JP4752193B2 - Solid-state image sensor - Google Patents

Solid-state image sensor Download PDF

Info

Publication number
JP4752193B2
JP4752193B2 JP2004149037A JP2004149037A JP4752193B2 JP 4752193 B2 JP4752193 B2 JP 4752193B2 JP 2004149037 A JP2004149037 A JP 2004149037A JP 2004149037 A JP2004149037 A JP 2004149037A JP 4752193 B2 JP4752193 B2 JP 4752193B2
Authority
JP
Japan
Prior art keywords
solid
photoelectric conversion
type impurity
imaging device
impurity region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004149037A
Other languages
Japanese (ja)
Other versions
JP2005332925A (en
Inventor
総一郎 糸長
正典 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004149037A priority Critical patent/JP4752193B2/en
Publication of JP2005332925A publication Critical patent/JP2005332925A/en
Application granted granted Critical
Publication of JP4752193B2 publication Critical patent/JP4752193B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体基板に複数の光電変換素子を形成したCCDイメージセンサやCMOSイメージセンサ等の固体撮像素子に関する。   The present invention relates to a solid-state imaging device such as a CCD image sensor or a CMOS image sensor in which a plurality of photoelectric conversion elements are formed on a semiconductor substrate.

最近、パーソナルコンピュータなどとともに使用される画像入力用カメラの開発が盛んになっている。これらのカメラに搭載されている固体撮像装置は、電荷結合素子(CCD ;Charge Coupled Device )を用いたCCDイメージセンサや、CMOS製造プロセスと互換性のあるCMOSイメージセンサが用いられている。
CCDイメージセンサは、画素に対応する光電変換素子(フォトダイオード)を2次元的に配列させ、光電変換素子によって電荷となった各画素の信号を、垂直転送CCD と水平転送CCDとを用いて順次読み出していくタイプのイメージセンサである。
一方、CMOSイメージセンサは、画素に対応する光電変換素子を2次元的に配列させる点ではCCDイメージセンサと同様であるが、信号の読み出しに垂直及び水平転送のCCDを使用せず、メモリデバイスのようにアルミ、銅線などで構成される選択線によって、画素毎に蓄えられた信号を、選択された画素から読み出すものである。
上記のようにCCDイメージセンサとCMOSイメージセンサは読出し方式などの異なる要素は多いが、双方ともにフォトダイオードは共通の構造である。
Recently, image input cameras used with personal computers and the like have been actively developed. A solid-state imaging device mounted on these cameras uses a CCD image sensor using a charge coupled device (CCD) or a CMOS image sensor compatible with a CMOS manufacturing process.
In the CCD image sensor, photoelectric conversion elements (photodiodes) corresponding to pixels are two-dimensionally arranged, and signals of each pixel converted into electric charges by the photoelectric conversion elements are sequentially used using a vertical transfer CCD and a horizontal transfer CCD. This is a type of image sensor that reads out.
On the other hand, a CMOS image sensor is similar to a CCD image sensor in that photoelectric conversion elements corresponding to pixels are two-dimensionally arranged. However, vertical and horizontal transfer CCDs are not used for signal readout, and As described above, a signal stored for each pixel is read out from the selected pixel by a selection line made of aluminum, copper wire, or the like.
As described above, the CCD image sensor and the CMOS image sensor have many different elements such as a readout method, but the photodiodes have a common structure in both.

次にフォトダイオード部の構造を図8を用いて説明する。
図示の例は、シリコン基板10の表層部に形成した素子分離部20の中間に、フォトダイオード部30を形成した状態を示しており、このフォトダイオード部30は、シリコン基板10の上面から深さ方向に順に、P+領域31、N+領域32、N−領域33、P−領域34の各不純物領域を形成した構造となっている(なお、ここで+及び−は、不純物濃度が他の領域と比較して濃いことと薄いことを表している)。
このような構造により、フォトダイオード部30のシリコン基板表面から発生する暗電流を低減させることができる(例えば特許文献1参照)。
そして、この領域に光を照射すれば、電子・正孔対が発生し、信号電荷(電子)は、P領域とN領域の接合部に蓄積される。
なお、蓄積できる信号電荷量の最大値を飽和信号電荷量(Qs)と呼ぶ。そして、高いQsを有するイメージセンサは、ダイナミックレンジやSN比が向上したものとなる。
したがって、イメージセンサの特性向上にとって、Qsの増加は非常に重要な要素となる。
特開2002−170945号公報
Next, the structure of the photodiode portion will be described with reference to FIG.
The illustrated example shows a state in which the photodiode portion 30 is formed in the middle of the element isolation portion 20 formed on the surface layer portion of the silicon substrate 10, and the photodiode portion 30 has a depth from the upper surface of the silicon substrate 10. Each of the impurity regions of the P + region 31, the N + region 32, the N− region 33, and the P− region 34 is formed in order in the direction (Note that, here, + and − are impurity concentrations different from those of other regions. Compared to dark and light)
With such a structure, dark current generated from the surface of the silicon substrate of the photodiode portion 30 can be reduced (see, for example, Patent Document 1).
When this region is irradiated with light, electron-hole pairs are generated, and signal charges (electrons) are accumulated at the junction between the P region and the N region.
The maximum value of the signal charge that can be accumulated is called the saturation signal charge (Qs). An image sensor having a high Qs has an improved dynamic range and SN ratio.
Therefore, an increase in Qs is a very important factor for improving the characteristics of the image sensor.
JP 2002-170945 A

ところで、飽和信号電荷量(Qs)を増加する方法としては、フォトダイオード部の面積を増加させることや、フォトダイオード部のPN接合容量C1を増加させることが考えられる。
しかし、フォトダイオード部の面積を増加させると、同じ画角(例えば2/3インチなど)で比較すると、フォトダイオード部の面積増加に伴い、イメージセンサの総画素数が減少する。
また、フォトダイオード部のPN接合容量を増加させるために、P領域とN領域の濃度を増加させると、暗電流も増加するため、PN接合容量を増加させるには限界がある。
By the way, as a method of increasing the saturation signal charge amount (Qs), it is conceivable to increase the area of the photodiode portion or increase the PN junction capacitance C1 of the photodiode portion.
However, when the area of the photodiode portion is increased, the total number of pixels of the image sensor decreases as the area of the photodiode portion increases as compared with the same angle of view (for example, 2/3 inch).
Further, if the concentration of the P region and the N region is increased in order to increase the PN junction capacitance of the photodiode portion, the dark current also increases, so there is a limit to increasing the PN junction capacitance.

そこで本発明は、光電変換素子の面積増加や不純物濃度を増加させることなく、飽和信号電荷量(Qs)を増加させて高感度を得ることが可能な固体撮像素子を提供することを目的とする。   Accordingly, an object of the present invention is to provide a solid-state imaging device capable of increasing the saturation signal charge amount (Qs) and obtaining high sensitivity without increasing the area or impurity concentration of the photoelectric conversion device. .

上述の目的を達成するため、本発明の固体撮像素子は、半導体基板に基板の上面から深さ方向に順に、P型不純物領域とN型不純物領域を設けた光電変換素子を有し、前記光電変換素子は、P型不純物領域がN型不純物領域側に突出して基板面方向及び深さ方向の3次元方向のPN接合面を形成する容量拡大部を有し、容量拡大部は、前記半導体基板の深さ方向に突出した突出部を含んで構成され、光電変換素子は複数の色成分に対応して複数配置され、光電変換素子のP型不純物領域は前記色成分の特性に対応して異なる形状を有し、色成分毎に形成される突出部は、半導体基板深さ方向に異なる位置に形成され、赤色画素に対応する光電変換素子の突出部は、青色画素に対応する光電変換素子の突出部より深い位置に形成されることを特徴とする。
In order to achieve the above object, a solid-state imaging device of the present invention includes a photoelectric conversion element in which a P-type impurity region and an N-type impurity region are provided in order from a top surface of a substrate to a semiconductor substrate. The conversion element includes a capacitance expansion portion in which a P-type impurity region protrudes toward the N-type impurity region and forms a three-dimensional PN junction surface in a substrate surface direction and a depth direction. A plurality of photoelectric conversion elements are arranged corresponding to a plurality of color components, and P-type impurity regions of the photoelectric conversion elements are different corresponding to the characteristics of the color components. The protrusions having a shape and formed for each color component are formed at different positions in the semiconductor substrate depth direction, and the protrusions of the photoelectric conversion elements corresponding to the red pixels are the protrusions of the photoelectric conversion elements corresponding to the blue pixels. Japanese to be formed at a position deeper than the projecting portion To.

本発明の固体撮像素子によれば、光電変換素子の表面に形成されるP型不純物領域に、N型不純物領域側に突出して基板面方向及び深さ方向の3次元方向のPN接合面を形成する容量拡大部を設けたことから、光電変換素子の面積増加や不純物濃度を増加させることなく、飽和信号電荷量(Qs)を増加させて高感度を得ることができる効果がある。   According to the solid-state imaging device of the present invention, a P-type impurity region formed on the surface of the photoelectric conversion device protrudes toward the N-type impurity region to form a three-dimensional PN junction surface in the substrate surface direction and the depth direction. Since the capacitance expanding portion is provided, there is an effect that the saturation signal charge amount (Qs) can be increased and high sensitivity can be obtained without increasing the area of the photoelectric conversion element or increasing the impurity concentration.

本発明の実施の形態では、イメージセンサのPN接合フォトダイオード容量形成領域をシリコン基板に対して基板面方向に形成するだけでなく、基板の深さ方向にも形成することによって信号電荷蓄積部を拡大し、信号電荷蓄積部の実効面積を増加させるようにした。なお、このフォトダイオード部の信号電荷蓄積部を拡大するために、深さ方向に突出した部分をここでは容量拡大部というものとする。
そして、この基板の深さ方向に拡大した容量拡大部から信号電荷を読出し易くするために、転送ゲートを中心にして線状に形成した容量拡大部を放射状にレイアウトしたり、転送ゲートの近くに容量拡大部をレイアウトしたり、さらには、容量拡大部のポテンシャルに傾斜を付けるようにする。
また、感度向上の目的に合わせて、最表面のP領域の深さを画素毎に変化させることで、画素毎の色感度を変化させる。
In the embodiment of the present invention, not only the PN junction photodiode capacitance forming region of the image sensor is formed in the substrate surface direction with respect to the silicon substrate, but also in the depth direction of the substrate, thereby forming the signal charge storage portion. Expanded to increase the effective area of the signal charge storage section. In order to enlarge the signal charge storage portion of the photodiode portion, a portion protruding in the depth direction is referred to as a capacitance enlargement portion here.
Then, in order to make it easy to read the signal charge from the capacitance expansion portion expanded in the depth direction of the substrate, the capacitance expansion portion formed linearly around the transfer gate is laid out radially or near the transfer gate. The capacity expansion section is laid out, and further, the potential of the capacity expansion section is inclined.
Further, the color sensitivity for each pixel is changed by changing the depth of the P region on the outermost surface for each pixel in accordance with the purpose of improving sensitivity.

図1は本発明の実施例による固体撮像素子のフォトダイオード部の構造を示す断面図である。
図示のように、シリコン基板110の表層部には素子分離部120が形成され、その中間に本実施例の特徴となるフォトダイオード部130が形成されている。
このフォトダイオード部130は、図8に示す従来例と同様に、P+領域131、N+領域132、N−領域133、P−領域134の各不純物領域をシリコン基板110に形成したものであるが、各不純物領域の形状が図8の従来例と異なる。
すなわち、基本的には、シリコン基板110の上面から深さ方向に順に、P+領域131、N+領域132、N−領域133、P−領域134が配置されているが、最上層のP+領域131の中央部は、シリコン基板110の深さ方向に突出し、N+領域132の中央部に食い込む状態で形成されている。なお、このP+領域131の下方に食い込んだ部分はフォトダイオード部におけるPN接合容量を拡大するための容量拡大部として機能するものであるが、以下の説明では、便宜上、突出部131Aとして説明する。
このようなP+領域131の突出部131Aを設けたことにより、その下層のN+領域132は突出部131Aの外周に環状に形成されている。また、突出部131Aの下端は、N−領域133の上部に接する位置まで至っている。
FIG. 1 is a cross-sectional view showing a structure of a photodiode portion of a solid-state imaging device according to an embodiment of the present invention.
As shown in the figure, an element isolation portion 120 is formed in the surface layer portion of the silicon substrate 110, and a photodiode portion 130 that is a feature of the present embodiment is formed in the middle.
As in the conventional example shown in FIG. 8, the photodiode portion 130 is formed by forming impurity regions of a P + region 131, an N + region 132, an N− region 133, and a P− region 134 on the silicon substrate 110. The shape of each impurity region is different from the conventional example of FIG.
That is, basically, the P + region 131, the N + region 132, the N− region 133, and the P− region 134 are arranged in order from the upper surface of the silicon substrate 110 to the depth direction. The central portion protrudes in the depth direction of the silicon substrate 110 and is formed so as to bite into the central portion of the N + region 132. Note that the portion biting below the P + region 131 functions as a capacitance expanding portion for expanding the PN junction capacitance in the photodiode portion, but in the following description, it will be described as the protruding portion 131A for convenience.
By providing such a protruding portion 131A of the P + region 131, the underlying N + region 132 is formed in an annular shape on the outer periphery of the protruding portion 131A. In addition, the lower end of the protruding portion 131 </ b> A reaches a position in contact with the upper portion of the N− region 133.

以上のような不純物分布を有するフォトダイオード部130では、P+領域131とN+領域132によるPN接合面の面積が基板面方向だけでなく、基板の深さ方向に広がり、3次元的な傾斜面によってPN接合の実効面積が大きくなるので、その分、PN接合容量C1〜C3が増大し、不純物濃度を増加することなく、飽和信号電荷量(Qs)を増大させることが可能となる。   In the photodiode portion 130 having the impurity distribution as described above, the area of the PN junction surface formed by the P + region 131 and the N + region 132 extends not only in the substrate surface direction but also in the substrate depth direction. Since the effective area of the PN junction is increased, the PN junction capacitances C1 to C3 are increased correspondingly, and the saturation signal charge amount (Qs) can be increased without increasing the impurity concentration.

図2は図1に示す実施例1の変形例を示す断面図である。なお、図2において図1と共通の要素については、同一符号を付して説明は省略する。
図示のように、本例では、P+領域131に複数(図示の例では3つ)の半球状の突出部131Bを設けたものである。各突出部131Bは、それぞれN+領域132側に突出しており、突出部131Aと同様に、PN接合面の拡大に寄与することで、PN接合容量を増大させ、飽和信号電荷量(Qs)を増大させるものである。
FIG. 2 is a cross-sectional view showing a modification of the first embodiment shown in FIG. 2 that are the same as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
As illustrated, in this example, a plurality of (three in the illustrated example) hemispherical protrusions 131B are provided in the P + region 131. Each protrusion 131B protrudes toward the N + region 132, and, like the protrusion 131A, contributes to the expansion of the PN junction surface, thereby increasing the PN junction capacitance and increasing the saturation signal charge amount (Qs). It is something to be made.

図3は図1に示す実施例1の他の変形例を示す断面図である。なお、図2において図1と共通の要素については、同一符号を付して説明は省略する。
図示のように、本例では、P+領域131に複数(図示の例では3つ)の棒状の突出部131Cを設けたものである。各突出部131Cは、それぞれN+領域132側に突出して貫通する状態で配置されており、突出部131Aと同様に、PN接合面の拡大に寄与することで、PN接合容量を増大させ、飽和信号電荷量(Qs)を増大させるものである。
なお、図1〜図3に示した例は、実際に作成するイメージセンサにおける各素子の構造やイオン注入等の加工技術の実情などに合わせて、都合のよい方を適宜選択して用いればよいものであり、また、図示の例以外の形状に形成することも可能である。
FIG. 3 is a sectional view showing another modification of the first embodiment shown in FIG. 2 that are the same as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
As illustrated, in this example, a plurality of (three in the illustrated example) bar-shaped protrusions 131 </ b> C are provided in the P + region 131. Each protrusion 131C is arranged in a state of protruding and penetrating to the N + region 132 side. Like the protrusion 131A, the protrusion 131C contributes to the expansion of the PN junction surface, thereby increasing the PN junction capacitance and increasing the saturation signal. The charge amount (Qs) is increased.
The examples shown in FIGS. 1 to 3 may be used by appropriately selecting the most convenient one according to the structure of each element in the image sensor actually created and the actual state of processing technology such as ion implantation. It is also possible to form in shapes other than the illustrated example.

図4は1つのフォトダイオード部130内におけるP+領域131の突出部131Bや突出部131Cの配置例を示す平面図である。図示のように、1つの画素140内に複数の突出部141を2次元アレイ上に配置し、PN接合容量を増大させ、飽和信号電荷量(Qs)を増大させることができる。
また、図5は図1に示す例におけるフォトダイオード部130と転送ゲート(TG)150との配置関係を示す平面図である。一般に、CMOSイメージセンサでは、図示のように、各画素140毎に転送ゲート150を配置し、フォトダイオード部130に蓄積した信号電荷を図示しないフローティングデフュージョン(FD)部に転送する。
そして、本例のフォトダイオード部130では、P+領域131に上述した各形状による突出部131A、131B、131Cを設けたことから、信号電荷蓄積部が基板の深部に形成されているため、できるだけ効率よく転送ゲート150によって信号電荷を転送できるようにすることが好ましい。
そこで、例えば、複数の突出部をそれぞれ基板面に沿った線状に形成し、これらを転送ゲートを中心にして放射状にレイアウトしたり、転送ゲートの近くに突出部をレイアウトしたりすることが有効である。また、突出部のポテンシャルに傾斜を付けるようにすることも有効である。
図6は一例として、複数の突出部161をそれぞれ基板面に沿った線状に形成して、その長手方向が転送ゲート150に向くように配置するとともに、各突出部161のポテンシャルを矢印aに示す方向に徐々に大きくなるように傾斜させることで、フォトダイオード部で生成した信号電荷(電子)が容易に転送ゲートに流れるようにする。
FIG. 4 is a plan view showing an arrangement example of the protrusion 131B and the protrusion 131C of the P + region 131 in one photodiode portion 130. FIG. As shown in the figure, a plurality of protrusions 141 can be arranged on a two-dimensional array in one pixel 140, the PN junction capacitance can be increased, and the saturation signal charge amount (Qs) can be increased.
FIG. 5 is a plan view showing the positional relationship between the photodiode section 130 and the transfer gate (TG) 150 in the example shown in FIG. In general, in a CMOS image sensor, a transfer gate 150 is arranged for each pixel 140 as shown in the figure, and signal charges accumulated in the photodiode unit 130 are transferred to a floating diffusion (FD) unit (not shown).
In the photodiode portion 130 of this example, since the protruding portions 131A, 131B, and 131C having the above-described shapes are provided in the P + region 131, the signal charge storage portion is formed in the deep portion of the substrate. It is preferable that the signal charges can be transferred by the transfer gate 150 well.
Therefore, for example, it is effective to form a plurality of protrusions in a line along the substrate surface and lay them out radially around the transfer gate, or to lay out the protrusions near the transfer gate. It is. It is also effective to incline the potential of the protruding portion.
FIG. 6 shows an example in which a plurality of protrusions 161 are formed in a line shape along the substrate surface and arranged such that the longitudinal direction thereof faces the transfer gate 150, and the potential of each protrusion 161 is indicated by an arrow a. By inclining so as to gradually increase in the direction shown, signal charges (electrons) generated in the photodiode portion easily flow to the transfer gate.

図は本発明の実施例2による固体撮像素子のフォトダイオード部の構造を示す断面図であり、図7(a)は青色画素のフォトダイオード部を示し、図7(b)は赤色画素のフォトダイオード部を示している。
本実施例2は、フォトダイオード部の最上部のP+領域の深さを色感度に合わせて変化させたものである。図7において、各フォトダイオード部の上には、例えば多層配線層を介してカラーフィルタ及び集光用のマイクロレンズが設けられており、入射光はカラーフィルタによって青、赤、緑の色成分に分光されて、各画素のフォトダイオード部に入射される。
また、フォトダイオード部230、240は、それぞれP+領域231、241、N+領域232、242、N−領域233、243、P−領域234、244の各不純物領域をシリコン基板210に形成したものであるが、両者のP+領域231、241は、深さが異なっている。例えば、赤色光は、シリコン基板210の深部3μm付近の領域で最も吸収されるため、この付近に電荷蓄積部を形成するように、P+領域241を深い位置に形成することにより、色感度特性を向上させることができる。
なお、本実施例においても、各フォトダイオード部230、240のP+領域231、241には突出部231A、241Aが形成されており、PN接合容量の増大を図っている。
FIGS. 7A and 7B are cross-sectional views showing the structure of the photodiode portion of the solid-state imaging device according to the second embodiment of the present invention. FIG. 7A shows the photodiode portion of the blue pixel, and FIG. The diode part is shown.
In the second embodiment, the depth of the P + region at the top of the photodiode portion is changed in accordance with the color sensitivity. In FIG. 7, a color filter and a condensing microlens are provided on each photodiode portion through, for example, a multilayer wiring layer, and incident light is converted into blue, red, and green color components by the color filter. The light is split and incident on the photodiode portion of each pixel.
The photodiode portions 230 and 240 are formed by forming impurity regions of P + regions 231 and 241, N + regions 232 and 242, N− regions 233 and 243, and P− regions 234 and 244 in the silicon substrate 210, respectively. However, both P + regions 231 and 241 have different depths. For example, since red light is absorbed most in a region near 3 μm deep in the silicon substrate 210, the color sensitivity characteristic can be improved by forming the P + region 241 at a deep position so as to form a charge storage portion in this vicinity. Can be improved.
Also in this embodiment, the protruding portions 231A and 241A are formed in the P + regions 231 and 241 of the photodiode portions 230 and 240, respectively, to increase the PN junction capacitance.

本発明の実施例による固体撮像素子のフォトダイオード部の構造を示す断面図である。It is sectional drawing which shows the structure of the photodiode part of the solid-state image sensor by the Example of this invention. 図1に示す実施例の変形例による固体撮像素子のフォトダイオード部の構造を示す断面図である。It is sectional drawing which shows the structure of the photodiode part of the solid-state image sensor by the modification of the Example shown in FIG. 図1に示す実施例の他の変形例による固体撮像素子のフォトダイオード部の構造を示す断面図である。It is sectional drawing which shows the structure of the photodiode part of the solid-state image sensor by the other modification of the Example shown in FIG. 図1に示す実施例におけるフォトダイオード部の突出部の配置例を示す平面図である。It is a top view which shows the example of arrangement | positioning of the protrusion part of the photodiode part in the Example shown in FIG. 図1に示す実施例におけるフォトダイオード部と転送ゲートの配置例を示す平面図である。FIG. 2 is a plan view showing an arrangement example of photodiode portions and transfer gates in the embodiment shown in FIG. 1. 図1に示す実施例におけるフォトダイオード部の突出部の他の配置例を示す平面図である。It is a top view which shows the other example of arrangement | positioning of the protrusion part of the photodiode part in the Example shown in FIG. 本発明の実施例2による固体撮像素子のフォトダイオード部の構造を示す断面図である。It is sectional drawing which shows the structure of the photodiode part of the solid-state image sensor by Example 2 of this invention. 従来の固体撮像素子のフォトダイオード部の構造を示す断面図である。It is sectional drawing which shows the structure of the photodiode part of the conventional solid-state image sensor.

符号の説明Explanation of symbols

110……シリコン基板、120……素子分離部、130……フォトダイオード部、131……P+領域、131A、131B、131C……突出部、132……N+領域、133……N−領域、134……P−領域。   DESCRIPTION OF SYMBOLS 110 ... Silicon substrate, 120 ... Element isolation part, 130 ... Photodiode part, 131 ... P + area | region, 131A, 131B, 131C ... Protruding part, 132 ... N + area | region, 133 ... N- area | region, 134 ... P-region.

Claims (10)

半導体基板に基板の上面から深さ方向に順に、P型不純物領域とN型不純物領域を設けた光電変換素子を有し、
前記光電変換素子は、P型不純物領域がN型不純物領域側に突出して基板面方向及び深さ方向の3次元方向のPN接合面を形成する容量拡大部を有し、前記容量拡大部は、前記半導体基板の深さ方向に突出した突出部を含んで構成され、
前記光電変換素子は複数の色成分に対応して複数配置され、前記光電変換素子のP型不純物領域は前記色成分の特性に対応して異なる形状を有し、
前記色成分毎に形成される突出部は、半導体基板深さ方向に異なる位置に形成され、
赤色画素に対応する光電変換素子の突出部は、青色画素に対応する光電変換素子の突出部より深い位置に形成される
ことを特徴とする固体撮像素子。
A semiconductor substrate having a photoelectric conversion element provided with a P-type impurity region and an N-type impurity region in the depth direction from the top surface of the substrate;
The photoelectric conversion element includes a capacitance expansion portion in which a P-type impurity region protrudes toward the N-type impurity region and forms a PN junction surface in a substrate surface direction and a depth direction, and the capacitance expansion portion includes: It is configured to include a protruding portion protruding in the depth direction of the semiconductor substrate,
A plurality of the photoelectric conversion elements are arranged corresponding to a plurality of color components, and the P-type impurity regions of the photoelectric conversion elements have different shapes corresponding to the characteristics of the color components,
The protrusions formed for each color component are formed at different positions in the semiconductor substrate depth direction ,
The solid-state imaging device , wherein the protruding portion of the photoelectric conversion element corresponding to the red pixel is formed at a deeper position than the protruding portion of the photoelectric conversion element corresponding to the blue pixel .
前記N型不純物領域が上層に形成されるN+型不純物領域と、下層に形成され、前記N+形不純物領域よりも低濃度のN−型不純物領域とを含むことを特徴とする請求項に記載の固体撮像素子。 And the N + -type impurity region where the N-type impurity region is formed in the upper layer, is formed on the lower layer, than the N + form impurity regions in claim 1, characterized in that it comprises a lower concentration of N- type impurity regions The solid-state imaging device described. 前記N型不純物領域の下層にさらに、前記PN接合を構成するP形不純物領域よりも低濃度のP−型不純物領域を設けたことを特徴とする請求項1又は2に記載の固体撮像素子。 3. The solid-state imaging device according to claim 1, wherein a P − type impurity region having a lower concentration than the P type impurity region constituting the PN junction is further provided below the N type impurity region. 前記突出部は、前記半導体基板の深さ方向に略球面状に突出して形成されていることを特徴とする請求項1〜3のいずれか一項に記載の固体撮像素子。 The protrusion, the solid-state imaging device according to any one of claims 1 to 3, characterized in that it is formed to protrude in a substantially spherical shape in the depth direction of the semiconductor substrate. 前記突出部は、前記半導体基板の深さ方向に略棒状に突出して形成されていることを特徴とする請求項1〜3のいずれか一項に記載の固体撮像素子。 The protrusion, the solid-state imaging device according to any one of claims 1 to 3, characterized in that it is formed to protrude substantially rod shape in the depth direction of the semiconductor substrate. 前記容量拡大部が半導体基板の深さ方向に突出し、かつ、突出部は、半導体基板面に沿って線状に形成されていることを特徴とする請求項1〜3のいずれか一項に記載の固体撮像素子。 The capacity expansion portion protrudes in the depth direction of the semiconductor substrate, and protrusions described it to any one of claims 1 to 3, characterized in that is formed in a linear shape along the semiconductor substrate surface Solid-state image sensor. 1つの前記光電変換素子について複数の容量拡大部を設けたことを特徴とする請求項1〜6のいずれか一項に記載の固体撮像素子。 The solid-state imaging device according to any one of claims 1 to 6, characterized in that a plurality of capacity expansion portion for one of said photoelectric conversion elements. 前記複数の容量拡大部が光電変換部の信号電荷を読み出すための転送ゲートに対して放射状に配置されていることを特徴とする請求項記載の固体撮像素子。 The solid-state image pickup device according to claim 7, wherein the plurality of capacitance expansion units are arranged radially with respect to a transfer gate for reading signal charges of the photoelectric conversion unit. 前記容量拡大部のポテンシャルが光電変換部の信号電荷を読み出すための転送ゲートに向かって傾斜していることを特徴とする請求項1〜8のいずれか一項に記載の固体撮像素子。 9. The solid-state imaging device according to claim 1, wherein the potential of the capacity expanding portion is inclined toward a transfer gate for reading a signal charge of the photoelectric conversion unit. 前記容量拡大部が光電変換部の信号電荷を読み出すための転送ゲートに近接して配置されていることを特徴とする請求項1〜9のいずれか一項に記載の固体撮像素子。 10. The solid-state imaging device according to claim 1, wherein the capacitance expansion unit is disposed in proximity to a transfer gate for reading signal charges of the photoelectric conversion unit.
JP2004149037A 2004-05-19 2004-05-19 Solid-state image sensor Expired - Fee Related JP4752193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004149037A JP4752193B2 (en) 2004-05-19 2004-05-19 Solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004149037A JP4752193B2 (en) 2004-05-19 2004-05-19 Solid-state image sensor

Publications (2)

Publication Number Publication Date
JP2005332925A JP2005332925A (en) 2005-12-02
JP4752193B2 true JP4752193B2 (en) 2011-08-17

Family

ID=35487368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004149037A Expired - Fee Related JP4752193B2 (en) 2004-05-19 2004-05-19 Solid-state image sensor

Country Status (1)

Country Link
JP (1) JP4752193B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7633134B2 (en) 2005-12-29 2009-12-15 Jaroslav Hynecek Stratified photodiode for high resolution CMOS image sensor implemented with STI technology
KR100790224B1 (en) 2005-12-29 2008-01-02 매그나칩 반도체 유한회사 Stratified photo-diode for high resolution cmos image sensors implemented in sti technology
JP4396684B2 (en) 2006-10-04 2010-01-13 ソニー株式会社 Method for manufacturing solid-state imaging device
JP5192277B2 (en) 2008-04-14 2013-05-08 シャープ株式会社 Method for manufacturing solid-state imaging device
JP4798205B2 (en) 2008-10-23 2011-10-19 ソニー株式会社 Solid-state imaging device, manufacturing method thereof, and imaging device
JP5195864B2 (en) * 2010-10-13 2013-05-15 ソニー株式会社 Solid-state imaging device, manufacturing method thereof, and imaging device
JP2015012074A (en) 2013-06-27 2015-01-19 株式会社東芝 Solid state image pickup device and solid state image pickup device manufacturing method
JP2015035449A (en) 2013-08-07 2015-02-19 株式会社東芝 Solid-state imaging device and method of manufacturing solid-state imaging device
JP6396775B2 (en) * 2014-12-03 2018-09-26 ルネサスエレクトロニクス株式会社 Imaging device
JP6706481B2 (en) 2015-11-05 2020-06-10 ソニーセミコンダクタソリューションズ株式会社 Image sensor
JP7121468B2 (en) * 2017-02-24 2022-08-18 ブリルニクス シンガポール プライベート リミテッド Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic device
JP2021027185A (en) * 2019-08-06 2021-02-22 ローム株式会社 Optical semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227989A (en) * 1995-02-21 1996-09-03 Sony Corp Solid state image pickup element
JPH1140794A (en) * 1997-07-15 1999-02-12 Sony Corp Solid-state imaging device and manufacture thereof
JP2000031451A (en) * 1998-07-13 2000-01-28 Toshiba Corp Solid-state image-pickup device and its manufacture
KR100399951B1 (en) * 1998-12-30 2003-12-18 주식회사 하이닉스반도체 method for fabricating image sensor

Also Published As

Publication number Publication date
JP2005332925A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
JP5864990B2 (en) Solid-state imaging device and camera
JP3702854B2 (en) Solid-state image sensor
JP5967944B2 (en) Solid-state imaging device and camera
JP5441986B2 (en) Solid-state imaging device and camera
TWI416717B (en) Multilayer image sensor pixel structure for reducing crosstalk
JP5230058B2 (en) Solid-state imaging device and camera
JP4413940B2 (en) Solid-state image sensor, single-plate color solid-state image sensor, and electronic device
WO2011004708A1 (en) Solid state imaging element
JP6406585B2 (en) Imaging device
JP2006245499A5 (en)
JP2013069846A (en) Solid-state imaging device
JP4752193B2 (en) Solid-state image sensor
JP2009510777A (en) Photodetector and N-type layer structure for improved collection
US9773833B2 (en) Photoelectric conversion apparatus and camera
US8773559B2 (en) Solid-state imaging device and method of manufacturing the same, and imaging apparatus
WO2006038353A1 (en) Solid-state image pickup device
KR101373905B1 (en) Solid-state imaging device
US20070069260A1 (en) Photodetector structure for improved collection efficiency
CN102723349A (en) CMOS (Complementary Metal-Oxide-Semiconductor Transistor) image sensor with isolation layer and manufacturing method thereof
JP2005209695A (en) Solid-state image sensing device and its manufacturing method
JP2011108824A (en) Solid-state image pickup element
JP5195864B2 (en) Solid-state imaging device, manufacturing method thereof, and imaging device
JP2009088545A (en) Solid-state image pick-up device
JP2010129735A (en) Solid-state imaging element
JP6178835B2 (en) Solid-state imaging device and camera

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070320

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees