JP4757002B2 - Papermaking compacts used in connecting structures for fluid transport pipes - Google Patents

Papermaking compacts used in connecting structures for fluid transport pipes Download PDF

Info

Publication number
JP4757002B2
JP4757002B2 JP2005347338A JP2005347338A JP4757002B2 JP 4757002 B2 JP4757002 B2 JP 4757002B2 JP 2005347338 A JP2005347338 A JP 2005347338A JP 2005347338 A JP2005347338 A JP 2005347338A JP 4757002 B2 JP4757002 B2 JP 4757002B2
Authority
JP
Japan
Prior art keywords
paper
papermaking
pipe
fibers
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005347338A
Other languages
Japanese (ja)
Other versions
JP2007152363A (en
Inventor
徳雄 津浦
匡 楠部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005347338A priority Critical patent/JP4757002B2/en
Publication of JP2007152363A publication Critical patent/JP2007152363A/en
Application granted granted Critical
Publication of JP4757002B2 publication Critical patent/JP4757002B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

本発明は、流体の輸送用管体の連結構造、特に溶湯の輸送用管体の連結に好適な流体輸送用管体の連結構造に関する。   TECHNICAL FIELD The present invention relates to a connecting structure for fluid transport pipes, and more particularly to a fluid transport pipe connecting structure suitable for connecting molten metal transport pipes.

鋳物を製造するときに湯道管等として使用される管状の鋳物製造用部品に関し、出願人は、下記特許文献1に記載の技術を提案している。特許文献1に記載の技術は、有機繊維、無機繊維及びバインダーを含有する紙管用原紙を管状に成形したものであり、従来から使用されている耐火材に比べて軽量で取り扱いやすく、鋳物の鋳込み後の廃棄処理等にも優れている。   The applicant has proposed a technique described in Patent Document 1 below regarding a tubular casting manufacturing part used as a runner pipe or the like when manufacturing a casting. The technology described in Patent Document 1 is a paper tube base paper containing organic fibers, inorganic fibers and a binder, which is formed into a tubular shape. It is lighter and easier to handle than conventional refractory materials. Excellent for later disposal.

特開2004−174605号公報JP 2004-174605 A

ところで、紙管用原紙を管状に成形した前記鋳物製造用部品を連結しようとすると、紙管用原紙が螺旋状に巻回されているため、端部にほぐれやすい部分ができる。このような鋳物製造用部品どうしを嵌合によって連結させて鋳型を構成し、溶湯を注入口から注入すると、連結部分において露呈した端部が溶湯の注入流れにさらされてしまい、該端部がほぐれて流され、鋳造品の品質に影響を及ぼすおそれがあった。   By the way, if it is going to connect the said casting manufacturing components which shape | molded the paper tube base paper in the shape of a tube, since the paper tube base paper is wound spirally, the part which is easy to come loose will be formed in the edge part. When casting parts are connected by fitting to form a mold and molten metal is injected from the injection port, the exposed end portion is exposed to the molten metal injection flow, and the end portion is There was a risk that the quality of the cast product could be affected.

本発明の目的は、流体の輸送に悪影響を及ぼすおそれのない流体輸送用管体の連結構造及びそれに用いる抄造体を提供することにある。   The objective of this invention is providing the connection structure of the pipe body for fluid transport which does not have a bad influence on the transport of a fluid, and the papermaking body used for it.

本発明は、抄造シートが螺旋状に巻回されて管状に成形された巻回層を有する第1の管体と、一体的に成形された第2の管体とがそれらの端部どうしの嵌合によって連結された管体の連結構造であって、第1の管体が第2の管体の端部の外周面を覆うように嵌合されている流体輸送用管体の連結構造を提供することにより、前記目的を達成したものである。   According to the present invention, a first tube body having a wound layer in which a papermaking sheet is spirally wound and formed into a tubular shape, and a second tube body formed integrally with each other are disposed between end portions thereof. A connection structure for tubular bodies connected by fitting, wherein the first tubular body is fitted so as to cover the outer peripheral surface of the end portion of the second tubular body. The object is achieved by providing.

また、本発明は、前記本発明の流体輸送用管体の連結構造における前記第2の管体を構成する抄造体であって、その外周面に嵌合によって摩滅する凸部と、前記第1の管体が嵌合されたときにその端面に当接する係止部とが設けられている抄造成形体を提供するものである。   Further, the present invention is a papermaking body constituting the second tubular body in the fluid transport tubular body connection structure of the present invention, wherein a convex portion worn by fitting on the outer peripheral surface thereof, and the first The papermaking molded object provided with the latching | locking part which contact | abuts the end surface when this pipe body is fitted is provided.

本発明の流体輸送用管体の連結構造及びこれに用いる抄造成形体によれば、輸送物である流体の輸送に悪影響を及ぼすおそれなく管体どうしを連結することができる。ここで流体とは気体、液体だけを指すのではなく、混相状態、例えば気体と固体(粉体、粒状体等)、液体と固体、液体と気体(気泡を含んだ液体等)が混ざった状態をも指す。また、固体のみの輸送も空気等の気体が当該管体に存在している限りは気体と固体の混相状態である。   According to the connecting structure for fluid transport pipes of the present invention and the papermaking compact used therefor, the pipes can be connected without fear of adversely affecting the transport of the fluid that is the transported material. Here, the fluid does not indicate only gas and liquid, but a mixed phase state, for example, a state where gas and solid (powder, granular material, etc.), liquid and solid, liquid and gas (liquid containing bubbles, etc.) are mixed. Also refers to. Moreover, as long as a gas such as air is present in the tubular body, the transportation of only the solid is a mixed phase state of the gas and the solid.

以下本発明を、その好ましい実施形態に基づき説明する。
図1は、本発明の流体輸送用管体の連結構造及びそれに用いる抄造成形体を、鋳物製造における溶湯の輸送管体(湯道管)の連結に適用した一実施形態を示したものである。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
FIG. 1 shows an embodiment in which the connection structure of a fluid transport pipe body according to the present invention and the papermaking molded body used therefor are applied to connection of a transport pipe body (runner pipe) for molten metal in casting production. .

図1に示したように、本実施形態の連結構造10は、抄造シートが螺旋状に巻回されて管状に成形された巻回層を有する湯道管(第1の管体)11、11と、一体的に成形された中継管(第2の管体)12とがそれらの端部どうしの嵌合によって連結されており、湯道管11、11が第2の中継管12の端部の外周面を覆うように嵌合されている。   As shown in FIG. 1, the connection structure 10 of the present embodiment includes runner pipes (first tube bodies) 11 and 11 each having a wound layer in which a papermaking sheet is spirally wound and formed into a tubular shape. And the integrally formed relay pipe (second pipe body) 12 are connected by fitting the end portions thereof, and the runner pipes 11, 11 are connected to the end portions of the second relay pipe 12. Are fitted so as to cover the outer peripheral surface.

湯道管11は、撥水性紙管層111を最外層に有しているとともに、撥水性紙管層111の内側に耐熱性紙管用原紙が巻回された二つの紙管層(巻回層)112A、112Bからなる耐熱性紙管層112を有している。   The runner pipe 11 has a water-repellent paper tube layer 111 as an outermost layer, and two paper tube layers (wound layers) in which a heat-resistant paper tube base paper is wound inside the water-repellent paper tube layer 111. ) It has a heat-resistant paper tube layer 112 made of 112A and 112B.

撥水性紙管層111は、有機繊維を主体として撥水性を有する普通紙又は無機繊維を主体とした機能紙で構成されている。ここで、有機繊維又は無機繊維を主体としてとは、含有している全固形分質量に対して有機繊維又は無機繊維を50%以上含んでいることをいう。   The water-repellent paper tube layer 111 is composed of plain paper mainly composed of organic fibers and functional paper mainly composed of inorganic fibers. Here, “mainly composed of organic fibers or inorganic fibers” means that 50% or more of organic fibers or inorganic fibers are contained with respect to the total solid content.

撥水性紙管層111には、有機繊維又は無機繊維以外に、後述する撥水性を発現させるためのコーティング剤、原紙自体に撥水性を与えるサイズ剤の他、PVA(ポリビニルアルコール)、ポリエチレン、ポリプロピレン、PET(ポリエチレンテレフタレート)等の化学繊維、粉体のバインダー等を1種、又は2種以上を含んでいる。   In addition to organic fibers or inorganic fibers, the water-repellent paper tube layer 111 includes a coating agent for developing water repellency described later, a sizing agent that imparts water repellency to the base paper itself, PVA (polyvinyl alcohol), polyethylene, and polypropylene. 1 type, or 2 or more types of chemical fibers, such as PET (polyethylene terephthalate), powder binder, etc. are included.

撥水性紙管層111を構成する好ましい前記有機繊維としては、パルプ繊維、合成繊維(例えば、ナイロン、ポリエステル繊維等)、再生繊維(例えば、レーヨン、繊維等)等が挙げられる。有機繊維は、単独で又は二種以上を選択して用いることができる。   Preferable organic fibers constituting the water-repellent paper tube layer 111 include pulp fibers, synthetic fibers (for example, nylon and polyester fibers), recycled fibers (for example, rayon and fibers), and the like. The organic fibers can be used alone or in combination of two or more.

撥水性紙管層111を構成する好ましい前記無機繊維としては、カーボン繊維、ガラス繊維、ロックウール等の鉱物繊維、金糸、銀糸、銅糸、スチール繊維等の金属繊維、スラッグファイバー等の鉱滓繊維等が挙げられる。無機繊維は単独で又は二種以上を選択して用いることができる。   The preferred inorganic fibers constituting the water-repellent paper tube layer 111 include carbon fibers, glass fibers, mineral fibers such as rock wool, metal fibers such as gold threads, silver threads, copper threads, steel fibers, and mineral fibers such as slug fibers. Is mentioned. The inorganic fibers can be used alone or in combination of two or more.

撥水性紙管層111は撥水性を有している。この撥水性は、前記撥水剤(コーティング剤、サイズ剤等)に基づいて発現されている。該撥水性は、該鋳物用部品の強度低下防止を考慮すると、吸水率(吸水質量/鋳物用部品の吸水前質量)は50%以下が好ましく、 10%がより好ましい。ここで、撥水性紙管層111の有する吸水率は、例えば、JIS P 8140で示される、「紙及び板紙の吸水度試験方法(コッブ法)」により測定される。ただし、上記の吸水率は試験片と水との接触時間が60秒時の値である。   The water repellent paper tube layer 111 has water repellency. This water repellency is expressed based on the water repellent (coating agent, sizing agent, etc.). The water repellency is preferably 50% or less, more preferably 10%, in consideration of prevention of strength reduction of the casting part, water absorption rate (water absorption mass / mass before water absorption of the casting part). Here, the water absorption rate of the water-repellent paper tube layer 111 is measured by, for example, “paper and paperboard water absorption test method (Cobb method)” shown in JIS P 8140. However, the above water absorption is a value when the contact time between the test piece and water is 60 seconds.

撥水性紙管層111の厚みは、0.01〜2.0mmが適当であるが巻き管を成形するときの成形性、強度を考慮すると、0.03〜1.5mmが好ましく、0.05〜1.0mmがより好ましい。また、ガラス繊維、カーボン繊維等を薄く平らに広げ、バインダーで固めた機能紙では内層からカーボン繊維等の剛直な繊維が孔(繊維間の隙間)を通じて直接人体肌へ痛感等の刺激を与える場合がある。この刺激を防止する為に機能紙の表面から裏面まで貫通する孔がない、もしくは孔がある場合でも孔が直線的に空いていないこと、もしくは繊維が外に出ないよう最大孔径が7μm以下であることが好ましい。カーボン繊維の平均直径が7μmであるからである。また、有機繊維を主体とした普通紙も上述と同様に刺激を防止する為に普通紙の表面から裏面まで貫通する孔がない、もしくは孔がある場合でも孔が直線的に空いていないこと、もしくは繊維が外に出ないよう最大孔径が7μm以下であることが好ましい。特に和紙等の繊維間の隙間が多い普通紙に対しては上述のようにすることがより好ましい。
ここで、普通紙とはJISで規定している紙及び板紙の定義に準じて以下の様に定義する。普通紙とは"有機繊維、植物繊維、その他の繊維をこう着させて製造した紙、又は木材パルプ、古紙等を原料として製造した紙"である。
一方、機能紙とは、ガラス繊維、合成高分子物質、無機材料等を配合等して製造された紙であり、普通紙が有していない性質(耐熱性、高剛性等)を有する紙のことである。
なお、耐水性は上述の撥水剤を抄紙原料に添加すれば普通紙でも発現することができる為、撥水性を有する紙は機能紙だけに制限されるものではない。
The thickness of the water-repellent paper tube layer 111 is suitably 0.01 to 2.0 mm, but considering the moldability and strength when forming a wound tube, 0.03 to 1.5 mm is preferable. -1.0 mm is more preferable. Also, when functional paper is made of glass fiber, carbon fiber, etc. that are spread thinly and hardened with a binder, the rigid fibers such as carbon fiber from the inner layer directly stimulate the human skin through the holes (gap between the fibers). There is. In order to prevent this irritation, there is no hole penetrating from the front surface to the back surface of the functional paper, or even if there is a hole, the hole is not straight, or the maximum hole diameter is 7 μm or less so that the fiber does not come out. Preferably there is. This is because the average diameter of the carbon fibers is 7 μm. In addition, the plain paper mainly composed of organic fibers also has no holes penetrating from the front to the back of the plain paper in order to prevent irritation in the same manner as described above, or even if there is a hole, the hole is not straight. Alternatively, the maximum pore diameter is preferably 7 μm or less so that the fibers do not come out. In particular, the above-described method is more preferable for plain paper having many gaps between fibers such as Japanese paper.
Here, the plain paper is defined as follows in accordance with the definition of paper and paperboard stipulated by JIS. Plain paper is "paper made by attaching organic fibers, vegetable fibers, and other fibers, or paper made from wood pulp, waste paper, etc.".
On the other hand, functional paper is paper made by blending glass fibers, synthetic polymer substances, inorganic materials, etc., and is paper that has properties (heat resistance, high rigidity, etc.) that plain paper does not have. That is.
In addition, since water resistance can be expressed even in plain paper if the above-mentioned water repellent is added to the papermaking raw material, paper having water repellency is not limited to functional paper.

撥水性紙管層111の具体的な例としては、木材パルプ、化学パルプ、砕木パルプ、わらパルプ、古紙等を配合したダンボール原紙、黄板紙、白板紙等の板紙、レーヨン等化学繊維を原料とした化学繊維紙、および一般的な上質紙、印刷用紙、クラフト紙等が考えられるが原紙の価格、入手のし易さを考慮すると、クラフト紙が挙げられる。ここで、クラフト紙とは、JIS P 3401クラフト紙、及びJIS P 3412クラフト伸張紙を含むクラフトパルプを原料とした紙をいう。なお、最外層は価格、入手先の容易さから普通紙を用いていることが好ましいが、撥水性を有する紙なら何でも良い。例えば水中に分散されたガラスウールやカーボン繊維等を抄紙、脱水されたものにバインダーを直接吹きかけて製造したような機能紙でもよい。   Specific examples of the water-repellent paper tube layer 111 include raw materials such as corrugated cardboard, yellow paper, white paperboard, and other chemical fibers, such as wood pulp, chemical pulp, groundwood pulp, straw pulp, and waste paper. Chemical fiber paper, general fine paper, printing paper, kraft paper, and the like are conceivable, but considering the price of the base paper and availability, kraft paper is mentioned. Here, craft paper refers to paper made from kraft pulp including JIS P 3401 kraft paper and JIS P 3412 kraft stretched paper. The outermost layer is preferably plain paper because of its price and availability, but any paper having water repellency may be used. For example, it may be a functional paper produced by making glass wool, carbon fiber or the like dispersed in water into paper, and directly spraying a binder on the dehydrated one.

耐熱性紙管層112の厚みは、湯道管としての強度並びに溶融金属が流れる際の動圧に耐えることを考慮すると0.3mm以上、特に、0.5mm以上が好ましい。   The thickness of the heat-resistant paper tube layer 112 is preferably 0.3 mm or more, particularly 0.5 mm or more in consideration of the strength as a runner tube and the endurance of the dynamic pressure when molten metal flows.

耐熱性紙管層112を構成する紙管層112A、112Bは、無機粉体、無機繊維、有機繊維、熱硬化性樹脂、抄紙用バインダー及び撥水剤を含有している。   The paper tube layers 112A and 112B constituting the heat resistant paper tube layer 112 contain inorganic powder, inorganic fiber, organic fiber, thermosetting resin, papermaking binder and water repellent.

耐熱性紙管層112を構成する紙管層112A、112Bは、前記無機粉体、前記無機繊維、前記有機繊維、前記熱硬化性樹脂、前記抄紙用バインダー及び前記撥水剤の総質量に対し、各成分の配合比(質量比率)は、無機粉体/無機繊維/有機繊維/熱硬化性樹脂(固形分)/抄紙用バインダー(固形分)/撥水剤=0〜70%/1〜60%/1〜40%/1〜40%/1〜10%/0〜5%(質量比率)の範囲が好ましく、40〜70%/1〜10%/1〜25%/1〜25%/1〜10%/0〜5%(質量比率)がより好ましく、50〜70%/1〜8%/1〜20%/10〜25%/3〜7%/0〜1%(質量比率)がさらに好ましい。また、上記各成分の含有質量比率は合計で100%である。無機粉体の配合が斯かる範囲であると、鋳込み時での形状保持性、成形品の表面性が良好となり、また成形後の離型性も好適となる。無機繊維の配合比が斯かる範囲であると、抄紙性、鋳込み時の形状保持性が良好である。有機繊維の配合比が斯かる範囲であると抄紙性が良好で、鋳込み時の燃焼ガス発生量を少なくすることができる為、吹き戻し(溶融した鉄の逆流)を抑えることができる。熱硬化性樹脂の配合比が斯かる範囲であると、鋳型の成形性、鋳込み後の形状保持性、表面平滑性が良好である。抄紙用バインダーが斯かる範囲であると原料中の粉体成分を繊維に付着させ、かつ繊維同士も適度に絡みつき抄紙に最適なフロックを形成することができ、歩留まりも良好である。撥水剤の配合比が斯かる範囲であると、抄紙して作られた原紙から鋳物製造用部品を製造する際に使用する接着剤が原紙にしみ込むのを防ぐことができ、適量の接着剤の使用量で済む。又、鋳物製造用部品を鋳物砂に埋めた時の鋳物砂中の水分が鋳物製造用部品に浸透することを防ぐことができる。なお、耐熱性紙管層の使用環境が乾燥状態であったり、又、前記熱硬化性樹脂の種類やその使用量によっては熱硬化性樹脂が撥水性を発現する場合があり、そのような時には撥水剤を添加しなくても良い。   The paper tube layers 112A and 112B constituting the heat resistant paper tube layer 112 are based on the total mass of the inorganic powder, the inorganic fiber, the organic fiber, the thermosetting resin, the papermaking binder, and the water repellent. The blending ratio (mass ratio) of each component is inorganic powder / inorganic fiber / organic fiber / thermosetting resin (solid content) / papermaking binder (solid content) / water repellent = 0-70% / 1 The range of 60% / 1-40% / 1-40% / 1-10% / 0-5% (mass ratio) is preferable, 40-70% / 1-10% / 1-25% / 1-25% / 1-10% / 0-5% (mass ratio) is more preferable, 50-70% / 1-8% / 1-20% / 10-25% / 3-7% / 0-1% (mass ratio) Is more preferable. Moreover, the content mass ratio of each said component is 100% in total. When the blending of the inorganic powder is within such a range, the shape retention at the time of casting and the surface property of the molded product are good, and the mold release property after molding is also suitable. When the blending ratio of the inorganic fibers is within such a range, papermaking properties and shape retention during casting are good. When the blending ratio of the organic fibers is within such a range, papermaking properties are good, and the amount of combustion gas generated during casting can be reduced, so that blow back (back flow of molten iron) can be suppressed. When the mixing ratio of the thermosetting resin is within such a range, moldability, shape retention after casting, and surface smoothness are good. When the papermaking binder is within such a range, the powder component in the raw material can adhere to the fibers, and the fibers can be appropriately entangled to form an optimum floc for papermaking, and the yield is also good. When the mixing ratio of the water repellent is within such a range, it is possible to prevent the adhesive used when manufacturing a casting manufacturing part from the base paper made by papermaking from entering the base paper, and an appropriate amount of adhesive. Is enough. Further, it is possible to prevent moisture in the foundry sand from penetrating into the foundry manufacturing part when the foundry producing part is buried in the foundry sand. In addition, the usage environment of the heat-resistant paper tube layer is in a dry state, or the thermosetting resin may exhibit water repellency depending on the type and amount of the thermosetting resin. It is not necessary to add a water repellent.

前記無機粉体としては、黒曜石、ムライト、及び板状黒鉛土状黒鉛等の黒鉛等が挙げられる。無機粉体は、これらを単独で又は二種以上を選択して用いることができる。鋳物の炭素量が4.2%以下の場合には浸炭現象(炭素が鋳物に吸収され、脆くなる現象)が発生する。この場合には、鋳物炭化物からの浸炭現象を防止するためにシリカ分を含む無機粉体を使用する必要がある。該無機粉体として黒曜石、ムライト等を用いることが好ましい。また、鋳物の炭素量が4.2%以上の場合には無機粉体を含まなくても良い。   Examples of the inorganic powder include obsidian, mullite, and graphite such as plate-like graphite. These inorganic powders can be used alone or in combination of two or more. When the carbon content of the casting is 4.2% or less, a carburization phenomenon (a phenomenon in which carbon is absorbed into the casting and becomes brittle) occurs. In this case, it is necessary to use an inorganic powder containing silica to prevent the carburization phenomenon from the cast carbide. Obsidian, mullite, etc. are preferably used as the inorganic powder. Further, when the carbon content of the casting is 4.2% or more, the inorganic powder may not be included.

前記無機繊維は、主として前記耐熱性紙管層の骨格をなし、例えば、鋳造時の溶融金属の熱によっても燃焼せずにその形状を維持する。前記無機繊維としては、炭素繊維、ロックウール等の人造鉱物繊維、セラミック繊維、天然鉱物繊維が挙げられ、それらを単独で又は二種以上を選択して用いることができる。これらの中でも、前記熱硬化性樹脂の炭化に伴う収縮を効果的に抑える点から高温でも高強度を有するピッチ系やポリアクリロニトリル(PAN)系の炭素繊維を用いることが好ましく、特にPAN系の炭素繊維が好ましい。   The inorganic fiber mainly forms a skeleton of the heat-resistant paper tube layer, and maintains its shape without being burned by the heat of molten metal at the time of casting, for example. Examples of the inorganic fiber include carbon fiber, artificial mineral fiber such as rock wool, ceramic fiber, and natural mineral fiber, and these can be used alone or in combination of two or more. Among these, it is preferable to use pitch-based or polyacrylonitrile (PAN) -based carbon fibers having high strength even at high temperatures from the viewpoint of effectively suppressing shrinkage due to carbonization of the thermosetting resin, and in particular, PAN-based carbon. Fiber is preferred.

前記無機繊維は、前記耐熱性紙管用紙を抄紙して成形する場合の成形のしやすさ、成形品の厚みの均一等の品質の観点から平均繊維長が0.1〜10mm、特に0.5〜8mmであるものが好ましい。平均繊維長が0.1mm超の場合は抄紙網の目に繊維が通り抜ける確率が低くなるので、白水に繊維が混ざり歩留まりが低くなることを抑えることができる。また、得られた成形品の強度も高くなる。一方、平均繊維長が10mm未満であると、成形品全体が嵩高とならず成形品表面が凸凹になり難く、鋳込み時に溶融金属の良好な流動性が保たれる。   The inorganic fibers have an average fiber length of 0.1 to 10 mm, particularly 0. 10 mm, from the viewpoints of ease of forming when the heat-resistant paper tube paper is made and formed, and quality such as uniform thickness of the molded product. What is 5-8 mm is preferable. When the average fiber length is more than 0.1 mm, the probability that the fibers pass through the eyes of the papermaking net is low, so that it is possible to suppress the mixing of the fibers with the white water and the yield. Further, the strength of the obtained molded product is increased. On the other hand, when the average fiber length is less than 10 mm, the entire molded product is not bulky and the surface of the molded product is hardly uneven, and good fluidity of the molten metal is maintained during casting.

前記有機繊維には、パルプ繊維、合成繊維、再生繊維(例えば、レーヨン繊維)等が挙げられる。有機繊維は、単独で又は二種以上を選択して用いることができる。成形性、乾燥後の強度、コストの点から、パルプ繊維が好ましい。   Examples of the organic fiber include pulp fiber, synthetic fiber, and recycled fiber (for example, rayon fiber). The organic fibers can be used alone or in combination of two or more. Pulp fibers are preferred from the viewpoints of moldability, strength after drying, and cost.

前記パルプ繊維としては、木材パルプ、コットンパルプ、リンターパルプ、竹やわらその他の非木材パルプが挙げられる。パルプ繊維は、これらのバージンパルプ若しくは古紙パルプを単独で又は二種以上を選択して用いることができる。パルプ繊維は、入手の容易性、環境保護、製造費用の低減等の点から、特に古紙パルプが好ましい。   Examples of the pulp fiber include wood pulp, cotton pulp, linter pulp, bamboo straw and other non-wood pulp. Pulp fibers can be used singly or in combination of two or more of these virgin pulp or waste paper pulp. The pulp fiber is particularly preferably waste paper pulp from the viewpoint of easy availability, environmental protection, and reduction of production costs.

前記有機繊維は、表面平滑性、耐衝撃性を考慮すると、平均繊維長が0.1〜20mm、特に0.5〜10mmであるものが好ましい。   In view of surface smoothness and impact resistance, the organic fiber preferably has an average fiber length of 0.1 to 20 mm, particularly 0.5 to 10 mm.

前記熱硬化性樹脂は、耐熱性紙管層112の常温強度及び熱間強度を維持させると共に、耐熱性紙管層の表面性を良好とし、鋳物の表面粗度を向上させる上で必要な成分である。前記熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、フラン樹脂等が挙げられる。これらの中でも、特に、燃焼ガスの発生が少なく、燃焼抑制効果があり、熱分解(炭化)後における残炭率が25%以上と高く、鋳造に用いた場合に炭化皮膜を形成して良好な鋳肌を得ることができる点からフェノール樹脂を用いることが好ましい。ここで、残炭率とは、熱硬化性樹脂のサンプルを窒素雰囲気下において常温から1200℃まで昇温速度50℃/minで加熱した後に測定した質量を加熱前の質量で割った値をいう。加熱中に熱硬化性樹脂から燃焼ガスが放出される為、加熱後の質量は加熱前より軽くなる。フェノール樹脂には、硬化剤を必要とするノボラックフェノール樹脂、硬化剤の必要ないレゾールタイプ等のフェノール樹脂が用いられる。白水中の溶出遊離フェノールを極力抑制させるには、低遊離フェノール樹脂を用いることが好ましい。例えば、塩基性触媒や酸性触媒で合成されたレゾールフェノール樹脂の高分子量タイプのものが好ましい。ノボラックフェノール樹脂を用いる場合には、硬化剤を要する。該硬化剤は水に溶け易いため、原紙の脱水後にその表面に塗工されるのが好ましい。前記硬化剤には、ヘキサメチレンテトラミン等を用いることが好ましい。前記熱硬化性樹脂は、単独で又は二種以上を選択して用いることができる。   The thermosetting resin is a component necessary for maintaining the normal temperature strength and hot strength of the heat-resistant paper tube layer 112, improving the surface property of the heat-resistant paper tube layer, and improving the surface roughness of the casting. It is. Examples of the thermosetting resin include a phenol resin, an epoxy resin, and a furan resin. Among these, in particular, there is little generation of combustion gas, there is a combustion suppressing effect, the residual carbon ratio after pyrolysis (carbonization) is as high as 25% or more, and it is good to form a carbonized film when used for casting. It is preferable to use a phenol resin from the viewpoint that a cast surface can be obtained. Here, the residual carbon ratio refers to a value obtained by dividing the mass measured after heating a sample of the thermosetting resin from room temperature to 1200 ° C. at a heating rate of 50 ° C./min in a nitrogen atmosphere by the mass before heating. . Since the combustion gas is released from the thermosetting resin during heating, the mass after heating becomes lighter than before heating. As the phenol resin, a novolak phenol resin that requires a curing agent or a resol type phenol resin that does not require a curing agent is used. In order to suppress the eluted free phenol in white water as much as possible, it is preferable to use a low free phenol resin. For example, a high molecular weight type of resol phenol resin synthesized with a basic catalyst or an acidic catalyst is preferable. When a novolac phenol resin is used, a curing agent is required. Since the curing agent is easily soluble in water, it is preferably applied to the surface of the base paper after dehydration. It is preferable to use hexamethylenetetramine or the like as the curing agent. The thermosetting resins can be used alone or in combination of two or more.

前記燃焼ガスには、一酸化炭素、二酸化炭素の他、メタン、エチレン等の炭化水素等が含まれる。   In addition to carbon monoxide and carbon dioxide, the combustion gas includes hydrocarbons such as methane and ethylene.

前記抄紙用バインダーとしては、でんぷん、ゼラチン、グアーガム、CMC(カルボキシメチルセルロース)等の天然高分子、カイメン(ポリアミドアミンエピクロルヒドリン樹脂)、PVA(ポリビニルアルコール)、PAM(ポリアクリルアミド)、PEO(ポリエチレンオキサイド)等の水溶性合成高分子およびスチレン・ブタジエン系、アクリルニトリル・ブタジエン系、アクリル系、酢酸ビニル系等のラテックス、コロイダルシリカ、アルミナ系等の無機バインダー等が挙げられる。これらの中でも粉体の固定化性能に優れたカイメン、CMC、アクリル系ラテックス等を用いることが好ましい。抄紙用バインダーの添加量は固形分換算で、前記有機繊維質量の0.01〜5%、特に0.02〜1%が好ましい。これらの抄紙用バインダーは、一種又は二種以上を選択して用いることができる。   Examples of the papermaking binder include starch, gelatin, guar gum, natural polymers such as CMC (carboxymethylcellulose), sponge (polyamideamine epichlorohydrin resin), PVA (polyvinyl alcohol), PAM (polyacrylamide), PEO (polyethylene oxide), and the like. And water-soluble synthetic polymers and latexes such as styrene / butadiene, acrylonitrile / butadiene, acrylic and vinyl acetate, and inorganic binders such as colloidal silica and alumina. Among these, it is preferable to use sponge, CMC, acrylic latex, etc., which have excellent powder fixing performance. The addition amount of the papermaking binder is preferably 0.01 to 5%, particularly 0.02 to 1% of the organic fiber mass in terms of solid content. These papermaking binders can be used alone or in combination of two or more.

前記の撥水性を発現させるサイズ剤としては、ロジン等の天然系、AKD(アルキルケテンダイマー)、ASA(アルケニル無水コハク酸)等の合成系、及びワックス等が挙げられる。これらの中でも少量で中性領域において優れた撥水性を持ち、ロジン等に比べ耐酸性、耐アルカリ性に優れているAKDが好ましい。   Examples of the sizing agent that exhibits water repellency include natural systems such as rosin, synthetic systems such as AKD (alkyl ketene dimer) and ASA (alkenyl succinic anhydride), and waxes. Among these, AKD which has excellent water repellency in a small amount in a neutral region and excellent in acid resistance and alkali resistance compared to rosin or the like is preferable.

耐熱性紙管層112を構成する紙管層112A、112Bには、前記各成分以外に、凝集剤、着色剤等の他の成分を適宜の割合で添加することもできる。   In addition to the above components, other components such as a flocculant and a colorant can be added to the paper tube layers 112A and 112B constituting the heat resistant paper tube layer 112 in an appropriate ratio.

湯道管11の総厚みは、それが使用される場所に応じて適宜設定することができるが、湯道管としての強度の確保、通気性の確保、製造費抑制等を考慮すると0.5〜6.0mmが好ましく、1.0〜3.0mmがより好ましい。   The total thickness of the runner pipe 11 can be appropriately set according to the place where it is used, but 0.5% is taken into consideration when securing the strength as a runner pipe, ensuring air permeability, suppressing manufacturing costs, and the like. -6.0 mm is preferable and 1.0-3.0 mm is more preferable.

湯道管11は、強度確保の面で、鋳造に用いられる前の状態での圧縮強度は20N以上が好ましく、40N以上がより好ましい。ここで、湯道管11の圧縮強度は、管状の成形品を長さ60mmに切断し、切断面を横にした状態でテンシロン万能試験機(株式会社エーアンドディ製RTA500)等の圧縮強度測定器にて圧縮速度10mm/分で押し下げることにより測定される管側面の圧縮強度をいう。   The runner pipe 11 is preferably 20N or more, more preferably 40N or more, in terms of securing strength, the compressive strength before being used for casting. Here, the compressive strength of the runner tube 11 is measured by compressing the tubular molded product to a length of 60 mm and using a Tensilon universal testing machine (RTA500 manufactured by A & D Co., Ltd.) with the cut surface lying sideways. The compressive strength of the side surface of the tube measured by pushing down at a compression speed of 10 mm / min with a vessel.

湯道管11は、溶湯と接触した時に、水蒸気発生を極力抑える点から、鋳造に用いられる前の状態の含水率(質量含水率)は20%以下が好ましく、10%以下がより好ましい。水蒸気の発生は溶湯の流入口からの吹き戻し(逆流)の原因となるからである。   The runner pipe 11 has a moisture content (mass moisture content) in a state before being used for casting of 20% or less, and more preferably 10% or less from the viewpoint of suppressing generation of water vapor as much as possible when contacting the molten metal. This is because the generation of water vapor causes blowback (back flow) from the molten metal inlet.

中継管12は、後述するよう湿式抄造法によって一体的に成形されており、その外周面部に嵌合によって摩滅する突条部(凸部)121、122と、湯道管11が嵌合されたときにその端面に当接する係止部123とが設けられている。突条部121(第1の凸部)は、湯道管11への挿入方向に沿って伸びており、外周面部に所定間隔おきに設けられている。突条部122(第2の凸部)は、突条部121間を結ぶように中継管12の外周面部に設けられている。突条121、122の数、配置間隔等は中継管12の形態(長さ、内径、材質等)に応じて設定される。
As will be described later, the relay pipe 12 is integrally formed by a wet papermaking method, and the runner pipes 11 and the ridge parts (convex parts) 121 and 122 worn by fitting are fitted to the outer peripheral surface part thereof. A locking portion 123 is sometimes provided that contacts the end surface. The protrusions 121 (first protrusions) extend along the direction of insertion into the runner pipe 11 and are provided at predetermined intervals on the outer peripheral surface. The protrusion 122 (second protrusion) is provided on the outer peripheral surface of the relay pipe 12 so as to connect the protrusions 121. The number of protrusions 121, 122, the arrangement interval, and the like are set according to the form (length, inner diameter, material, etc.) of the relay pipe 12.

中継管12の嵌合代長さL12、内径φ12、厚みT12は、その用途に応じて適宜設定される。本実施形態のように湯道管の連結に使用される場合には、嵌合代長さL12は長いほど安定した連結構造を得ることができるが、経済的な効果を考慮して5〜40mmとするのが好ましい。又、内径φ12は15〜150mm、厚みT12は0.2〜5.0mmとすることが好ましい。   The fitting allowance length L12, the inner diameter φ12, and the thickness T12 of the relay pipe 12 are appropriately set according to the application. When used for connecting runner pipes as in this embodiment, the longer the fitting allowance length L12, the more stable the connection structure can be obtained. Is preferable. The inner diameter φ12 is preferably 15 to 150 mm, and the thickness T12 is preferably 0.2 to 5.0 mm.

突条部121は、中継管12の全長に亘って設けられている。このように突条部121を中継管12の全長に亘って設けることで、中継管12をどの位置で切断しても、切断された中継管12には必ず突条部121が存在することになる。突条部121は、中継管12に湯道管11が嵌合によって連結されるときに摩滅してその間の接触力が強くなり、強固な嵌合状態を得るように機能するとともに、長手方向における抄造成形体の強度を補う機能も有する。突条部121の高さH121、幅W121は、中継管12の大きさ、質量等に応じて適宜設定されるが、高さH121は0.3〜3mm、幅W121は0.2mm以上とすることが好ましい。なお、より強固な嵌合状態を得るには、突条部121は、等間隔に設けられるのが好ましい。また、嵌合によって突条部121をつぶす湯道管11の内径は、該突条部を有する中継管12の突条部の頂点を結ぶ線によって得られる中継管12の外径よりもわずかに小さく設定する。   The protrusion 121 is provided over the entire length of the relay pipe 12. Thus, by providing the protrusion 121 over the entire length of the relay pipe 12, the cut relay pipe 12 always has the protrusion 121 regardless of the position at which the relay pipe 12 is cut. Become. The protrusion 121 is worn when the runner pipe 11 is connected to the relay pipe 12 by fitting, and the contact force therebetween becomes stronger and functions to obtain a strong fitting state, and in the longitudinal direction. It also has a function to supplement the strength of the papermaking compact. The height H121 and the width W121 of the ridge 121 are appropriately set according to the size, mass, etc. of the relay pipe 12, but the height H121 is 0.3 to 3 mm and the width W121 is 0.2 mm or more. It is preferable. In order to obtain a stronger fitting state, it is preferable that the protrusions 121 are provided at equal intervals. Further, the inner diameter of the runner pipe 11 that crushes the protrusion 121 by fitting is slightly smaller than the outer diameter of the relay pipe 12 obtained by a line connecting the vertices of the protrusions of the relay pipe 12 having the protrusion. Set smaller.

突条部122の高さH122は、突条部121の高さH121よりも低く設定される。突条部122は、両端部から所定間隔をおいて設けられるが、基本長さ単位、例えば、1cm、5cm、10cmおきに設けることが好ましい。このようにして突条部122を基本長さ単位おきに設けることで、中継管12の補強に加え、中継管12を所定長さに切断するときや、嵌合長(嵌合部分の長さ)を確認するときの指標に利用できる。
The height H122 of the ridge 122 is set to be lower than the height H121 of the ridge 121. The protrusion 122 is provided at a predetermined interval from both ends, and is preferably provided at a basic length unit, for example, every 1 cm, 5 cm, or 10 cm. By providing the protrusions 122 every basic length unit in this way, in addition to reinforcing the relay pipe 12, when the relay pipe 12 is cut into a predetermined length, the fitting length (the length of the fitting portion) ) Can be used as an indicator when confirming.

係止部123の高さH123は、湯道官11に挿入するときにその先端部に当接して挿入を規制できる高さであればよい。
The height H123 of the locking portion 123 only needs to be a height that can abut against the tip of the runner 11 and restrict insertion.

中継管12は、強度確保の面で、鋳造に用いられる前の状態での圧縮強度は20N以上が好ましく、40N以上がより好ましい。ここで、中継管12の圧縮強度は、湯道管と同様にして測定される管側面の圧縮強度をいう。   The relay pipe 12 is preferably 20N or more, more preferably 40N or more in compressive strength before being used for casting in terms of securing strength. Here, the compressive strength of the relay pipe 12 refers to the compressive strength of the pipe side surface measured in the same manner as the runner pipe.

中継管12は、上述した耐熱性紙管層112を構成する紙管層112A、112Bと同じ材料で構成することができる。斯かる材料であれば、中継管12は紙管層112A、112Bと同じ材質であってもよいし、異なる材質であってもよいが、材料の調製の手間等を考慮すると同じ材質とすることが好ましい。   The relay pipe 12 can be made of the same material as the paper tube layers 112A and 112B constituting the heat-resistant paper tube layer 112 described above. If it is such a material, the relay pipe 12 may be made of the same material as the paper tube layers 112A and 112B, or may be made of a different material. Is preferred.

次に、前記連結構造10に用いられる湯道管11の製造方法について説明する。
先ず、撥水性紙管層111及び耐熱性紙管層112の原紙となる普通紙及び耐熱性紙管用原紙をそれぞれ作製する。
これらの原紙は、前記撥水性紙管層及び前記耐熱性紙管層を構成する各成分を分散媒に分散させた原料スラリーをそれぞれ調製し、これら原料スラリーから湿式抄紙法によって抄紙し、脱水、乾燥させて作製する。
Next, the manufacturing method of the runner pipe 11 used for the said connection structure 10 is demonstrated.
First, a plain paper and a heat-resistant paper tube base paper to be used as the base paper for the water-repellent paper tube layer 111 and the heat-resistant paper tube layer 112 are prepared.
These base papers are respectively prepared raw slurry in which each component constituting the water-repellent paper tube layer and the heat-resistant paper tube layer is dispersed in a dispersion medium, paper is made from these raw material slurry by a wet paper making method, dehydrated, Prepare by drying.

前記分散媒としては、水、白水の他、エタノール、メタノール等の溶剤等が挙げられる。そして、これらの中でも抄紙、脱水成形の安定性、品質の安定性、費用低減、取り扱い易さ等の点から水が好ましい。   Examples of the dispersion medium include water, white water, and solvents such as ethanol and methanol. Among these, water is preferable from the viewpoints of papermaking, dewatering molding stability, quality stability, cost reduction, and ease of handling.

前記原料スラリーには、凝集剤、防腐剤等の添加剤を添加することができる。   Additives such as flocculants and preservatives can be added to the raw material slurry.

上述のようにして調製した原料スラリーを用い、各紙管層用の原紙を抄紙する。
これらの原紙の抄紙方法には、例えば、連続抄紙式である円網抄紙機、長網抄紙機、短網抄紙機、ツインワイヤー抄紙機等を用いた抄紙方法、バッチ方式の抄紙方法である手漉法等の抄紙方法を採用することができる。
The raw paper slurry prepared as described above is used to make a base paper for each paper tube layer.
Examples of paper making methods of these base papers include, for example, a paper making method using a continuous paper making machine such as a circular paper machine, a long paper machine, a short paper machine, a twin wire paper machine, and a batch paper making method. A papermaking method such as a koji method can be employed.

次に、脱水された前記各原紙を乾燥工程で乾燥する。乾燥工程での乾燥には従来から紙の乾燥に用いられている通常の手法が用いられる。なお、繊維間の水素結合を強固にして各原紙の機械的強度を向上させる為に、含水率が30%以下となるまで、好ましくは10%以下となるまで該各原紙を乾燥させることが好ましい。   Next, each dehydrated base paper is dried in a drying step. For drying in the drying step, a conventional method conventionally used for paper drying is used. In order to strengthen the hydrogen bond between fibers and improve the mechanical strength of each base paper, it is preferable to dry each base paper until the water content becomes 30% or less, preferably 10% or less. .

次に、得られた各原紙を所定幅に裁断し巻管加工を施す。巻管加工は従来から用いられている手法が用いられる。先ず、耐熱性紙管用原紙を巻管加工用のシャフトの外周に沿って螺旋状に重ね巻きして筒状に成形し、その外側にさらに耐熱性紙管原紙を螺旋状に重ね巻きして耐熱性紙管層とする。そして、その外側に最外層の撥水性紙管層となる前記普通紙を重ね巻きする。隣接する層を構成する原紙の巻き方は、同じ方向に重ね巻きしても良いし、異なる方向に重ね巻きしても良い。同じ方向とする場合には、先に重ね巻きした原紙の継ぎ目となる部分を覆うように重ね巻きすることが好ましい。各原紙の幅、重ね幅、紙管の内径等は、鋳物の質量(管内を通過する溶融金属の量)、造型強度(砂型を作る際の圧力に耐える強度)に応じて設定する。なお、層間は接着剤の塗布により接着する。   Next, the obtained base paper is cut into a predetermined width and subjected to winding tube processing. A conventionally used technique is used for the winding tube processing. First, heat-resistant paper tube base paper is spirally wound around the outer periphery of the winding tube processing shaft and formed into a cylindrical shape, and then heat-resistant paper tube base paper is spirally wound on the outside and heat-resistant. The paper tube layer. Then, the plain paper to be the outermost water-repellent paper tube layer is overlaid on the outer side. The base paper constituting the adjacent layers may be wound in the same direction or in different directions. In the case of the same direction, it is preferable that the wrapping is performed so as to cover the seam portion of the base paper that has been previously lap-wrapped. The width of each base paper, the stacking width, the inner diameter of the paper tube, and the like are set according to the mass of the casting (amount of molten metal passing through the tube) and the molding strength (strength that can withstand the pressure when making the sand mold). The layers are bonded by applying an adhesive.

全ての層の重ね巻きが完了した後、所定温度で加熱乾燥し、所定の寸法に切断加工して湯道管の製造を完了する。   After the lap winding of all the layers is completed, it is dried by heating at a predetermined temperature and cut into a predetermined dimension to complete the manufacture of the runner pipe.

次に、前記連結構造10に用いられる中継管12の製造方法について説明する。
中継管12は、例えば、以下に説明するように、抄造型を用いた湿式抄造法により湿潤状態の繊維積層体を抄造した後、これを脱水・乾燥させ成形することにより製造される。なお、突条部121、122及び係止部123は、抄造時にも形成できるが、ここでは、乾燥時に形成する方法を示す。
Next, a method for manufacturing the relay pipe 12 used in the connection structure 10 will be described.
For example, as described below, the relay pipe 12 is manufactured by making a wet fiber laminate by a wet papermaking method using a papermaking mold, and then dehydrating and drying the fiber laminate. In addition, although the protrusion parts 121 and 122 and the latching | locking part 123 can be formed also at the time of papermaking, the method formed at the time of drying is shown here.

中継管12の成形中間体の抄造には、中継管12の外形に略対応したキャビティを有し、該キャビティの形成面が所定の目開き及び線径の抄造ネットで被覆されるとともに該キャビティの形成面で開孔し且つ外部に通じる流体の流通路を内部に有する抄造型が用いられる。該抄造型は、二以上の割型を組み合わせることによって前記キャビティが形成されるものを用いることが好ましい。   For making the forming intermediate body of the relay pipe 12, a cavity substantially corresponding to the outer shape of the relay pipe 12 is provided, and the formation surface of the cavity is covered with a paper making net having a predetermined opening and a wire diameter. A papermaking mold is used which has a fluid flow passage which is open at the forming surface and communicates with the outside. It is preferable to use the papermaking mold in which the cavity is formed by combining two or more split molds.

そして、前記抄造型の前記キャビティ内に前記耐熱性紙管層用と同じ材料を用いた原料スラリーを供給し、前記流通路を通して原料スラリーを吸引し、前記抄造ネット上に該原料スラリー中の固形分を堆積させる。   Then, a raw material slurry using the same material as that for the heat-resistant paper tube layer is supplied into the cavity of the papermaking mold, the raw material slurry is sucked through the flow passage, and the solid in the raw material slurry is placed on the papermaking net. Deposit minutes.

所定の繊維積層体(突条部は形成されていない)が前記抄造ネット上に堆積された後、前記抄造ネットに堆積された繊維積層体を脱水する。   After a predetermined fiber laminate (no protruding portion is formed) is deposited on the papermaking net, the fiber laminate deposited on the papermaking net is dehydrated.

繊維積層体の脱水は、前記流通路を通して繊維積層体の水分を吸引して除去することが好ましい。前記繊維積層体が所定の含水率まで脱水されたら、抄造型内から繊維積層体を取出し、それを乾燥成形工程に移す。なお、脱水には、後述の乾燥工程において用いられると同様の中子を前記繊維積層体内に挿入し、該中子を膨張させて該繊維積層体を内側から押圧しながら行うこともできる。   The dehydration of the fiber laminate is preferably performed by sucking and removing moisture from the fiber laminate through the flow passage. When the fiber laminate is dehydrated to a predetermined moisture content, the fiber laminate is taken out from the papermaking mold and transferred to a dry molding step. The dehydration can also be performed while inserting a core similar to that used in the drying step described later into the fiber laminate, expanding the core and pressing the fiber laminate from the inside.

脱水を終えたときの繊維積層体の含水率(質量%)は、乾燥成形工程への移行時の繊維成形体の損傷防止、乾燥効率向上等の点から、30〜80%が好ましく、40〜70%がより好ましい。なお、脱水を終えたときも、まだ突条部は形成されていない。   The moisture content (% by mass) of the fiber laminate when dehydration is completed is preferably 30 to 80% from the viewpoint of preventing damage to the fiber molded body at the time of shifting to the dry molding step, improving drying efficiency, and the like. 70% is more preferable. Even when the dehydration is finished, no protrusion is formed yet.

次に、乾燥型及び中子を用いて前記繊維積層体を以下のように乾燥成形する。
乾燥型には、前記中継管12の外形に略一致したキャビティを有するとともに、形成される所望の突条部の形状に応じたスリット及び凹部が設けられている。前記乾燥型には、前記抄造型と同様に、二以上の割型を組み合わせることによって前記キャビティが形成されるものを用いることが好ましい。前記中子にはシリコーンゴム等の耐熱性を有する弾性体からなるものを用いることが好ましい。
Next, the fiber laminate is dry-molded as follows using a dry mold and a core.
The drying mold has a cavity that substantially matches the outer shape of the relay pipe 12, and is provided with slits and recesses corresponding to the shape of the desired protrusions to be formed. As the dry mold, it is preferable to use the dry mold in which the cavity is formed by combining two or more split molds. The core is preferably made of a heat-resistant elastic material such as silicone rubber.

乾燥工程では、先ず、乾燥型内に脱水成形された前記繊維積層体を配した後、前記加熱手段によって乾燥型を所定温度に加熱し、前記中子を前記キャビティ内に挿入し、中子内に流体を供給して中子を膨張させて繊維積層体を乾燥型の内面(前記各割型のキャビティの形成面)に押圧して繊維積層体を内側から加圧しながら乾燥する。このように、繊維積層体をその内部から中子によって押圧することで、繊維積層体の表面の一部が前記のスリット及び凹部に入り込んで、該スリット及び凹部に対応した突条部が中継管12の表面に形成される。また、得られる中継管12の内表面も平滑にすることができる。   In the drying step, first, the fiber laminate that has been dehydrated and molded is placed in a drying mold, and then the drying mold is heated to a predetermined temperature by the heating means, and the core is inserted into the cavity. The fluid is supplied to the core to expand the core, and the fiber laminate is pressed against the inner surface of the drying mold (the surface on which the cavity of each split mold is formed) and dried while pressing the fiber laminate from the inside. Thus, by pressing the fiber laminate from the inside with the core, a part of the surface of the fiber laminate enters the slit and the recess, and the protrusion corresponding to the slit and the recess is the relay pipe. 12 surfaces are formed. Moreover, the inner surface of the obtained relay pipe 12 can also be made smooth.

乾燥型の温度は、繊維積層体の焦げ付き防止、乾燥効率の点から100〜250℃が好ましく、120〜220℃がより好ましい。なお、乾燥型内に繊維積層体が配されるよりも前に、乾燥型は加熱されて所定温度に保持されるのが好ましい。   The temperature of the drying mold is preferably from 100 to 250 ° C., more preferably from 120 to 220 ° C. from the viewpoint of preventing the fiber laminate from being burnt and drying efficiency. In addition, before a fiber laminated body is arrange | positioned in a dry mold, it is preferable that a dry mold is heated and hold | maintained at predetermined temperature.

中子内に流体を供給する際の該流体の圧力は、乾燥に供する繊維積層体に応じて適宜設定することができるが、0.01〜5MPa、特に0.1〜3MPaが好ましい。前記中子を膨張させるために用いる流体としては、例えば空気、熱風(加熱された加圧空気)、蒸気、過熱蒸気等の気体、油(加熱油)、その他の液が挙げられる。特に、加圧空気、熱風、過熱蒸気を用いることが、操作性等の点から好ましい。   The pressure of the fluid when supplying the fluid into the core can be appropriately set according to the fiber laminate to be dried, but is preferably 0.01 to 5 MPa, particularly preferably 0.1 to 3 MPa. Examples of the fluid used for expanding the core include air, hot air (heated pressurized air), gas such as steam and superheated steam, oil (heating oil), and other liquids. In particular, it is preferable to use pressurized air, hot air, and superheated steam from the viewpoint of operability.

繊維積層体が所定の含水率にまで乾燥されたら、前記流通路を通した吸引を停止し、中子内の流体を排出して中子を収縮させ、前記乾燥型内から中子を取り出す。   When the fiber laminate is dried to a predetermined moisture content, the suction through the flow passage is stopped, the fluid in the core is discharged to contract the core, and the core is taken out from the dry mold.

そして、前記乾燥型を開いて中継管を取り出してその製造を終了する。中継管には、必要に応じ、トリミング処理、印刷処理、コーティング処理、内外面仕上げ加工等の各種処理を施すことができる。ここで、コーティング処理とは、例えば熱間強度(当該管が溶湯に接触した時の機械的強度)を向上させるためのコロイダルシリカ等によるコーティング処理をいう。   Then, the drying mold is opened, the relay pipe is taken out, and the production is finished. The relay pipe can be subjected to various processes such as trimming, printing, coating, and inner / outer surface finishing as required. Here, the coating treatment refers to, for example, a coating treatment with colloidal silica or the like for improving the hot strength (the mechanical strength when the tube is in contact with the molten metal).

このようにして得られた中継管12は、その外周面部に突条部121を有しているため、中継管12と湯道管11とを嵌合させて連結するときに、突条部121をつぶして嵌合させることによって、強固な連結状態を得ることができる。また、中継管12は、突条部122を有しているため、その強度が補強されるほか、突条部122は抄造成形体1を所望の長さに切断する場合の指標に利用でき、嵌合長(嵌合部分の長さ)確認するための指標にもなる。また、係止部123を有しているので、確実に嵌合されていることを確認できる。
Since the relay pipe 12 obtained in this way has the protrusion 121 on the outer peripheral surface portion, when the relay pipe 12 and the runner pipe 11 are fitted and connected, the protrusion 121 is provided. By crushing and fitting them, a strong connected state can be obtained. Moreover, since the relay pipe 12 has the protrusion 122, its strength is reinforced, and the protrusion 122 can be used as an index when cutting the paper-molded molded body 1 to a desired length. It also serves as an index for confirming the fitting length (length of the fitting portion). Moreover, since it has the latching | locking part 123, it can confirm that it is fitting reliably.

以上説明したように、本実施形態の流体輸送用管体の連結構造10によれば、ほぐれやすい湯道管11の端部が嵌合部分において溶湯にさらされることがないため、端部が流されて鋳造品の品質に影響を及ぼすおそれがない。また、中継管12の外周部に突条121122を有しているため、切断加工や鋳型を組み立てるときにも取り扱いやすい。 As described above, according to the connection structure 10 of the fluid transport pipe body of the present embodiment, the end portion of the runner tube 11 that is easily loosened is not exposed to the molten metal at the fitting portion, and therefore the end portion is not flowed. There is no risk of affecting the quality of the cast product. Further, since the protrusions 121 and 122 are provided on the outer peripheral portion of the relay pipe 12, it is easy to handle when cutting or assembling a mold.

加えて、中継管12は、従来と同様に軽量で簡便な装置で容易に切断加工等ができるため、この点においても取り扱い性にも優れている。   In addition, since the relay pipe 12 can be easily cut with a light and simple device as in the prior art, it is excellent in handling in this respect as well.

図4〜図11は、本発明の流体輸送用管体の連結構造に用いられる中継管(抄造体)の他の実施形態を示したものである。これらの実施形態において、前記実施形態の中継管12と共通する部分については同一符号を付している。なお、各実施形態の背面図は正面図と左右対称であるので省略している。   4 to 11 show another embodiment of the relay pipe (papermaking body) used in the fluid transport pipe connecting structure of the present invention. In these embodiments, portions common to the relay pipe 12 of the above embodiment are denoted by the same reference numerals. In addition, the back view of each embodiment is abbreviate | omitted since it is bilaterally symmetrical with the front view.

本発明の抄造体は、図4及び図5並びに図8及び図9に示す実施形態の中継管12’のように、L字型に屈曲した形態に成形し、それらの端部に、巻回層を有する管体を嵌合によって連結させる形態とすることもできる。
また、図6及び図7並びに図10及び図11に示す実施形態の中継管12’のように、二股に分岐した形態に成形し、各端部に、巻回層を有する管体を嵌合によって連結させる形態とすることもできる。
The papermaking body of the present invention is formed into an L-shaped bent shape like the relay pipe 12 ′ of the embodiment shown in FIGS. 4 and 5 and FIGS. 8 and 9, and wound around the ends thereof. It can also be set as the form which connects the pipe body which has a layer by fitting.
Moreover, like the relay pipe 12 ′ of the embodiment shown in FIGS. 6 and 7 and FIGS. 10 and 11, it is formed into a bifurcated form, and a tubular body having a winding layer is fitted to each end. It can also be set as the form connected by.

本発明は上述した実施形態に制限されず、本発明の趣旨を逸脱しない範囲において、適宜変更することができる。   The present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

前記実施形態では、耐熱性紙管層112を二つの紙管層で、撥水性紙管層を一つの紙管層で構成したが、耐熱性紙管層を一つ又は三つ以上の紙管層で構成することもできるし、撥水性紙管層を二つ以上の紙管層で構成することもできる。溶融金属の鋳込み時の動圧に耐えること、巻き部分からの溶融金属の漏れを防止できること、当該管状鋳物製造用部品が砂に埋められる際の圧力に耐えること等の観点で各紙管層ともに多層にすることが好ましい。ただし、これらの層構成は、鋳込み時の溶融金属の動圧、当該管状鋳物製造用部品が砂に埋められる際の圧力、当該管状鋳物製造用部品の製造コスト、燃焼ガスの発生量等を考慮して必要に応じて適宜に設定することができ、各紙管層が多層で構成されることに限定されるものではなく、各紙管層が1層でもよい。   In the embodiment, the heat-resistant paper tube layer 112 is composed of two paper tube layers and the water-repellent paper tube layer is composed of one paper tube layer. However, the heat-resistant paper tube layer is composed of one or three or more paper tubes. It is also possible to form a layer, and the water-repellent paper tube layer can be composed of two or more paper tube layers. Each paper tube layer is multi-layered from the viewpoints of withstanding the dynamic pressure during casting of molten metal, preventing leakage of molten metal from the winding part, and withstanding the pressure when the tubular casting production parts are buried in sand. It is preferable to make it. However, these layer configurations take into consideration the dynamic pressure of the molten metal at the time of casting, the pressure when the tubular casting production part is buried in sand, the production cost of the tubular casting production part, the amount of combustion gas generated, etc. Thus, the paper tube layers can be appropriately set as needed, and the paper tube layers are not limited to being formed of multiple layers, and each paper tube layer may be a single layer.

本発明は、前述のような、鋳型に用いられる湯道管同士の連結に好適であるが、鋳型を構成するそれ以外の管体の連結にも適用することができる。   The present invention is suitable for connecting the runner pipes used in the mold as described above, but can also be applied to the connection of other pipe bodies constituting the mold.

本発明は、鋳型を構成する管体の連結に適用することができる。   The present invention can be applied to connection of tubular bodies constituting a mold.

本発明の流体輸送用管体の連結構造の一実施形態を模式的に示す半断面図である。It is a half sectional view showing typically one embodiment of the connection structure of the pipe for fluid transportation of the present invention. 本発明の流体輸送用管体の連結構造の一実施形態に用いられる巻回層を有する管体を模式的に示す斜視図である。It is a perspective view which shows typically the pipe body which has a winding layer used for one Embodiment of the connection structure of the pipe structure for fluid transportation of this invention. 本発明の流体輸送用管体の連結構造の一実施形態に用いられる中継管を模式的に示す図であり、(a)は平面図、(b)は正面図、(c)は要部の拡大図である。It is a figure which shows typically the relay pipe used for one Embodiment of the connection structure of the pipe for fluid transportation of this invention, (a) is a top view, (b) is a front view, (c) is a principal part. It is an enlarged view. 本発明の流体輸送用管体の連結構造の他の実施形態における中継管を示す図であり、(a)は平面図、(b)は左側面図、(c)は正面図、(d)は右側面図、(e)は底面図である。It is a figure which shows the relay pipe in other embodiment of the connection structure of the fluid transport pipe body of this invention, (a) is a top view, (b) is a left view, (c) is a front view, (d) Is a right side view, and (e) is a bottom view. 図4に示す中継管のA−A断面図である。It is AA sectional drawing of the relay pipe shown in FIG. 本発明の流体輸送用管体の連結構造の他の実施形態における中継管を示す図であり、(a)は平面図、(b)は左側面図、(c)は正面図、(d)は右側面図、(e)は底面図である。It is a figure which shows the relay pipe in other embodiment of the connection structure of the fluid transport pipe body of this invention, (a) is a top view, (b) is a left view, (c) is a front view, (d) Is a right side view, and (e) is a bottom view. 図6に示す中継管のB−B断面図である。It is BB sectional drawing of the relay pipe shown in FIG. 本発明の流体輸送用管体の連結構造の他の実施形態における中継管を示す図であり、(a)は平面図、(b)は左側面図、(c)は正面図、(d)は右側面図、(e)は底面図である。It is a figure which shows the relay pipe in other embodiment of the connection structure of the fluid transport pipe body of this invention, (a) is a top view, (b) is a left view, (c) is a front view, (d) Is a right side view, and (e) is a bottom view. 図8に示す中継管のC−C断面図である。It is CC sectional drawing of the relay pipe shown in FIG. 本発明の流体輸送用管体の連結構造の他の実施形態における中継管を示す図であり、(a)は平面図、(b)は左側面図、(c)は正面図、(d)は右側面図、(e)は底面図である。It is a figure which shows the relay pipe in other embodiment of the connection structure of the fluid transport pipe body of this invention, (a) is a top view, (b) is a left view, (c) is a front view, (d) Is a right side view, and (e) is a bottom view. 図10に示す中継管のD−D断面図である。It is DD sectional drawing of the relay pipe shown in FIG.

符号の説明Explanation of symbols

10 流体輸送用管体の連結構造
11 湯道管(第1の管体)
12 中継管(第2の管体)

10 Connection structure of fluid transport pipe 11 Runner pipe (first pipe)
12 Relay pipe (second pipe)

Claims (2)

溶湯の輸送用管体の連結に用いられる流体輸送用管体の連結構造で、抄造シートが螺旋状に巻回されて管状に成形された巻回層を有する第1の管体と、湿式抄造法により一体的に成形された抄造成形体である第2の管体とがそれらの端部どうしの嵌合によって連結され且つ第1の管体が第2の管体の端部の外周面を覆うように嵌合されている、流体輸送用管体の連結構造における第2の管体を構成する抄造成形体であって、
その外周面に嵌合によって摩滅する凸部と、前記第1の管体が嵌合されたときにその端面に当接する係止部とが、それぞれ、該外周面に対して一体的に設けられている抄造成形体。
First structure having a wound layer in which a sheet-forming sheet is spirally wound and formed into a tubular shape in a connection structure of fluid-transporting pipe bodies used for connection of a molten-metal transportation tube body, and wet papermaking And a second tubular body, which is a paper-molded molded body integrally formed by the method, is connected by fitting of the end portions thereof, and the first tubular body has an outer peripheral surface of the end portion of the second tubular body. A papermaking molded body constituting the second pipe body in the connecting structure of fluid transport pipe bodies fitted so as to cover ,
A convex portion that is worn by fitting to the outer peripheral surface and an engaging portion that abuts on the end surface when the first tubular body is fitted are provided integrally with the outer peripheral surface, respectively. The papermaking molded product.
前記凸部として、前記第1の管体への挿入方向に沿って伸びている第1の凸部と、該挿入方向と交差する方向に伸びている閉じた環状の第2の凸部とを有しており、該第2の凸部は、前記第2の管体の長さ方向に所定間隔をおいて複数設けられている請求項に記載の抄造成形体。 As the convex portions, a first convex portion extending along the insertion direction into the first tubular body , and a closed annular second convex portion extending in a direction intersecting the insertion direction are provided. has a convex portion of said second, papermaking molded article according to claim 1, provided with a plurality at predetermined intervals in the longitudinal direction of the second pipe.
JP2005347338A 2005-11-30 2005-11-30 Papermaking compacts used in connecting structures for fluid transport pipes Expired - Fee Related JP4757002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005347338A JP4757002B2 (en) 2005-11-30 2005-11-30 Papermaking compacts used in connecting structures for fluid transport pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005347338A JP4757002B2 (en) 2005-11-30 2005-11-30 Papermaking compacts used in connecting structures for fluid transport pipes

Publications (2)

Publication Number Publication Date
JP2007152363A JP2007152363A (en) 2007-06-21
JP4757002B2 true JP4757002B2 (en) 2011-08-24

Family

ID=38237374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005347338A Expired - Fee Related JP4757002B2 (en) 2005-11-30 2005-11-30 Papermaking compacts used in connecting structures for fluid transport pipes

Country Status (1)

Country Link
JP (1) JP4757002B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7421020B1 (en) 2023-09-19 2024-01-23 花王株式会社 Structures for casting manufacturing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665689U (en) * 1993-02-25 1994-09-16 株式会社竹中工務店 Pipe fitting
JP2004175520A (en) * 2002-11-27 2004-06-24 Shuichi Inagaki Method for joining paper pipe
JP2004174605A (en) * 2002-11-13 2004-06-24 Kao Corp Component for producing casting
JP2004195547A (en) * 2002-03-13 2004-07-15 Kao Corp Part for cast production fabricated by wet-type paper-making method
JP2005153003A (en) * 2002-11-29 2005-06-16 Kao Corp Mold or structural body for producing casting

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145157U (en) * 1984-03-07 1985-09-26 田中紙管株式会社 Thread-wound double paper tube
JPS61203664A (en) * 1985-03-07 1986-09-09 Fuji Electric Co Ltd 1-dimensional visual sensor
JPH01278935A (en) * 1988-04-28 1989-11-09 Kamogawa Kogyo Kk Construction of sprue system for lost foam pattern casting
JPH0791573A (en) * 1993-09-24 1995-04-04 Fuji Electric Co Ltd Pipe coupling structure for beverage supplier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665689U (en) * 1993-02-25 1994-09-16 株式会社竹中工務店 Pipe fitting
JP2004195547A (en) * 2002-03-13 2004-07-15 Kao Corp Part for cast production fabricated by wet-type paper-making method
JP2004174605A (en) * 2002-11-13 2004-06-24 Kao Corp Component for producing casting
JP2004175520A (en) * 2002-11-27 2004-06-24 Shuichi Inagaki Method for joining paper pipe
JP2005153003A (en) * 2002-11-29 2005-06-16 Kao Corp Mold or structural body for producing casting

Also Published As

Publication number Publication date
JP2007152363A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
KR101205749B1 (en) Component for casting production and method for producing same
JP2004195547A (en) Part for cast production fabricated by wet-type paper-making method
US11123669B2 (en) Method of making a thin filtration media
JP5036762B2 (en) Casting parts
JP4749138B2 (en) Tubular casting parts
JP2000026837A (en) Wet paper friction material having compatibilized frictional property and compression fatigue strength
JP4757002B2 (en) Papermaking compacts used in connecting structures for fluid transport pipes
WO2004043627A1 (en) Member for producing castings
JP2007175771A (en) Component for manufacturing cast product, and its manufacturing method
WO2008026679A1 (en) Paper-making mold, and paper molding
CN116890093A (en) Structure for casting production
JP5057756B2 (en) Casting production parts and method for producing the same
JP7363061B2 (en) pressure container
JP2008081917A (en) Papermaking mold and molded paper
JP4368215B2 (en) Method and apparatus for producing cylindrical papermaking
JP4259852B2 (en) Consolidated paper products
JP4619069B2 (en) Tubular papermaking compact
JP4694347B2 (en) Manufacturing method of casting mold
JP2024041481A (en) Structures for casting manufacturing
JP4368214B2 (en) Method and apparatus for producing cylindrical papermaking
JP2000178900A (en) Lightweight fiberboard and its production
JPH08231733A (en) Production of fiber-reinforced resin sheet
JPH11114926A (en) Production of inorganic plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110531

R151 Written notification of patent or utility model registration

Ref document number: 4757002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees