JP4750923B2 - Manufacturing method of sputtering target - Google Patents

Manufacturing method of sputtering target Download PDF

Info

Publication number
JP4750923B2
JP4750923B2 JP2000127510A JP2000127510A JP4750923B2 JP 4750923 B2 JP4750923 B2 JP 4750923B2 JP 2000127510 A JP2000127510 A JP 2000127510A JP 2000127510 A JP2000127510 A JP 2000127510A JP 4750923 B2 JP4750923 B2 JP 4750923B2
Authority
JP
Japan
Prior art keywords
sputtering target
phase
platinum
magnetic disk
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000127510A
Other languages
Japanese (ja)
Other versions
JP2001303241A (en
Inventor
和照 加藤
渡辺  弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2000127510A priority Critical patent/JP4750923B2/en
Publication of JP2001303241A publication Critical patent/JP2001303241A/en
Application granted granted Critical
Publication of JP4750923B2 publication Critical patent/JP4750923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、優れた磁気特性を有する磁気ディスク等を製造するためのスパッタリングターゲットの製造方法に関し、より詳細には主相と析出相から成る合金を熱処理して両相の組成を変化させる、特に両相の組成を互いに近づけ、両相を実質的に平衡状態に維持するようにしたスパッタリングターゲットを製造する方法に関する。
【0002】
【従来の技術】
磁気ディスクへの高速処理及び大容量化の要求は年を追うごとに厳しくなっており、場合によっては四半期毎にモデルが変わる勢いである。
今般の電子機器製品の隆盛の一助として前記磁気ディスク等の高品質化が挙げられる。該磁気ディスクを初めとするスパッタリングにより製造される製品の品質は、成膜条件、組成、膜厚、膜構造、基板材料等により大きく影響されることが知られている。
しかしながらスパッタリングで使用するターゲット材料が磁気ディスクの磁気特性に影響を及ぼすか否かに関しては殆ど知見がなく、どのようなスパッタリングターゲットが高品質の磁気ディスクの原料と成り得るかに関しては定見が存在しない。
【0003】
【発明が解決しようとする課題】
スパッタリングターゲット用材料として汎用されている合金として、Co−Cr−Pt−Ta合金があり、中でも典型的な磁気ディスクとして使用されるCo(72)−Cr(16)−Pt(8)−Ta(4)合金の金属組織写真を図9に示す(以下この熱処理を行っていない合金を現状品という)。図9から、該合金の金属組織は、灰色のコバルトを主成分とする主相と白色の白金及びタンタルが濃化した析出相の2相構造を採っていることが分かる。従来は前記析出相を細かく分散させることが高品質ターゲット材料に繋がると理解されていたが、実証されていなかった。
【0004】
2元状態図ではコバルト−クロム及びコバルト−白金はいずれも固溶系で、コバルト−タンタルは非固溶系である。組成比から見ると現状品はコバルト主相とCo3 Taを基本構造とする2相組織となっており、コバルト主相中のタンタル濃度は3.0 原子%である。
本発明者等は、この現状品に対して処理又は加工を行って、該現状品を用いて磁気ディスクを作製し、その磁気特性に及ぼす影響について検討した。
従って本発明は、高品質の磁気ディスク等を製造できるスパッタリングターゲットの製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、主相と析出相を有するCo−Cr−Pt−X(ここでXは、Ta、B、Nb及びCuから成る群から選択される1種又は2種以上である)合金を、10時間以上、1000〜1250℃の温度で、高温熱処理して、主相と析出相とを互いに平衡状態にすることを特徴とするスパッタリングターゲットの製造方法である。
【0006】
以下本発明を詳細に説明する。
本発明は、主相と析出相から成る粗合金を比較的長時間熱処理することを特徴とする。該熱処理により主相と析出相の組成が平衡状態又はそれに近い状態に近づいたスパッタリングターゲットを製造でき、これを用いることで高品質の磁気ディスクを製造することができる。本発明で「平衡」とは主相及び析出相の組成が変化しなくなること又はそれに近い状態になることをいう。
換言すると、従来の認識のように析出相を主相中に細かく分散するのではなく、主相と析出相から成る合金の高温熱処理により、析出相を極力減らして主相に近づけ、両相を実質的な平衡状態に導くことにより、高品質のスパッタリングターゲットが得られることが分かった。この結果、主要なスパッタリングターゲットのあるCo−Cr−Pt−Ta合金の場合、長時間熱処理により主相中のタンタル濃度が平衡固溶限界まで上昇する。又タンタルを含む場合も含まない場合も、熱処理を行うことにより主相中の白金濃度が上昇して、これらの濃度上昇が保磁力の向上に大きく寄与する。
【0007】
白金はスパッタリングターゲットの主相と析出相に存在し、それぞれの相に存在する白金が該ターゲットからスパッタリングされる際の方位分布の差が形成される磁気ディスク等の合金膜中に濃度差を生じさせると考えられる。スパッタリングの主相と析出相の白金量をコントロールすることで、最適な膜組成及び組成分布の合金膜を作製できると考えられる。この点は白金以外のタンタルに関しても同様であり、更に本発明においてXとして定義されるタンタル以外の硼素、ネオジム及び銅に関しても同様であると推測できる。
本発明方法により製造されるスパッタリングターゲットは、任意のスパッタリング操作に使用できるが、最も有用な用途は電子機器等に使用される磁気ディスクである。従ってここではスパッタリングターゲットの性質を改良することにより、磁気ディスクの静磁気特性が向上することについて説明する。
【0008】
良好な磁気特性を有する磁気ディスクとは、第1に磁気特性の面内分布の不均一性が小さいことであり、第2により高い保磁力(Hc)と、限りなく1に近い保磁力角型比(S*)を有することであり、
加熱処理を行ったスパッタリングターゲットを使用して作製される磁気ディスクの保磁力は加熱処理を行わないスパッタリングターゲットを使用して作製される磁気ディスクの保磁力より約200 Oe高く、又前者の保磁力角型比は後者の保磁力角型比より約0.08だけ1に近づいており、磁気ディスクの磁気特性の良否の指標となる保磁力及び保磁力角型比のいずれもが、加熱処理を行ったスパッタリングターゲットを使用することにより向上するという顕著な効果が生ずる。
【0009】
又加熱処理を行ったスパッタリングターゲットを使用して作製される磁気ディスクはその面内保磁力と面内白金(存在する場合は、タンタル、硼素、ネオジム及び銅も含む)濃度の分布がほぼ均一になり、これが磁気特性の向上の一助になると推測できる。
本発明方法で使用されるスパッタリングターゲットは、Co−Cr−Pt−Xで示されるコバルト合金から成り、Xは、Ta、B、Nb及びCuから選択される1種又は2種以上で、Taであることが最も望ましく、この他に、Ta+BやNb又はCuが好ましく使用でき、具体的には、例えばCo−Cr−Pt−Ta、Co−Cr−Pt−B、Co−Cr−Pt−Nb、Co−Cr−Pt−Cu及びCo−Cr−Pt−Ta−Bなどがある。
【0010】
加熱処理の条件は前述した磁気特性の発現を効果的に行える範囲で選択すれば良いが、通常は1000〜1250℃、好ましくは1100〜1250℃、より好ましくは1200〜1250℃で行う。熱処理時間は長いほど望ましく、10時間以上、好ましくは20時間以上である。
本発明の熱処理では条件に依っては主相と析出相間にほぼ完全な平衡状態が生ずる場合と平衡に近づくだけで完全な平衡に達しない場合がある。後者の場合には例えば熱処理後に再結晶温度以下で加熱する温間加工を施すことにより、完全な平衡状態とするか、より平衡状態に近づけることができる。
【0011】
【発明の実施の形態】
次に本発明方法によるスパッタリングターゲットの製造に関する実施例を説明する。なお以下の実施例におけるスパッタリングターゲットの評価のうち、金属組織評価は粒径観察に光学顕微鏡を、組織観察にSEMを用いた。組成測定はEPMAにより行った。
【0012】
実施例1
既知の方法でCo(72)−Cr(16)−Pt(8)−Ta(4)の組成を有するコバルト合金から成る直径約20cmのスパッタリングターゲットを作製した。
このスパッタリングターゲットを1250℃で36時間熱処理し、熱処理後のスパッタリングターゲットのSEM組成像(倍率1000倍)を図1に示した。図1の灰色の部分が主相、白く見える部分が析出相であり、図1と図9を比較すると分かるように熱処理により析出相の量が減少して単相化が進んでいることが分かる。
又加熱処理前(現状品)と加熱処理後(長時間熱処理品)のスパッタリングターゲットの主相及び析出相の組成を表1に纏めた。
【0013】
表1の現状品と長時間熱処理品の白金及びタンタルの含有量を比較すると、熱処理により析出相中の白金及びタンタルが大きく減少して(白金は20.7原子%から12.6原子%に減少し、タンタルは19.3原子%から7.4原子%に減少した)、主相中の白金及びタンタルが増加して(白金は7.7原子%から8.2原子%に増加し、タンタルは3.0原子%から3.3原子%に増加した)いることが分かる。これは熱処理により主相と析出相の白金及びタンタル含有量の差異が小さくなって、両相が衡状態に達したか、近づいたことを意味している。
【0014】
【表1】

Figure 0004750923
【0015】
次にこの長時間熱処理品及び現状品のスパッタリングターゲットを使用して、それぞれ4個ずつの直径65mmのMKP製結晶化ガラス基板にコバルト合金をスパッタリングして磁気ディスクとした。得られた磁気ディスクのコバルト合金層の厚さは120 Å、145 Å、200 Å及び230 Å(長時間熱処理品)及び105 Å、125 Å、170 Å及び225 Å(現状品)であった。
それぞれの磁気ディスクから切出した合金膜のそれぞれの磁気ディスクの中心から半径20mmの位置における膜厚と保磁力(Hc)の関係をVSMを使用して測定し、図2に示す関係(保磁力の膜厚依存性)が得られた。
【0016】
図2から測定範囲内の膜厚では、長時間熱処理品の方が現状品より優れた保磁力(約200 Oe)を示したことが分かる。
又同一の磁気ディスクの中心から半径20mmの位置における膜厚と保磁力角型比(S*)の関係を測定し、図3に示す関係(保磁力角型比の膜厚依存性)が得られた。
図3から測定範囲内の膜厚では、長時間熱処理品の方が現状品より約0.08だけ1に近い保磁力角型比を有していたことが分かる。
【0017】
次に両磁気ディスクの保磁力の分布を測定した。長時間熱処理し又はしていないスパッタリングターゲットから作製した両磁気ディスクの基板上のコバルト合金の基板中心から14mm、21mm及び28mmの地点での保磁力を測定した結果を図4に示す。
図4から現状品では14mmと28mmの地点間では200 Oe程度の保磁力の差異があるのに対し、長時間熱処理品ではその差異が80Oeまで減少していることが観察され、磁気特性の面内分布がより均一になっていることが分かる。
次いで同じく両磁気ディスクのコバルト合金中の白金濃度の分布を測定した。両磁気ディスク上のコバルト合金の基板中心から10mm、20mm、30mm及び40mmの地点での白金濃度を測定した結果を図5に示す。
【0018】
図5から現状品では特に基板中心に近い10mmの地点での白金濃度が約8.5 原子%と高く、一方基板中心から遠い40mmの地点での白金濃度は約7.6 原子%と低く、その差は約0.9 原子%である。これに対し、長時間熱処理品では基板中心に近い10mmの地点での白金濃度が約8.3 原子%で基板中心から遠い40mmの地点での白金濃度が約7.7 原子%で、その差は約0.6 原子%で、現状品の白金濃度差より約0.3 原子%低くなっており、長時間熱処理品の白金濃度の面内分布がより均一になっていることが分かる。
又基板中心から20mm及びそれより遠い地点での白金濃度が約0.1 〜0.3 原子%だけ長時間熱処理品の方が高くなっており、白金濃度と保磁力がほぼ比例するという従来の知見が確認できた。
【0019】
実施例2
Co(72)−Cr(16)−Pt(8)−Ta(4)の組成を有するコバルト合金から成るスパッタリングターゲットを7個作製した。
各スパッタリングターゲット計7個を1225℃で、それぞれ0、4、5、8、10、12、23、36及び50時間掛けて加熱処理した。
このように作製した各スパッタリングターゲットのコバルト合金中のタンタル濃度は、順に3.2 原子%、3.5 原子%、3.5 原子%、3.6 原子%,3.6 原子%、3.7 原子%、3.7 原子%及び3.7 原子%であった。この加熱時間とタンタル濃度の関係を図6に示した。
【0020】
又前記計7個のスパッタリングターゲットを使用して実施例1と同様にして磁気ディスクを作製した。各磁気ディスクの保磁力とコバルト合金膜中の白金濃度の関係を測定し、図7のグラフに測定結果を纏めた。
図7から、膜中の白金濃度と保磁力がほぼ比例することが分かる。
【0021】
実施例3
タンタル(Ta)を硼素(B)に代えたこと以外は実施例1と同様にして磁気ディスクを作製し、現状品と長時間熱処理品の両磁気ディスクのコバルト合金の基板中心から14mm、21mm及び28mmの地点での保磁力を測定した。その結果を図8に示す。
図8から14mmと21mmの地点での保磁力は現状品と長時間熱処理品では殆ど差がなかったが、28mmの地点での保磁力は現状品の方が約100 Oe高かった。保磁力の分布の均一化の面から長時間熱処理品の方が優れていることが分かる。
【0022】
【発明の効果】
本発明方法は、主相と析出相を有するCo−Cr−Pt−X(ここでXは、Ta、B、Nb及びCuから成る群から選択される1種又は2種以上である)合金を、10時間以上、1000〜1250℃の温度で、高温熱処理して、主相と析出相とを互いに平衡状態にすることを特徴とするスパッタリングターゲットの製造方法(請求項1)である。
前記コバルト合金の熱処理を行うと、析出相中の白金やXの濃度が減少して主相中の白金やXの濃度に近付き、該コバルト合金中の主相と析出相とが互いに平衡状態又はそれに近い状態になる。このように平衡状態になったスパッタリングターゲットはトップレベルの品質を有し、該スパッタリングターゲットを使用して作製される磁気ディスク等もトップレベルの性能を有することになる。
【図面の簡単な説明】
【図1】実施例1における長時間熱処理後のコバルト合金の表面構造を示す1000倍の走査電子顕微鏡写真。
【図2】実施例1における長時間熱処理し又はしていないコバルト合金ターゲットを用いて成膜した磁気ディスクのコバルト合金層の膜厚と保磁力の関係を示すグラフ。
【図3】実施例1における長時間熱処理し又はしていないコバルト合金ターゲットを用いて成膜した磁気ディスクのコバルト合金層の膜厚と保磁力角型比の関係を示すグラフ。
【図4】実施例1における長時間熱処理し又はしていないコバルト合金ターゲットを用いて成膜した磁気ディスクのコバルト合金層の基板中心からの距離と保磁力の関係を示すグラフ。
【図5】実施例1における長時間熱処理し又はしていないコバルト合金ターゲットを用いて成膜した磁気ディスクのコバルト合金層の基板中心からの距離と白金濃度の関係を示すグラフ。
【図6】実施例2における加熱時間とコバルト合金中のタンタル濃度の関係を示すグラフ。
【図7】実施例2におけるコバルト合金中の白金濃度と保磁力の関係を示すグラフ。
【図8】実施例3における長時間熱処理し又はしていないコバルト合金の基板中心からの距離と保磁力の関係を示すグラフ。
【図9】従来の熱処理を行っていないコバルト合金スパッタリングターゲットの表面構造を示す1000倍の走査電子顕微鏡写真。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a sputtering target for producing a magnetic disk or the like having excellent magnetic properties, and more particularly, an alloy composed of a main phase and a precipitated phase is heat-treated to change the composition of both phases. The present invention relates to a method for manufacturing a sputtering target in which the compositions of both phases are brought close to each other and both phases are maintained in a substantially equilibrium state.
[0002]
[Prior art]
The demand for high-speed processing and large capacity for magnetic disks has become stricter as the year progresses, and in some cases, the model is changing every quarter.
As an aid to the prosperity of recent electronic equipment products, it is possible to improve the quality of the magnetic disk and the like. It is known that the quality of products manufactured by sputtering including the magnetic disk is greatly influenced by film forming conditions, composition, film thickness, film structure, substrate material, and the like.
However, little is known about whether the target material used in sputtering affects the magnetic properties of a magnetic disk, and there is a consensus on what kind of sputtering target can be a raw material for high-quality magnetic disks. do not do.
[0003]
[Problems to be solved by the invention]
Co-Cr-Pt-Ta alloys are widely used as materials for sputtering targets. Among them, Co (72) -Cr (16) -Pt (8) -Ta ( 4) A metallographic photograph of the alloy is shown in FIG. 9 (hereinafter, the alloy that has not been heat-treated is referred to as the current product). FIG. 9 shows that the metal structure of the alloy has a two-phase structure of a main phase mainly composed of gray cobalt and a precipitated phase enriched in white platinum and tantalum. Conventionally, it has been understood that finely dispersing the precipitated phase leads to a high-quality target material, but it has not been demonstrated.
[0004]
In the binary phase diagram, both cobalt-chromium and cobalt-platinum are solid solution systems, and cobalt-tantalum is a non-solid solution system. Viewed from the composition ratio, the current product has a two-phase structure having a cobalt main phase and Co 3 Ta as a basic structure, and the tantalum concentration in the cobalt main phase is 3.0 atomic%.
The inventors of the present invention processed or processed the current product, produced a magnetic disk using the current product, and examined the influence on the magnetic characteristics.
Accordingly, an object of the present invention is to provide a sputtering target manufacturing method capable of manufacturing a high-quality magnetic disk or the like.
[0005]
[Means for Solving the Problems]
The present invention relates to a Co—Cr—Pt—X alloy (where X is one or more selected from the group consisting of Ta, B, Nb and Cu) having a main phase and a precipitated phase. It is a method for producing a sputtering target, characterized in that the main phase and the precipitated phase are brought into equilibrium with each other by high-temperature heat treatment at a temperature of 1000 to 1250 ° C. for 10 hours or more.
[0006]
The present invention will be described in detail below.
The present invention is characterized in that a crude alloy comprising a main phase and a precipitated phase is heat-treated for a relatively long time. By this heat treatment, it is possible to produce a sputtering target in which the composition of the main phase and the precipitated phase approaches an equilibrium state or a state close thereto, and a high quality magnetic disk can be produced by using this sputtering target. In the present invention, “equilibrium” means that the compositions of the main phase and the precipitated phase are not changed or become close to each other.
In other words, rather than finely dispersing the precipitated phase in the main phase as in the conventional recognition, the high temperature heat treatment of the alloy consisting of the main phase and the precipitated phase reduces the precipitated phase as close as possible to the main phase. It has been found that high quality sputtering targets can be obtained by leading to a substantially equilibrium state. As a result, in the case of a Co—Cr—Pt—Ta alloy having a main sputtering target, the tantalum concentration in the main phase rises to the equilibrium solid solution limit by long-time heat treatment. In addition, with or without tantalum, the platinum concentration in the main phase is increased by heat treatment, and the increase in these concentrations greatly contributes to the improvement of the coercive force.
[0007]
Platinum exists in the main phase and the precipitation phase of the sputtering target, and a difference in concentration occurs in the alloy film such as a magnetic disk in which a difference in orientation distribution is formed when platinum existing in each phase is sputtered from the target. It is thought to let you. It is considered that an alloy film having an optimum film composition and composition distribution can be produced by controlling the amounts of platinum in the main phase and the precipitated phase of sputtering. This is the same for tantalum other than platinum, and it can be presumed that the same applies to boron, neodymium and copper other than tantalum defined as X in the present invention.
The sputtering target produced by the method of the present invention can be used for any sputtering operation, but the most useful application is a magnetic disk used for electronic equipment and the like. Therefore, it will be described here that the magnetostatic characteristics of the magnetic disk are improved by improving the properties of the sputtering target.
[0008]
A magnetic disk having good magnetic properties is that first, the non-uniformity of the in-plane distribution of magnetic properties is small. Second, it has a higher coercive force (Hc) and a coercive force square type that is almost as close to 1. Having a ratio (S *),
The coercivity of a magnetic disk produced using a heat-treated sputtering target is about 200 Oe higher than the coercivity of a magnetic disk produced using a non-heat-treated sputtering target. The squareness ratio is closer to 1 by about 0.08 than the latter coercivity squareness ratio, and both the coercivity and the coercivity squareness ratio, which are indicators of the quality of the magnetic characteristics of the magnetic disk, were heat-treated. By using a sputtering target, there is a remarkable effect of improvement.
[0009]
In addition, the magnetic disk produced using a heat-treated sputtering target has a substantially uniform distribution of in-plane coercive force and in-plane platinum (including tantalum, boron, neodymium and copper, if present) concentrations. Thus, it can be estimated that this helps to improve the magnetic properties.
The sputtering target used in the method of the present invention is made of a cobalt alloy represented by Co—Cr—Pt—X, where X is one or more selected from Ta, B, Nb and Cu, and is Ta. In addition, Ta + B, Nb, or Cu can be preferably used. Specifically, for example, Co—Cr—Pt—Ta, Co—Cr—Pt—B, Co—Cr—Pt—Nb, There are Co-Cr-Pt-Cu and Co-Cr-Pt-Ta-B.
[0010]
The conditions for the heat treatment may be selected within a range in which the above-described magnetic characteristics can be effectively expressed, but is usually 1000 to 1250 ° C, preferably 1100 to 1250 ° C, more preferably 1200 to 1250 ° C. The heat treatment time is longer desirable, 10 hours or more, the good Mashiku not less than 20 hours.
In the heat treatment of the present invention, depending on the conditions, there is a case where an almost complete equilibrium state occurs between the main phase and the precipitated phase, and there are cases where the equilibrium is only reached and the complete equilibrium is not reached. In the latter case, for example, by performing warm processing after heating at a temperature lower than the recrystallization temperature, it can be brought into a completely equilibrium state or closer to an equilibrium state.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, examples relating to the production of the sputtering target by the method of the present invention will be described. In addition, among the evaluation of the sputtering target in the following examples, metal structure evaluation used an optical microscope for particle diameter observation and SEM for structure observation. The composition was measured by EPMA.
[0012]
Example 1
A sputtering target having a diameter of about 20 cm made of a cobalt alloy having a composition of Co (72) -Cr (16) -Pt (8) -Ta (4) was produced by a known method.
This sputtering target was heat-treated at 1250 ° C. for 36 hours, and the SEM composition image (1000 times magnification) of the sputtering target after the heat treatment is shown in FIG. The gray portion in FIG. 1 is the main phase and the white portion is the precipitated phase. As can be seen from a comparison between FIG. 1 and FIG. 9, it can be seen that the amount of the precipitated phase is reduced by heat treatment and the single phase is progressing. .
Table 1 shows the composition of the main phase and the precipitated phase of the sputtering target before the heat treatment (current product) and after the heat treatment (long-time heat treated product).
[0013]
Comparing the contents of platinum and tantalum in the current product in Table 1 and the long-time heat-treated product, platinum and tantalum in the precipitated phase were greatly reduced by the heat treatment (Platinum from 20.7 atomic% to 12.6 atomic%) Decreased, tantalum decreased from 19.3 atomic% to 7.4 atomic%), platinum and tantalum in the main phase increased (platinum increased from 7.7 atomic% to 8.2 atomic%, It can be seen that tantalum has increased from 3.0 atomic% to 3.3 atomic%). This means that smaller differences platinum and tantalum content of the main phase and precipitated phase by heat treatment, or both phases has reached equilibrium state, which approached.
[0014]
[Table 1]
Figure 0004750923
[0015]
Next, using this long-time heat treatment product and the current product sputtering target, cobalt alloys were sputtered onto four MKP crystallized glass substrates each having a diameter of 65 mm to obtain a magnetic disk. The thicknesses of the cobalt alloy layers of the obtained magnetic disks were 120 mm, 145 mm, 200 mm and 230 mm (long-time heat treated products) and 105 mm, 125 mm, 170 mm and 225 mm (current products).
The relationship between the film thickness and the coercive force (Hc) of the alloy film cut out from each magnetic disk at a radius of 20 mm from the center of each magnetic disk was measured using VSM, and the relationship shown in FIG. Film thickness dependence) was obtained.
[0016]
From FIG. 2, it can be seen that, for the film thickness within the measurement range, the long-time heat treated product showed better coercivity (about 200 Oe) than the current product.
In addition, the relationship between the film thickness and the coercivity squareness ratio (S *) at a radius of 20 mm from the center of the same magnetic disk was measured, and the relationship shown in FIG. 3 (the film thickness dependence of the coercivity squareness ratio) was obtained. It was.
From FIG. 3, it can be seen that for the film thickness within the measurement range, the long-time heat treated product had a coercivity squareness ratio close to 1 by about 0.08 than the current product.
[0017]
Next, the distribution of coercive force of both magnetic disks was measured. FIG. 4 shows the results of measuring the coercive force at points of 14 mm, 21 mm, and 28 mm from the center of the cobalt alloy on the substrates of both magnetic disks prepared from sputtering targets that were not heat-treated for a long time.
It can be seen from FIG. 4 that the current product has a difference in coercive force of about 200 Oe between the 14 mm and 28 mm points, whereas the long-time heat treated product has a difference reduced to 80 Oe. It can be seen that the internal distribution is more uniform.
Subsequently, the distribution of platinum concentration in the cobalt alloy of both magnetic disks was also measured. FIG. 5 shows the results of measuring platinum concentrations at 10 mm, 20 mm, 30 mm and 40 mm from the center of the substrate of the cobalt alloy on both magnetic disks.
[0018]
Figure 5 shows that the current product has a high platinum concentration of about 8.5 atomic percent at a point 10mm close to the center of the substrate, while the platinum concentration is low at about 7.6 atomic percent at a point of 40mm far from the substrate center. 0.9 atomic percent. In contrast, the long-time heat-treated product has a platinum concentration of about 8.3 atom% at a point 10 mm close to the center of the substrate and a platinum concentration of about 7.7 atom% at a point 40 mm far from the center of the substrate, the difference being about 0.6 atom. %, Which is about 0.3 atomic% lower than the difference in platinum concentration of the current product, indicating that the in-plane distribution of platinum concentration of the long-time heat treated product is more uniform.
In addition, the platinum concentration at a point 20 mm away from the center of the substrate and the heat treatment product for a long time by about 0.1 to 0.3 atomic% is higher, and the conventional knowledge that the platinum concentration and the coercive force are almost proportional can be confirmed. It was.
[0019]
Example 2
Seven sputtering targets made of a cobalt alloy having the composition Co (72) -Cr (16) -Pt (8) -Ta (4) were produced.
A total of seven sputtering targets were heated at 1225 ° C. for 0, 4, 5, 8, 10, 12, 23, 36, and 50 hours, respectively.
The tantalum concentration in the cobalt alloy of each sputtering target prepared in this way is 3.2 atomic%, 3.5 atomic%, 3.5 atomic%, 3.6 atomic%, 3.6 atomic%, 3.7 atomic%, 3.7 atomic%, and 3.7 atomic% in this order. there were. The relationship between the heating time and the tantalum concentration is shown in FIG.
[0020]
In addition, a magnetic disk was manufactured in the same manner as in Example 1 by using a total of seven sputtering targets. The relationship between the coercivity of each magnetic disk and the platinum concentration in the cobalt alloy film was measured, and the measurement results are summarized in the graph of FIG.
FIG. 7 shows that the platinum concentration in the film and the coercive force are almost proportional.
[0021]
Example 3
A magnetic disk was manufactured in the same manner as in Example 1 except that tantalum (Ta) was replaced with boron (B), and 14 mm, 21 mm from the center of the cobalt alloy substrate of both the current product and the long-time heat treated product. The coercive force at a point of 28 mm was measured. The result is shown in FIG.
From FIG. 8, the coercive force at the 14 mm and 21 mm points was almost the same between the current product and the long-time heat treated product, but the coercive force at the 28 mm point was about 100 Oe higher at the current product. It can be seen that the heat-treated product for a long time is superior in terms of the uniform distribution of the coercive force.
[0022]
【The invention's effect】
The method of the present invention uses a Co—Cr—Pt—X alloy (where X is one or more selected from the group consisting of Ta, B, Nb and Cu) having a main phase and a precipitated phase. A sputtering target manufacturing method characterized in that a main phase and a precipitated phase are brought into equilibrium with each other by high-temperature heat treatment at a temperature of 1000 to 1250 ° C. for 10 hours or more.
When the cobalt alloy is heat-treated, the concentration of platinum and X in the precipitated phase decreases to approach the concentration of platinum and X in the main phase, and the main phase and the precipitated phase in the cobalt alloy are in an equilibrium state or It becomes a state close to it. Thus sputtering target becomes equilibrium has the quality of top-level ing have a magnetic disk or the like even in the top level of performance made using the sputtering target.
[Brief description of the drawings]
1 is a 1000 × scanning electron micrograph showing the surface structure of a cobalt alloy after long-term heat treatment in Example 1. FIG.
2 is a graph showing the relationship between the coercive force and the film thickness of a cobalt alloy layer of a magnetic disk formed using a cobalt alloy target that has not been heat-treated for a long time in Example 1. FIG.
3 is a graph showing the relationship between the coercivity squareness ratio and the film thickness of a cobalt alloy layer of a magnetic disk formed using a cobalt alloy target that has not been heat-treated for a long time in Example 1. FIG.
FIG. 4 is a graph showing the relationship between the distance from the center of a cobalt alloy layer of a magnetic disk formed using a cobalt alloy target that has not been heat-treated for a long time in Example 1 and the coercive force.
5 is a graph showing the relationship between the distance from the center of a cobalt alloy layer of a magnetic disk formed using a cobalt alloy target that has not been heat-treated for a long time in Example 1 and the platinum concentration. FIG.
6 is a graph showing the relationship between the heating time and the tantalum concentration in the cobalt alloy in Example 2. FIG.
7 is a graph showing the relationship between the platinum concentration in the cobalt alloy and the coercive force in Example 2. FIG.
8 is a graph showing the relationship between the distance from the center of the substrate and the coercive force of a cobalt alloy that has not been heat-treated for a long time in Example 3. FIG.
FIG. 9 is a 1000 × magnification scanning electron micrograph showing the surface structure of a cobalt alloy sputtering target that has not been subjected to conventional heat treatment.

Claims (1)

主相と析出相を有するCo−Cr−Pt−X(ここでXは、Ta、B、Nb及びCuから成る群から選択される1種又は2種以上である)合金を、10時間以上、1000〜1250℃の温度で、高温熱処理して、主相と析出相とを互いに平衡状態にすることを特徴とするスパッタリングターゲットの製造方法。 Co—Cr—Pt—X (where X is one or more selected from the group consisting of Ta, B, Nb, and Cu) alloy having a main phase and a precipitated phase for 10 hours or more, at a temperature of 1000 to 1250 ° C., and high temperature heat treatment, produced how a sputtering target, which comprises a main phase and precipitated phase in equilibrium with each other.
JP2000127510A 2000-04-27 2000-04-27 Manufacturing method of sputtering target Expired - Fee Related JP4750923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000127510A JP4750923B2 (en) 2000-04-27 2000-04-27 Manufacturing method of sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000127510A JP4750923B2 (en) 2000-04-27 2000-04-27 Manufacturing method of sputtering target

Publications (2)

Publication Number Publication Date
JP2001303241A JP2001303241A (en) 2001-10-31
JP4750923B2 true JP4750923B2 (en) 2011-08-17

Family

ID=18637096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000127510A Expired - Fee Related JP4750923B2 (en) 2000-04-27 2000-04-27 Manufacturing method of sputtering target

Country Status (1)

Country Link
JP (1) JP4750923B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096220A (en) * 1998-09-21 2000-04-04 Hitachi Metals Ltd Cobalt-chromium sputtering target and its manufacture
JP2000282229A (en) * 1999-03-29 2000-10-10 Hitachi Metals Ltd CoPt SPUTTERING TARGET, ITS PRODUCTION, MAGNETIC RECORDING FILM AND CoPt MAGNETIC RECORDING MEDIUM
JP2001026860A (en) * 1999-07-14 2001-01-30 Hitachi Metals Ltd Co-Pt-B BASE TARGET AND ITS PRODUCTION
JP2001073125A (en) * 1999-09-08 2001-03-21 Nikko Materials Co Ltd Co-Ta ALLOY SPUTTERING TARGET AND ITS PRODUCTION

Also Published As

Publication number Publication date
JP2001303241A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
JP3962690B2 (en) Pt-Co sputtering target
US20100065425A1 (en) Silver alloy sputtering target and process for producing the same
JP4376487B2 (en) Manufacturing method of high purity nickel alloy target
JP2635402B2 (en) Soft magnetic alloy film
JP2007023378A (en) Sputter target, magnetic recording medium and manufacturing method therefor
JP5477724B2 (en) Co-Fe alloy for soft magnetic film, soft magnetic film and perpendicular magnetic recording medium
JP2001026860A (en) Co-Pt-B BASE TARGET AND ITS PRODUCTION
JP4750924B2 (en) Manufacturing method of sputtering target
JP4750923B2 (en) Manufacturing method of sputtering target
WO2001025501A1 (en) Method for producing cobalt-based alloy sputter target
JP4264302B2 (en) Silver alloy sputtering target and manufacturing method thereof
JP2002208125A (en) Co-Cr-Pt BASED TARGET MATERIAL AND MAGNETIC RECORDING MEDIUM
JP5330725B2 (en) Superconducting wire substrate and manufacturing method thereof
JPS63241135A (en) High-hardness alloy and its production
JP2001073125A (en) Co-Ta ALLOY SPUTTERING TARGET AND ITS PRODUCTION
JP2763165B2 (en) Manufacturing method of magnetic recording medium
JP2828071B2 (en) Physically deposited amorphous film material with excellent corrosion resistance
JP4006620B2 (en) Manufacturing method of high purity nickel target and high purity nickel target
JP2001098360A (en) Co-Cr-Pt-C TARGET, ITS MANUFACTURE, AND MAGNETIC RECORDING MEDIUM
JPH0785452B2 (en) Magnetic film and method for manufacturing the same
JPS5964734A (en) Co-ni magnetic alloy
JP4582465B2 (en) High purity nickel or nickel alloy target and method for producing the same
TWI642800B (en) Co-pt-re-based sputtering target, method of making the same, and magnetic recording layer
US5534080A (en) Method for producing Mn-Al thin films
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R150 Certificate of patent or registration of utility model

Ref document number: 4750923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees