JP4753617B2 - Energizing pressure sensor - Google Patents

Energizing pressure sensor Download PDF

Info

Publication number
JP4753617B2
JP4753617B2 JP2005142403A JP2005142403A JP4753617B2 JP 4753617 B2 JP4753617 B2 JP 4753617B2 JP 2005142403 A JP2005142403 A JP 2005142403A JP 2005142403 A JP2005142403 A JP 2005142403A JP 4753617 B2 JP4753617 B2 JP 4753617B2
Authority
JP
Japan
Prior art keywords
pressure sensor
strain
conductive block
current
gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005142403A
Other languages
Japanese (ja)
Other versions
JP2006315068A (en
Inventor
伸一 安達
征和 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Weld Tech Co Ltd
Original Assignee
Amada Miyachi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Miyachi Co Ltd filed Critical Amada Miyachi Co Ltd
Priority to JP2005142403A priority Critical patent/JP4753617B2/en
Publication of JP2006315068A publication Critical patent/JP2006315068A/en
Application granted granted Critical
Publication of JP4753617B2 publication Critical patent/JP4753617B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、抵抗溶接用の加圧力を測定するための装置に係り、特に溶接電極間で通電を可能としつつ加圧力を測定するための通電加圧センサに関する。   The present invention relates to an apparatus for measuring a pressurizing force for resistance welding, and more particularly to an energization pressure sensor for measuring a pressurizing force while allowing energization between welding electrodes.

抵抗溶接において、加圧力は、溶接電流、通電時間とともに溶接結果を左右する三大溶接条件の1つとされている。一般に、抵抗溶接機は、被溶接材の溶接箇所または溶接部に溶接電極を加圧接触させ、溶接電極を介して溶接部に加圧力を与えるとともに電流を流し、通電終了後に溶接部の表面を冷却するようにしている。したがって、抵抗溶接用の加圧力を測定するには被溶接材の代わりに荷重センサに溶接電極を直接加圧接触させるのが好ましく、通電中の加圧力を測定するには荷重センサが溶接電流を流せるほどの導電性および電流容量を有するのが好ましい。通電加圧センサは、抵抗溶接用の大電流を流せる導電性と加圧力測定機能とを兼ね備えた荷重センサである。   In resistance welding, the applied pressure is one of the three major welding conditions that influence the welding result as well as the welding current and energization time. Generally, a resistance welder presses a welding electrode to a welded portion or welded portion of a material to be welded, applies a pressure to the welded portion through the welding electrode, and causes an electric current to flow. I'm trying to cool it down. Therefore, in order to measure the pressure for resistance welding, it is preferable to place the welding electrode in direct pressure contact with the load sensor instead of the workpiece, and to measure the pressure during energization, the load sensor It is preferable to have such a conductivity and current capacity that it can flow. The energization pressurization sensor is a load sensor having both a conductivity capable of flowing a large current for resistance welding and a pressure measurement function.

従来の通電加圧センサは、縦断面コ字状に形成された銅または銅合金からなる弾性変形可能な導電性のブロックを有し、この導電性ブロックの両端部でギャップを狭める方向に溶接電極からの加圧力を受けて、コ字形中間部または胴部を弾性変形させるとともに、両溶接電極の間で電流がコ字形胴部を迂回して流れるようになっている。そして、導電性ブロックのコ字形胴部の外表面において中心線上の位置つまり電流通路の直近位置に、相直交する2つの方向の変位にそれぞれ感応する一対のひずみゲージを貼り付けており、これらのひずみゲージによりコ字形中間部の変形を電気信号に変換するようになっている。   A conventional energization pressure sensor has a conductive block made of copper or a copper alloy formed in a U-shaped longitudinal section and is elastically deformable, and a welding electrode in a direction to narrow the gap at both ends of the conductive block. The U-shaped intermediate part or the body part is elastically deformed in response to the applied pressure, and a current flows between the welding electrodes while bypassing the U-shaped body part. A pair of strain gauges that are respectively sensitive to displacement in two orthogonal directions are attached to the position on the center line on the outer surface of the U-shaped body portion of the conductive block, that is, the position closest to the current path. A strain gauge converts the deformation of the U-shaped intermediate portion into an electrical signal.

しかしながら、上記のような従来の通電加圧センサは、加圧力測定精度の信頼性が低い。特に、通電時に導電性ブロックで発生する熱歪みの影響をまともに受けやすい。すなわち、通電時には、導電性ブロック内が電流通路に沿ってジュール熱により熱膨張する。従来の通電加圧センサにおいては、ひずみゲージが溶接電極から受ける加圧の歪みだけでなく導電性ブロック内の抵抗発熱による熱膨張の歪みにも感応しやすく、加圧力測定値が実際の値よりも増える方向にずれやすいという問題がある。また、導電性ブロックの両端部に対して溶接電極の加圧接触する位置がずれたときも加圧力測定値に誤差が生じやすいという問題もある。   However, the conventional energizing pressure sensor as described above has low reliability of the pressure measurement accuracy. In particular, it is easily susceptible to thermal distortion generated in the conductive block when energized. That is, when energized, the inside of the conductive block is thermally expanded along the current path by Joule heat. Conventional energizing pressure sensors are sensitive not only to the pressure strain that the strain gauge receives from the welding electrode, but also to thermal expansion strain due to resistance heat generation in the conductive block. There is a problem that it tends to shift in an increasing direction. In addition, there is also a problem that an error is likely to occur in the measured pressure value even when the position where the welding electrode is in pressure contact with both ends of the conductive block is shifted.

本発明は、かかる従来技術の問題点に鑑みてなされたもので、通電中の加圧力を高い精度で測定できる信頼性の高い通電加圧センサを提供することを目的とする。   The present invention has been made in view of the problems of the prior art, and an object of the present invention is to provide a highly reliable energization pressure sensor that can measure the applied pressure during energization with high accuracy.

本発明の別の目的は、溶接電極の加圧接触する位置がずれても加圧力を正確に測定できる信頼性の高い通電加圧センサを提供することにある。   Another object of the present invention is to provide a highly reliable energization pressure sensor that can accurately measure the applied pressure even if the position of the welding electrode in contact with pressure is shifted.

上記の目的を達成するために、本発明の通電加圧センサは、抵抗溶接機の溶接電極間で通電を可能としつつ加圧力を測定するための通電加圧センサであって、 ギャップを介して互いに対向する両端部に第1および第2の溶接電極をそれぞれ受けるための第1および第2の電極受け部を設け、前記第1および第2の溶接電極からの前記加圧力に応じて前記第1の電極受け部と前記第2の電極受け部との間に延在する胴部が弾性変形し、通電時に前記第1の電極受け部と前記第2の電極受け部との間で前記胴部を通って電流が流れる導電性のブロックと、前記導電性ブロックの胴部において前記第1の電極受け部と前記第2の電極受け部との間で電流の最も流れやすいルートから外れた傍らの位置に貼り付けられた1個または複数個のひずみゲージとを有する。
In order to achieve the above object, an energization pressurization sensor of the present invention is an energization pressurization sensor for measuring a pressurizing force while allowing energization between welding electrodes of a resistance welder, through a gap. First and second electrode receiving portions for receiving the first and second welding electrodes, respectively, are provided at both end portions facing each other, and the first and second electrode receiving portions are provided in accordance with the applied pressure from the first and second welding electrodes . The barrel extending between the first electrode receiving portion and the second electrode receiving portion is elastically deformed, and the barrel is interposed between the first electrode receiving portion and the second electrode receiving portion when energized. A conductive block through which a current flows, and a portion of the body of the conductive block that is off the route where current flows most easily between the first electrode receiving portion and the second electrode receiving portion. One or more strain gates pasted at Have.

上記構成においては、各ひずみセンサがたとえば銅または銅合金からなる導電性ブロックの胴部において電流の最も流れやすいルートから傍らに外れた位置に貼り付けられているので、通電時にブロック内の電流ルートでジュール熱による熱膨張の歪みが発生しても、その熱膨張の歪みは電流通路から遠い位置に配置されている各ひずみセンサには殆ど及ばないか、少ししか及ばない。このため、各ひずみセンサは、溶接電極から受ける加圧力で生じるブロック内の歪みに専ら感応して、加圧力を高い精度で測定することができる。   In the above configuration, each strain sensor is affixed at a position off the side where the current flows most easily in the body of the conductive block made of, for example, copper or copper alloy. Even if thermal expansion distortion occurs due to Joule heat, the thermal expansion distortion hardly affects the strain sensors disposed far from the current path or only slightly. For this reason, each strain sensor is able to measure the applied pressure with high accuracy in response to the distortion in the block caused by the applied pressure received from the welding electrode.

本発明の好適な一態様によれば、ひずみゲージが、当該貼付位置で導電性ブロックの胴部の長手方向のひずみに感応する第1のゲージと、当該貼付位置で導電性ブロックの胴部の幅方向のひずみに感応する第2のゲージとを含む。この場合、第1および第2のゲージがそれぞれ上記電流ルートの左右両側に一対ずつ設けられるのが好ましい。特に、好ましくは、上記電流ルート(上記中心線)の左側に設けられる第1のひずみゲージおよび第2のひずみゲージと上記電流ルート(上記中心線)の右側に設けられる第1のひずみゲージおよび第2のひずみゲージとによって、左側ゲージの抵抗値変化と右側ゲージの抵抗値変化とが互いに相殺されるホイートストンブリッジ回路が構成される。かかる構成においては、溶接電極が電極受け部の設定位置から外れても、溶接電極からの偏荷重を補償して加圧力を高い精度で測定することができる。なお、ひずみゲージでホイートストンブリッジ回路を組んで、溶接電極からの加圧力を表す電気信号を生成してよい。 According to a preferred aspect of the present invention, the strain gauge includes a first gauge that is sensitive to a longitudinal strain of the body portion of the conductive block at the pasting position, and a body portion of the conductive block at the pasting position. And a second gauge sensitive to the strain in the width direction. In this case, it is preferable that a pair of first and second gauges are provided on each of the left and right sides of the current route. In particular, it is preferable that the first strain gauge and the second strain gauge provided on the left side of the current route (the center line) and the first strain gauge and the second strain gauge provided on the right side of the current route (the center line). The two strain gauges constitute a Wheatstone bridge circuit in which the change in resistance value of the left gauge and the change in resistance value of the right gauge cancel each other. In such a configuration, even if the welding electrode deviates from the set position of the electrode receiving portion, the applied pressure can be measured with high accuracy by compensating for the offset load from the welding electrode. Note that a Wheatstone bridge circuit may be assembled with a strain gauge to generate an electric signal representing the pressure applied from the welding electrode.

また、本発明の通電加圧センサにおいては、溶接電極からの加圧力に対しブロック胴部の長手方向で生じる歪みの方がブロック胴部の幅方向で生じる歪みよりも大きい。このため、第1のゲージが第2のゲージよりも高感度で加圧力に感応する。本発明の好適な一態様によれば、導電性ブロックの胴部において上記最短ルートに対して第1のゲージを第2のゲージよりも外側に設けることにより、通電時の加圧力測定においてに電流による発熱の影響を一層効果的に少なくすることができる。   Moreover, in the energization pressurization sensor of this invention, the distortion which arises in the longitudinal direction of a block trunk | drum with respect to the applied pressure from a welding electrode is larger than the distortion which arises in the width direction of a block trunk | drum. For this reason, the first gauge is more sensitive than the second gauge and is sensitive to the applied pressure. According to a preferred aspect of the present invention, the first gauge is provided outside the second gauge with respect to the shortest route in the body portion of the conductive block, whereby the current is measured in the applied pressure measurement during energization. The effect of heat generation due to can be reduced more effectively.

本発明において、導電性ブロックは任意の形状が可能であり、ひずみゲージは導電性ブロックの任意の面に貼り付けられてよい。本発明の好適な一態様によれば、導電性ブロックが縦断面コ字状に形成され、その上辺部の頂面あるいは下辺部の下面にひずみゲージが貼り付けられる。また、本発明においては、導電性ブロックの任意の箇所に電流検出用のトロイダルコイルを装着することができる。   In the present invention, the conductive block can have any shape, and the strain gauge may be attached to any surface of the conductive block. According to a preferred aspect of the present invention, the conductive block is formed in a U-shaped longitudinal section, and a strain gauge is attached to the top surface of the upper side or the lower surface of the lower side. In the present invention, a toroidal coil for current detection can be attached to an arbitrary portion of the conductive block.

本発明の通電加圧センサによれば、上記のような構成および作用により、通電中の加圧力を高い精度で測定することが可能であり、さらには溶接電極の加圧接触する位置がずれても加圧力を正確に測定することもできる。   According to the energization pressurization sensor of the present invention, it is possible to measure the applied pressure during energization with high accuracy by the above-described configuration and operation, and further, the position where the welding electrode is in press contact is shifted. It is also possible to accurately measure the applied pressure.

以下、添付図を参照して本発明の好適な実施形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1および図2に、本発明の一実施形態における通電加圧センサの外観および使用態様を示す。図3および図4は、実施形態における通電加圧センサの要部の構成を示す平面図および縦断面図である。   FIG. 1 and FIG. 2 show the appearance and usage of an energization pressure sensor in one embodiment of the present invention. 3 and 4 are a plan view and a longitudinal sectional view showing a configuration of a main part of the energization pressure sensor in the embodiment.

図示の抵抗溶接機10はダイレクトスポット溶接機であり、鉛直方向で上下に向かい合う一対の溶接電極12,14を備えている。上部溶接電極12は、たとえば空圧シリンダを有する加圧機構16により上部電極支持アーム18を介して昇降移動するようになっている。下部溶接電極14は、下部電極支持アーム20を介して本体に固定されている。両溶接電極12,14は、溶接電源(図示せず)に電気的に接続されており、より詳細には溶接トランスの二次側端子に電気的に接続されている。   The illustrated resistance welder 10 is a direct spot welder, and includes a pair of welding electrodes 12 and 14 facing vertically in the vertical direction. The upper welding electrode 12 is moved up and down via an upper electrode support arm 18 by a pressurizing mechanism 16 having a pneumatic cylinder, for example. The lower welding electrode 14 is fixed to the main body via the lower electrode support arm 20. Both welding electrodes 12 and 14 are electrically connected to a welding power source (not shown), and more specifically, are electrically connected to a secondary terminal of the welding transformer.

この実施形態による通電加圧センサ22を用いて抵抗溶接機10における通電時の加圧力および電流を測定するには、被溶接物(図示せず)に代えて通電加圧センサ22を両溶接電極12,14の間に挿入し、実際に抵抗溶接を行うときと全く同じ溶接条件およびシーケンスで抵抗溶接機10を動作させる。すなわち、加圧機構16により両溶接電極12,14を介して実際の抵抗溶接時に加える加圧力と同じ大きさの加圧力を通電加圧センサ22に印加し、溶接電源により両溶接電極12,14を介して実際の抵抗溶接時に流す溶接電流と同じ大きさの電流を通電加圧センサ22に流す。通電加圧センサ22で得られる加圧力検出信号および電流検出信号は電気ケーブル24を介してモニタ装置本体26に送られ、モニタ装置本体26の表示部に加圧力および電流の測定値がそれぞれ表示されるようになっている。   In order to measure the applied pressure and current at the time of energization in the resistance welding machine 10 using the energization pressurization sensor 22 according to this embodiment, the energization pressurization sensor 22 is replaced with both welding electrodes in place of the workpiece (not shown). 12 and 14 and the resistance welding machine 10 is operated under exactly the same welding conditions and sequence as when resistance welding is actually performed. That is, the pressurizing mechanism 16 applies a pressurizing force having the same magnitude as that applied during actual resistance welding to the energizing pressurizing sensor 22 via the welding electrodes 12 and 14, and the welding power source supplies both the welding electrodes 12 and 14. A current having the same magnitude as the welding current that flows during resistance welding is passed through the energizing pressure sensor 22. The pressure detection signal and the current detection signal obtained by the energization pressure sensor 22 are sent to the monitor device body 26 via the electric cable 24, and the measured values of the pressure and current are displayed on the display unit of the monitor device body 26, respectively. It has become so.

