風洞の両端密閉の場合、風洞の両端を開放して自然対流を許容する場合、および風洞内に流速1.16m/sec(風量約0.37m3/sec)の空気を強制対流させた場合について、電流1200A(電流密度約2.94A/mm2)、電流571A(電流密度1.4A/mm2)をそれぞれ流した場合のトレー中央部表面温度を測定した。併せて、いくつかの場合については、同一形状の表面処理をしない試作トレーについても同様に測定した。
【0011】
測定結果を図4に示す。
図4において、A線は電流1200Aで密閉状態の場合、B線は電流1200Aで自然対流状態の場合、C線は電流1200Aで強制対流状態の場合、D線は電流571Aで密閉状態の場合であり、添字の1(A1等)は表面処理(陽極酸化皮膜処理)トレー中央部の温度、添字の2(A2等)は表面未処理トレー中央部の温度である。
【0012】
図4によれば、発進・高加速時の最大許容電流である1200Aを連続して流しても、実質密閉状態においても、3分経過後でトレー中央部の温度は36.3℃、15分経過後で65.7℃(以上A1)、強制冷却を行えば15分経過後でも37℃(C1)であり、その時点で温度上昇はほぼ限界に近付いている。通常運転時に想定される駆動用電流は約200〜250Aであるが、その約倍の電流(571A)を流しても、実質密閉状態において11分経過後でトレー中央部の温度は34.7℃(D1)、15分経過後でも40℃以下であった。
【0013】
図5は、図4の結果から下記の式(1)により熱伝達係数を求め、硬質陽極酸化皮膜の有(実線)・無(破線)による放熱性の差異を表したものである。
Q=h・S(θ−θ0)……(1)
ここで、Q:放熱量(W)、h:熱伝達係数(W/m2・℃)、S:表面積(m2)、θ:安定した後の表面温度(℃)、θ0:周囲温度(℃)である。
陽極酸化皮膜有(50μm)は、皮膜無に比べ、空気の流速が同じとすると、熱伝達係数は50%前後大きくなっている。
例えば、
▲1▼ θ=40℃、θ0=20℃とした場合、
実験条件:Q=300W、S=0.868m2を用いて熱伝達係数を求めると、h=17.2W/m2・℃となる。
表面温度が維持されるに必要な空気の流速は、グラフより皮膜有:0.23m/s、皮膜無:0.69m/sとなり、硬質陽極酸化皮膜を施すことにより、1/3の流速で間に合う。
▲2▼ 流速1m/sの場合
グラフより、熱伝達係数は、皮膜有:27.2W/m2・℃、皮膜無:19.2W/m2・℃となり、硬質陽極酸化皮膜を施すことにより、放熱量が約1.4倍大きくなる。
以上のことから、硬質陽極酸化皮膜を施したアルミニウム合金製トレーの放熱性のよいことが確認された。
【0014】
発進・高加速運転が長時間連続されることはないから、この仮想トレーは、ブスバーとして兼用しても、密閉状態で用いても、電気自動車に搭載されるリチウム電池の電池寿命の低下が懸念される50℃を超えることはないといえる。強制冷却すれば、たとえ発進・高加速運転が長時間連続される場合でも、安全である。
逆に、リチウム電池の放電時の発熱に対して、ヒートシンク様に作用して、リチウム電池の冷却に寄与することが可能であることが判る。
【0015】
【発明の効果】
本発明は、アルミニウム合金製電池収納筐体がブスバーを兼用することにより、ブスバーとしての専用配線による導電が不要となり、重量が軽減でき、コスト的にもプラスとなる上に、筐体を固定するシャーシ(フレーム)がコンパクトにできる。
また、アルミニウム合金製電池収納筐体に硬質陽極酸化皮膜を施すことにより、筐体自体が電気絶縁性を有するために、電池外箱の電気絶縁性を簡略化できるので、電池の放熱性を落とさないで済む。さらに、電池から筐体への接触熱伝導と筐体からの熱放散が図られ得るという利点が得られる。筐体を元々熱伝導性のよいアルミニウム合金製とすれば、陽極酸化皮膜の赤外線領域での良好な放熱特性がプラスされることも判った。
そして、陽極酸化皮膜により、筐体表面の耐食性が向上し、仮に電池からの電解液の漏れが起こっても、それによる腐食や、さらに自然腐食が防止され、トレーを含む筐体自体の耐久性を向上させることができる。
以上、予備的な性能チェックにより、ブスバーを兼用した電気自動車用二次電池収納筐体として、硬質陽極酸化皮膜を施したアルミニウム合金材が有効に利用し得ることが判った。
【図面の簡単な説明】
【図1】 未封孔であるA1050材の陽極酸化皮膜膜厚と絶縁破壊電圧との関係を示すグラフである。
【図2】 純水封孔を施したA1050材の陽極酸化皮膜膜厚と絶縁破壊電圧との関係を示すグラフである。
【図3】 A6061材の表面状態の差異による熱放散性能を比較したグラフである。
【図4】 トレーへの通電による温度変化を示すグラフである。
【図5】 硬質陽極酸化皮膜の有無による放熱性の差異を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a housing for mounting a large number of secondary batteries mounted on an electric vehicle, and more particularly to a secondary battery storage housing that also serves as a bus bar around the secondary battery.
[0002]
[Prior art]
In consideration of environmental problems, electric vehicles that do not emit exhaust gas have attracted attention. In an electric vehicle using a secondary battery, although the proportion of the battery weight is generally very large although it varies depending on the type of the secondary battery, the demand for reducing the weight of the vehicle body becomes severe.
A plurality of secondary batteries are usually housed in a casing, and the casing is fixed to the vehicle body. The secondary battery is connected in series in the housing using a bus bar, further connected in series or in parallel in the housing unit, and output to the motor.
[0003]
[Problems to be solved by the invention]
Conventionally, Cu has been used as a bus bar because it has been emphasized that it has a low electrical resistance. On the other hand, strength, insulation, thermal conductivity, and heat dissipation have been regarded as important for a housing. It has been regarded as a body.
However, if the housing and the bus bar are separated, the weight is increased, and the demand for reducing the weight of the electric vehicle cannot be sufficiently met. In view of this, the present invention has an object to share the housing and the bus bar, and to clarify basic conditions necessary for the housing and the bus bar.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the secondary battery housing case for an electric vehicle of the present invention is a secondary battery housing case for an electric vehicle made of an aluminum alloy, which is also used as a bus bar, to which a hard anodized film is applied. . It is preferable that the thickness of the hard anodized film is 20 to 100 μm.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
As an example of the specification for an electric vehicle, for example, in an example using a lithium battery, seven sets of four lithium batteries each having an electromotive force of 4 V during discharge are installed in series in a casing, and three casings are connected in series. There are two types of power source for electric vehicles. According to this, as a driving electromotive force of the battery, the normal driving voltage is 300V (at the initial stage of discharge 336V), the driving current during normal operation is about 200 to 250A, and the maximum allowable current 1200A at start / high acceleration is a rough guide. It has become.
[0006]
Secondary battery storage housing used for electric vehicles includes strength, electrical insulation, heat dissipation during battery discharge (running), and possible electrolyte leakage from the battery Therefore, it is necessary to have corrosion resistance against natural corrosion and / or natural corrosion, and from the viewpoint of being used as a bus bar, it is also necessary to have low specific resistance. It is also desirable to be lightweight overall.
As a material having these various conditions, it has been found that a material obtained by subjecting an aluminum alloy material to an anodized film treatment is suitable, and the present invention has been achieved.
Hereinafter, description will be made sequentially.
[0007]
First, the relationship between the anodized film thickness on the aluminum surface and the breakdown voltage was examined.
The thickness of the A1050 material was changed to a sulfuric acid-based anodic oxide film, and the dielectric breakdown voltage was measured for the unsealed material and the sealed material for 30 minutes with pure water. FIG. 1 shows the measurement results of the unsealed holes and FIG. 2 of the pure water holes. In both figures, the solid line indicates the measurement result of the breakdown voltage between the surface and the surface, and the dotted line indicates the breakdown voltage between the surface and the substrate. The dielectric breakdown voltage needs to be 500 V or higher, preferably 1000 V or higher. From this measurement result, the anodized film that has been subjected to sealing treatment is generally deficient at 5 to 10 μm, which is usually applied to building materials, etc., and is 20 μm or more, preferably 25 μm or more, and more preferably about 50 μm or more. It can be seen that it can be used as a secondary battery tray.
[0008]
An anodized film applied to the surface of an aluminum material is known as having an insulating property and wear resistance, but has not been known about heat dissipation.
On one side of a 100 × 100 × 10 mm plate on A6061 material, (1): sulfuric acid-based anodized film (about 55 μm) with pure water sealing for 30 minutes, (2): sprayed black paint 22.6 μm, and (3): Three untreated samples were prepared, placed on a hot plate set at 60 ° C. in a room temperature atmosphere of about 22.5 ° C., and the surface temperature of each sample was measured every minute. .
[0009]
As can be seen from FIG. 3, the coating aluminum plate of (2) in the first one to two minutes has a high temperature because the coating film acts as a heat retaining film, and the sealed anodized plate of (1) is heated. The temperature is low due to diffusion. In all samples, the surface temperature became substantially constant in about 10 minutes.
The temperature at a constant temperature was 59.3 ° C. for the untreated plate (3) and 59.1 ° C. for the painted aluminum plate (2), whereas the sealed anodized (1). The plate showed a temperature drop of about 1 ° C., 58.4 ° C. From this, it was found that the heat dissipation from the surface of the sealed anodized plate was sufficiently larger than that of the untreated aluminum plate. In addition, the temperature of the hot plate was set to 60 ° C. In view of the fact that it is said that when the battery temperature exceeds 50 ° C., the life of the battery is remarkably deteriorated. Is an attempt.
[0010]
Next, a virtual tray constituting a secondary battery housing case for an electric vehicle was prototyped, and a change in the surface temperature and the like was examined by passing an electric current. In this case, the secondary battery is placed and fixed on the tray, and the tray forms one wall of the casing or is stored inside the casing. In the present invention, the tray is referred to as a housing.
The prototype tray is an extrusion mold material of material 6N01, T6 treatment, sulfuric acid-based anodized film 50 μm thick, Ni acetate sealing (30 minutes) + pressurized steam sealing double sealing treatment, tray width 175 mm ( (Internal method 171mm), a prototype tray with a rise of 22mm at both ends, a wall thickness of 2mm, and a length of 2000mm is installed vertically in the center of a wooden wind tunnel with internal dimensions of 250x250mm. In the case where the air is allowed to open and natural convection is allowed, and in the case where the air having a flow velocity of 1.16 m / sec (air volume of about 0.37 m 3 / sec) is forced into the wind tunnel, the current is 1200 A (current density is about 2.94 A / mm 2 ) and current 571 A (current density 1.4 A / mm 2 ) were respectively measured, and the surface temperature of the tray center part was measured. In addition, in some cases, the same measurement was performed on prototype trays having no surface treatment of the same shape.
[0011]
The measurement results are shown in FIG.
In FIG. 4, the A line is sealed at a current of 1200 A, the B line is in a natural convection state at a current of 1200 A, the C line is in a forced convection state at a current of 1200 A, and the D line is a sealed state at a current of 571 A. Yes, the subscript 1 (A 1 etc.) is the temperature at the center of the surface treatment (anodized film treatment) tray, and the subscript 2 (A 2 etc.) is the temperature at the center of the untreated surface tray.
[0012]
According to FIG. 4, the temperature at the center of the tray is 36.3 ° C. for 15 minutes after 3 minutes even if 1200 A, which is the maximum allowable current at the time of starting and high acceleration, is continuously flowed or in a substantially sealed state. After the elapse of time, the temperature is 65.7 ° C. (above A 1 ). If forced cooling is performed, the temperature is 37 ° C. (C 1 ) even after 15 minutes, and the temperature rise is approaching the limit at that time. The driving current assumed during normal operation is about 200 to 250 A, but even if a current (571 A) about twice that is passed, the temperature at the center of the tray is 34.7 ° C. after 11 minutes in a substantially sealed state. (D 1 ), which was 40 ° C. or less even after 15 minutes.
[0013]
FIG. 5 shows a heat transfer coefficient obtained by the following formula (1) from the result of FIG. 4 and represents a difference in heat dissipation depending on whether the hard anodized film is present (solid line) or not (broken line).
Q = h · S (θ−θ 0 ) (1)
Where, Q: heat dissipation amount (W), h: heat transfer coefficient (W / m 2 · ° C.), S: surface area (m 2 ), θ: surface temperature after stabilization (° C.), θ 0 : ambient temperature (° C).
With an anodized film (50 μm), the heat transfer coefficient is increased by about 50% when the air flow rate is the same as that without the film.
For example,
(1) When θ = 40 ° C. and θ 0 = 20 ° C.
Experimental conditions: Q = 300 W, when determining the heat transfer coefficient with S = 0.868m 2, a h = 17.2W / m 2 · ℃ .
From the graph, the air flow rate required to maintain the surface temperature is as follows: with coating: 0.23 m / s, without coating: 0.69 m / s. By applying a hard anodized film, the flow rate is 1/3. In time.
▲ 2 ▼ than the graph of velocity 1 m / s, the heat transfer coefficient, film Yes: 27.2W / m 2 · ℃, film No: 19.2W / m 2 · ℃ next, by applying a hard anodic oxide film The heat dissipation amount is about 1.4 times larger.
From the above, it was confirmed that the aluminum alloy tray provided with the hard anodized film had good heat dissipation.
[0014]
Since start-up and high-acceleration operation do not continue for a long time, this virtual tray may be used as a bus bar or in a sealed state, and there is a concern that the battery life of lithium batteries mounted on electric vehicles may be reduced. It can be said that the temperature does not exceed 50 ° C. If forced cooling is performed, it is safe even if the vehicle starts and accelerates for a long time.
Conversely, it can be seen that the heat generated during the discharge of the lithium battery acts like a heat sink and can contribute to cooling of the lithium battery.
[0015]
【The invention's effect】
In the present invention, since the aluminum alloy battery housing case also serves as a bus bar, it is unnecessary to conduct electricity by a dedicated wiring as a bus bar, the weight can be reduced, and the cost can be increased, and the case is fixed. The chassis (frame) can be made compact.
In addition, by applying a hard anodized film to the battery housing made of aluminum alloy, the housing itself has electrical insulation, so that the electrical insulation of the battery outer box can be simplified, thereby reducing the heat dissipation of the battery. You don't have to. Furthermore, there is an advantage that contact heat conduction from the battery to the housing and heat dissipation from the housing can be achieved. It was also found that if the case was originally made of an aluminum alloy with good thermal conductivity, good heat dissipation characteristics in the infrared region of the anodized film were added.
And the anodic oxide film improves the corrosion resistance of the housing surface, and even if electrolyte leakage from the battery occurs, corrosion and further natural corrosion are prevented, and the durability of the housing itself including the tray Can be improved.
As described above, preliminary performance checks revealed that an aluminum alloy material provided with a hard anodized film can be effectively used as a secondary battery housing case for an electric vehicle that also serves as a bus bar.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the anodized film thickness of an A1050 material that is unsealed and the dielectric breakdown voltage.
FIG. 2 is a graph showing the relationship between the anodized film thickness and dielectric breakdown voltage of A1050 material with pure water sealing.
FIG. 3 is a graph comparing the heat dissipation performance due to the difference in the surface state of A6061 material.
FIG. 4 is a graph showing temperature changes due to energization of a tray.
FIG. 5 is a graph showing a difference in heat dissipation with and without a hard anodized film.

Claims (2)

硫酸系あるいは有機酸系電解液による硬質陽極酸化皮膜を施した、ブスバーとして兼用するアルミニウム合金製の電気自動車用二次電池収納筐体。A secondary battery housing case for an electric vehicle made of an aluminum alloy, which is also used as a bus bar, which is provided with a hard anodized film made of sulfuric acid or organic acid electrolyte. 前記硬質陽極酸化皮膜の厚みが20〜100μmである請求項1に記載のアルミニウム合金製の電気自動車用二次電池収納筐体。The secondary battery housing for an electric vehicle made of aluminum alloy according to claim 1, wherein the thickness of the hard anodized film is 20 to 100 µm.
JP2001023913A 2001-01-31 2001-01-31 Secondary battery housing for electric vehicles that also serves as a bus bar Expired - Fee Related JP4759699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001023913A JP4759699B2 (en) 2001-01-31 2001-01-31 Secondary battery housing for electric vehicles that also serves as a bus bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001023913A JP4759699B2 (en) 2001-01-31 2001-01-31 Secondary battery housing for electric vehicles that also serves as a bus bar

Publications (2)

Publication Number Publication Date
JP2002231203A JP2002231203A (en) 2002-08-16
JP4759699B2 true JP4759699B2 (en) 2011-08-31

Family

ID=18889129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001023913A Expired - Fee Related JP4759699B2 (en) 2001-01-31 2001-01-31 Secondary battery housing for electric vehicles that also serves as a bus bar

Country Status (1)

Country Link
JP (1) JP4759699B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125896A1 (en) 2013-02-12 2014-08-21 日本軽金属株式会社 Aluminum conductive member and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002332563A1 (en) * 2001-08-23 2003-03-10 General Motors Corporation Vehicle chassis having systems responsive to non-mechanical control signals
JP4540035B2 (en) * 2003-08-26 2010-09-08 株式会社Gsユアサ Battery and battery manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060868A (en) * 1983-09-12 1985-04-08 株式会社真城商会 Premium ball apparatus of pinball machine
JPH1021891A (en) * 1996-06-27 1998-01-23 Matsushita Electric Ind Co Ltd Mounting mechanism of storage battery
JP3282507B2 (en) * 1996-07-10 2002-05-13 松下電器産業株式会社 Battery pack
JP3744646B2 (en) * 1997-04-16 2006-02-15 日本軽金属株式会社 Electric vehicle battery installation method and installation structure
JP3675261B2 (en) * 1999-11-24 2005-07-27 新神戸電機株式会社 Batteries for electric vehicles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125896A1 (en) 2013-02-12 2014-08-21 日本軽金属株式会社 Aluminum conductive member and method for producing same
JP2014155374A (en) * 2013-02-12 2014-08-25 Nippon Light Metal Co Ltd Aluminum conductive member and manufacturing method of the same
US9828689B2 (en) 2013-02-12 2017-11-28 Nippon Light Metal Company, Ltd. Aluminum conductive member and method for producing same

Also Published As

Publication number Publication date
JP2002231203A (en) 2002-08-16

Similar Documents

Publication Publication Date Title
JP5330810B2 (en) Battery box for storing battery module and railcar equipped with the same
KR100740126B1 (en) Cell barrier for secondary battery module and secondary battery module
KR101526667B1 (en) Device for cooling and heating battery module of vehicle
EP2997622A1 (en) System for packaging and thermal management of battery cells
US20110117410A1 (en) Battery pack and heatsink frame
JP5613630B2 (en) Power storage module
US10615469B2 (en) Capacity recovery method and capacity recovery system for secondary battery
JP2003346924A (en) Cooling system and method for battery pack
WO2016091133A1 (en) Heat management device of electro-heating component
WO1999018626A1 (en) Battery power supply
JP2005349955A (en) Cooling structure for power storage mechanism
CN103325964A (en) Air cooled electric automobile battery thermal-management device containing phase change material
CN1750317A (en) Thermal balance treating method and device for lithium ion power battery group
WO2020252850A1 (en) Power battery pack and vehicle
TWM382596U (en) Battery module
JP4759699B2 (en) Secondary battery housing for electric vehicles that also serves as a bus bar
DK2735042T3 (en) ENERGY STORAGE MODULE
JP2020105943A5 (en) How to cool vehicle heat management systems, heat transport media, and batteries for vehicle travel
WO2013155701A1 (en) Energy storage system preventing self from overheating and method for preventing energy storage system from overheating
JPH10189062A (en) Battery device
WO2017037597A1 (en) Coated substrate and method of fabrication thereof
JP2015130301A (en) Battery cooling device
JP2014203622A (en) Battery cooler
CN110994069B (en) Air-cooled heat dissipation battery pack and vehicle
CN112510285A (en) Heat dissipation method and device for vehicle battery module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees