JP4758566B2 - Buffer for glass substrate and package using the buffer - Google Patents

Buffer for glass substrate and package using the buffer Download PDF

Info

Publication number
JP4758566B2
JP4758566B2 JP2001166086A JP2001166086A JP4758566B2 JP 4758566 B2 JP4758566 B2 JP 4758566B2 JP 2001166086 A JP2001166086 A JP 2001166086A JP 2001166086 A JP2001166086 A JP 2001166086A JP 4758566 B2 JP4758566 B2 JP 4758566B2
Authority
JP
Japan
Prior art keywords
buffer
glass substrate
substrate
shape
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001166086A
Other languages
Japanese (ja)
Other versions
JP2002362641A (en
Inventor
逸男 浜田
敏男 山崎
浩人 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Sydek Corp
Original Assignee
Asahi Kasei Chemicals Corp
Sydek Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp, Sydek Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2001166086A priority Critical patent/JP4758566B2/en
Publication of JP2002362641A publication Critical patent/JP2002362641A/en
Application granted granted Critical
Publication of JP4758566B2 publication Critical patent/JP4758566B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス基体上に半導体装置等電子部品を形成してなるガラス基板を、輸送時の振動等による損傷から保護する搬送用の緩衝体と、該緩衝体を用いて上記ガラス基板を複数枚同時に梱包した包装体に関する。
【0002】
【従来の技術】
近年、電子・電気関連機器、特にパーソナルコンピュータの周辺機器の一つである液晶ディスプレイやプラズマディスプレイ、携帯電話に代表される携帯端末等は、インターネットに代表される情報技術産業の発達と共に生産量が急激な勢いで伸長している機器であり、その梱包や搬送等に用いられる緩衝体関連技術の開発が強く望まれている。中でも、半導体装置等の電子部品を組み込んだガラス基板、例えばカラーフィルタガラス基板やTFTガラス基板(薄膜トランジスタを組み込んだ回路が形成された基板)及び液晶パネル基板等のガラス基板はその厚さが薄く、輸送中に発生する落下衝撃や振動等に弱い上、その構成が非常に微細なため、外部からの影響を受け易く、取り扱いが難しい。とりわけ、加工前のガラス基板や最終製品になる前の半完成品を搬送する場合には、上記電子部品が剥き出しの状態で扱われるため、静電気や塵、埃等の影響をより強く受け、その機能を損なう場合があった。
【0003】
そこで、ガラス基板を損傷することなく安全に搬送するための梱包技術が多々提案されている。
【0004】
その一例として、特開平5−319456号公報に開示された技術が挙げられる。その要点は、断面がL字形を呈し、該L字に沿って内側には基板挿入溝を複数設けた、特定の特性を有するポリオレフィンビーズ発泡体からなる緩衝体である。ガラス基板の梱包に当たっては、複数のガラス基板を所定の間隔をもって平行配置して直方体を形成し、各基板の角部をそれぞれ上記緩衝体の基板挿入溝に挿入し、該基板表面に対して直交する上記直方体の4辺を上記緩衝体により嵌合し、さらに、必要に応じてゴムやテープ等の固定具で固定する。
【0005】
【発明が解決しようとする課題】
しかしながら、緩衝体の外側にゴムやテープ等の固定具をかけて固定した場合、その締結力が該緩衝体の角部に集中するため、L字が開いてその両端部においてはガラス基板が基板挿入溝より外れてしまい、保護機能が十分に働かないという場合があった。
【0006】
さらに、上記緩衝体で梱包された複数枚のガラス基板のうち最も外側の2枚は一方が開放されているために取り扱い作業時に清浄なガラス表面が傷付いたり汚染されるという問題もあり、外側2枚のガラス基板は格外品、いわゆるダミー基板と称して正常品とは区別されている。このダミー基板は、輸送先で二次加工ができず、経済性が極めて悪いと共に二次加工時でのガラス基板取り出し作業においても、製品となる正常品とダミー基板をそれぞれ区別して取り出しの作業や管理を行う必要があり、改善を所望されているのが現状である。
【0007】
また、前記したL字形の緩衝体は、基板挿入溝の溝幅がガラス基板の厚みと同等かもしくは若干狭い幅で形成され、ポリオレフィンビーズ発泡体の特性である圧縮時の弾性回復性の良さを利用して、ガラス基板を固定するものである。そのため、搬送中のガラス基板との振動摩擦による耐発塵性には効果的であるが、本来の目的であるガラス基板の梱包に際しては、ガラス基板との摩擦抵抗が逆効果となって、無理にガラス基板を基板挿入溝にはめ込もうとすると、0.6〜0.8mm程度と極めて薄いガラス基板が容易に撓んで破損し易く、破損を避けるべく慎重に作業を行うと時間が長くかかるという問題を生じている。これはガラス基板の取り出しに際しても同様である。特に最近は省力化の点からガラス基板の自動収納装置や取り出し装置の導入が進んでいるが、上記の問題点からトラブルが発生していて、現実問題として自動化には適しない緩衝体との指摘もある。
【0008】
さらに、ガラス基板を基板挿入溝に挿入する際に、摩擦抵抗力からガラス基板表面に微細な擦り傷が発生するといった問題点も潜在している。
【0009】
この自動化適性は、最近のガラス基板大型化に伴い、益々重要視されつつある実用特性であるが、緩衝体も大型化し、従来の緩衝体では、反り、変形の問題が顕在化してきた。
【0010】
本発明の課題は、上記問題点に鑑み、ガラス基板梱包時に緩衝体のL字の端部におけるガラス基板の溝はずれがなく、搬送中や取り扱い時に振動や落下衝撃等の外力が加わってもガラス基板を安全に保護することができるガラス基板用緩衝体を提供することにあり、さらには、ガラス基板の梱包、取り出しの自動化に適し、ガラス基板と摺擦しても容易に粉塵を発生せず、耐久性に優れた複数回の使用が可能で、しかもダミーガラスを必要とせず、経済的に優れたガラス基板用緩衝体を提供し、該緩衝体を用いて梱包した包装体を提供することにある。
【0011】
【課題を解決するための手段】
本発明の第一は、ポリオレフィン系樹脂発泡粒子の型内成形体からなるガラス基板用緩衝体であって、
断面がガラス基板の角部の形状に従ってL字形を呈し、該L字に沿って内側にはガラス基板の角部を形成する2側端を固定する基板挿入溝を複数本設けた本体と、該本体のL字形をなす両側端にそれぞれ付設された、基板挿入溝に平行で該L字の全長に亘る側壁とを有し、
上記側壁が、該側壁が本体と接する2端辺を構成辺とする矩形の上記L字の角部に相対する角部に直線状或いは外側に凸の円弧状の切り欠きを設けた形状で、その面積が該矩形の面積の80%を超えて99%以下であり、
上記成形体の発泡粒子の平均粒子径が1.5〜5.0mm、融着率が70%以上、圧縮弾性指数が3.9〜490、回復率が60%以上であることを特徴とする。
【0012】
上記緩衝体においては、本体の最大厚さが10〜100mm、本体のL字の2辺の比が短辺基準で1.0〜3.5、側壁の厚さが10〜100mm、基板挿入溝の溝幅がガラス基板の厚みの1.0〜4.0倍、溝深さが3〜15mm、溝ピッチが6〜100mmであることが好ましい。
【0013】
また、本発明の第二は、複数のガラス基板を所定の間隔をもって平行配置して直方体を形成し、各基板の角部をそれぞれ上記本発明のガラス基板用緩衝体の基板挿入溝に挿入して該基板表面に対して直交する上記直方体の4辺を上記緩衝体により嵌合し、該緩衝体の外側に長尺の固定具を捲回して締結し、固定したことを特徴とする包装体である。
【0014】
【発明の実施の形態】
本発明の緩衝体は、ガラス基板の角部を構成する2側端を固定する基板挿入溝を有するL字形の本体の両側端にそれぞれ広い側壁を付設したことに特徴を有する。これにより、本発明の緩衝体を用いた包装体においては、最も外側のガラス基板の表面が側壁によって広く覆われて汚染や損傷が防止されると同時に、本体のL字形状が側壁によって固定され、L字の広がりが防止される。
【0015】
以下、本発明の緩衝体について実施形態を挙げて説明する。
【0016】
図1は、本発明の緩衝体の好ましい一実施形態の斜視図であり、図中、1は当該実施形態の緩衝体、2は本体、3は基板挿入溝、4は側壁、5は固定具案内溝、6は切り欠き部である。
【0017】
本発明の緩衝体の基本構成は、断面がガラス基板の角部の形状に従ってL字形を呈する本体2と、該本体2のL字形をなす両側端に付設された、相対する一対の側壁4とからなる。本体2には、L字に沿って内側にガラス基板の角部を形成する2側端を固定する基板挿入溝3が複数本設けられており、側壁4は該基板挿入溝3に平行に形成される。
【0018】
本発明にかかる側壁4は、本体2のL字の全長に亘って形成され、その形状は、該側壁4が本体2と接する2端辺を構成辺とする矩形において、本体2のL字の角部に相対する角部に切り欠き6を設けた形状である。切り欠き6の形状は、図1に示す直線状の他、外側に凸の円弧状でも良く、側壁4の面積が該矩形の面積の80%を超え、99%以下となるようにその大きさを調整する。
【0019】
図2に、図1の緩衝体を用いてガラス基板を梱包した包装体の斜視図を示す。図中、11はガラス基板、12は固定具である。図2に示すように、本発明の緩衝体1は基本的に4個一組で用い、複数のガラス基板11を所定の間隔をもって平行配置して直方体を形成し、各基板の角部を緩衝体1の基板挿入溝に挿入して該直方体の4辺を該緩衝体1にて嵌合する。その後、緩衝体1の外側に形成した固定具案内溝5に長尺の固定具12を捲回して締結し、固定する。尚、本発明の緩衝体において、固定具案内溝5は必要に応じて形成すればよい。
【0020】
本発明の緩衝体1においては、図1に示したように、L字の全長に亘る広い面積の側壁4を設けたことにより、該L字が側壁4によって固定され、緩衝体自体の剛性が向上していることから、図2の如く梱包した包装体において固定具12の締結力がL字の角部に集中的に作用しても、該L字形状が開くことがなく、L字端部における基板の溝はずれが防止される。
【0021】
また、図2に示したように、最も外側のガラス基板11の表面は広い側壁4によって覆われるため、その汚染や損傷が大幅に抑制される。さらに、側壁4の、L字の角部に相対する対角部には切り欠き6が形成されているため、該対角部において側壁4に反りが発生しにくく、ガラス基板11との接触が抑制されている。
【0022】
本発明の緩衝体は、ポリオレフィン系樹脂発泡粒子の型内成形体である。当該成形体は、ポリオレフィン系樹脂発泡性粒子を金型内に充填した後、加熱、発泡させて発泡粒子を膨張させ、所望の形状に成形したものであり、当該成形に用いる金型は射出成形用金型に比較して複雑な形状でも制作費が1/10以下と廉価であり、複雑な形状の成形体が寸法精度良く容易に効率よく量産できるため、経済的で大量生産に好適である。
【0023】
さらに、ポリオレフィン系樹脂発泡粒子の型内成形体は、ガラス基板との摺擦によっても微小な粉塵の発生が極めて微量であり、該粉塵によるガラス基板の汚染が極めて少ない。また、当該成形体は取り扱い作業や輸送中に外力を受けても変形しにくく、例え変形したとしても回復性に優れ寸法安定性が高い。さらに、かかる緩衝体は繰り返し使用において、使用前にその都度純水で洗浄されるが、当該成形体は吸水量が少なく、乾燥性に優れている。
【0024】
本発明の緩衝体に用いられるポリオレフィン系樹脂とは、架橋型、無架橋型のいずれでも良く、樹脂素材として具体的には、低、中、高密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、メタロセン触媒によるポリエチレン、エチレン−酢酸ビニル共重合樹脂等で代表されるポリエチレン系樹脂や、共重合成分がエチレン、ブテン−1,4−メチルペンテン−1等とプロピレンとのランダム及びブロック共重合樹脂、或いは、上記2種以上が配合された組成物から好ましく選択される。
【0025】
特に本発明に適した樹脂素材としては、樹脂密度が0.927〜0.970g/cm3のポリエチレン、及びプロピレンのランダム共重合樹脂が挙げられる。樹脂密度が0.927g/cm3以上のポリエチレンは、後述する緩衝体の圧縮弾性指数が適当であり、外力が加わったときに変形しにくい。また、特定の圧縮弾性指数を得るために発泡粒子の発泡倍率を小さくする必要がなく、軽量性、経済性の点から好ましい。また、樹脂密度が0.970g/cm3以下であるポリエチレンは、柔軟性が十分であり、耐発塵性、回復性も適当であるため好ましい。さらに、プロピレンのランダム共重合樹脂は、圧縮弾性指数が高く、しかも回復性や繰り返し使用時の耐久性にも優れ、本発明に最も好適に用いられる。
【0026】
本発明の緩衝体を構成する成形体においては、発泡粒子の平均粒子径が1.5〜5.0mm、融着率が70%以上、圧縮弾性指数が3.9〜490、回復率が60%以上である。
【0027】
上記したように発泡粒子の平均粒子径は1.5〜5.0mmであり、好ましくは2.0〜4.5mmである。発泡粒子の平均粒子径が1.5mm〜5.0mmの場合、成形時に基板挿入溝の細かい部分まで発泡粒子を充填させることができ、金型形状、寸法の再現性が良好である。また、発泡粒子1個(体積)当たりの表面積の比率が小さく、型内成形時の水蒸気加熱工程で粒子内のガス圧(空気)逸散性が小さいことから十分な発泡膨張性が発現する。その結果、型内成形体を構成する発泡粒子間に空隙が発生しにくく、該空隙に塵埃が入り込んで緩衝体の清浄性を保てなくなる恐れがないため、好ましい。
【0028】
尚、本発明の緩衝体を構成する発泡粒子の平均粒子径とは、型内成形体の表面に長さが100mmの直線をボールペンにて3本標示し、この直線上に接している発泡粒子の数を計測して、下記式(A)より平均粒子径C〔mm〕を算出する。尚、評価は3本の直線で求めた値の平均値とする。
【0029】
C=(1.626×L)/N …(A)
L:中心線長さ〔mm〕
N:粒子数
【0030】
本発明にかかる成形体の融着率とは、緩衝体の厚さ方向に深さが約1mmの切れ目を入れ、その切れ目を外側にして折り曲げ破断した際の、破断面における厚さ方向の全長と約75mmの長さに亘った面積の全発泡粒子個数に対する粒子破壊(材料破壊)している発泡粒子の個数を百分率で示した数値である。本発明の緩衝体においては、該融着率が70%以上で十分な機械的強度が得られ、固定具による締結の際に該固定具が緩衝体に食い込んで緩衝体を破壊したり、また、緩衝体が欠け易くなるなどの問題が発生しにくくなる。また、発泡粒子間に微小空隙が発生し、毛管現象による吸水性が発現するといった問題も、融着率が70%以上において発生しにくくなるため、好ましい。
【0031】
さらに、成形体の圧縮弾性指数が3.9以上の場合には、外力を受けた際にも緩衝体が変形しにくくなり、耐久性が良好であると同時に、ガラス基板寸法が600mm×700mmを超える大型サイズであっても、ガラス基板の重量による永久歪みが生じにくく、ガラス基板の固定が容易であり、好ましい。また、圧縮弾性指数が490以下の場合には、特に緩衝体の発泡倍率を小さくする必要がなく、軽量性、経済性の点から好ましい。さらに、圧縮弾性指数が490以下の範囲では柔軟性が良好で、耐発塵性に優れると共に落下衝撃等の緩衝性能にも優れるため、好ましい。
【0032】
尚、本発明にかかる圧縮弾性指数とは、圧縮弾性率〔N/cm2〕を発泡倍率で除した値であり、該圧縮弾性率とは、下記発泡倍率を測定した試験片について、JIS K 7220に準拠して求めた値であり、圧縮速度は10mm/分とする。また、試験片厚さが20mm未満の場合には、厚さが約20mmとなるように複数枚重ねて測定する。
【0033】
圧縮倍率の測定方法:緩衝体より、幅50mm、長さ50mm、厚さ20mmの平坦な試験片を切り出し、重量〔g〕を10mgまで測定した後、ノギスで幅、長さ、厚みを測定し、体積〔cm3〕を算出し、次式(B)より発泡倍率E〔cm3/g〕を算出する。
【0034】
E=体積/重量〔cm3/g〕 …(B)
【0035】
また、圧縮弾性指数が3.9〜490の範囲内において、回復率が60%以上であると、ポリオレフィン系樹脂発泡粒子の型内成形体の特徴とされる繰り返し耐久性が良好で、使用頻度が高くなっても変形が小さいため好ましい。尚、回復率とは、緩衝体より、幅50mm、長さ50mm、厚さ20mmの平坦な試験片を切り出し、島津製作所社製の圧縮試験装置「オートグラフAG−5000D」を用いて、10mm/分の圧縮速度で試験片の厚さの50%まで圧縮した後、直ちに同速度で荷重がゼロになるまで取り除き、荷重がゼロになった瞬間の厚さを測定し、次式(C)より回復率R〔%〕を算出する。尚、試験片の厚さが20mm未満の場合には、厚さが約20mmとなるように複数枚重ねて測定する。
【0036】
R=(T1/T0)×100〔%〕 …(C)
0:試験前の試験片の厚さ〔mm〕
1:試験後の試験片の厚さ(荷重がゼロの時)〔mm〕
【0037】
次に、本発明の緩衝体の外形寸法について、図3、図4を参照して詳しく説明する。図3は本発明の緩衝体の実施形態における、本体のL字に直交する方向の部分断面図であり、図4は図1の実施形態の側面図である。図3中、13は隣接する基板挿入溝3を隔てる凸条、22は基板挿入溝3の底部、23は凸条13の頂部であり、図4中、21a、21bは本体2のL字を構成する緩衝板であり、それぞれL字の短辺、長辺を形成している。また、22a、22bは緩衝板21a、21bにそれぞれ形成された基板挿入溝の底部であり、図3の22に相当する。また、23a、23bは図3の23に相当する、隣接する基板挿入溝の間の凸条の頂部である。
【0038】
本発明の緩衝体は、図4に示すように、本体断面が略L字を呈しており、該L字を構成する緩衝板21a、21bの最大厚さ(図3の凸条13における厚さ、t1)、及び、側壁4の厚さは対象とするガラス基板のサイズによるが、好ましくは10〜100mmの範囲から選択され、より好ましくは15〜50mmである。この厚さが上記好ましい範囲内の場合には、緩衝体としての剛性が十分で、反りや変形が発生しにくく、側壁4において十分なL字形状拘束力が得られる。また、上記範囲内では緩衝体の生産性も良く、緩衝体及び包装体の嵩が適当であり、経済性も良好である。尚、基板挿入溝3の底部22a、22bにおける緩衝板21a、21bの厚さとしては、上記した効果を得る上で5mm以上が好ましい。
【0039】
また、本発明の緩衝体において、本体のL字の短辺(tS)及び長辺(tL)の短辺を基準とする比(tL/tS)は、1.0〜3.5が好ましく、さらに好ましくは1.0〜3.3である。該比が上記範囲内であると、長辺と短辺のバランスが良く、矩形のガラス基板の固定安定性が良好で、ガラス基板の撓みによる損傷が発生しにくくなる。
【0040】
また、本発明においては、ガラス基板の汚染と損傷を防止する上で、緩衝体の側壁によってガラス基板表面がなるべく広く覆われていることが好ましく、よって、上記短辺と長辺との範囲内において、梱包時にガラス基板の各側端において、2個の緩衝体が支持する側端の長さが50%以上であることが好ましく、さらに好ましくは70%以上である。緩衝体が支持するガラス基板の側端の長さが50%以上となると、落下衝撃を受けた場合に該支持部に衝撃荷重が集中してもガラス基板が損傷しにくくなる上、ガラス基板表面を広く覆って保護することができ、好ましい。さらに、ガラス基板より緩衝体にかかる応力も低くなり、搬送中の振動による接触摩擦での発塵が低減し、清浄性の面からも望ましい。また、ガラス基板の各側端を支持する2個の緩衝体間には若干の間隙が必要であるため、各側端において2個の緩衝体によって支持される側端の長さは98%以下が好ましい。
【0041】
また、本発明の緩衝体の側壁4としては、ガラス基板を覆って保護するためには広い方が好ましく、また切り欠き6を設ける点を考慮すると、側壁4の面積〔矩形の面積(ta×tb)より切り欠き6で除かれた領域の面積を差し引いた面積〕は、矩形の面積の80%を超え、99%以下である。
【0042】
具体的な外形寸法としては、好ましくは、短辺(tS)が100〜500mm、長辺(tL)が100〜1100mmであり、L字に直交する方向の長さはガラス基板の梱包枚数にもよるが、150〜600mmである。
【0043】
次に、基板挿入溝3について、図3を用いて説明する。本発明の緩衝体において、本体2に設けられた複数の基板挿入溝3の溝幅t3は、梱包するガラス基板の厚みの1.0〜4.0倍が好ましく、より好ましくは1.2〜3.5倍である。当該数値が1.0倍以上であると、手動によるガラス基板の挿入、取り出し時の作業性が良く、自動挿入を行う場合にもガラス基板の破損が発生しにくくなる。また、4.0倍以下では、ガラス基板の挿入、取り出しを自動化しても問題が無いのはもちろん、ガラス基板の搬送中の振動衝撃によるがたつきがなく、ガラス基板の破損が防止され、発塵も少ないので清浄性の面から好ましい。
【0044】
また、基板挿入溝3の溝深さt2は、ガラス基板のサイズ、重量、及び成形体の圧縮弾性指数等を鑑みて、3〜15mmの範囲が好ましい。溝深さが3mm以上であると、ガラス基板が搬送中の振動衝撃や取り扱い時に落下衝撃を受けた際にも、容易に外れて損傷することがないため好ましい。また、緩衝体と接触するガラス基板の側端近傍は、搬送中の振動衝撃による摺擦で微細な擦り傷が発生し易く、該ガラス基板の加工に際しては該領域は切断除去されるが、基板挿入溝3の深さが15mm以下であると、切断除去される領域が小さくてすむので好ましい。また、ガラス基板と緩衝体との摺擦による発塵も少なくなり、清浄性の点からも望ましい。
【0045】
さらに、基板挿入溝3の溝ピッチt4は、ガラス基板の種類(例えば、マザーガラス、カラーフィルターガラス基板等ディスプレイ構成基板)及びそのサイズ、重量、及び成形体の圧縮弾性指数、溝幅等を鑑みて、好ましくは6〜100mmの範囲で選択すればよい。即ち、搬送中の振動衝撃や取り扱い時の落下衝撃を受けた場合に、ガラス基板が撓んで基板同士が接触しないように設定すればよい。
【0046】
本発明の緩衝体に設けた基板挿入溝3の断面形状としては、図3に示すように、溝幅t3が底部と開口部で同じである、即ち隣接する基板挿入溝間の凸条13の断面が矩形である形状(a)としても良いが、ガラス基板の挿入作業性を考慮すると、基板挿入溝3の溝幅を開口部で広げた、即ち凸条13の頂部断面を上に凸の円弧状(b)や台形状(c)とした形状が好ましい。
【0047】
本発明の緩衝体は、先に説明したように4個一組で用い、ガラス基板梱包後に周囲に長尺の固定具を捲回、締結して固定し、包装体とする。ここで用いられる固定具としては、紐状、テープ状等長尺のものであれば良く、例えばポリプロピレン製テープが好ましく用いられる。また、通常はさらに外部から塵埃が侵入しないように、当該包装体を清浄なポリエチレン袋等に収納して密封し、保管、搬送される。
【0048】
また、図2の実施形態においては、同じ緩衝体を4個一組で用いた例を示したが、本発明においてはこれに限らず、ガラス基板の大きさや梱包、取り出し作業性、特に自動装置の場合には取り出し位置決め等を考慮して、異なるサイズの緩衝体を2種類組み合わせて用いても良い。例えば、荷重のかかる底部には大きなサイズの緩衝体を用い、その分、小さいサイズの緩衝体を上部に用いる組み合わせなどが挙げられる。また、ガラス基板の短辺に緩衝体の短辺を必ずしも対応させる必要はなく、ガラス基板の一辺を支持する2個の緩衝体について、一方が短辺で他方が長辺の組み合わせであっても構わない。
【0049】
また、本発明の緩衝体は、ガラス基板の搬送用としての用途の他に、保管用としても用いることができる。具体的には、プラスチック段ボール等の外箱内に、本発明の緩衝体を2個一組で固定し、ガラス基板を挿入する。この場合、ガラス基板上部の緩衝体は用いても、用いなくても良い。また、必要に応じて蓋体を用いて塵埃の侵入を防止する。
【0050】
【実施例】
下記仕様の緩衝体を作製し、ガラス基板を梱包して評価を行った。
【0051】
(実施例1)
〔ガラス基板仕様〕
用途:液晶表示用マザーガラス
寸法:850mm×1000mm
厚さ:0.7mm
【0052】
〔樹脂物性〕
素材:エチレン・プロピレンランダム共重合樹脂
発泡倍率:20cm3/g
平均粒子径:3.6mm
融着率:88%
圧縮弾性率:559N/cm2
圧縮弾性指数:28.0
回復率:88%
【0053】
〔外形寸法〕
ガラス基板収納枚数:12枚
本体
短辺:430mm
長辺:460mm
L字直交方向の長さ:415mm
厚さ:35mm
側壁
形状:図1(直線状切り欠き部)
面積:矩形の85%
厚さ:35mm
基板挿入溝
溝幅:1.5mm
溝深さ:9.5mm
溝ピッチ:25mm
形状:図3(c)、ストレート部の高さ5.0mm、台形状部高さ4.5mm
【0054】
〔評価1〕
上記緩衝体を4個一組として上記ガラス基板12枚を梱包し、固定具としてポリプロピレン製テープを2箇所に捲回、締結し、固定して包装体を得た。この包装体を通常の経路で輸送したところ、緩衝体のL字端部における反りや変形が無く、ガラス基板の梱包作業性が良好で、且つ、L字形状が維持されて包装体におけるガラス基板の溝はずれもなく、安定して輸送することができた。
【0055】
〔評価2〕
さらに、本実施例の緩衝体の緩衝性能を評価するために、上記評価1の包装体を段ボール箱(JIS Z 1506規格のCD−4)にて梱包し、下記の条件により自由落下試験を実施した。
・落下試験条件
落下高さ:30cm
包装体落下面:包装体の地面のみ
落下回数:3回
【0056】
上記条件において3回落下後もガラス基板の脱落が全くなく、試験前の梱包状態を維持しており、ガラス基板の損傷も見られなかった。また、ガラス基板表面を目視で観察したところ、粉塵の付着は全く観察されなかった。
【0057】
〔評価3〕
さらに、本発明の緩衝体のガラス基板固定性能を評価するため、評価1の包装体について、下記の条件で振動試験を実施した。尚、振動試験は該包装体を振動試験装置の加振テーブルに固定し、JIS Z 0232の試験方法に準拠して行った。
・振動試験条件
振動方向:上下
振動波形:正弦波
掃引:対数掃引(周波数:5〜100Hz、掃引速度:0.5オクターブ/分)
振動加速度:±0.75G
振動時間:30分
【0058】
上記振動試験終了後、ガラス基板の梱包固定状態を目視で観察したところ、ガラス基板にわずかに緩みが見られるものの、基板挿入溝から脱落したガラス基板はなく、また、目視において粉塵の付着は全く観察されなかった。
【0059】
(比較例1)
下記仕様の側壁のない本体のみの緩衝体を作製し、ガラス基板を梱包して評価を行った。
【0060】
〔ガラス基板仕様〕
実施例1と同様
【0061】
〔樹脂物性〕
素材:エチレン・プロピレンランダム共重合樹脂
発泡倍率:20cm3/g
平均粒子径:3.6mm
融着率:86%
圧縮弾性率:549N/cm2
圧縮弾性指数:27.5
回復率:87%
【0062】
〔外形寸法〕
ガラス基板収納枚数:12枚
本体
短辺:430mm
長辺:460mm
L字直交方向の長さ:400mm
厚さ:35mm
基板挿入溝
実施例1と同様
【0063】
〔評価〕
上記緩衝体4個を一組として用い、実施例1の評価1と同様にして包装体を得た。得られた包装体を実施例1と同様の経路で輸送したところ、緩衝体のL字端部に反りや変形が多く見られた。また、固定具の締結力によりL字が開いてしまい、L字端部近傍で5枚のガラス基板が基板挿入溝より1〜3mm程度外れていたため、実施例1と同様の評価2、評価3については実施できなかった。
【0064】
(実施例2)
下記物性の樹脂を用いた以外は実施例1と同様にして緩衝体を作製した。
【0065】
〔樹脂物性〕
素材:エチレン・プロピレンランダム共重合樹脂
発泡倍率:7cm3/g
平均粒子径:2.9mm
融着率:78%
圧縮弾性率:2940N/cm2
圧縮弾性指数:420
回復率:78%
【0066】
上記緩衝体を用い、実施例1と同様に包装体を形成して輸送を行った結果、梱包作業性、輸送性共に良好であった。
【0067】
(比較例2)
下記物性の樹脂を用いた以外は実施例1と同様にして緩衝体を作製した。
【0068】
〔樹脂物性〕
素材:エチレン・プロピレンランダム共重合樹脂
発泡倍率:30cm3/g
平均粒子径:4.8mm
融着率:98%
圧縮弾性率:98N/cm2
圧縮弾性指数:3.3
回復率:92%
【0069】
上記緩衝体を用い、実施例1と同様に包装体を形成して輸送を行った結果、固定具の締結力により、該緩衝体が圧縮変形し、ガラス基板に撓みが生じて正常な梱包ができなかった。
【0070】
【発明の効果】
以上説明したように、本発明においては、緩衝体に広い側壁を設けたことにより、剛性が向上し、本体のL字形状拘束力が高い。よって、該緩衝体を用いてガラス基板を梱包した包装体においては、緩衝体の変形が防止され、L字端部におけるガラス基板の溝はずれが無く、ガラス基板を確実に固定して保護すると同時に、ガラス基板と緩衝体との摺擦による粉塵の発生及びガラス基板の損傷が防止される。また、最も外側のガラス基板表面は広く側壁によって覆われて粉塵の付着や損傷が防止されるため、ダミー基板が不要となる。よって、本願発明によれば、ガラス基板の保護効果が高く、梱包、取り外し作業性が良く、該作業の自動化にも適応し、且つ、再利用が可能でダミー基板が不要な緩衝体が提供され、ガラス基板の梱包、保管、輸送における経済効率を大幅に向上させることができる。
【図面の簡単な説明】
【図1】本発明の緩衝体の一実施形態の斜視図である。
【図2】図1の緩衝体を用いた、本発明の包装体の一実施形態の斜視図である。
【図3】本発明の緩衝体の基板挿入溝の形状例を示す部分断面模式図である。
【図4】本発明の緩衝体の外形寸法の説明図である。
【符号の説明】
1 緩衝体
2 本体
3 基板挿入溝
4 側壁
5 固定具案内溝
6 切り欠き
11 ガラス基板
12 固定具
13 凸条
21a、21b 緩衝板
22、22a、22b 基板挿入溝の底部
23、23a、23b 凸条の頂部
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a transfer buffer that protects a glass substrate formed with electronic components such as a semiconductor device on a glass substrate from damage caused by vibrations during transportation, and a plurality of the glass substrates using the buffer. The present invention relates to a package packaged simultaneously.
[0002]
[Prior art]
In recent years, liquid crystal displays and plasma displays, which are one of the peripheral devices for electronic and electrical devices, especially personal computers such as mobile phones, have been produced with the development of the information technology industry represented by the Internet. There is a strong demand for the development of shock absorber-related technologies that are used for packaging and transporting devices that are growing at a rapid pace. Among them, glass substrates incorporating electronic components such as semiconductor devices, for example, color filter glass substrates and TFT glass substrates (substrates on which circuits incorporating thin film transistors are formed) and glass substrates such as liquid crystal panel substrates are thin, In addition to being susceptible to drop impacts and vibrations that occur during transportation, the structure is very fine, and it is easily affected by the outside and difficult to handle. In particular, when transporting a glass substrate before processing or a semi-finished product before becoming a final product, the electronic parts are handled in a bare state, so that they are more affected by static electricity, dust, dust, etc. There was a case where the function was impaired.
[0003]
Therefore, many packaging techniques for safely transporting glass substrates without damaging them have been proposed.
[0004]
As an example, there is a technique disclosed in JP-A-5-319456. The main point is a shock absorber made of a polyolefin bead foam having specific characteristics, in which the cross section has an L shape, and a plurality of substrate insertion grooves are provided on the inner side along the L shape. When packaging the glass substrate, a plurality of glass substrates are arranged in parallel at a predetermined interval to form a rectangular parallelepiped, and the corners of each substrate are inserted into the substrate insertion grooves of the buffer, respectively, and orthogonal to the substrate surface. The four sides of the rectangular parallelepiped are fitted with the buffer body, and further fixed with a fixing tool such as rubber or tape as necessary.
[0005]
[Problems to be solved by the invention]
However, when a fixing tool such as rubber or tape is fixed to the outside of the buffer body, the fastening force concentrates on the corners of the buffer body. In some cases, the protective function does not work sufficiently due to the removal from the insertion groove.
[0006]
Furthermore, since the outermost two of the plurality of glass substrates packed with the buffer body are open, there is also a problem that the clean glass surface is damaged or contaminated during handling operations. The two glass substrates are called non-standard products, so-called dummy substrates, and are distinguished from normal products. This dummy substrate cannot be secondary processed at the transport destination, and is extremely economical. In the glass substrate take-out operation at the time of the secondary process, the normal product and the dummy substrate that are products are distinguished from each other, At present, management is required and improvement is desired.
[0007]
In addition, the L-shaped buffer described above is formed so that the width of the substrate insertion groove is equal to or slightly narrower than the thickness of the glass substrate, and has a good elastic recovery property during compression, which is a characteristic of polyolefin bead foam. It is used to fix the glass substrate. Therefore, it is effective for dust resistance due to vibration friction with the glass substrate being transported, but when packing the glass substrate, which is the original purpose, the frictional resistance with the glass substrate has an adverse effect, which is impossible. When trying to fit the glass substrate into the substrate insertion groove, the extremely thin glass substrate of about 0.6 to 0.8 mm is easily bent and easily damaged, and it takes a long time to work carefully to avoid damage. The problem has arisen. The same applies to the removal of the glass substrate. In recent years, the introduction of glass substrate automatic storage devices and take-out devices has been progressing from the viewpoint of labor saving, but problems have occurred due to the above problems, and it is pointed out that the buffer is not suitable for automation as a real problem. There is also.
[0008]
Furthermore, there is a potential problem that when the glass substrate is inserted into the substrate insertion groove, fine scratches are generated on the glass substrate surface due to the frictional resistance.
[0009]
This aptitude for automation is a practical characteristic that is becoming more and more important with the recent increase in size of glass substrates. However, the size of the buffer has also increased, and the problem of warpage and deformation has become apparent in conventional buffers.
[0010]
In view of the above problems, the problem of the present invention is that the glass substrate groove at the L-shaped end portion of the buffer body does not slip during packaging of the glass substrate, and even if an external force such as vibration or drop impact is applied during handling or handling, the glass It is intended to provide a buffer for glass substrate that can safely protect the substrate. Furthermore, it is suitable for automation of packing and taking out of the glass substrate, and does not easily generate dust even when sliding on the glass substrate. To provide a glass substrate buffer that can be used multiple times with excellent durability, does not require a dummy glass, and is economically excellent, and provides a package that is packed using the buffer. It is in.
[0011]
[Means for Solving the Problems]
The first of the present invention is a buffer for glass substrate comprising an in-mold molded body of polyolefin resin expanded particles,
A main body provided with a plurality of substrate insertion grooves for fixing two side ends forming a corner of the glass substrate on the inner side along the L shape, the cross section having an L shape according to the shape of the corner of the glass substrate, A side wall extending in parallel with the substrate insertion groove and extending over the entire length of the L-shape, which is attached to both ends of the L-shape of the main body,
In the shape where the side wall is provided with an arc-shaped notch that is linear or outwardly convex at a corner opposite to the L-shaped corner of the rectangle having two side edges that contact the main body as a constituent side, The area exceeds 80% of the rectangular area and is 99% or less,
The average particle diameter of the expanded particles of the molded product is 1.5 to 5.0 mm, the fusion rate is 70% or more, the compression elastic index is 3.9 to 490, and the recovery rate is 60% or more. .
[0012]
In the buffer body, the maximum thickness of the main body is 10 to 100 mm, the ratio of the two L-shaped sides of the main body is 1.0 to 3.5 on the short side basis, the thickness of the side wall is 10 to 100 mm, the substrate insertion groove It is preferable that the groove width is 1.0 to 4.0 times the thickness of the glass substrate, the groove depth is 3 to 15 mm, and the groove pitch is 6 to 100 mm.
[0013]
In the second aspect of the present invention, a plurality of glass substrates are arranged in parallel at a predetermined interval to form a rectangular parallelepiped, and the corners of each substrate are inserted into the substrate insertion grooves of the glass substrate buffer according to the present invention. A package body characterized in that four sides of the rectangular parallelepiped perpendicular to the substrate surface are fitted by the buffer body, and a long fixing tool is wound and fastened to the outside of the buffer body to be fixed. It is.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The shock absorber of the present invention is characterized in that wide side walls are attached to both side ends of an L-shaped main body having a substrate insertion groove for fixing two side ends constituting the corners of the glass substrate. Thereby, in the package using the buffer of the present invention, the surface of the outermost glass substrate is widely covered with the side wall to prevent contamination and damage, and at the same time, the L-shape of the main body is fixed by the side wall. , L-shaped spread is prevented.
[0015]
Hereinafter, embodiments of the buffer according to the present invention will be described.
[0016]
FIG. 1 is a perspective view of a preferred embodiment of a shock absorber according to the present invention, in which 1 is a shock absorber of the embodiment, 2 is a main body, 3 is a substrate insertion groove, 4 is a side wall, and 5 is a fixture. Guide grooves 6 are notches.
[0017]
The basic structure of the shock absorber of the present invention includes a main body 2 having a L-shaped cross section according to the shape of the corner of the glass substrate, and a pair of opposing side walls 4 attached to both side ends of the L-shaped main body 2. Consists of. The main body 2 is provided with a plurality of substrate insertion grooves 3 for fixing the two side ends forming the corners of the glass substrate on the inner side along the L shape, and the side walls 4 are formed in parallel to the substrate insertion grooves 3. Is done.
[0018]
The side wall 4 according to the present invention is formed over the entire length of the L-shape of the main body 2, and the shape of the side wall 4 is a rectangle whose two sides are in contact with the main body 2. This is a shape in which a notch 6 is provided at a corner opposite to the corner. The shape of the notch 6 may be a linear arc shape as shown in FIG. 1 or an outwardly convex arc shape, and its size is such that the area of the side wall 4 exceeds 80% and 99% or less of the rectangular area. Adjust.
[0019]
In FIG. 2, the perspective view of the package body which packed the glass substrate using the buffer body of FIG. 1 is shown. In the figure, 11 is a glass substrate and 12 is a fixture. As shown in FIG. 2, the buffer bodies 1 of the present invention are basically used as a set of four, and a plurality of glass substrates 11 are arranged in parallel at a predetermined interval to form a rectangular parallelepiped, and the corners of each substrate are buffered. It is inserted into the board insertion groove of the body 1 and the four sides of the rectangular parallelepiped are fitted by the buffer body 1. Then, the long fixing tool 12 is wound and fastened to the fixing tool guide groove 5 formed on the outside of the buffer body 1 and fixed. In the buffer of the present invention, the fixture guide groove 5 may be formed as necessary.
[0020]
In the shock absorber 1 of the present invention, as shown in FIG. 1, by providing the wide side wall 4 over the entire length of the L shape, the L shape is fixed by the side wall 4, and the rigidity of the shock absorber itself is increased. Because of the improvement, even if the fastening force of the fixing tool 12 acts on the corners of the L-shape in the package packed as shown in FIG. 2, the L-shape does not open and the L-shape ends. The groove of the substrate in the portion is prevented from shifting.
[0021]
Moreover, as shown in FIG. 2, since the surface of the outermost glass substrate 11 is covered with the wide side wall 4, the contamination and damage are significantly suppressed. Furthermore, since the notch 6 is formed in the diagonal part of the side wall 4 opposite to the L-shaped corner, the side wall 4 is unlikely to warp in the diagonal part, and contact with the glass substrate 11 is prevented. It is suppressed.
[0022]
The buffer of the present invention is an in-mold molded product of polyolefin resin expanded particles. The molded body is obtained by filling polyolefin resin foamable particles in a mold and then heating and foaming to expand the foamed particles and molding them into a desired shape. The mold used for the molding is injection molding Production costs are less than 1/10 even with complicated shapes compared to metal molds, and compact shaped products can be easily and efficiently mass-produced with high dimensional accuracy, making them economical and suitable for mass production. .
[0023]
Furthermore, in-mold molded products of polyolefin resin foamed particles generate very small amounts of fine dust even by rubbing against the glass substrate, and the glass substrate is extremely hardly contaminated by the dust. Further, the molded body is not easily deformed even when subjected to an external force during handling work or transportation, and even if deformed, it has excellent recovery and high dimensional stability. Further, such a buffer body is washed with pure water each time before use in repeated use, but the molded body has a small amount of water absorption and is excellent in drying property.
[0024]
The polyolefin resin used in the buffer of the present invention may be either a crosslinked type or a non-crosslinked type. Specific examples of the resin material include low, medium, high density polyethylene, linear low density polyethylene, and linear ultra-high density. Low density polyethylene, polyethylene based on metallocene catalyst, polyethylene resin typified by ethylene-vinyl acetate copolymer resin and the like, and random and block copolymers of ethylene, butene-1,4-methylpentene-1, etc. and propylene It is preferably selected from a copolymer resin or a composition containing two or more of the above.
[0025]
As a resin material particularly suitable for the present invention, the resin density is 0.927 to 0.970 g / cm.ThreeAnd random copolymer resins of polyethylene and propylene. Resin density is 0.927 g / cmThreeThe above-mentioned polyethylene has an appropriate compression elastic index of the buffer described later, and hardly deforms when an external force is applied. Moreover, it is not necessary to reduce the expansion ratio of the expanded particles in order to obtain a specific compression elastic index, which is preferable from the viewpoint of light weight and economy. The resin density is 0.970 g / cm.ThreeThe following polyethylene is preferable because it has sufficient flexibility, and dust resistance and recoverability are also appropriate. Furthermore, a random copolymer resin of propylene has a high compression elastic index, and is excellent in recoverability and durability during repeated use, and is most preferably used in the present invention.
[0026]
In the molded body constituting the buffer of the present invention, the average particle diameter of the expanded particles is 1.5 to 5.0 mm, the fusion rate is 70% or more, the compression elastic index is 3.9 to 490, and the recovery rate is 60. % Or more.
[0027]
As described above, the average particle diameter of the expanded particles is 1.5 to 5.0 mm, preferably 2.0 to 4.5 mm. When the average particle diameter of the expanded particles is 1.5 mm to 5.0 mm, the expanded particles can be filled up to a fine portion of the substrate insertion groove at the time of molding, and the mold shape and dimensional reproducibility are good. Further, since the ratio of the surface area per one (volume) of the foamed particles is small and the gas pressure (air) dissipating property in the particles is small in the steam heating process at the time of molding in the mold, sufficient foam expansion is exhibited. As a result, it is preferable because voids are unlikely to occur between the foamed particles constituting the in-mold molded body, and there is no possibility that dust will enter the voids and the cleanliness of the buffer body cannot be maintained.
[0028]
The average particle diameter of the expanded particles constituting the buffer of the present invention is the expanded particles in contact with the straight line having a length of 100 mm indicated by a ballpoint pen on the surface of the in-mold molded body. The average particle diameter C [mm] is calculated from the following formula (A). The evaluation is the average value of the values obtained from the three straight lines.
[0029]
C = (1.626 × L) / N (A)
L: Center line length [mm]
N: Number of particles
[0030]
The fusion rate of the molded body according to the present invention is the total length in the thickness direction in the fractured surface when a cut having a depth of about 1 mm is made in the thickness direction of the buffer and the cut is bent outward. And the number of foamed particles that have undergone particle destruction (material destruction) with respect to the total number of foamed particles having an area over a length of about 75 mm. In the shock absorber of the present invention, sufficient mechanical strength is obtained when the fusion rate is 70% or more, and when the fastener is fastened, the fastener bites into the shock absorber and destroys the shock absorber. Problems such as the buffer body being easily lost are less likely to occur. In addition, the problem that minute voids are generated between the foamed particles and water absorption due to capillary action is exhibited is preferable because it hardly occurs when the fusion rate is 70% or more.
[0031]
Further, when the compression elastic index of the molded body is 3.9 or more, the buffer body is not easily deformed even when an external force is applied, the durability is good, and the glass substrate size is 600 mm × 700 mm. Even if the size is larger, permanent deformation due to the weight of the glass substrate is less likely to occur, and the glass substrate can be easily fixed. Further, when the compression elastic index is 490 or less, it is not particularly necessary to reduce the foaming ratio of the buffer body, which is preferable from the viewpoint of light weight and economy. Furthermore, when the compression elastic index is in the range of 490 or less, the flexibility is good, the dust resistance is excellent, and the shock absorbing performance such as a drop impact is also excellent.
[0032]
The compression elastic index according to the present invention is the compression elastic modulus [N / cm.2] Is divided by the expansion ratio, and the compression elastic modulus is a value obtained in accordance with JIS K 7220 for the test piece measured for the following expansion ratio, and the compression speed is 10 mm / min. In addition, when the thickness of the test piece is less than 20 mm, a plurality of pieces are measured so that the thickness is about 20 mm.
[0033]
Measurement method of compression ratio: A flat test piece having a width of 50 mm, a length of 50 mm and a thickness of 20 mm was cut out from the buffer, and after measuring the weight [g] to 10 mg, the width, length and thickness were measured with a caliper. , Volume [cmThree] And the expansion ratio E [cm] from the following formula (B)Three/ G] is calculated.
[0034]
E = volume / weight [cmThree/ G] (B)
[0035]
Further, when the compression elastic index is in the range of 3.9 to 490 and the recovery rate is 60% or more, the repeated durability, which is a feature of the in-mold molded product of polyolefin resin expanded particles, is good, and the frequency of use Even if it becomes high, since deformation is small, it is preferable. The recovery rate means that a flat test piece having a width of 50 mm, a length of 50 mm, and a thickness of 20 mm is cut out from the buffer, and the compression test apparatus “Autograph AG-5000D” manufactured by Shimadzu Corporation is used to obtain 10 mm / After compressing to 50% of the thickness of the test piece at a compression speed of 1 minute, immediately remove until the load becomes zero at the same speed, measure the thickness at the moment when the load becomes zero, and from the following formula (C) The recovery rate R [%] is calculated. In addition, when the thickness of the test piece is less than 20 mm, a plurality of sheets are measured so as to have a thickness of about 20 mm.
[0036]
R = (T1/ T0) X 100 [%] (C)
T0: Thickness of specimen before test [mm]
T1: Thickness of test specimen after test (when load is zero) [mm]
[0037]
Next, the external dimensions of the buffer of the present invention will be described in detail with reference to FIGS. FIG. 3 is a partial cross-sectional view in the direction orthogonal to the L-shape of the main body in the embodiment of the shock absorber of the present invention, and FIG. 4 is a side view of the embodiment of FIG. 3, 13 is a ridge that separates adjacent substrate insertion grooves 3, 22 is a bottom portion of the substrate insertion groove 3, and 23 is a top portion of the ridge 13. In FIG. 4, 21 a and 21 b are L-shapes of the main body 2. It is a buffer plate to constitute, and forms an L-shaped short side and a long side, respectively. Reference numerals 22a and 22b denote bottom portions of substrate insertion grooves formed in the buffer plates 21a and 21b, respectively, corresponding to 22 in FIG. Reference numerals 23a and 23b denote the tops of the ridges between adjacent substrate insertion grooves corresponding to 23 in FIG.
[0038]
As shown in FIG. 4, the shock absorber of the present invention has a substantially L-shaped cross section, and the maximum thickness of the shock absorbing plates 21a and 21b constituting the L shape (thickness in the ridge 13 of FIG. 3). , T1) And the thickness of the side wall 4 depends on the size of the target glass substrate, but is preferably selected from the range of 10 to 100 mm, and more preferably 15 to 50 mm. When this thickness is within the above preferred range, the cushioning body has sufficient rigidity, hardly warps or deforms, and a sufficient L-shaped restraining force can be obtained at the side wall 4. Within the above range, the productivity of the buffer is good, the bulk of the buffer and the package is appropriate, and the economy is good. The thickness of the buffer plates 21a and 21b at the bottom portions 22a and 22b of the substrate insertion groove 3 is preferably 5 mm or more in order to obtain the above-described effects.
[0039]
Further, in the shock absorber of the present invention, the L side of the main body (tS) And long side (tL) Ratio relative to the short side (tL/ TS) Is preferably 1.0 to 3.5, and more preferably 1.0 to 3.3. When the ratio is within the above range, the balance between the long side and the short side is good, the fixing stability of the rectangular glass substrate is good, and damage due to the bending of the glass substrate is less likely to occur.
[0040]
Further, in the present invention, in order to prevent contamination and damage of the glass substrate, it is preferable that the glass substrate surface is covered as wide as possible by the side wall of the buffer, and therefore, within the range of the short side and the long side. In each case, the length of the side ends supported by the two shock absorbers at each side end of the glass substrate during packaging is preferably 50% or more, and more preferably 70% or more. When the length of the side edge of the glass substrate supported by the buffer is 50% or more, the glass substrate is less likely to be damaged even if an impact load is concentrated on the support portion when receiving a drop impact. Can be widely covered and protected, which is preferable. Furthermore, the stress applied to the buffer body is lower than that of the glass substrate, and dust generation due to contact friction due to vibration during conveyance is reduced, which is desirable from the viewpoint of cleanliness. In addition, since a slight gap is required between the two buffer bodies supporting each side end of the glass substrate, the length of the side ends supported by the two buffer bodies at each side end is 98% or less. Is preferred.
[0041]
Further, the side wall 4 of the buffer body of the present invention is preferably wide in order to cover and protect the glass substrate, and considering the provision of the notch 6, the area of the side wall 4 [rectangular area (taXtbThe area obtained by subtracting the area of the region removed by the notch 6) is more than 80% and 99% or less of the rectangular area.
[0042]
As a specific external dimension, preferably, the short side (tS) Is 100-500 mm, long side (tL) Is 100 to 1100 mm, and the length in the direction orthogonal to the L-shape is 150 to 600 mm, although it depends on the number of packed glass substrates.
[0043]
Next, the substrate insertion groove 3 will be described with reference to FIG. In the buffer of the present invention, the groove width t of the plurality of substrate insertion grooves 3 provided in the main body 2ThreeIs preferably 1.0 to 4.0 times the thickness of the glass substrate to be packed, more preferably 1.2 to 3.5 times. When the numerical value is 1.0 times or more, workability at the time of manual insertion and removal of the glass substrate is good, and even when automatic insertion is performed, the glass substrate is hardly damaged. In addition, at 4.0 times or less, there is no problem even if the insertion and removal of the glass substrate are automated, there is no rattling due to vibration shock during the transportation of the glass substrate, and the glass substrate is prevented from being damaged, It is preferable in terms of cleanliness because it generates less dust.
[0044]
Further, the groove depth t of the substrate insertion groove 32Is preferably in the range of 3 to 15 mm in view of the size and weight of the glass substrate, the compression elastic index of the molded body, and the like. The groove depth of 3 mm or more is preferable because the glass substrate is not easily detached and damaged even when it receives a vibration impact during transportation or a drop impact during handling. Also, near the side edge of the glass substrate in contact with the buffer, fine scratches are likely to occur due to rubbing due to vibration shock during transportation, and the region is cut and removed during processing of the glass substrate. It is preferable that the depth of the groove 3 is 15 mm or less because a region to be cut and removed is small. Further, dust generation due to rubbing between the glass substrate and the buffer body is reduced, which is desirable from the viewpoint of cleanliness.
[0045]
Further, the groove pitch t of the substrate insertion groove 3FourIs preferably in the range of 6 to 100 mm in view of the type of glass substrate (for example, display constituent substrate such as mother glass and color filter glass substrate) and its size and weight, and the compression elastic index and groove width of the molded body. Just choose. In other words, it may be set so that the glass substrates are bent and the substrates do not come into contact with each other when subjected to vibration impact during conveyance or drop impact during handling.
[0046]
As shown in FIG. 3, the cross-sectional shape of the substrate insertion groove 3 provided in the buffer according to the present invention is a groove width t.ThreeMay be the same as the bottom and the opening, that is, the shape (a) in which the cross section of the ridge 13 between adjacent substrate insertion grooves is rectangular may be used. That is, the groove width is preferably widened at the opening, that is, the top cross section of the ridge 13 is upwardly convex arcuate (b) or trapezoidal (c).
[0047]
As described above, the cushioning body of the present invention is used as a set of four, and after packaging the glass substrate, a long fixing tool is wound and fastened around the periphery to form a package. As a fixture used here, what is necessary is just long things, such as string form and tape form, for example, a polypropylene tape is used preferably. Further, normally, the package is housed in a clean polyethylene bag or the like, sealed, stored and transported so that dust does not enter from the outside.
[0048]
In the embodiment of FIG. 2, an example in which the same buffer body is used as a set of four is shown. However, the present invention is not limited to this, and the size, packing, and workability of the glass substrate, particularly an automatic device, are not limited thereto. In this case, two types of buffer bodies having different sizes may be used in combination in consideration of taking out positioning and the like. For example, there is a combination in which a large size buffer is used for the bottom where the load is applied, and a small size buffer is used for the upper part. Moreover, it is not always necessary to make the short side of the buffer correspond to the short side of the glass substrate. For two buffer members that support one side of the glass substrate, one is a combination of the short side and the other is the long side. I do not care.
[0049]
Moreover, the buffer body of this invention can be used also for storage besides the use for conveyance of a glass substrate. Specifically, two buffer bodies of the present invention are fixed in pairs in an outer box such as plastic cardboard and a glass substrate is inserted. In this case, the buffer above the glass substrate may or may not be used. Moreover, the intrusion of dust is prevented using a lid as necessary.
[0050]
【Example】
The buffer body of the following specification was produced and the glass substrate was packed and evaluated.
[0051]
Example 1
[Glass substrate specifications]
Application: Mother glass for liquid crystal display
Dimensions: 850mm x 1000mm
Thickness: 0.7mm
[0052]
[Resin physical properties]
Material: Ethylene / propylene random copolymer resin
Foaming ratio: 20cmThree/ G
Average particle size: 3.6 mm
Fusion rate: 88%
Compression elastic modulus: 559 N / cm2
Compression elastic index: 28.0
Recovery rate: 88%
[0053]
〔External dimensions〕
Number of glass substrates: 12
Body
Short side: 430mm
Long side: 460mm
Length in L-shaped orthogonal direction: 415mm
Thickness: 35mm
Side wall
Shape: Fig. 1 (Linear cutout)
Area: 85% of rectangle
Thickness: 35mm
PCB insertion groove
Groove width: 1.5mm
Groove depth: 9.5 mm
Groove pitch: 25mm
Shape: FIG. 3C, straight part height 5.0 mm, trapezoidal part height 4.5 mm
[0054]
[Evaluation 1]
The above-mentioned buffer bodies were packaged as a set of four, and the above-mentioned 12 glass substrates were packed, and a polypropylene tape was wound and fastened at two locations as a fixture to obtain a package. When this package is transported by a normal route, there is no warping or deformation at the L-shaped end of the buffer, the glass substrate has good packaging workability, and the L-shaped is maintained, and the glass substrate in the package There was no slip of the groove, and it was possible to transport stably.
[0055]
[Evaluation 2]
Furthermore, in order to evaluate the buffer performance of the buffer body of the present example, the package body of the above evaluation 1 is packed in a cardboard box (CD-4 of JIS Z 1506 standard), and a free drop test is performed under the following conditions. did.
・ Drop test conditions
Drop height: 30cm
Package drop surface: Only the ground of the package
Number of drops: 3 times
[0056]
Under the above conditions, the glass substrate was not dropped even after being dropped three times, the packaging state before the test was maintained, and the glass substrate was not damaged. Moreover, when the glass substrate surface was observed visually, adhesion of dust was not observed at all.
[0057]
[Evaluation 3]
Furthermore, in order to evaluate the glass substrate fixing performance of the buffer of the present invention, a vibration test was performed on the packaging body of Evaluation 1 under the following conditions. The vibration test was carried out in accordance with the test method of JIS Z 0232 by fixing the package to a vibration table of a vibration test apparatus.
・ Vibration test conditions
Vibration direction: Up and down
Vibration waveform: sine wave
Sweep: logarithmic sweep (frequency: 5 to 100 Hz, sweep speed: 0.5 octave / min)
Vibration acceleration: ± 0.75G
Vibration time: 30 minutes
[0058]
After the above vibration test was completed, the glass substrate was fixed in a visually fixed state, and although the glass substrate was slightly loosened, there was no glass substrate dropped out of the substrate insertion groove, and no dust adhered to the visual inspection. Not observed.
[0059]
(Comparative Example 1)
A buffer body having only the main body without the side wall of the following specifications was produced, and the glass substrate was packed for evaluation.
[0060]
[Glass substrate specifications]
Same as Example 1
[0061]
[Resin physical properties]
Material: Ethylene / propylene random copolymer resin
Foaming ratio: 20cmThree/ G
Average particle size: 3.6 mm
Fusion rate: 86%
Compression elastic modulus: 549 N / cm2
Compression elastic index: 27.5
Recovery rate: 87%
[0062]
〔External dimensions〕
Number of glass substrates: 12
Body
Short side: 430mm
Long side: 460mm
Length in L-shaped orthogonal direction: 400mm
Thickness: 35mm
PCB insertion groove
Same as Example 1
[0063]
[Evaluation]
Using the four buffer bodies as a set, a package was obtained in the same manner as in Evaluation 1 of Example 1. When the obtained package was transported by the same route as in Example 1, warping and deformation were often observed at the L-shaped end of the buffer. Further, the L-shape was opened by the fastening force of the fixture, and the five glass substrates were deviated from the substrate insertion groove by about 1 to 3 mm in the vicinity of the L-shape end portion. Could not be implemented.
[0064]
(Example 2)
A buffer was prepared in the same manner as in Example 1 except that a resin having the following physical properties was used.
[0065]
[Resin physical properties]
Material: Ethylene / propylene random copolymer resin
Foaming ratio: 7cmThree/ G
Average particle diameter: 2.9 mm
Fusion rate: 78%
Compression modulus: 2940 N / cm2
Compression elastic index: 420
Recovery rate: 78%
[0066]
As a result of forming and transporting the packaging body in the same manner as in Example 1 using the buffer body, both the packing workability and the transportation performance were good.
[0067]
(Comparative Example 2)
A buffer was prepared in the same manner as in Example 1 except that a resin having the following physical properties was used.
[0068]
[Resin physical properties]
Material: Ethylene / propylene random copolymer resin
Foaming ratio: 30cmThree/ G
Average particle diameter: 4.8 mm
Fusion rate: 98%
Compression modulus: 98 N / cm2
Compression elastic index: 3.3
Recovery rate: 92%
[0069]
As a result of forming and transporting the package in the same manner as in Example 1 using the buffer, the buffer is compressed and deformed by the fastening force of the fixture, and the glass substrate is bent and a normal package is obtained. could not.
[0070]
【The invention's effect】
As described above, in the present invention, by providing a wide side wall in the shock absorber, the rigidity is improved and the L-shaped restraining force of the main body is high. Therefore, in the package body in which the glass substrate is packed using the buffer body, the deformation of the buffer body is prevented, the groove of the glass substrate at the L-shaped end portion is not displaced, and the glass substrate is securely fixed and protected at the same time. The generation of dust and the damage of the glass substrate due to the friction between the glass substrate and the buffer are prevented. In addition, since the outermost glass substrate surface is widely covered with side walls to prevent dust adhesion and damage, a dummy substrate becomes unnecessary. Therefore, according to the present invention, there is provided a buffer body that has a high protective effect on the glass substrate, has good packing and removal workability, is adaptable to automation of the work, can be reused, and does not require a dummy substrate. Economic efficiency in packaging, storage and transportation of glass substrates can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a perspective view of an embodiment of a shock absorber according to the present invention.
FIG. 2 is a perspective view of an embodiment of the packaging body of the present invention using the buffer body of FIG.
FIG. 3 is a partial cross-sectional schematic diagram showing an example of the shape of a substrate insertion groove of the buffer according to the present invention.
FIG. 4 is an explanatory diagram of the external dimensions of the buffer according to the present invention.
[Explanation of symbols]
1 buffer
2 body
3 Substrate insertion groove
4 Side walls
5 Fixture guide groove
6 Notches
11 Glass substrate
12 Fixture
13 ridges
21a, 21b Buffer plate
22, 22a, 22b Bottom of substrate insertion groove
23, 23a, 23b Top of ridge

Claims (3)

ポリオレフィン系樹脂発泡粒子の型内成形体からなるガラス基板用緩衝体であって、
断面がガラス基板の角部の形状に従ってL字形を呈し、該L字に沿って内側にはガラス基板の角部を形成する2側端を固定する基板挿入溝を複数本設けた本体と、該本体のL字形をなす両側端にそれぞれ付設された、基板挿入溝に平行で該L字の全長に亘る側壁とを有し、
上記側壁が、該側壁が本体と接する2端辺を構成辺とする矩形の上記L字の角部に相対する角部に直線状或いは外側に凸の円弧状の切り欠きを設けた形状で、その面積が該矩形の面積の80%を超えて99%以下であり、
上記成形体の発泡粒子の平均粒子径が1.5〜5.0mm、融着率が70%以上、圧縮弾性指数が3.9〜490、回復率が60%以上であることを特徴とするガラス基板用緩衝体。
A buffer for glass substrate comprising an in-mold molded product of polyolefin resin expanded particles,
A main body provided with a plurality of substrate insertion grooves for fixing two side ends forming a corner of the glass substrate on the inner side along the L shape, the cross section having an L shape according to the shape of the corner of the glass substrate, A side wall extending in parallel with the substrate insertion groove and extending over the entire length of the L-shape, which is attached to both ends of the L-shape of the main body,
In the shape where the side wall is provided with an arc-shaped notch that is linear or outwardly convex at a corner opposite to the L-shaped corner of the rectangle having two side edges that contact the main body as a constituent side, The area exceeds 80% of the rectangular area and is 99% or less,
The average particle diameter of the expanded particles of the molded product is 1.5 to 5.0 mm, the fusion rate is 70% or more, the compression elastic index is 3.9 to 490, and the recovery rate is 60% or more. Buffer for glass substrate.
上記緩衝体において、本体の最大厚さが10〜100mm、本体のL字の2辺の比が短辺基準で1.0〜3.5、側壁の厚さが10〜100mm、基板挿入溝の溝幅がガラス基板の厚みの1.0〜4.0倍、溝深さが3〜15mm、溝ピッチが6〜100mmである請求項1に記載のガラス基板用緩衝体。In the above buffer, the maximum thickness of the main body is 10 to 100 mm, the ratio of the two L-shaped sides of the main body is 1.0 to 3.5 on the basis of the short side, the thickness of the side wall is 10 to 100 mm, The buffer for glass substrates according to claim 1, wherein the groove width is 1.0 to 4.0 times the thickness of the glass substrate, the groove depth is 3 to 15 mm, and the groove pitch is 6 to 100 mm. 複数のガラス基板を所定の間隔をもって平行配置して直方体を形成し、各基板の角部をそれぞれ請求項1または2に記載のガラス基板用緩衝体の基板挿入溝に挿入して該基板表面に対して直交する上記直方体の4辺を上記緩衝体により嵌合し、該緩衝体の外側に長尺の固定具を捲回して締結し、固定したことを特徴とする包装体。A plurality of glass substrates are arranged in parallel at predetermined intervals to form a rectangular parallelepiped, and corners of each substrate are inserted into the substrate insertion grooves of the glass substrate buffer according to claim 1 or 2, respectively, on the substrate surface. A packaging body, wherein four sides of the rectangular parallelepiped perpendicular to each other are fitted by the buffer body, and a long fixing tool is wound and fastened to the outside of the buffer body to be fixed.
JP2001166086A 2001-06-01 2001-06-01 Buffer for glass substrate and package using the buffer Expired - Lifetime JP4758566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001166086A JP4758566B2 (en) 2001-06-01 2001-06-01 Buffer for glass substrate and package using the buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001166086A JP4758566B2 (en) 2001-06-01 2001-06-01 Buffer for glass substrate and package using the buffer

Publications (2)

Publication Number Publication Date
JP2002362641A JP2002362641A (en) 2002-12-18
JP4758566B2 true JP4758566B2 (en) 2011-08-31

Family

ID=19008672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001166086A Expired - Lifetime JP4758566B2 (en) 2001-06-01 2001-06-01 Buffer for glass substrate and package using the buffer

Country Status (1)

Country Link
JP (1) JP4758566B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050194279A1 (en) * 2004-03-08 2005-09-08 Coppola Frank T. Method and apparatus for packaging glass substrates
CN100366514C (en) * 2005-01-19 2008-02-06 友达光电股份有限公司 Box drawing structure
KR100830412B1 (en) * 2006-05-30 2008-05-20 한국유리공업주식회사 Cushioning material for glass plates packaging
TWI520892B (en) 2010-11-30 2016-02-11 康寧公司 Packages and methods of packaging glass sheets
CN103482255A (en) * 2013-09-27 2014-01-01 昆山迈致治具科技有限公司 PCB (printed circuit board) placing tray
CN114309650A (en) * 2021-12-28 2022-04-12 南京晨光集团有限责任公司 Method for preparing copper alloy shock absorber based on laser additive manufacturing technology

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL121840A (en) * 1997-09-25 1999-06-20 Eyal Moshe System and method for packing and transporting sheet materials
JP3648049B2 (en) * 1998-04-03 2005-05-18 旭化成ライフ&リビング株式会社 Buffer material and package using the buffer material
JP4149818B2 (en) * 2001-05-31 2008-09-17 旭化成ケミカルズ株式会社 Buffer for glass substrate and package using the buffer

Also Published As

Publication number Publication date
JP2002362641A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
JP4091432B2 (en) Buffer for glass substrate
JP4855569B2 (en) Container for packing glass substrates
CN100406362C (en) Packing of thin glass sheets
JP2910684B2 (en) Wafer container
JP2008030756A (en) Glass substrate conveyance box and glass substrate conveyance package
JP4149818B2 (en) Buffer for glass substrate and package using the buffer
JPH08301354A (en) Plate-form glass part carrying box
US7579072B2 (en) Substrate accommodating tray
JP4758566B2 (en) Buffer for glass substrate and package using the buffer
EP0729902B1 (en) Packaging element placed over an edge of an object for its protection against shocks, and corresponding assembly and method
JP2916836B2 (en) Buffer material for glass substrate and package using the buffer material
JP2009525618A (en) Shock absorbing substrate container
JP5209423B2 (en) Pellicle packing structure
US7753210B2 (en) Damper system for transportation of a container
JPH08192753A (en) Ceramic product package transporting container
JP2002225949A (en) Cushion for glass substrate
KR100830412B1 (en) Cushioning material for glass plates packaging
JP2002193340A (en) Method of packaging glass substrate and glass substrate package made by the method
JP4064696B2 (en) Pad for conveyance of plate-shaped body
TWI225026B (en) Cushioning body for glass substrates and packaged article using the cushioning body
JP2001219972A (en) Cushioning material and package employing said cushioning material
JP2606760Y2 (en) Glass substrate storage tools
JPH10230975A (en) Cushion material and packaged body using the same
JP2562130Y2 (en) Plate-like package
JPH072281U (en) Tool for storing plates

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110603

R150 Certificate of patent or registration of utility model

Ref document number: 4758566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term