図2、図3、図4に示すように、通電加圧センサ22は、柄28の先端部に縦断面コ字状(またはU状)のブロックまたはボディ30を取り付けている。このブロック30は、導電率および熱伝導率の高い金属たとえば銅または銅合金からなり、ギャップGを介して相対向する両端部の外表面(上面および下面)に電極受け用の凹所32a,32bを有している。両凹所32a,32bは、ブロック30の胴部幅方向(Y方向)における中心部に形成されている。   As shown in FIGS. 2, 3, and 4, the energization and pressure sensor 22 has a block or body 30 having a U-shaped vertical section (or U shape) attached to the tip of the handle 28. The block 30 is made of a metal having high conductivity and high thermal conductivity, such as copper or a copper alloy, and has recesses 32a and 32b for receiving electrodes on outer surfaces (upper surface and lower surface) of both ends opposed to each other through a gap G. have. Both the recesses 32 a and 32 b are formed in the central portion of the block 30 in the body width direction (Y direction).

コ字形ブロック30の上辺部の頂面には、図3に一点鎖線で示す中心線Cを挟んでその両側にX方向ひずみセンサ34およびY方向ひずみセンサ36がそれぞれ一対(34L,34R),(36L,36R)貼り付けられている。ここで、中心線Cは、ブロック30の胴部幅方向(Y方向)における各中心点を通って胴部長手方向(X方向)に延びる線である。各ひずみセンサはたとえば金属抵抗線からなり、X方向ひずみセンサ34L,34RはX方向の歪みに感応し、Y方向ひずみセンサ36L,36RはY方向の歪みに感応するようになっている。   On the top surface of the upper side portion of the U-shaped block 30, a pair (34L, 34R) of X-direction strain sensor 34 and Y-direction strain sensor 36 are respectively disposed on both sides of a center line C indicated by a one-dot chain line in FIG. 36L, 36R). Here, the center line C is a line that extends in the body longitudinal direction (X direction) through each center point in the body width direction (Y direction) of the block 30. Each strain sensor is made of, for example, a metal resistance wire, the X direction strain sensors 34L and 34R are sensitive to the strain in the X direction, and the Y direction strain sensors 36L and 36R are sensitive to the strain in the Y direction.

コ字形ブロック30において、溶接電極12,14から加圧力を受けたときの歪みは、X方向(胴部長手方向)の方がY方向(胴部幅方向)よりもはるかに大きい。したがって、X方向ひずみセンサ34L,34Rの方がY方向ひずみセンサ36L,36Rよりも高い感度で電極加圧力に感応する。この実施形態では、コ字形ブロック30の上辺部の頂面に、中心線Cからみて、X方向ひずみセンサ34L,34RをY方向ひずみセンサ36L,36Rよりも外側に配置している。   In the U-shaped block 30, the distortion when receiving pressure from the welding electrodes 12 and 14 is much larger in the X direction (trunk longitudinal direction) than in the Y direction (trunk width direction). Therefore, the X direction strain sensors 34L and 34R are more sensitive to the electrode pressure with higher sensitivity than the Y direction strain sensors 36L and 36R. In this embodiment, the X-direction strain sensors 34L and 34R are arranged outside the Y-direction strain sensors 36L and 36R on the top surface of the upper side portion of the U-shaped block 30 when viewed from the center line C.

図5に示すように、これら4個のひずみセンサ(34L,34R)、(36L,36R)はホイートストンブリッジ回路を構成している。溶接電極12,14からの加圧力を受けて両端部のギャップGが狭まるようにコ字形ブロック30が変形すると、加圧力の大きさに応じて、X方向ひずみセンサ34L,34Rの抵抗値は正方向に大きく変化する。一方、Y方向ひずみセンサ36L,36Rの抵抗値は少ししか変化しない。これにより、ホイートストンブリッジ回路の出力電圧vが加圧力の大きさに応じて変化し、加圧力検出信号が得られる。   As shown in FIG. 5, these four strain sensors (34L, 34R) and (36L, 36R) constitute a Wheatstone bridge circuit. When the U-shaped block 30 is deformed so that the gap G at both ends is narrowed by receiving pressure from the welding electrodes 12 and 14, the resistance values of the X-direction strain sensors 34L and 34R are positive according to the magnitude of the pressure. The direction changes greatly. On the other hand, the resistance values of the Y-direction strain sensors 36L and 36R change only slightly. Thereby, the output voltage v of the Wheatstone bridge circuit changes according to the magnitude of the applied pressure, and the applied pressure detection signal is obtained.

上記のように、この実施形態では、コ字形ブロック30の上辺部の頂面においてX方向ひずみセンサ34およびY方向ひずみセンサ36のいずれも中心線Cから傍らに外れた位置に貼り付けられている。通電時には、図3および図4に示すように、ブロック30の上部電極受け凹所32aと下部電極受け凹所32bとの間で電流の大部分はブロック内の中心ルートを通って流れる。ここで、中心ルートは中心線Cに沿って延びるルートである。   As described above, in this embodiment, both the X-direction strain sensor 34 and the Y-direction strain sensor 36 are attached to the top surface of the upper side portion of the U-shaped block 30 at a position off from the center line C. . When energized, as shown in FIGS. 3 and 4, most of the current flows between the upper electrode receiving recess 32a and the lower electrode receiving recess 32b of the block 30 through the central route in the block. Here, the center route is a route extending along the center line C.

このように、各ひずみセンサ34,36がコ字形ブロック30内の電流ルートから傍らに外れた位置、つまりコ字形ブロック30の上辺部の頂面において中心線Cから傍らに外れた位置に貼り付けられているので、通電時にブロック中間部内の電流ルートでジュール熱による熱膨張の歪みが発生しても、その熱膨張の歪みは電流通路から遠い位置に配置されている各ひずみセンサ34、36には殆ど及ばないか、少ししか及ばない。このため、各ひずみセンサ34、36は、溶接電極12,14から受ける加圧力で生じるブロック内の歪みに専ら感応して、加圧力を高い精度で測定することができる。特に、この実施形態では、ブロック30の胴部長手方向(X方向)の歪みに感応するX方向ひずみセンサ34L,34Rをブロック30の胴部幅方向(Y方向)の歪みに感応するY方向ひずみセンサ36L,36Rよりも外側(コ字形ブロック30の上辺部の縁部)に配置しているので、通電時の加圧力測定において電流から受ける影響をより一層効果的に少なくすることができる。   In this way, the strain sensors 34 and 36 are pasted at positions where they are off the current route in the U-shaped block 30, that is, positions on the top surface of the upper side of the U-shaped block 30. Therefore, even if a thermal expansion distortion occurs due to Joule heat in the current route in the middle part of the block during energization, the thermal expansion distortion is applied to each of the strain sensors 34 and 36 disposed at a position far from the current path. Is less or less. Therefore, each of the strain sensors 34 and 36 can measure the pressurizing force with high accuracy in response to the strain in the block generated by the pressurizing force received from the welding electrodes 12 and 14. In particular, in this embodiment, the X-direction strain sensors 34L and 34R that are sensitive to the distortion in the longitudinal direction (X direction) of the block 30 are connected to the Y-direction strain that is sensitive to the distortion in the width direction (Y direction) of the block 30. Since it is arranged outside the sensor 36L, 36R (the edge of the upper side of the U-shaped block 30), it is possible to more effectively reduce the influence of the current in the measurement of the applied pressure during energization.

この点、従来の通電加圧センサにおいては、図3の一点鎖線40で示すように中心線C上の位置、つまりブロック中間部内の中心ルートまたは電流通路の直近位置にひずみセンサを配置する構成であるため、通電時に発生する熱膨張の歪みがまともにひずみセンサに及びやすく、加圧力の測定精度に影響(誤差)が出ていた。   In this regard, in the conventional energization pressure sensor, as shown by the one-dot chain line 40 in FIG. 3, the strain sensor is arranged at the position on the center line C, that is, at the center route in the block intermediate part or the position closest to the current path. For this reason, the distortion of thermal expansion that occurs during energization easily reaches the strain sensor, and the measurement accuracy of the applied pressure is affected (error).

図6に、この実施形態の通電加圧センサ22によって得られる加圧力の波形(実線42)を比較例によって得られる加圧力の波形(一点鎖線44)と対比して示す。図中、時間軸上のt1は加圧開始時点、t2は通電開始時点、t3は通電終了時点、t4はモニタ時点、t5は加圧終了時点であり、TW(t1〜t5)は通電時間である。ここで、比較例とは、ブロック30のコ字形中間部の中心線C上の仮想線で示す位置40(図3)にX方向ひずみセンサ34およびY方向ひずみセンサ36を貼り付けた場合である。 FIG. 6 shows the waveform of the applied pressure (solid line 42) obtained by the energization / pressurization sensor 22 of this embodiment in comparison with the waveform of the applied pressure (chain line 44) obtained by the comparative example. In the figure, t 1 on the time axis is the pressurization start point, t 2 is the start point of energization, t 3 is the end point of energization, t 4 is the monitor point, t 5 is the end point of pressurization, and T W (t 1 ~t 5) is an energizing time. Here, the comparative example is a case where the X-direction strain sensor 34 and the Y-direction strain sensor 36 are attached to a position 40 (FIG. 3) indicated by a virtual line on the center line C of the U-shaped intermediate portion of the block 30. .

図示のように、通電時間TW中はジュール熱の熱膨張による歪みが発生し、ひずみセンサ34,36による加圧力の測定値に熱膨張の歪みの影響が出るが、その度合いが実施例と比較例とで著しい違いがある。一例として、通電直前の加圧力測定値を基準(100%)として、通電中の変動率が比較例では33.3%であるのに対して実施例は13.4%まで改善できることが確認されており、通電終了から3秒後のモニタ時点t4における変動率が比較例では12.5%であるのに対して実施例は2.4%まで改善できることが確認されている。 As shown, in the energization time T W distortion occurs due to thermal expansion of the Joule heat, the influence of the distortion of the thermal expansion on the measurement of pressure applied by the strain sensor 34 and 36 out, and the degree Example There are significant differences between the comparative examples. As an example, using the measured pressure immediately before energization as a reference (100%), it was confirmed that the variation rate during energization was 33.3% in the comparative example, whereas the embodiment could be improved to 13.4%. It has been confirmed that the variation rate at the monitoring time point t 4 3 seconds after the end of energization is 12.5% in the comparative example, whereas the embodiment can be improved to 2.4%.

さらに、この実施形態では、コ字形ブロック30の上辺部の頂面においてX方向ひずみセンサ34およびY方向ひずみセンサ36のいずれも中心線Cを挟んでその左右両側に一対(34L,34R),(36L,36R)貼り付けられている。かかる構成によれば、上部溶接電極12が上部電極受け凹所32a内で加圧接触する位置が中心線C上の設定位置から外れた場合であっても、あるいは下部溶接電極14が下部電極受け凹所32b内で加圧接触する位置が中心線Cの設定位置から外れた場合であっても、偏荷重を補償して加圧力を高い精度で測定することができる。   Further, in this embodiment, a pair of (34L, 34R), (34L, 34R), (on both sides of the center line C on both sides of the X-direction strain sensor 34 and the Y-direction strain sensor 36 on the top surface of the upper side portion of the U-shaped block 30 ( 36L, 36R). According to such a configuration, even when the position where the upper welding electrode 12 is in pressure contact within the upper electrode receiving recess 32a deviates from the set position on the center line C, or the lower welding electrode 14 is lower electrode receiving. Even when the pressure contact position in the recess 32b deviates from the setting position of the center line C, the offset force can be compensated and the applied pressure can be measured with high accuracy.

すなわち、図3において上部溶接電極12がたとえば中心線Cより左側のひずみセンサ(34L,36L)寄りにずれると、左側のひずみセンサ(34L,36L)の変形または抵抗値変化が相対的に増えるぶん、右側のひずみセンサ(34R,36R)の変形または抵抗値変化が相対的に減って、結果的にはホイートストンブリッジ回路(図5)において両者の増減(誤差)が相殺される。上部溶接電極12が中心線Cより右側のひずみセンサ(34R,36R)寄りにずれたときも同様の作用が奏され、下部溶接電極14が中心線Cより左側または右側にずれたときも同様の作用が奏される。   That is, if the upper welding electrode 12 in FIG. 3 deviates from the center line C toward the left strain sensor (34L, 36L), for example, the deformation or resistance change of the left strain sensor (34L, 36L) increases relatively. The deformation or resistance value change of the right strain sensor (34R, 36R) is relatively reduced, and as a result, the increase / decrease (error) of both is canceled in the Wheatstone bridge circuit (FIG. 5). The same effect is exhibited when the upper welding electrode 12 is shifted to the right side of the strain sensor (34R, 36R) from the center line C, and the same operation is performed when the lower welding electrode 14 is shifted to the left or right side from the center line C. The effect is played.

上記のように偏荷重を補償できる作用は得られないが、コ字形ブロック30の上辺部の頂面においてX方向ひずみセンサ34およびY方向ひずみセンサ36を中心線Cの片側にそれぞれ1個だけ貼り付ける構成も可能である。その場合、ホイートストンブリッジ回路(図5)においてひずみセンサ34,36以外の回路素子を固定抵抗で構成すればよい。   Although it is not possible to compensate for the eccentric load as described above, only one X direction strain sensor 34 and one Y direction strain sensor 36 are attached to one side of the center line C on the top surface of the upper side portion of the U-shaped block 30. A configuration to attach is also possible. In that case, circuit elements other than the strain sensors 34 and 36 in the Wheatstone bridge circuit (FIG. 5) may be configured with fixed resistors.

なお、図2に示すように、ブロック30の下辺部にはトロイダルコイル46が装着されている。通電時には、電流の微分波形を表す電気信号がトロイダルコイル46の出力端子より出力される。このトロイダルコイル46の出力信号もケーブル24を介してモニタ装置本体26へ送られる。このようなトロイダルコイルまたは電流センサをブロック30の任意の箇所に装着することが可能であり、たとえばブロック30の上辺部に装着することも可能である。また、ひずみセンサ34,36をブロック30の上辺部の頂面以外の面に貼り付ける構成も可能である。たとえば、ブロック30の下辺部の下面に、図3と同様のレイアウトで中心線Cの左右両側にひずみセンサ(34L,36L),(34R,36R)を貼り付ける構成も可能である。あるいは、感度は多少低下するが、ブロック30の上辺部の内側面(下面)もしくは下辺部の内側面(上面)にひずみセンサ(34L,36L),(34R,36R)を貼り付ける構成も可能である。   As shown in FIG. 2, a toroidal coil 46 is attached to the lower side of the block 30. At the time of energization, an electric signal representing the differential waveform of the current is output from the output terminal of the toroidal coil 46. The output signal of the toroidal coil 46 is also sent to the monitor apparatus body 26 via the cable 24. Such a toroidal coil or a current sensor can be attached to an arbitrary portion of the block 30, and for example, can be attached to the upper side of the block 30. Moreover, the structure which affixes the strain sensors 34 and 36 on surfaces other than the top surface of the upper side part of the block 30 is also possible. For example, a configuration in which strain sensors (34L, 36L) and (34R, 36R) are attached to the lower surface of the lower side of the block 30 on both the left and right sides of the center line C in the same layout as in FIG. Alternatively, although the sensitivity is somewhat lowered, it is also possible to attach the strain sensors (34L, 36L), (34R, 36R) to the inner side surface (lower surface) of the upper side of the block 30 or the inner side surface (upper surface) of the lower side. is there.

本発明の一実施形態における通電加圧センサの外観および使用態様を示す側面図である。It is a side view which shows the external appearance and usage condition of the energization pressurization sensor in one Embodiment of this invention. 図1の要部を示す斜視図である。It is a perspective view which shows the principal part of FIG. 実施形態の通電加圧センサにおけるひずみセンサの貼り付け位置を示す平面図である。It is a top view showing the pasting position of the strain sensor in the energization pressurization sensor of an embodiment. 実施形態の通電加圧センサにおける通電時の電流通路を示す縦断面図である。It is a longitudinal section showing the current passage at the time of energization in the energization pressurization sensor of an embodiment. 実施形態の通電加圧センサにおいてひずみセンサにより形成されるホイートストンブリッジ回路を示す回路図である。It is a circuit diagram showing a Wheatstone bridge circuit formed by a strain sensor in the energization pressure sensor of an embodiment. 実施形態の通電加圧センサによって得られる加圧力測定値の波形を比較例によって得られる加圧力測定値の波形と対比して示す波形図である。It is a wave form diagram showing contrast of the waveform of the pressurization measurement value obtained by the energization pressurization sensor of an embodiment with the waveform of the pressurization measurement value obtained by a comparative example.

符号の説明Explanation of symbols

10 抵抗溶接機
12 上部溶接電極
14 下部溶接電極
16 加圧機構
22 通電加圧センサ
30 導電性ブロック
32a 上部電極受け用凹所
32b 下部電極受け用凹所
34(34L,34R) X方向ひずみゲージ
36(36L,36R) Y方向ひずみゲージ
46 トロイダルコイル
DESCRIPTION OF SYMBOLS 10 Resistance welding machine 12 Upper welding electrode 14 Lower welding electrode 16 Pressurization mechanism 22 Current supply pressurization sensor 30 Conductive block 32a Recess for receiving upper electrode 32b Recess for receiving lower electrode 34 (34L, 34R) X direction strain gauge 36 (36L, 36R) Y direction strain gauge 46 Toroidal coil

Claims (10)

抵抗溶接機の溶接電極間で通電を可能としつつ加圧力を測定するための通電加圧センサであって、
ギャップを介して互いに対向する両端部に第1および第2の溶接電極をそれぞれ受けるための第1および第2の電極受け部を設け、前記第1および第2の溶接電極からの前記加圧力に応じて前記第1の電極受け部と前記第2の電極受け部との間に延在する胴部が弾性変形し、通電時に前記第1の電極受け部と前記第2の電極受け部との間で前記胴部を通って電流が流れる導電性のブロックと、
前記導電性ブロックの胴部において前記第1の電極受け部と前記第2の電極受け部との間で電流の最も流れやすいルートから外れた傍らの位置に貼り付けられた1個または複数個のひずみゲージと
を有する通電加圧センサ。
An energization and pressure sensor for measuring a pressurizing force while enabling energization between welding electrodes of a resistance welder,
First and second electrode receiving portions for receiving the first and second welding electrodes, respectively, are provided at both ends facing each other through a gap, and the applied pressure from the first and second welding electrodes is In response, the body extending between the first electrode receiving portion and the second electrode receiving portion is elastically deformed, and when energized, the first electrode receiving portion and the second electrode receiving portion A conductive block through which current flows through the barrel,
One or a plurality of affixed at positions adjacent to a route where current flows most easily between the first electrode receiving portion and the second electrode receiving portion in the body portion of the conductive block. Energized pressure sensor with strain gauge.
前記ひずみゲージが、前記導電性ブロックの胴部幅方向における各中心点を通って胴部長手方向に延びる中心線から傍らに外れた位置にて前記導電性ブロックに貼り付けられる、請求項1に記載の通電加圧センサ。The strain gauge is attached to the conductive block at a position deviating from a center line extending in the longitudinal direction of the trunk through each central point in the trunk width direction of the conductive block. The energizing pressure sensor described. 前記導電性ブロックの胴部において、前記ひずみゲージが前記電流ルートの左右両側に設けられる請求項1または請求項2に記載の通電加圧センサ。 In the body of the conductive block, said strain gauge is provided on the left and right sides of the current route, current pressure pressure sensor according to claim 1 or claim 2. 前記ひずみゲージが、当該貼付位置で前記導電性ブロックの胴部の長手方向のひずみに感応する第1のゲージと、当該貼付位置で前記導電性ブロックの胴部の幅方向のひずみに感応する第2のゲージとを含む請求項1〜3のいずれか一項に記載の通電加圧センサ。 The strain gauge is sensitive to the strain in the longitudinal direction of the body portion of the conductive block at the pasting position and the strain gauge is sensitive to the strain in the width direction of the body portion of the conductive block at the pasting position. and a second gauge, energizing pressure sensor according to any one of claims 1 to 3. 前記第1および第2のゲージが前記電流ルートの左右両側に一対ずつ設けられる請求項に記載の通電加圧センサ。 Wherein the first and second gauges are provided in pairs on the left and right sides of the current route, current pressure pressure sensor according to claim 4. 前記電流ルートに対して前記第1のゲージが前記第2のゲージよりも外側に設けられる請求項に記載の通電加圧センサ。 Said first gauge is provided on the outer side than the second gauge current pressure pressure sensor according to claim 5 with respect to the current route. 前記電流ルートの左側に設けられる前記第1のひずみゲージおよび前記第2のひずみゲージと前記電流ルートの右側に設けられる前記第1のひずみゲージおよび前記第2のひずみゲージとによって、左側ゲージの抵抗値変化と右側ゲージの抵抗値変化とが互いに相殺されるホイートストンブリッジ回路が構成される、請求項5または請求項6に記載の通電加圧センサ。 The resistance of the left gauge by the first strain gauge and the second strain gauge provided on the left side of the current route and the first strain gauge and the second strain gauge provided on the right side of the current route. The energization pressurization sensor according to claim 5 or 6 in which a Wheatstone bridge circuit in which a change in value and a change in resistance value of the right gauge cancel each other is configured . 前記導電性ブロックが縦断面コ字状に形成され、その上辺部の頂面に前記ひずみゲージが貼り付けられる請求項1〜のいずれか一項に記載の通電加圧センサ。 The conductive block is formed in the longitudinal sectional U-shape, the said strain gauges on the top surface of the upper side portion is attached, energizing pressure sensor according to any one of claims 1-7. 前記導電性ブロックが縦断面コ字状に形成され、その下辺部の下面に前記ひずみゲージが貼り付けられる請求項1〜のいずれか一項に記載の通電加圧センサ。 The conductive block is formed in the longitudinal sectional U-shape, the said strain gauge on the lower surface of the lower portion is attached, energizing pressure sensor according to any one of claims 1-7. 前記導電性ブロックに電流検出用のトロイダルコイルが装着される請求項1〜のいずれか一項に記載の通電加圧センサ。 The toroidal coil for detecting a current in the conductive block is mounted, energization pressure sensor according to any one of claims 1-9.
JP2005142403A 2005-05-16 2005-05-16 Energizing pressure sensor Expired - Fee Related JP4753617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005142403A JP4753617B2 (en) 2005-05-16 2005-05-16 Energizing pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005142403A JP4753617B2 (en) 2005-05-16 2005-05-16 Energizing pressure sensor

Publications (2)

Publication Number Publication Date
JP2006315068A JP2006315068A (en) 2006-11-24
JP4753617B2 true JP4753617B2 (en) 2011-08-24

Family

ID=37536184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005142403A Expired - Fee Related JP4753617B2 (en) 2005-05-16 2005-05-16 Energizing pressure sensor

Country Status (1)

Country Link
JP (1) JP4753617B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104889612A (en) * 2015-05-13 2015-09-09 王丽 Pressing tool of pneumatic spot welding machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153338A (en) * 1982-03-08 1983-09-12 Toshiba Chem Corp Semiconductor element
JPH07308785A (en) * 1994-05-18 1995-11-28 Honda Motor Co Ltd Squeezing time setting method in resistance welding
JPH0890251A (en) * 1994-09-19 1996-04-09 Fuji Elelctrochem Co Ltd Method and equipment for resistance welding

Also Published As

Publication number Publication date
JP2006315068A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
WO2013089114A1 (en) Shunt resistor based current sensor
WO2013153874A1 (en) Shunt resistance type current sensor
CN102639886B (en) There is the bearing device of the sensor of the bearing supporting force of the axle for measuring rotation
JP2012220249A (en) Shunt resistance type current sensor
CN202158916U (en) Measuring device for deformation detection
JP2009300116A5 (en)
JP4753617B2 (en) Energizing pressure sensor
JP2010014686A (en) Current detection device, its installation method, and current sensor
JP4494895B2 (en) Battery status detection unit
JP6203850B2 (en) Distortion transmitter
JPWO2003027660A1 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP5090266B2 (en) Servo type accelerometer and acceleration measuring device
JP2009241108A (en) Energization pressure sensor
JP5052542B2 (en) Torque sensor output adjustment method
JP2014071085A (en) Thin-film sensor
JP2014085245A (en) Shunt resistor current sensor
WO2014046246A1 (en) Shunt resistance-type current sensor
JPH1177323A (en) Quality monitoring device for resistance welding
JP2570945Y2 (en) Force measuring device for resistance welding machine
WO1994002277A1 (en) Wire temperature measuring method for wire electrical discharge machine
JP5445193B2 (en) Resistor, mounting method of resistor, measuring method of resistor
JP3546203B2 (en) Strain gauge
JP5224384B2 (en) Conductor welding method and welding apparatus therefor
JP5779487B2 (en) Pressure sensor module
JP2018155626A (en) Current sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4753617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees