JP4752779B2 - Motor drive device for washing and drying machine - Google Patents

Motor drive device for washing and drying machine Download PDF

Info

Publication number
JP4752779B2
JP4752779B2 JP2007017584A JP2007017584A JP4752779B2 JP 4752779 B2 JP4752779 B2 JP 4752779B2 JP 2007017584 A JP2007017584 A JP 2007017584A JP 2007017584 A JP2007017584 A JP 2007017584A JP 4752779 B2 JP4752779 B2 JP 4752779B2
Authority
JP
Japan
Prior art keywords
motor
voltage
washing
current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007017584A
Other languages
Japanese (ja)
Other versions
JP2008183087A (en
Inventor
光幸 木内
篤志 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007017584A priority Critical patent/JP4752779B2/en
Publication of JP2008183087A publication Critical patent/JP2008183087A/en
Application granted granted Critical
Publication of JP4752779B2 publication Critical patent/JP4752779B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Multiple Motors (AREA)

Description

本発明は、複数のインバータ回路により複数のモータを同時に駆動するヒートポンプ式洗濯乾燥機等のモータ駆動装置に関するものである。   The present invention relates to a motor drive device such as a heat pump type washing and drying machine that simultaneously drives a plurality of motors by a plurality of inverter circuits.

従来、この種のモータ駆動装置は、複数のインバータ回路により複数のモータを同時に制御手段により回転駆動していた(例えば、特許文献1参照)。
特開2006−116066号公報
Conventionally, this type of motor driving apparatus has driven a plurality of motors simultaneously by a control means using a plurality of inverter circuits (see, for example, Patent Document 1).
JP 2006-116066 A

しかし、このような従来のモータ駆動装置は、洗濯脱水モータを駆動する第1のインバータ回路と、ヒートポンプの圧縮機モータを駆動する第2のインバータ回路の直流電源を共用しているため、洗濯脱水モータと圧縮機モータが同時に高速回転する脱水乾燥運転において直流電圧が低下するために脱水回転数と脱水率が低下し乾燥時間が長くなる課題があった。さらに、交流電源電圧が低下すると著しく交流電流が増加して交流電源の高調波が増加したり、交流電流の増加によりリアクタや電源ダイオードなどのパワー部品の発熱が増加する課題があった。   However, since such a conventional motor driving device shares the DC power source of the first inverter circuit that drives the washing and dehydrating motor and the second inverter circuit that drives the compressor motor of the heat pump, In the dehydration drying operation in which the motor and the compressor motor rotate simultaneously at the same time, the DC voltage is lowered, so that the dehydration rotation speed and the dehydration rate are reduced, and the drying time is increased. Furthermore, when the AC power supply voltage is lowered, there is a problem that the AC current is remarkably increased to increase the harmonics of the AC power supply, and the heat generation of power components such as the reactor and the power supply diode is increased due to the increase of the AC current.

本発明は、上記従来の課題を解決するもので、インバータ回路の正負直流電源母線間に洗濯脱水モータを駆動する第1のインバータ回路と、ヒートポンプの圧縮機モータを駆動する第2のインバータ回路を並列関係に接続し、直流電源を構成する整流回路と交流電源間にリアクタを接続し、整流回路の交流入力端子間に短絡手段を接続して交流電源電圧零電圧から所定時間短絡させてリアクタに電流を流し直流電源母線電圧を制御するものである。   The present invention solves the above-described conventional problems, and includes a first inverter circuit that drives a washing / dehydrating motor between positive and negative DC power supply buses of an inverter circuit, and a second inverter circuit that drives a compressor motor of a heat pump. Connected in parallel, connected the reactor between the rectifier circuit and the AC power supply constituting the DC power supply, connected the short-circuit means between the AC input terminals of the rectifier circuit and short-circuited from the AC power supply voltage zero voltage for a predetermined time to the reactor A current is passed to control the DC power supply bus voltage.

上記従来の課題を解決するために、本発明のヒートポンプ式洗濯乾燥機のモータ駆動装置は、交流電源と直流電源を構成する整流回路間にリアクタと短絡手段よりなる力率補正回路(Power Factor Correction Circuit;PFC回路)を接続し、直流電源母線間に洗濯脱水モータを駆動する第1のインバータ回路と、ヒートポンプの圧縮機モータを駆動する第2のインバータ回路を並列関係に接続し、整流回路の交流入力端子間と並列関係に短絡手段を接続し、交流電源電圧零電圧からの短絡手段導通時間を制御して直流電源母線電圧を制御するもので、洗濯脱水モータと圧縮機モータの運転状態に応じてモータ回転数、あるいは直流電源母線電圧を制御するものである。   In order to solve the above-described conventional problems, the motor driving device of the heat pump type washing and drying machine according to the present invention includes a power factor correction circuit (Power Factor Correction circuit) including a reactor and a short-circuit means between rectifier circuits constituting an AC power source and a DC power source. Circuit (PFC circuit) is connected, and a first inverter circuit that drives the washing and dehydrating motor is connected between the DC power supply buses and a second inverter circuit that drives the compressor motor of the heat pump is connected in parallel, and the rectifier circuit Connect the short-circuit means in parallel with the AC input terminals and control the DC power supply bus voltage by controlling the short-circuit means conduction time from the AC power supply voltage zero voltage. Accordingly, the motor speed or the DC power supply bus voltage is controlled.

本発明のヒートポンプ式洗濯乾燥機のモータ駆動装置は、交流電源と整流回路間に設けたリアクタと短絡手段からなる力率補正回路により交流電源の力率を改善すると同時に、直流電圧を所定値に制御するもので、力率改善だけではなく電源高調波を低減できる。さらに、洗濯脱水モータと圧縮機モータを同時に運転しても直流電圧を所定値に制御できるので、脱水乾燥運転の如き複数インバータ回路を同時動作させる高出力時においても高速モータ回転可能となる。   The motor drive device of the heat pump type washing and drying machine of the present invention improves the power factor of the AC power source by a power factor correction circuit comprising a reactor and a short circuit provided between the AC power source and the rectifier circuit, and at the same time, sets the DC voltage to a predetermined value. It controls, and can not only improve power factor but also reduce power harmonics. Furthermore, since the direct current voltage can be controlled to a predetermined value even when the washing and dehydrating motor and the compressor motor are operated simultaneously, the high-speed motor can be rotated even at the time of high output in which a plurality of inverter circuits are operated simultaneously such as dehydrating and drying operation.

第1の発明は、交流電源と直列関係に接続されたリアクタと、前記リアクタを介して交流電力を直流電力に変換するダイオードとコンデンサよりなる整流回路と、前記整流回路の入力端子間に接続され前記リアクタを介して前記交流電源を短絡する短絡手段と、前記整流回路の出力直流電力を交流電力に変換する第1および第2のインバータ回路と、前記第1および第2のインバータ回路と前記短絡手段を制御する制御手段とを備え、前記第1のインバータ回路により洗濯脱水槽を駆動する洗濯脱水モータを駆動し、前記第2のインバータ回路によりヒートポンプ式熱交換器の圧縮機モータを駆動するものであって、前記制御手段は前記整流回路の出力直流電圧を検出する直流電圧検知手段と、前記直流電圧検知手段の出力信号に応じて前記短絡手段の前記交流電源の零電圧位相からの導通パルス幅を制御するようにした電圧制御手段と、前記第1および第2のインバータ回路を制御するインバータ制御手段とを備え、前記洗濯脱水モータ、および前記圧縮機モータの運転状態に応じてそれぞれのモータ回転数、あるいは前記整流回路の出力直流電圧を制御するようにしたものであり、力率改善により交流電源電流を減らせるだけではなく、直流電源電圧の低下を防ぐことができるので、洗濯脱水モータの高速脱水運転、あるいは、圧縮機モータの高出力運転が可能となる。   A first invention is connected between a reactor connected in series with an AC power source, a rectifier circuit composed of a diode and a capacitor for converting AC power into DC power via the reactor, and an input terminal of the rectifier circuit. Short-circuit means for short-circuiting the AC power supply via the reactor, first and second inverter circuits for converting the output DC power of the rectifier circuit into AC power, the first and second inverter circuits, and the short-circuit Control means for controlling the means, wherein the first inverter circuit drives a washing / dehydrating motor for driving a washing / dehydrating tub, and the second inverter circuit drives a compressor motor of a heat pump heat exchanger The control means includes a DC voltage detection means for detecting an output DC voltage of the rectifier circuit, and the control means according to an output signal of the DC voltage detection means. Voltage control means configured to control a conduction pulse width from a zero voltage phase of the AC power supply of the AC power supply means, and inverter control means for controlling the first and second inverter circuits, the washing and dehydrating motor, The motor rotation speed or the output DC voltage of the rectifier circuit is controlled in accordance with the operating state of the compressor motor, and not only the AC power supply current can be reduced by the power factor improvement, but also the DC Since a decrease in power supply voltage can be prevented, a high speed dewatering operation of the washing dewatering motor or a high output operation of the compressor motor can be performed.

第2の発明は、第1の発明における洗濯乾燥機のモータ駆動装置は、整流回路の出力直流電圧を制御する電圧制御手段の導通パルス幅制御信号に上限値を設けるようにしたものであり、交流電源電圧が低下すると導通パルス幅制御信号に上限値により直流電圧も低下するため、モータ出力も低下するので交流電源電流の増加を防ぐことができる。   In a second aspect of the invention, the motor driving device for the washing and drying machine according to the first aspect of the invention is configured to provide an upper limit value for the conduction pulse width control signal of the voltage control means for controlling the output DC voltage of the rectifier circuit. When the AC power supply voltage decreases, the DC voltage also decreases due to the upper limit value of the conduction pulse width control signal, and the motor output also decreases, so that an increase in AC power supply current can be prevented.

第3の発明は、第1の発明における洗濯乾燥機のモータ駆動装置は、制御手段は、洗濯脱水モータと圧縮機モータを同時に駆動する脱水乾燥運転時に、直流電圧検知手段の出力信号、あるいは整流回路の出力直流電圧を制御する電圧制御手段の制御信号に応じて前記圧縮機モータ回転数を制御するようにしたものであり、出力直流電圧低下、あるいは、交流電源電圧の低下を間接的に検知して圧縮機モータ出力を低下させ出力直流電圧の低下を防ぐことができるので、洗濯脱水モータの高速脱水運転が可能となる。   According to a third aspect of the present invention, in the motor drive device for the washing and drying machine according to the first aspect of the invention, the control means outputs the output signal of the DC voltage detection means or the rectification during the dehydration and drying operation in which the washing and dehydrating motor and the compressor motor are driven simultaneously The compressor motor speed is controlled according to the control signal of the voltage control means for controlling the output DC voltage of the circuit, and the output DC voltage drop or the AC power supply voltage drop is indirectly detected. As a result, the compressor motor output can be reduced to prevent the output DC voltage from being lowered, so that the high speed dewatering operation of the laundry dewatering motor can be performed.

第4の発明は、第1の発明における洗濯乾燥機のモータ駆動装置は、交流電源電流を検出する電流検出手段を備え、前記電流検出手段の電流信号に応じて整流回路の出力直流電圧、あるいは、圧縮機モータの回転数を制御するようにしたものであり、交流電源電流が増加すると圧縮機モータ出力を低下させ、交流電源電流の増加を防ぐことができ、さらに、出力直流電圧の低下を防ぐことができるので、洗濯脱水モータの高速脱水運転が可能となる。   According to a fourth aspect of the present invention, the motor driving device for the washing / drying machine according to the first aspect of the present invention includes current detection means for detecting an AC power supply current, and the output DC voltage of the rectifier circuit according to the current signal of the current detection means, or The compressor motor speed is controlled, and when the AC power supply current increases, the compressor motor output can be reduced to prevent the AC power supply current from increasing, and the output DC voltage can be reduced. Since this can be prevented, a high speed dewatering operation of the laundry dewatering motor becomes possible.

第5の発明は、第1の発明における洗濯乾燥機のモータ駆動装置は、交流電源電流を検出する電流検出手段を備え、前記電流検出手段の電流信号に応じて圧縮機モータの回転数を制御するようにしたものであり、交流電源電流が増加すると圧縮機モータ出力を低下させ、交流電源電流の増加を防ぐことができる。   According to a fifth aspect of the present invention, the motor driving device for the washing / drying machine according to the first aspect of the present invention includes current detection means for detecting an AC power supply current, and controls the rotation speed of the compressor motor in accordance with a current signal of the current detection means. Thus, when the AC power supply current increases, the compressor motor output can be reduced and the increase of the AC power supply current can be prevented.

(実施の形態1)
図1は、本発明の第1の実施の形態における洗濯乾燥機のモータ駆動装置のブロック図を示すもので、ヒートポンプ式洗濯乾燥機への実施例を示している。
(Embodiment 1)
FIG. 1 is a block diagram of a motor driving device of a washing / drying machine according to the first embodiment of the present invention, and shows an example of a heat pump type washing / drying machine.

図1において、交流電源1の一方の端子L1と直列関係にリアクタ2を接続し、リアクタ2を介して整流回路3に交流電力を供給し、整流回路3は全波整流回路30と電解コンデンサ31、32より倍電圧整流回路を構成し、交流電力を直流電力に変換する直流電源を構成する。交流電源1の他方の端子L2とリアクタ2の整流回路3側の端子L3の間、すなわち、整流回路3の入力端子間に短絡手段4を接続し、短絡手段4は交流電源1の零電圧から所定時間リアクタ2を介して交流電源1を短絡し力率を改善する。整流回路3の正と負の直流電源母線P、Nより直流電力を供給し、第1のインバータ回路5A、第2のインバータ回路5B、および第3のインバータ回路5Cを並列関係に接続し、制御手段6により直流電力を交流電力に変換する。   In FIG. 1, a reactor 2 is connected in series with one terminal L <b> 1 of an AC power supply 1, and AC power is supplied to the rectifier circuit 3 via the reactor 2, and the rectifier circuit 3 includes a full-wave rectifier circuit 30 and an electrolytic capacitor 31. , 32 constitutes a voltage doubler rectifier circuit and constitutes a DC power source for converting AC power into DC power. The short-circuit means 4 is connected between the other terminal L2 of the AC power source 1 and the terminal L3 on the rectifier circuit 3 side of the reactor 2, that is, between the input terminals of the rectifier circuit 3. The AC power source 1 is short-circuited through the reactor 2 for a predetermined time to improve the power factor. DC power is supplied from the positive and negative DC power supply buses P and N of the rectifier circuit 3, and the first inverter circuit 5A, the second inverter circuit 5B, and the third inverter circuit 5C are connected in parallel and controlled. Means 6 converts DC power into AC power.

第1のインバータ回路5Aは洗濯脱水槽7を駆動する洗濯脱水モータ8を駆動し、第2のインバータ回路5Bはヒートポンプ式熱交換器9の圧縮機モータ10を駆動し、第3のインバータ回路5Cは乾燥用送風ファン11を駆動するファンモータ12を駆動する。モータ電流検出のために、第1の電流検出手段50A、第2の電流検出手段50B、および第3の電流検出手段50Cをそれぞれのインバータ回路の下アームスイッチングトランジスタのエミッタ端子に接続し、洗濯脱水モータ8はセンサ付きベクトル制御、圧縮機モータ10とファンモータ12はセンサレスベクトル制御、あるいはセンサレス正弦波駆動する。   The first inverter circuit 5A drives a washing / dehydrating motor 8 that drives the washing / dehydrating tub 7, the second inverter circuit 5B drives the compressor motor 10 of the heat pump heat exchanger 9, and the third inverter circuit 5C. Drives a fan motor 12 that drives a blower fan 11 for drying. For the motor current detection, the first current detection means 50A, the second current detection means 50B, and the third current detection means 50C are connected to the emitter terminal of the lower arm switching transistor of each inverter circuit, and washing and dewatering The motor 8 is vector controlled with a sensor, and the compressor motor 10 and the fan motor 12 are sensorless vector controlled or sensorless sine wave driven.

ヒートポンプ式熱交換器9は、圧縮機モータ10と一体となった圧縮機(図示せず)により冷媒を圧縮して凝縮器9Aに冷媒を送り、乾燥用送風ファン11から凝縮器9Aを介して洗濯脱水槽7内に温風を送風し衣類を乾燥させる。洗濯脱水槽7からの高温高湿排気空気は蒸発器9Bにより除湿熱交換されて乾燥送風ファン11の吸気側に戻される。   The heat pump heat exchanger 9 compresses the refrigerant by a compressor (not shown) integrated with the compressor motor 10 and sends the refrigerant to the condenser 9A, and from the drying fan 11 through the condenser 9A. Warm air is blown into the washing and dewatering tank 7 to dry the clothes. The high-temperature and high-humidity exhaust air from the washing / dehydrating tub 7 is dehumidified and heat-exchanged by the evaporator 9 </ b> B and returned to the intake side of the drying blower fan 11.

制御手段6は、整流回路3の正と負の直流電源母線間電圧Vdcを検出する直流電圧検知手段60と、交流電源1の零電圧を検知して零クロス位相から所定時間短絡手段4のパワースイッチング半導体を導通させ直流電源母線電圧Vdcを直流母線電圧設定値Vdsに制御する電圧制御手段61と、第1のインバータ回路5A、第2のインバータ回路5B、および第3のインバータ回路5Cをそれぞれ制御するインバータ制御手段62より構成される。   The control means 6 includes a DC voltage detection means 60 for detecting the positive and negative DC power supply bus voltage Vdc of the rectifier circuit 3, and a zero voltage of the AC power supply 1 to detect the power of the short-circuit means 4 for a predetermined time from the zero cross phase. The voltage control means 61 for controlling the DC power supply bus voltage Vdc to the DC bus voltage set value Vds by making the switching semiconductor conductive, and the first inverter circuit 5A, the second inverter circuit 5B, and the third inverter circuit 5C are respectively controlled. And inverter control means 62.

図2は、力率補正回路の短絡手段4と電圧制御手段61の詳細なブロック図を示す。   FIG. 2 shows a detailed block diagram of the short-circuit means 4 and the voltage control means 61 of the power factor correction circuit.

直流電圧検知手段60の出力信号vdcを電圧制御手段61の比較手段610に加え、比較手段610は電圧設定手段611の設定信号vdsと比較してその誤差信号Δvを導通時間制御手段612に加える。導通時間制御手段612は、交流電源1の零電圧を検出する零クロス検知手段613からの信号vzcに応じて所定の導通パルス幅制御信号を発生させ、誤差信号Δvの増減に応じて導通パルス幅信号を制御し直流電源母線電圧Vdcが直流母線電圧設定値Vdsとなるように短絡手段の導通時間tonを制御する。   The output signal vdc of the DC voltage detection means 60 is added to the comparison means 610 of the voltage control means 61, and the comparison means 610 compares the set signal vds of the voltage setting means 611 with the error signal Δv to the conduction time control means 612. The conduction time control means 612 generates a predetermined conduction pulse width control signal according to the signal vzc from the zero cross detection means 613 that detects the zero voltage of the AC power supply 1, and the conduction pulse width according to the increase / decrease of the error signal Δv. The signal is controlled to control the conduction time ton of the short-circuit means so that the DC power supply bus voltage Vdc becomes the DC bus voltage set value Vds.

導通時間制御手段612の出力信号は、導通時間制限手段614を介してスイッチング手段駆動回路615に加えられる。導通時間制限手段614は、交流電源1の電源周波数に応じて最大導通時間tonの最大値を制限するもので、交流電源1の半周期の25〜30%程度の時間に設定する。導通時間tonが増加すると直流母線電圧Vdcは増加するが、導通時間制限手段614により直流母線電圧Vdcは負荷電流が増加した場合、あるいは、交流電源1が低下した場合には直流母線電圧設定値Vds以下となる。   The output signal of the conduction time control means 612 is applied to the switching means driving circuit 615 via the conduction time limiting means 614. The conduction time limiting means 614 limits the maximum value of the maximum conduction time ton according to the power supply frequency of the AC power supply 1 and sets the time to about 25 to 30% of the half cycle of the AC power supply 1. When the conduction time ton increases, the DC bus voltage Vdc increases. However, the DC bus voltage Vdc is increased by the conduction time limiting means 614 when the load current increases or when the AC power supply 1 decreases, the DC bus voltage setting value Vds. It becomes as follows.

スイッチング手段駆動回路615は、短絡手段4を構成する全波ダイオードブリッジ40の直流出力端子間に接続されるパワースイッチング半導体41の導通を制御するもので、電圧制御手段61の信号電位とパワースイッチング半導体41の駆動信号レベルが異なるため、フォトカプラーなどの電気的な絶縁手段と、パワースイッチング半導体41の駆動電力供給手段と、オンオフ駆動手段より構成されているが、詳細については省略する。   The switching means drive circuit 615 controls the conduction of the power switching semiconductor 41 connected between the DC output terminals of the full-wave diode bridge 40 constituting the short-circuit means 4, and the signal potential of the voltage control means 61 and the power switching semiconductor Since the drive signal level of 41 is different, it is composed of an electrically insulating means such as a photocoupler, a drive power supply means for the power switching semiconductor 41, and an on / off drive means, but the details are omitted.

短絡手段4は、前述したように全波ダイオードブリッジ40と、その直流出力端子間に絶縁ゲートバイポーラトランジスタ(略してIGBT)などのパワースイッチング半導体41よりなり双方向にオンオフ制御される。   As described above, the short-circuit means 4 is composed of a full-wave diode bridge 40 and a power switching semiconductor 41 such as an insulated gate bipolar transistor (abbreviated as IGBT) between its DC output terminals, and is bi-directionally controlled on and off.

図3は、短絡手段4、すなわち、パワースイッチング半導体41の導通制御方法を示すタイムチャートで、交流電源電圧Vac、零クロス検知信号vzc、パワースイッチング半導体41のゲート駆動信号Vg、リアクタ電流ILを示している。交流電源電圧Vacの零位相(時間to、t3)から所定時間遅延(時間t1、t4)してからパワースイッチング半導体41を所定時間(ton)導通制御することにより交流電圧位相と電流位相がほぼ同位相となり力率を改善できる。   FIG. 3 is a time chart showing the conduction control method of the short-circuit means 4, that is, the power switching semiconductor 41, and shows the AC power supply voltage Vac, the zero cross detection signal vzc, the gate driving signal Vg of the power switching semiconductor 41, and the reactor current IL. ing. The AC voltage phase and the current phase are substantially the same by controlling the conduction of the power switching semiconductor 41 for a predetermined time (ton) after a predetermined time delay (time t1, t4) from the zero phase (time to, t3) of the AC power supply voltage Vac. It becomes phase and can improve power factor.

さらに、短絡手段4を短絡させた時のリアクタに蓄積されるコイルエネルギーが、短絡手段4をターンオフさせた時に直流電源に放出されるので、直流母線電圧Vdcが昇圧される効果がある。また、高調波電流も減少し、パワースイッチング半導体41のスイッチング損失が少ないなどの特長がある。よって、洗濯脱水モータ8を高速脱水回転させ、圧縮機モータ10も同時に駆動してファンモータ12により温風を衣類に送風する脱水乾燥行程において、短絡手段4をオンオフ制御することにより力率改善だけではなく直流母線電圧Vdcを高くできるので脱水回転数を高くでき、脱水率を高くして乾燥時間を短縮できる。また、圧縮機モータ10とファンモータ12を同時に動作させる乾燥行程においても直流母線電圧Vdcをさらに高くできるので、圧縮機モータ10の回転数をさらに高くして温風温度を高くすることにより乾燥時間を短縮することができる。   Further, since the coil energy accumulated in the reactor when the short-circuit means 4 is short-circuited is released to the DC power source when the short-circuit means 4 is turned off, there is an effect that the DC bus voltage Vdc is boosted. In addition, the harmonic current is reduced and the switching loss of the power switching semiconductor 41 is small. Therefore, in the dehydration drying process in which the washing dehydration motor 8 is rotated at high speed and the compressor motor 10 is simultaneously driven and the warm air is blown to the clothes by the fan motor 12, the power factor is improved by controlling the short-circuit means 4 on and off. However, since the DC bus voltage Vdc can be increased, the dehydration speed can be increased, the dehydration rate can be increased, and the drying time can be shortened. Further, since the DC bus voltage Vdc can be further increased in the drying process in which the compressor motor 10 and the fan motor 12 are simultaneously operated, the drying time can be increased by further increasing the number of revolutions of the compressor motor 10 and increasing the hot air temperature. Can be shortened.

インバータ制御手段62は、洗濯脱水モータ8のロータ位置検出手段8aからの位置信号と電流検出手段50Aにより検出したモータ電流信号により第1のインバータ回路5Aを駆動して洗濯脱水モータ8をベクトル制御し、ヒートポンプ用圧縮機モータ10およびファンモータ12のそれぞれのモータ電流を電流検出手段50B、50Cにより検出してインバータ回路5B、5Cをそれぞれ制御しセンサレス正弦波駆動することにより低騒音、高効率化運転を行う。第2のインバータ回路5Bは前述したように圧縮機モータ10をセンサレスベクトル制御するもので、第2の電流検出手段50Bにより圧縮機モータ10のモータ電流を検出してセンサレス正弦波駆動し、インバータ制御手段62に記憶されるモータパラメータとモータへの印加電圧より演算で求めた電流と、検知電流を比較してロータ位置を推定演算し、制御プログラム内の仮想d−q軸を修正しロータ位相制御する。圧縮機モータ10は圧縮機構の構造的な要因により機械的なロータ位置によりトルクが変動するため、できるだけ正確な位置推定演算が必要であり、特にq軸よりも電流位相を進める、いわゆる進角制御(弱め界磁制御)においては位置推定演算の精度が問題となるので電流検出精度の確保とモータパラメータの精度確保、および位置推定アルゴリズムが課題となる。   The inverter control means 62 drives the first inverter circuit 5A based on the position signal from the rotor position detecting means 8a of the washing / dehydrating motor 8 and the motor current signal detected by the current detecting means 50A, thereby vector-controlling the washing / dehydrating motor 8. The motor current of the compressor motor 10 for the heat pump and the fan motor 12 is detected by the current detection means 50B and 50C, and the inverter circuits 5B and 5C are controlled to drive the sensorless sine wave, thereby reducing noise and increasing the efficiency. I do. The second inverter circuit 5B performs sensorless vector control of the compressor motor 10 as described above. The motor current of the compressor motor 10 is detected by the second current detection means 50B, and the sensorless sine wave drive is performed to control the inverter. The rotor position is estimated by comparing the detected current with the current obtained by calculation from the motor parameter stored in the means 62 and the applied voltage to the motor, and the virtual dq axes in the control program are corrected to perform rotor phase control. To do. Since the torque of the compressor motor 10 varies depending on the mechanical rotor position due to structural factors of the compression mechanism, it is necessary to calculate the position as accurately as possible. In particular, so-called advance control that advances the current phase with respect to the q axis. In (field weakening control), the accuracy of position estimation calculation becomes a problem, so ensuring current detection accuracy, ensuring motor parameter accuracy, and a position estimation algorithm are problems.

第3のインバータ回路5Cは、ファンモータ12を無効電流一定制御により位置センサレス正弦波駆動するものであり、ファンモータ12に正弦波電流を流してモータ印加電圧に対する無効電流を積分制御して安定化制御する。永久磁石同期モータの回転速度は駆動周波数fを一定にすると、電源電圧変動や負荷変動とは無関係にファンモータ12の回転速度は一定となるので、無効電流一定制御にすると駆動周波数一定制御が可能となり回転数変動をほとんど零にすることができる。ファンモータ12を無効電流一定制御の如きオープンループ駆動周波数一定制御(V/f制御方式)にした場合、直流電源電圧変動に関わらずファンモータ12の回転速度を一定とすることができるので、ファン騒音は変化せず、回転速度変動による耳障りなファン騒音変動を無くすことができる。   The third inverter circuit 5C drives the fan motor 12 by a position sensorless sine wave by constant reactive current control. The sine wave current is supplied to the fan motor 12 so that the reactive current with respect to the motor applied voltage is integrated and stabilized. Control. Since the rotation speed of the permanent magnet synchronous motor is constant regardless of the power supply voltage fluctuation and load fluctuation when the driving frequency f is constant, the constant driving frequency can be controlled by the constant reactive current control. Thus, the rotational speed fluctuation can be made almost zero. When the fan motor 12 is set to open loop drive frequency constant control (V / f control method) such as constant reactive current control, the rotational speed of the fan motor 12 can be constant regardless of fluctuations in the DC power supply voltage. The noise does not change, and the annoying fan noise fluctuation due to the rotational speed fluctuation can be eliminated.

電流検出手段5A、5B、5Cは3シャント式電流検知方式で、3ヶ又は2ヶのシャント抵抗と電流信号増幅手段より構成し、電流検出手段50A、50B、50Cの基本構成は全く同じであり、全てのインバータ回路のキャリヤ周波数を整数倍にしてキャリヤ信号の同期をとることにより、電流検出時のスイッチングノイズ相互干渉を防ぐことができる。   The current detection means 5A, 5B, and 5C are three shunt type current detection systems, and are composed of three or two shunt resistors and current signal amplification means. The basic configurations of the current detection means 50A, 50B, and 50C are exactly the same. By making the carrier frequency of all inverter circuits an integral multiple to synchronize the carrier signal, switching noise mutual interference at the time of current detection can be prevented.

温風脱水運転においては、洗濯脱水モータ8(約400W)、圧縮機モータ10(約700W)、ファンモータ12(約100W)を同時に駆動するので、洗濯乾燥機の総合入力は1200W以上となり、力率補正回路がなければ電源電圧AC100Vの場合には交流入力電流は13〜15Aとなり、コンセントの発熱が課題となる。さらに、直流母線電圧Vdcが低下するため脱水回転数を高くすることができないので、脱水率は低下し乾燥時間が長くなる。しかし、本発明によれば直流母線電圧Vdcが設定値Vdsとなるように、リアクタ2と直列関係に接続された短絡手段4の零電圧位相からの導通時間を制御するので、力率改善と直流母線電圧の低下防止が可能となる。   In the hot air dewatering operation, the washing and dewatering motor 8 (about 400 W), the compressor motor 10 (about 700 W), and the fan motor 12 (about 100 W) are driven simultaneously, so the total input of the washing and drying machine is 1200 W or more, Without the rate correction circuit, when the power supply voltage is AC 100 V, the AC input current is 13 to 15 A, and heat generation at the outlet becomes a problem. Furthermore, since the DC bus voltage Vdc is reduced, the spin speed cannot be increased, so that the spin rate is reduced and the drying time is increased. However, according to the present invention, the conduction time from the zero voltage phase of the short-circuit means 4 connected in series with the reactor 2 is controlled so that the DC bus voltage Vdc becomes the set value Vds. It is possible to prevent a decrease in bus voltage.

図4は、洗濯乾燥機の基本的な洗濯乾燥行程フローチャートを示し、表1は各行程における洗濯脱水モータ8と圧縮機モータ10の回転数、および、各行程における直流母線電圧Vdcを示している。   FIG. 4 shows a basic washing / drying process flowchart of the washing / drying machine, and Table 1 shows the rotation speeds of the washing / dehydrating motor 8 and the compressor motor 10 in each process, and the DC bus voltage Vdc in each process. .

Figure 0004752779
Figure 0004752779

以下、図4と表1を用いて順に説明する。本発明によるヒートポンプ式洗濯乾燥機はステップ100より運転開始し、ステップ101の洗い行程、ステップ102の中間脱水行程、ステップ103のすすぎ行程、ステップ104の脱水乾燥行程、ステップ105の乾燥行程の順に行程が進行しステップ106で運転が終了する。ヒートポンプ乾燥の圧縮機モータ10とファンモータ12は、ステップ104の脱水乾燥行程から駆動開始される。   Hereinafter, description will be made in order with reference to FIG. 4 and Table 1. The heat pump type washing / drying machine according to the present invention starts operation from Step 100, and includes a washing process in Step 101, an intermediate dehydration process in Step 102, a rinsing process in Step 103, a dehydration drying process in Step 104, and a drying process in Step 105 in this order. And the operation ends at step 106. The compressor motor 10 and the fan motor 12 for heat pump drying are started from the dehydration drying process in step 104.

ステップ101の洗い行程においては洗濯脱水モータ8の回転数は低く、圧縮モータ10とファンモータ12は動作しないので直流母線電圧Vdcは低くても問題なく、短絡手段4、すなわち、PFC回路を動作させる必要はない。ただし、洗い行程初期に布量判定の検知精度を向上させるために、直流母線電圧Vdcを260V一定値に制御する。   In the washing process of step 101, the rotational speed of the washing and dehydrating motor 8 is low, and the compression motor 10 and the fan motor 12 do not operate. Therefore, there is no problem even if the DC bus voltage Vdc is low, and the short circuit means 4, that is, the PFC circuit is operated. There is no need. However, the DC bus voltage Vdc is controlled to a constant value of 260 V in order to improve the detection accuracy of the cloth amount determination at the beginning of the washing process.

次のステップ102の中間脱水行程においては洗濯脱水モータ8を高速回転させるため、直流母線電圧Vdcを280Vとなるように制御する。ステップ103のすすぎ行程は洗い行程と基本的に同じであり、次のステップ104の脱水乾燥行程において、洗濯脱水モータ8、圧縮機モータ10、ファンモータ12が全て高速回転するため、直流母線電圧設定値Vdsを280Vに設定する。直流母線電圧Vdcを高く設定するほど脱水回転数を高速回転にできるが、交流電源1の電圧低下、あるいは、圧縮機モータ10との同時運転により交流電源電流が増加するため、圧縮機モータ回転数を乾燥行程よりも低い5000r/minに設定し、かつ、短絡手段4のパワースイッチング半導体41の導通時間に上限値を設け、交流電源電圧低下による交流電源電流の増加を防ぐ。次に、ステップ105に移り、洗濯脱水モータ8の回転数を50r/min程度に低下させ、圧縮機モータ回転数を6500r/minまで上昇させて圧縮機モータ出力を高くし乾燥時間を短縮させる。次に、ステップ106に移行して乾燥運転が終了する。   In the next intermediate dehydration process of step 102, the DC bus voltage Vdc is controlled to be 280V in order to rotate the washing / dehydrating motor 8 at a high speed. The rinsing process in step 103 is basically the same as the washing process, and in the next dehydrating and drying process in step 104, the washing / dehydrating motor 8, the compressor motor 10 and the fan motor 12 all rotate at a high speed. Set the value Vds to 280V. The higher the DC bus voltage Vdc is set, the higher the dehydration speed can be. However, since the AC power supply current increases due to the voltage drop of the AC power supply 1 or the simultaneous operation with the compressor motor 10, the compressor motor speed is increased. Is set to 5000 r / min, which is lower than the drying process, and an upper limit value is set for the conduction time of the power switching semiconductor 41 of the short-circuit means 4 to prevent an increase in the AC power supply current due to the AC power supply voltage drop. Next, the routine proceeds to step 105, where the rotational speed of the washing and dehydrating motor 8 is reduced to about 50 r / min, the compressor motor rotational speed is increased to 6500 r / min, the compressor motor output is increased, and the drying time is shortened. Next, it transfers to step 106 and a drying operation is complete | finished.

図5は、脱水乾燥行程のフローチャートを示し、ステップ200より脱水乾燥行程が開始し、ステップ201にて各モータの回転数等の初期設定を行う。各モータ回転数と直流母線電圧設定値Vdsは図1に示した値に初期設定される。   FIG. 5 shows a flowchart of the dehydration / drying process. The dehydration / drying process starts from step 200, and initial settings such as the rotational speed of each motor are performed in step 201. Each motor speed and DC bus voltage set value Vds are initially set to the values shown in FIG.

次に、ステップ202に進み短絡手段4のIGBTの導通時間を零から徐々に増加させるソフトスタートの後、ステップ203に進んで直流母線電圧Vdcを検出し、ステップ204に進んで直流母線電圧Vdcが直流母線電圧設定値VdsとなるようにIGBTの導通時間を制御するフィードバック制御に移行する。次に、ステップ205に進んで洗濯脱水モータ8を駆動して脱水回転制御を行い、所定時間経過後、ステップ206に進んで圧縮機モータ10とファンモータ12を駆動し回転数制御を行う。   Next, the process proceeds to step 202, and after the soft start to gradually increase the IGBT conduction time of the short-circuit means 4 from zero, the process proceeds to step 203 where the DC bus voltage Vdc is detected, and the process proceeds to step 204 where the DC bus voltage Vdc is The process shifts to feedback control for controlling the IGBT conduction time so that the DC bus voltage setting value Vds is obtained. Next, the process proceeds to step 205 to drive the washing / dehydrating motor 8 to perform dewatering rotation control. After a predetermined time has elapsed, the process proceeds to step 206 to drive the compressor motor 10 and the fan motor 12 to perform the rotation speed control.

次にステップ207に進み直流母線電圧Vdcが直流母線電圧下限設定値より低下したかどうかの判定を行い、Vdcが設定値よりも低下すると、圧縮機モータ10の出力異常、あるいは、交流電源電圧の異常低下と判断し、ステップ208に進み圧縮機モータ設定回転数を5000r/minから3000r/minまで低下させる。圧縮機モータ回転数を低下させると直流母線電圧Vdcが上昇し、ステップ208は次回から実行しないので、圧縮機モータ回転数を元に戻すには所定期間、例えば、10分から30分に限定して設定回転数を元の5000r/minに戻すとよい。   Next, the routine proceeds to step 207, where it is determined whether or not the DC bus voltage Vdc is lower than the DC bus voltage lower limit set value. If Vdc is lower than the set value, the output abnormality of the compressor motor 10 or the AC power supply voltage It is determined that there is an abnormal decrease, and the process proceeds to step 208 where the compressor motor set rotational speed is decreased from 5000 r / min to 3000 r / min. When the compressor motor speed is decreased, the DC bus voltage Vdc increases, and step 208 is not executed from the next time. Therefore, to restore the compressor motor speed, the period is limited to a predetermined period, for example, 10 to 30 minutes. It is good to return the set rotational speed to the original 5000 r / min.

次にステップ209に進んで脱水乾燥行程の終了判定を行い、終了ならばステップ210に進んで行程を終了させ、終了でなければステップ203に戻る。ステップ207における出力異常、あるいは交流電源電圧低下の検知は、図2に示した導通時間制限手段614により可能となるもので、導通時間制限手段614の制御信号を検知しても同様の効果となる。すなわち、ステップ207において、導通時間tonの制御信号が所定時間以上に達したことを検知してステップ208の圧縮機モータ回転数を低下変更動作させても同等の効果となる。   Next, the process proceeds to step 209 to determine the end of the dehydration drying process. If completed, the process proceeds to step 210 to end the process. If not completed, the process returns to step 203. The detection of the output abnormality or the AC power supply voltage drop in step 207 can be performed by the conduction time limiting means 614 shown in FIG. 2, and the same effect can be obtained by detecting the control signal of the conduction time limiting means 614. . That is, even if it is detected in step 207 that the control signal for the conduction time ton has reached a predetermined time or more and the compressor motor rotational speed in step 208 is lowered and changed, the same effect is obtained.

(実施の形態2)
図6は、本発明の第2の実施の形態における洗濯乾燥機のモータ駆動装置のブロック図を示すもので、交流電源1と直列関係に電流検知手段13を接続し、電流検知手段13により交流入力電流、あるいは、リアクタ2の電流を検知し、電流検知手段13の出力信号を制御手段6Aの電圧制御手段61A、あるいは、インバータ制御手段62Aに加えて直流母線電圧、あるいは、モータ回転数を制御するものである。他の基本構成は変わらないので説明は省略する。
(Embodiment 2)
FIG. 6 is a block diagram of a motor driving device for a washing / drying machine according to the second embodiment of the present invention. The current detection means 13 is connected in series with the AC power source 1, and the current detection means 13 performs AC The input current or the current of the reactor 2 is detected, and the output signal of the current detector 13 is added to the voltage controller 61A of the controller 6A or the inverter controller 62A to control the DC bus voltage or the motor speed. To do. Since other basic configurations are not changed, description thereof is omitted.

図7は本発明の第2の実施の形態における脱水乾燥行程のフローチャートを示す。ステップ300より脱水乾燥行程が開始し、ステップ301からステップ306までは、実施の形態1にて示した図5のフローチャートと同じなので説明を省略する。ステップ307において電流検知手段13により交流入力電流Iinを検知し、次にステップ308に進んで交流入力電流Iinが電流設定値よりも大きいかどうか判断し、大きい場合にはステップ309に進んで圧縮機モータ回転数を低下させる。電源電圧低下、あるいは、異常出力の場合には圧縮機モータ回転数を制御して交流入力電流が設定値以上とならないように電流制限動作を行う。モータ回転数を電流誤差信号により比例制御してもよく、図5に説明したように所定時間圧縮機モータ回転数を低下させるオープンループ制御でもよい。交流入力電流値を上限値に比例制御すると最大出力制御となり、乾燥出力を最大値にでき乾燥時間を短縮できる。   FIG. 7 shows a flowchart of the dehydration drying process in the second embodiment of the present invention. The dehydration and drying process starts from Step 300, and Steps 301 to 306 are the same as those in the flowchart of FIG. In step 307, the AC input current Iin is detected by the current detection means 13, and then the process proceeds to step 308 to determine whether the AC input current Iin is larger than the current set value. Reduce motor speed. In the case of a power supply voltage drop or an abnormal output, the compressor motor rotation speed is controlled to perform a current limiting operation so that the AC input current does not exceed the set value. The motor rotation speed may be proportionally controlled by a current error signal, or may be open loop control for decreasing the compressor motor rotation speed for a predetermined time as described in FIG. When the AC input current value is proportionally controlled to the upper limit value, the maximum output control is performed, and the drying output can be maximized to shorten the drying time.

ステップ309は、圧縮機モータ回転数を低下させる制御例を示したが、電圧制御手段の設定電圧を低下させ直流母線電圧Vdcを低下させても交流入力電流を上限値に制限できる。直流母線電圧Vdcを低下させることにより、圧縮機モータ10と洗濯脱水モータ8の回転数が低下し出力も低下して交流入力電流の増加を防ぐことができる。ただし、直流母線電圧Vdcを下げると圧縮機モータ10だけではなく洗濯脱水モータ8の脱水回転数が低下するので脱水率が低下し、乾燥時間が長くなる課題が生じる。   Step 309 shows a control example in which the compressor motor rotational speed is decreased. However, the AC input current can be limited to the upper limit value even if the set voltage of the voltage control means is decreased and the DC bus voltage Vdc is decreased. By reducing the DC bus voltage Vdc, the rotational speeds of the compressor motor 10 and the washing and dehydrating motor 8 are reduced and the output is also reduced, thereby preventing an increase in AC input current. However, when the DC bus voltage Vdc is lowered, not only the compressor motor 10 but also the dewatering rotation speed of the washing dewatering motor 8 is lowered, so that the dewatering rate is lowered and the drying time is increased.

以上述べたように、本発明はヒートポンプ式洗濯乾燥機の交流電源と整流回路間にリアクタと短絡手段よりなる力率補正回路を設け、運転行程に応じて洗濯脱水モータ及び圧縮機モータ回転数と直流母線電圧Vdcを制御するものである。力率補正回路により力率改善と高調波電流の低減、さらに、直流母線電圧の定電圧化、昇圧化が可能となるだけではなく、脱水乾燥運転では高速脱水回転させるために直流母線電圧を高くし、圧縮機回転数を低下させることにより交流電流を増加させることなく乾燥時間を短縮できる。   As described above, the present invention provides a power factor correction circuit comprising a reactor and a short-circuit means between the AC power source and the rectifier circuit of the heat pump type washing dryer, and the washing dehydration motor and the compressor motor rotational speed are determined according to the operation process. The DC bus voltage Vdc is controlled. The power factor correction circuit not only makes it possible to improve power factor and reduce harmonic currents, but also to make the DC bus voltage constant and boost, as well as increase the DC bus voltage for high-speed dehydration rotation in dehydration drying operation. Then, the drying time can be shortened without increasing the alternating current by reducing the compressor rotational speed.

また、洗い行程や脱水行程において直流母線電圧を定電圧制御することにより布量検知やアンバランス検知精度を高めることができる。また、短絡手段の導通時間に上限値を設けることにより、異常出力や交流電源電圧低下時の交流電源電流の増加による電気電子部品の異常発熱を防止できる。   In addition, the cloth amount detection and unbalance detection accuracy can be increased by controlling the DC bus voltage at a constant voltage in the washing process and the dehydrating process. Further, by providing an upper limit value for the conduction time of the short-circuit means, abnormal heat generation of the electric and electronic parts due to an abnormal output or an increase in AC power supply current when the AC power supply voltage drops can be prevented.

さらに、交流電源電流を検出する電流検出手段を設け、交流電源電流が設定上限値に達すると圧縮機回転数を低下させることにより、電源電流増加によるリアクタ等の電気電子部品の発熱を防ぎ、さらに、最大出力制御により圧縮機出力を可能な最大値に設定することにより乾燥時間短縮が可能となる。   Furthermore, current detection means for detecting the AC power supply current is provided, and when the AC power supply current reaches the set upper limit value, the compressor rotational speed is reduced to prevent heat generation of electric and electronic parts such as a reactor due to the increase of the power supply current. The drying time can be shortened by setting the compressor output to the maximum possible value by the maximum output control.

以上のように、本発明にかかる洗濯乾燥機のモータ駆動装置は、力率補正回路を設けた複数モータ同時駆動インバータ装置に関するもので、力率補正回路による直流電圧制御と、直流母線間に並列関係に接続したインバータ回路とそのモータ回転数制御に関するものであり、複数のインバータ回路により駆動される業務用の空調機やヒートポンプ式給湯器の複数の圧縮機制御等の用途にも適用できる。   As described above, the motor driving device of the washing and drying machine according to the present invention relates to a multiple motor simultaneous driving inverter device provided with a power factor correction circuit, and is connected in parallel between the DC voltage control by the power factor correction circuit and the DC bus. The present invention relates to an inverter circuit connected to the relationship and its motor rotation speed control, and can also be applied to applications such as a commercial air conditioner driven by a plurality of inverter circuits and a plurality of compressors of a heat pump water heater.

本発明の実施の形態1における洗濯乾燥機のモータ駆動装置のブロック図Block diagram of motor drive device of washing and drying machine in Embodiment 1 of the present invention 同洗濯乾燥機のモータ駆動装置の力率補正回路の詳細なブロック図Detailed block diagram of the power factor correction circuit of the motor driving device of the washing and drying machine 同洗濯乾燥機のモータ駆動装置の短絡手段の導通制御方法を示すタイムチャートTime chart showing conduction control method of short-circuit means of motor driving device of same washing and drying machine 同洗濯乾燥機のモータ駆動装置の基本的な洗濯乾燥行程フローチャートBasic washing / drying process flowchart of the motor driving device of the washing / drying machine 同洗濯乾燥機のモータ駆動装置の脱水乾燥行程のフローチャートFlow chart of dehydration drying process of motor driving device of the washing and drying machine 本発明の実施の形態2における洗濯乾燥機のモータ駆動装置のブロック図Block diagram of a motor driving device of a washing and drying machine in Embodiment 2 of the present invention 同洗濯乾燥機のモータ駆動装置の脱水乾燥行程のフローチャートFlow chart of dehydration drying process of motor driving device of the washing and drying machine

符号の説明Explanation of symbols

1 交流電源
2 リアクタ
3 整流回路
4 短絡手段
5A 第1のインバータ回路
5B 第2のインバータ回路
6 制御手段
7 洗濯脱水槽
8 洗濯脱水モータ
9 ヒートポンプ式熱交換器
10 圧縮機モータ
60 直流電圧検知手段
61 電圧制御手段
62 インバータ制御手段
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Reactor 3 Rectifier circuit 4 Short circuit means 5A 1st inverter circuit 5B 2nd inverter circuit 6 Control means 7 Washing dewatering tank 8 Washing dewatering motor 9 Heat pump heat exchanger 10 Compressor motor 60 DC voltage detection means 61 Voltage control means 62 Inverter control means

Claims (5)

交流電源と直列関係に接続されたリアクタと、前記リアクタを介して交流電力を直流電力に変換するダイオードとコンデンサよりなる整流回路と、前記整流回路の入力端子間に接続され前記リアクタを介して前記交流電源を短絡する短絡手段と、前記整流回路の出力直流電力を交流電力に変換する第1および第2のインバータ回路と、前記第1および第2のインバータ回路と前記短絡手段を制御する制御手段とを備え、前記第1のインバータ回路により洗濯脱水槽を駆動する洗濯脱水モータを駆動し、前記第2のインバータ回路によりヒートポンプ式熱交換器の圧縮機モータを駆動するものであって、前記制御手段は前記整流回路の出力直流電圧を検出する直流電圧検知手段と、前記直流電圧検知手段の出力信号に応じて前記短絡手段の前記交流電源の零電圧位相からの導通パルス幅を制御するようにした電圧制御手段と、前記第1および第2のインバータ回路を制御するインバータ制御手段とを備え、前記洗濯脱水モータ、および前記圧縮機モータの運転状態に応じてそれぞれのモータ回転数、あるいは前記整流回路の出力直流電圧を制御するようにした洗濯乾燥機のモータ駆動装置。 A reactor connected in series with an AC power source, a rectifier circuit composed of a diode and a capacitor for converting AC power to DC power via the reactor, and connected between the input terminals of the rectifier circuit via the reactor Short-circuit means for short-circuiting the AC power supply, first and second inverter circuits for converting the output DC power of the rectifier circuit into AC power, and control means for controlling the first and second inverter circuits and the short-circuit means And the first inverter circuit drives a laundry dewatering motor, and the second inverter circuit drives a compressor motor of a heat pump heat exchanger, the control The means is a DC voltage detecting means for detecting the output DC voltage of the rectifier circuit, and the short-circuit means according to the output signal of the DC voltage detecting means. A voltage control unit configured to control a conduction pulse width from a zero voltage phase of a flowing power source; and an inverter control unit configured to control the first and second inverter circuits, the washing and dehydrating motor, and the compressor A motor driving device for a washing and drying machine, which controls the number of rotations of each motor or the output DC voltage of the rectifier circuit in accordance with the operating state of the motor. 整流回路の出力直流電圧を制御する電圧制御手段の導通パルス幅制御信号に上限値を設けるようにした請求項1記載の洗濯乾燥機のモータ駆動装置。 2. The motor driving device for a washing and drying machine according to claim 1, wherein an upper limit value is provided for the conduction pulse width control signal of the voltage control means for controlling the output DC voltage of the rectifier circuit. 制御手段は、洗濯脱水モータと圧縮機モータを同時に駆動する脱水乾燥運転時に、直流電圧検知手段の出力信号、あるいは整流回路の出力直流電圧を制御する電圧制御手段の制御信号に応じて前記圧縮機モータ回転数を制御するようにした請求項1記載の洗濯乾燥機のモータ駆動装置。 The control means is configured to respond to the output signal of the DC voltage detection means or the control signal of the voltage control means for controlling the output DC voltage of the rectifier circuit during the dehydration drying operation in which the washing dehydration motor and the compressor motor are simultaneously driven. 2. A motor driving device for a washing and drying machine according to claim 1, wherein the number of rotations of the motor is controlled. 交流電源電流を検出する電流検出手段を備え、前記電流検出手段の電流信号に応じて整流回路の出力直流電圧、あるいは、圧縮機モータの回転数を制御するようにした請求項1記載の洗濯乾燥機のモータ駆動装置。 2. A washing and drying apparatus according to claim 1, further comprising current detection means for detecting an AC power supply current, wherein the output DC voltage of the rectifier circuit or the rotation speed of the compressor motor is controlled in accordance with a current signal of the current detection means. Motor drive device of the machine. 交流電源電流を検出する電流検出手段を備え、前記電流検出手段の電流信号に応じて圧縮機モータの回転数を制御するようにした請求項1記載の洗濯乾燥機のモータ駆動装置。 2. The motor driving device for a washing and drying machine according to claim 1, further comprising a current detecting means for detecting an AC power supply current, wherein the number of revolutions of the compressor motor is controlled in accordance with a current signal of the current detecting means.
JP2007017584A 2007-01-29 2007-01-29 Motor drive device for washing and drying machine Expired - Fee Related JP4752779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007017584A JP4752779B2 (en) 2007-01-29 2007-01-29 Motor drive device for washing and drying machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007017584A JP4752779B2 (en) 2007-01-29 2007-01-29 Motor drive device for washing and drying machine

Publications (2)

Publication Number Publication Date
JP2008183087A JP2008183087A (en) 2008-08-14
JP4752779B2 true JP4752779B2 (en) 2011-08-17

Family

ID=39726522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007017584A Expired - Fee Related JP4752779B2 (en) 2007-01-29 2007-01-29 Motor drive device for washing and drying machine

Country Status (1)

Country Link
JP (1) JP4752779B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4847552B2 (en) * 2009-03-10 2011-12-28 パナソニック株式会社 Washing and drying machine
JP4985687B2 (en) * 2009-03-26 2012-07-25 パナソニック株式会社 Drum washing machine
JP5575423B2 (en) * 2009-05-25 2014-08-20 株式会社東芝 Motor drive device for washing machine
EP2744095B1 (en) * 2012-12-12 2017-11-01 Miele & Cie. KG Mechatronic system for an electrical device
CN105207565A (en) * 2015-08-25 2015-12-30 芜湖市恒峰科技有限公司 Agricultural automatic sprinkling irrigation control circuit
WO2021253249A1 (en) * 2020-06-16 2021-12-23 美的威灵电机技术(上海)有限公司 Motor controller of electrical appliance, motor apparatus of electrical appliance, and electrical appliance
US12055909B2 (en) * 2021-07-02 2024-08-06 Whirlpool Corporation Night cycle algorithm for a laundry appliance to minimize operational noise

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252494A (en) * 2000-03-14 2001-09-18 Toshiba Corp Washing machine and inverter device
JP2005057858A (en) * 2003-08-01 2005-03-03 Matsushita Electric Ind Co Ltd Motor driving device and motor driving device of dish washer
JP2005083683A (en) * 2003-09-10 2005-03-31 Hitachi Home & Life Solutions Inc Refrigerator and its operation control method
JP2006015031A (en) * 2004-07-05 2006-01-19 Matsushita Electric Ind Co Ltd Clothes dryer
JP4786163B2 (en) * 2004-10-21 2011-10-05 株式会社東芝 Heat pump dryer and washing dryer

Also Published As

Publication number Publication date
JP2008183087A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP4752779B2 (en) Motor drive device for washing and drying machine
EP1429450B1 (en) Motor control apparatus
US7330011B2 (en) Motor driving apparatus
TWI278176B (en) Motor driving device
US7292004B2 (en) Motor driving apparatus
JP5575423B2 (en) Motor drive device for washing machine
CN114070133A (en) Drive device, control method, electric appliance, and storage medium
TWI465620B (en) Drum washing machine
JP6710156B2 (en) Air conditioner control method and air conditioner
KR100940097B1 (en) Motor controller of air conditioner
JP2005265220A (en) Gas heat pump type air conditioner
KR20100003580A (en) Motor controller of air conditioner
KR20090049856A (en) Motor controller of air conditioner
JP6605836B2 (en) Motor drive device for washing machine
KR20180006746A (en) Apparatus for controlling fan of outdoor unit, method for determining reverse rotation of fan of outdoor unit and method for starting fan of outdoor unit
KR20100106824A (en) Apparatus for dirving motor of air conditioner
KR20090081914A (en) Motor controller of air conditioner
KR100926162B1 (en) Motor controller of air conditionerand method of controlling motor
CN109962659A (en) Motor drive control method, device, circuit and transducer air conditioning
JP2007029327A (en) Motor driving device of washing and drying machine
JP2014045836A (en) Drum type washing machine
KR20090044252A (en) Motor controller of air conditioner
JP2012196398A (en) Drum-type washing machine
JP2014110650A (en) Device for driving motor of washing machine
KR102343260B1 (en) Power converter and air conditioner including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090714

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4752779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees