JP4747866B2 - Temperature sensor mounting structure for high-pressure hydrogen containers - Google Patents
Temperature sensor mounting structure for high-pressure hydrogen containers Download PDFInfo
- Publication number
- JP4747866B2 JP4747866B2 JP2006032422A JP2006032422A JP4747866B2 JP 4747866 B2 JP4747866 B2 JP 4747866B2 JP 2006032422 A JP2006032422 A JP 2006032422A JP 2006032422 A JP2006032422 A JP 2006032422A JP 4747866 B2 JP4747866 B2 JP 4747866B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure hydrogen
- hydrogen container
- temperature sensor
- boss
- boss end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Description
本発明は、内部に高圧流体が封入される高圧容器の内部の温度を測定する温度センサの取付構造に関するものであり、特に燃料電池自動車の水素貯蔵用高圧水素容器の温度センサの取付構造に好適なものである。 The present invention relates to a temperature sensor mounting structure for measuring the temperature inside a high-pressure vessel in which a high-pressure fluid is sealed, and is particularly suitable for a temperature sensor mounting structure for a high-pressure hydrogen vessel for hydrogen storage in a fuel cell vehicle. It is a thing.
高圧容器として例えば燃料電池自動車の水素貯蔵用高圧水素容器は、非特許文献1の図2に示されたような、両端にステンレス製のボスを有し、射出成形によって形成された樹脂製ライナーに炭素繊維強化プラスチック(CFRP)を巻き付け形成され、ガラス繊維強化プラスチック(GFRP)で補強され、衝撃吸収パッドを付された高圧水素容器が知られている。上記ボスに設けられた開口はステンレス製のボスエンドによって閉鎖され、上記ボスエンドの一方には、水素を充填、排出するバルブ等が設けられる。 As a high-pressure container, for example, a high-pressure hydrogen container for hydrogen storage of a fuel cell vehicle has a stainless steel boss at both ends, as shown in FIG. 2 of Non-Patent Document 1, and a resin liner formed by injection molding. A high-pressure hydrogen container is known which is formed by wrapping carbon fiber reinforced plastic (CFRP), reinforced with glass fiber reinforced plastic (GFRP), and attached with an impact absorbing pad. An opening provided in the boss is closed by a stainless steel boss end, and one of the boss ends is provided with a valve for filling and discharging hydrogen.
高圧水素容器は水素充填圧として35MPaから70MPa程度の極めて高い圧力で使用されるので、安全性確保のため1.5倍耐圧として105MPaを耐圧保証値として規定し、また、使用環境としては−40〜85℃の温度範囲に耐え得るものであることとされている。(例えば、下記非特許文献1、非特許文献2参照)。 Since the high-pressure hydrogen container is used at an extremely high pressure of about 35 MPa to 70 MPa as the hydrogen filling pressure, 105 MPa is defined as a pressure-guaranteed value as a 1.5-fold pressure resistance to ensure safety, and the use environment is −40 It is supposed to be able to withstand a temperature range of ˜85 ° C. (For example, see Non-Patent Document 1 and Non-Patent Document 2 below).
また、高圧水素容器内の水素ガスの温度は、水素を充填するときには圧縮により上昇し、水素を消費するときには減圧により下降する。従って、水素ガスの圧力と温度とから気体の状態方程式を利用して、最適な充填量や正確な消費量を演算し、上記高圧水素容器への水素ガスの充填をより安全でより高速に行ったり、より正確な燃費制御を行ったりするためには、上記高圧水素容器内部の水素ガス圧力および水素ガス温度をより正確に計測することが必要である(例えば、下記非特許文献2、3参照)。 Further, the temperature of the hydrogen gas in the high-pressure hydrogen container rises by compression when filling with hydrogen, and falls by decompression when consuming hydrogen. Therefore, using the gas equation of state from the pressure and temperature of the hydrogen gas, the optimal filling amount and accurate consumption amount are calculated, and the high-pressure hydrogen container is filled with hydrogen gas in a safer and faster manner. In order to perform more accurate fuel consumption control, it is necessary to more accurately measure the hydrogen gas pressure and the hydrogen gas temperature inside the high-pressure hydrogen container (for example, see Non-Patent Documents 2 and 3 below). ).
一方、一般的な高圧容器に対する温度センサの取付構造に関しては、特許文献1の図1に示すように、スパナ等で締め付けやすい6角形状をした肉厚部14を有するハウジング12を含む温度センサ10を、高圧容器のシリンダー部82に設けた雌ネジ83と温度センサ10のハウジング12に設けた雄ネジ36との螺合により締め付け固定するものがある。 On the other hand, as shown in FIG. 1 of Patent Document 1, the temperature sensor 10 includes a housing 12 having a hexagonal thick portion 14 that can be easily tightened with a spanner or the like. Are fastened and fixed by screwing a female screw 83 provided in the cylinder portion 82 of the high-pressure vessel and a male screw 36 provided in the housing 12 of the temperature sensor 10.
しかしながら、燃料電池車用高圧水素容器のような高圧容器内の温度測定をする場合に、上記特許文献1の図1に記載のように、高圧容器のシリンダー部82に設けられた雌ネジ83に、上記雌ネジ83に螺合する雄ネジ36を設けたハウジング12を含む温度センサ10を上記高圧容器の外側から取り付けたとしても、水素分子は非常に小さいため、上記雌ネジ83と上記雄ネジ36との螺合のみによる特許文献1に記載の取付構造では、上記雌ネジ83と上記雄ネジ36とのクリアランスによる隙間から水素がリークする恐れがあり、また、温度センサ10の保護管58とハウジング12とが別体で設けられており、保護管58とガラスシリンダー48との接合部56やガラスシリンダー48とハウジング12との接合部54などからも水素がリークする恐れがある。 However, when measuring the temperature in a high-pressure vessel such as a high-pressure hydrogen vessel for a fuel cell vehicle, as shown in FIG. 1 of Patent Document 1, the female screw 83 provided in the cylinder portion 82 of the high-pressure vessel is used. Even if the temperature sensor 10 including the housing 12 provided with the male screw 36 screwed to the female screw 83 is attached from the outside of the high-pressure vessel, the hydrogen molecule is very small, so the female screw 83 and the male screw In the mounting structure described in Patent Document 1 only by screwing with the screw 36, hydrogen may leak from a gap due to the clearance between the female screw 83 and the male screw 36, and the protective tube 58 of the temperature sensor 10 The housing 12 is provided as a separate body, and from the joint 56 between the protective tube 58 and the glass cylinder 48, the joint 54 between the glass cylinder 48 and the housing 12, and the like. Containing there is a risk of leakage.
そこで、従来は、本明細書に添付した図4および図5に示すように、気密性を確保するため、削り出しによって、保護管部31と雄ネジ部32とハウジングシール部33とロック部34とを一体的に形成したセンサハウジング3の内部に設けた挿入口35に温度センサ素子40とリード線41、42とを電気的に結合した温度センサ4を収納し、ボスエンド2に設けられ外部に開放する開口に雌ネジ部22およびボスエンドシール部23を設け、上記センサハウジング3を上記ボスエンド2に上記雌ネジ部22と上記雄ネジ部32との螺合による締め付けにより、上記ハウジングシール部33とボスエンドシール部23とが密着し、気密性を保持する気密構造により取り付けている。 Therefore, conventionally, as shown in FIGS. 4 and 5 attached to this specification, in order to ensure airtightness, the protective tube portion 31, the male screw portion 32, the housing seal portion 33, and the lock portion 34 are cut out by cutting. The temperature sensor 4 in which the temperature sensor element 40 and the lead wires 41 and 42 are electrically coupled is accommodated in the insertion port 35 provided in the sensor housing 3 formed integrally with the boss end 2 and provided outside. A female screw portion 22 and a boss end seal portion 23 are provided in the opening to be opened, and the sensor housing 3 is fastened to the boss end 2 by screwing the female screw portion 22 and the male screw portion 32 into the housing seal portion 33. And the boss end seal portion 23 are in close contact with each other and are attached by an airtight structure that maintains airtightness.
温度測定の応答性を向上させようとした場合、上記保護管部31はできる限り肉薄であることが望ましいが、上記保護管部31を気密性確保のために削り出して形成する場合、ステンレスは加工が困難であることに加えて、高圧に耐えうるものでなければならないので、上記保護管部31の長さは自ずと制限されてしまう。 When trying to improve the responsiveness of temperature measurement, it is desirable that the protective tube portion 31 is as thin as possible. However, when the protective tube portion 31 is cut and formed to ensure airtightness, In addition to being difficult to process, the length of the protective tube portion 31 is naturally limited because it must be able to withstand high pressure.
そのため、外部からボスエンド2にセンサハウジング3を取り付けようとすると、上記高圧水素容器1の内側まで到達する長さの上記保護管部31を形成することは困難なので、上記保護管部31の先端を上記高圧水素容器1の内側に突出させることが出来ない。 For this reason, if the sensor housing 3 is to be attached to the boss end 2 from the outside, it is difficult to form the protective tube portion 31 having a length that reaches the inside of the high-pressure hydrogen container 1. It cannot project inside the high-pressure hydrogen container 1.
そこで、上記ボスエンド2の上記開口部に上記高圧水素容器1の内側からポート200を設け、このポート200内に上記センサハウジング3の保護管部31が突出するように配設し、上記高圧水素容器1の内部の水素ガス5をポート200内に導入し、上記保護管部31と接触させ、上記温度センサ4による温度測定を可能にしている。
しかしながら、従来の高圧容器用温度センサの取付構造では、上記高圧水素ガス5が上記ポート200に導入され上記温度センサ4によって温度を検出されるまでに、外気温度等の条件によっては、上記ボスエンド2に放熱あるいは上記ボスエンド2から吸熱するため、測定される温度は実際の上記高圧容器内の水素ガスの温度と異なる恐れがある。 However, in the conventional pressure sensor mounting structure for a high-pressure vessel, the boss end 2 depends on conditions such as the outside air temperature until the high-pressure hydrogen gas 5 is introduced into the port 200 and the temperature is detected by the temperature sensor 4. Therefore, the measured temperature may be different from the actual temperature of the hydrogen gas in the high-pressure vessel.
また、上記ポート200内に導入される水素ガスの入れ替わりが速やかに行われなかった場合、上記高圧容器内の水素ガスの温度と測定温度との誤差は更に大きくなり得る。 Further, when the replacement of the hydrogen gas introduced into the port 200 is not performed quickly, the error between the temperature of the hydrogen gas in the high-pressure vessel and the measured temperature can be further increased.
そこで、本発明は上記実情に鑑み、上記高圧水素容器内の温度を正確に測定できる応答性に優れた高圧水素容器用温度センサの取付構造を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a mounting structure for a temperature sensor for a high-pressure hydrogen container that is capable of accurately measuring the temperature in the high-pressure hydrogen container and has excellent responsiveness.
請求項1の発明では、内部に高圧水素が封入される高圧水素容器内の温度を計測する温度センサを、上記高圧水素容器の端部を封止するボスに設けた開口を閉鎖するボスエンドに、内側に上記温度センサを保持し該温度センサを保護するセンサハウジングを介して取り付けた高圧水素容器用温度センサ取付構造であって、
上記温度センサが上記高圧水素の温度を計測するセンサ素子と、該センサ素子の計測結果を外部に引き出すリード線とからなり、上記ボスエンドに設けた上記高圧水素容器の内側から外部に開放する挿入孔から上記リード線を引き出すと共に、上記センサ素子を上記高圧水素容器の内部に突出する位置に載置すべく、
上記センサハウジングを、上記ボスエンドとは別体に設けて、一端が上記挿入孔に連通する開口端と他端が閉塞する閉塞端とを具備し、該閉塞端の内部に上記センサ素子を保持する保護管部と、該保護管部の開口端側に、上記ボスエンドに設けたシール部と密着して上記挿入孔との気密を保持するシール部と、上記ボスエンドに設けたネジ部と螺合して、上記シール部を密着せしめるネジ部と、を耐水素脆性の高いステンレス材料の削り出し加工によって一体的に形成して、上記ボスエンドの上記高圧水素容器の内側となる方向から上記センサハウジングを組み付け、上記ボスエンドの上記高圧水素容器の外側となる方向から上記センサ素子を上記保護管部内に挿入したことを特徴とする。
In the invention of claim 1, a temperature sensor for measuring the temperature in the high-pressure hydrogen container in which high-pressure hydrogen is sealed is provided at the boss end that closes the opening provided in the boss that seals the end of the high-pressure hydrogen container. A temperature sensor mounting structure for a high-pressure hydrogen container attached via a sensor housing that holds the temperature sensor inside and protects the temperature sensor,
The temperature sensor includes a sensor element that measures the temperature of the high-pressure hydrogen, and a lead wire that draws the measurement result of the sensor element to the outside, and an insertion hole that opens from the inside of the high-pressure hydrogen container provided at the boss end to the outside In order to place the sensor element in a position protruding from the inside of the high-pressure hydrogen container, withdrawing the lead wire from
The sensor housing is provided separately from the boss end, and has an open end whose one end communicates with the insertion hole and a closed end whose other end is closed, and holds the sensor element inside the closed end. Screwed into a protective tube portion, a seal portion that is in close contact with the seal portion provided at the boss end on the opening end side of the protective tube portion and maintains airtightness with the insertion hole, and a screw portion provided at the boss end. The sensor housing is assembled from the direction of the inside of the high-pressure hydrogen container of the boss end by integrally forming a screw portion for tightly attaching the seal portion by machining a stainless steel material having high hydrogen brittleness resistance. The sensor element is inserted into the protective tube from the direction of the boss end on the outside of the high-pressure hydrogen container .
上記センサ素子をその内部に保持する上記保護管部が上記高圧水素容器の内壁よりも内側の位置に配設され、上記保護管部の壁面のみを介して上記高圧水素容器内部に接するので、より正確で応答性の良い温度測定が可能となる。
上記センサハウジングが上記ボスエンドとは別体に設けられているので、加工の自由度が増し、上記センサハウジング全体の大きさを小さくすることが可能となる上、より精密な加工が可能となり、さらに上記センサハウジングの保護管部と上記センサ素子との空隙を狭くすることができ、上記センサ素子の応答性の向上が図られている。
また、上記ボスエンドを上記高圧容器から取り外した状態で上記保護管内に上記温度センサを組み付けることが可能となるので取付の作業性が向上する。
さらに、上記センサハウジングをネジ締めにより簡単に上記ボスエンドに組付けることができる上に、その締め付けによって発生する軸力によって、上記センサハウジングのシール面と上記ボスエンドのシール面とが弾性変形してシール面同士が食い込んで密に接触して強固に気密性を保持できる。
加えて、上記センサハウジングは上記高圧水素容器の内側に取り付けられているので、上記高圧水素容器内の水素ガス圧力が上記センサハウジングに加わり、シール面の密着力を増す方向に作用する。
The protective pipe portion for holding the sensor element therein is disposed inside the position than the inner wall of the high-pressure hydrogen container, since contact with the inside the high-pressure hydrogen container via only the wall of the protective tube portion, more Accurate and responsive temperature measurement is possible.
Since the sensor housing is provided separately from the boss end, the degree of freedom of processing is increased, the overall size of the sensor housing can be reduced, and more precise processing is possible. The gap between the protective tube portion of the sensor housing and the sensor element can be narrowed, and the responsiveness of the sensor element is improved.
Further, since the temperature sensor can be assembled in the protective tube with the boss end removed from the high-pressure vessel, the mounting workability is improved.
Further, the sensor housing can be easily assembled to the boss end by screw tightening, and the seal surface of the sensor housing and the seal surface of the boss end are elastically deformed and sealed by the axial force generated by the tightening. The surfaces bite into each other and come into close contact with each other, so that the airtightness can be firmly maintained.
In addition, since the sensor housing is attached to the inside of the high-pressure hydrogen container, the hydrogen gas pressure in the high-pressure hydrogen container is applied to the sensor housing and acts to increase the adhesion of the seal surface.
請求項2記載の発明では、上記両シール部のシール位置を上記センサハウジングと上記ボスエンドとが螺合した状態で上記ネジ部よりも上記ボスエンドの外側位置に設定する。 According to a second aspect of the present invention, the seal position of the both seal portions is set to a position outside the boss end with respect to the screw portion in a state where the sensor housing and the boss end are screwed together.
上記シール部の位置が上記ネジ締め位置の後方にある場合に比べ、上記シール部の密着面の面積が小さくなるので、ネジの締付による軸力により上記シール部に加わる単位面積当たりの面圧が大きくなり、更に気密性の向上が図られる。 Compared with the case where the position of the seal portion is behind the screw tightening position, the area of the contact surface of the seal portion is smaller, so the surface pressure per unit area applied to the seal portion by the axial force due to screw tightening The airtightness is further improved.
請求項3記載の発明では、上記両シール部のシール面をネジ締め方向と直交する平面に形成した。 In the invention described in claim 3, the sealing surfaces of the both sealing portions are formed on a plane orthogonal to the screw tightening direction.
一般的なテーパー面同士の密着によるメタルシール構造ではテーパー面の角度を厳密に加工したとしても、一度シールした後、シールを緩めると、シール時に変形したシール面が完全には元の形に復元せず、また、ネジ締めの強さによってもシール位置が完全には元の位置に一致しないので、再シールした場合にリークが発生してしまう可能性があるが、ネジ締め方向に直交する平面同士のメタルシール構造の場合、ネジ締めの角度の違いによる影響が少ないのでリークの防止には有利である。 Even if the angle of the taper surface is strictly processed in the metal seal structure with the general contact between the taper surfaces, if the seal is loosened once it is sealed, the deformed seal surface is completely restored to the original shape. In addition, since the sealing position does not completely match the original position depending on the screw tightening strength, there is a possibility that leakage will occur when resealed. In the case of the metal seal structure between the two, since there is little influence due to the difference in the screw fastening angle, it is advantageous in preventing leakage.
請求項4記載の発明では、上記高圧水素容器が燃料電池車用高圧水素容器であることを特徴とする。 In the invention of claim 4, characterized in that said high-pressure hydrogen container is a high-pressure hydrogen container for fuel cell vehicles.
本発明によれば、燃料電池車用高圧水素容器の内部温度の測定精度および応答性が向上され、水素充填時の充填制御および走行時の燃費計測等の精度向上を図ることができる。 According to the present invention, the measurement accuracy and responsiveness of the internal temperature of the high-pressure hydrogen container for a fuel cell vehicle can be improved, and the accuracy of filling control during hydrogen filling and fuel consumption measurement during traveling can be improved.
以下、図面を参照して、本発明の実施の形態を説明する。図1は本発明に係る高圧水素容器の温度センサ取付構造の要部断面図であり、図2は図1中の円で囲ったA部の詳細を示す拡大断面図であり、図3は本発明が適用された高圧水素容器の一部断面図である。 Embodiments of the present invention will be described below with reference to the drawings. 1 is a cross-sectional view of a main part of a temperature sensor mounting structure for a high-pressure hydrogen container according to the present invention, FIG. 2 is an enlarged cross-sectional view showing details of a portion A surrounded by a circle in FIG. 1, and FIG. It is a partial sectional view of a high pressure hydrogen container to which the invention is applied.
高圧水素容器1は内部に高圧流体として水素ガス5が封入される高圧容器である。上記高圧水素容器1は両端に肉厚のステンレス製のボス10を有し、射出成形によって上記ボス10と一体的に形成された樹脂製ライナー11によって容器本体が形成されている。上記樹脂製ライナー11の外部表面に炭素繊維強化プラスチック(CFRP)12を連続的に切れ目無く何層にも巻き付けられることにより、気密性を保持しつつ極めて高い強度に形成されている。 The high-pressure hydrogen container 1 is a high-pressure container in which hydrogen gas 5 is sealed as a high-pressure fluid. The high-pressure hydrogen container 1 has thick stainless steel bosses 10 at both ends, and a container body is formed by a resin liner 11 formed integrally with the boss 10 by injection molding. The carbon fiber reinforced plastic (CFRP) 12 is continuously wound around the outer surface of the resin liner 11 in a number of layers, thereby forming an extremely high strength while maintaining airtightness.
さらに上記CFRP12の層の外部表面は更にガラス繊維強化プラスチック(GFRP)13により補強され、両側が衝撃吸収パッド14により外部からの衝撃から保護されている。 Further, the outer surface of the CFRP 12 layer is further reinforced by glass fiber reinforced plastic (GFRP) 13, and both sides are protected from external impacts by shock absorbing pads 14.
上記高圧水素容器1の両端の上記ボス10の中心には、外部に開放する開口部が設けられ、上記開口部には六角形状の頭部を有す略円柱状のステンレス製のボスエンド2が詳述略の公知のシール方法により気密構造で装着されている。 At the center of the boss 10 at both ends of the high-pressure hydrogen container 1, an opening that opens to the outside is provided, and the opening has an approximately cylindrical boss end 2 made of stainless steel having a hexagonal head. It is mounted with an airtight structure by a well-known sealing method.
上記ボス10および上記ボスエンド2の材質は、耐水素脆性を考慮してステンレス(SUS316L)が用いられている。 The boss 10 and the boss end 2 are made of stainless steel (SUS316L) in consideration of hydrogen embrittlement resistance.
上記高圧水素容器1の樹脂部分(ライナー11、CFRP12、GFRP13)に温度センサを取り付けようとすると曲面への取付となるので気密性の確保が困難であるばかりでなく、上記高圧水素容器1の耐圧性が失われかねない。 If a temperature sensor is to be attached to the resin portion (liner 11, CFRP12, GFRP13) of the high-pressure hydrogen container 1, not only is it difficult to ensure hermeticity because it is attached to a curved surface, but also the pressure resistance of the high-pressure hydrogen container 1 is Sex can be lost.
そこで、上記高圧水素容器1の上記ボスエンド2は、上記高圧水素容器1の両端のボス10の開口部を塞ぐためだけでなく、肉厚で部品取付スペースの確保が容易であるから、上記樹脂部分の気密性および耐圧性を阻害することなく、上記高圧水素容器1に水素ガス充填あるいは水素ガス排出用の開閉バルブ6および配管、あるいは温度センサ4や圧力センサ等の他の部品等を組み付けるための取付基部としての役割を果たしている。 Therefore, the boss end 2 of the high-pressure hydrogen container 1 is not only for closing the openings of the bosses 10 at both ends of the high-pressure hydrogen container 1, but it is easy to secure a part mounting space due to its thickness. Without hindering the airtightness and pressure resistance of the high pressure hydrogen container 1 for assembling the open / close valve 6 and piping for filling or discharging hydrogen gas, or other components such as the temperature sensor 4 and pressure sensor, etc. It serves as a mounting base.
図3に示すように上記高圧水素容器1の両端のボス10に装着された上記ボスエンド2のうち一方のボスエンド2には、上述した詳述略の気密構造により、上記高圧水素容器1に高圧水素ガス5を充填したり、上記高圧水素容器1から高圧水素ガス5を取り出したりする開閉バルブ6および配管部材、図略の安全弁等が取り付けられている。 As shown in FIG. 3, one of the boss ends 2 attached to the bosses 10 at both ends of the high-pressure hydrogen container 1 has a high-pressure hydrogen container 1 in the high-pressure hydrogen container 1 due to the above-described detailed airtight structure. An opening / closing valve 6 for filling the gas 5 and taking out the high-pressure hydrogen gas 5 from the high-pressure hydrogen container 1, a piping member, a safety valve (not shown), and the like are attached.
他方の上記ボスエンド2には、 図1および図2に示すように、その軸線に沿って外部に開放する挿入孔20が、後述する温度センサ4が挿入可能となる内径で設けられている。 As shown in FIGS. 1 and 2, the other boss end 2 is provided with an insertion hole 20 that opens to the outside along its axis with an inner diameter through which a temperature sensor 4 to be described later can be inserted.
上記挿入孔20の上記高圧水素容器1側には後述するセンサハウジング3を組み付けるための雌ネジ部22が上記挿入孔20よりも太い径で形成されている。 On the high-pressure hydrogen container 1 side of the insertion hole 20, a female screw portion 22 for assembling a sensor housing 3 described later is formed with a diameter larger than that of the insertion hole 20.
また、上記ボスエンド2には上記雌ネジ部22のネジ締め方向の先方には気密性を確保するためのボスエンドシール部23が形成されている。上記ボスエンドシール部23はネジ締め方向に対して垂直平面を形成しており、後述するメタルシール構造の密着性を良好にするため表面は精度良く仕上げられている。 The boss end 2 is formed with a boss end seal portion 23 for securing airtightness at the tip of the female screw portion 22 in the screw tightening direction. The boss end seal portion 23 forms a plane perpendicular to the screw tightening direction, and the surface is finished with high accuracy in order to improve the adhesion of the metal seal structure described later.
センサハウジング3はボスエンド2と同材質のステンレス(SUS316L)からなり、円筒状の保護管部31と上記ボスエンド2に設けられた上記雌ネジ部22に螺合する雄ネジ部32とハウジングシール部33とナット部34が切削加工により一体的に形成されている。 The sensor housing 3 is made of stainless steel (SUS316L) made of the same material as the boss end 2, and has a cylindrical protective tube portion 31, a male screw portion 32 that engages with the female screw portion 22 provided on the boss end 2, and a housing seal portion 33. And the nut portion 34 are integrally formed by cutting.
また、上記センサハウジング3の内側には上記センサハウジング3を上記ボスエンドに組み付けたときに一端が上記ボスエンド2に設けた挿入孔20に連通し、他端が上記保護管部31の先端で閉塞する挿入孔20aが軸心に沿って設けられている。 Further, when the sensor housing 3 is assembled to the boss end, one end communicates with the insertion hole 20 provided in the boss end 2 inside the sensor housing 3, and the other end is blocked by the tip of the protective tube portion 31. An insertion hole 20a is provided along the axis.
上記センサハウジング3は上記ボスエンド2とは別体で上記ボスエンド2に付設されている。即ち両者は分解可能な構造であり、両者を加工する際には比較的精密な加工が可能である。特に上記ボスエンド2の挿入孔20や保護管部31の挿入孔20aなどの細い孔を形成するとき、上記ボスエンド2と上記センサハウジング3とが別体であると孔加工が極めて容易である。 The sensor housing 3 is attached to the boss end 2 separately from the boss end 2. That is, both have a structure that can be disassembled, and relatively precise processing is possible when processing both. In particular, when forming a thin hole such as the insertion hole 20 of the boss end 2 or the insertion hole 20a of the protective tube portion 31, if the boss end 2 and the sensor housing 3 are separate, the hole processing is extremely easy.
上記センサハウジング3の保護管部31は温度応答性と耐圧性とを考慮した厚さに形成され、上記ナット部34はスパナ等の工具により締め付けが可能な強度を有するように外形が六角形状で厚肉に形成され、上記雄ネジ部32は上記保護管部31の外径よりも太いネジ径でかつ上記ナット部34の締め付けに十分耐えうる強度に形成されている。 The protective tube portion 31 of the sensor housing 3 is formed with a thickness that takes temperature response and pressure resistance into consideration, and the nut portion 34 has a hexagonal outer shape so that it can be tightened with a tool such as a spanner. The male screw portion 32 is formed to be thick and has a screw diameter that is thicker than the outer diameter of the protective tube portion 31 and is strong enough to withstand the tightening of the nut portion 34.
上記雄ネジ部32および上記雌ネジ部22のそれぞれのネジ山のサイズ、ピッチ、ネジ山数、谷径等はシール面の適正な面圧を考慮して決定されている。 The thread size, pitch, number of threads, valley diameter, etc. of each of the male screw portion 32 and the female screw portion 22 are determined in consideration of an appropriate surface pressure of the seal surface.
また、上記ボス10と上記ボスエンド2と上記センサハウジング3とが同材質により形成されているので熱膨張係数の違いによるネジの緩みの発生を押さえることができる。 Further, since the boss 10, the boss end 2 and the sensor housing 3 are formed of the same material, it is possible to suppress the occurrence of loosening of the screw due to the difference in thermal expansion coefficient.
なお、上記両シール部23、33のシール位置は、上記ボスエンド2の上記雌ネジ部22と上記センサハウジング3の上記雄ネジ部32とが螺合した状態で上記両ネジ部22、32よりも先方、即ち上記ボスエンド2の外側方向の位置にある。 It should be noted that the sealing positions of both the seal portions 23 and 33 are set to be higher than those of the both screw portions 22 and 32 in a state where the female screw portion 22 of the boss end 2 and the male screw portion 32 of the sensor housing 3 are screwed together. It is in the front, that is, the position in the outer direction of the boss end 2.
上記両シール部23、33の位置が上記ネジ締め位置22、32よりも後方、即ち上記ボスエンド2の内側方向に設けた場合、両シール部23、33は上記ボスエンド2に設けられた上記雌ネジ部22よりも必然的に大きくせざるを得なく両シール部のシール面積が大きくなり、面圧が小さくなる。 When the positions of the seal portions 23 and 33 are provided behind the screw tightening positions 22 and 32, that is, in the inner direction of the boss end 2, the seal portions 23 and 33 are provided with the female screw provided on the boss end 2. Inevitably larger than the portion 22, the seal area of both seal portions is increased, and the surface pressure is reduced.
一方、上記両シール部23、33の位置が上記ネジ締め位置22、32よりも先方に設けることにより、上記両シール部23、33は必然的に上記両ネジ部22、32の内径より小さくなるので密着面積も小さくなり、上記両ネジ部22、23の締め付けによる軸力により加わる単位面積当たりの面圧は大きくなり、気密性の向上が図られる。 On the other hand, the seal portions 23 and 33 are inevitably smaller than the inner diameters of the screw portions 22 and 32 by providing the seal portions 23 and 33 ahead of the screw tightening positions 22 and 32. Therefore, the contact area is also reduced, and the surface pressure per unit area applied by the axial force generated by tightening the screw portions 22 and 23 is increased, thereby improving the airtightness.
上記ハウジングシール部33はネジ締め方向に対して垂直平面を形成しており、密着性を良好にするためシール面は精度良く仕上げられている。 The housing seal portion 33 forms a vertical plane with respect to the screw tightening direction, and the seal surface is finished with high accuracy in order to improve adhesion.
また、上記ハウジングシール部33は密着面の面積を更に小さくしてシール面にかかる単位面積当たりの面圧を大きくするとともに、上記ボスエンドハウジングシール部23に当接する際にかじりを起こさないようにするため上記ハウジングシール部33の外径側には円錐状にテーパー面331が施され、内径側には円錐状のテーパー面332が施してあり、シール面はリング状の平面となっている。 The housing seal portion 33 further reduces the area of the contact surface to increase the surface pressure per unit area on the seal surface, and does not cause galling when contacting the boss end housing seal portion 23. Therefore, a conical tapered surface 331 is provided on the outer diameter side of the housing seal portion 33, a conical tapered surface 332 is provided on the inner diameter side, and the sealing surface is a ring-shaped flat surface.
上記センサハウジング3の雄ネジ部32を上記ボスエンド2に設けられた雌ネジ部22にねじ込んで、ロック部34をスパナ等の工具により締め付けると、上記ハウジングシール部33と上記ボスエンドシール部23とが平面同士で接触し、さらに雄ネジ部32をネジ込むと、両シール面がネジ込みの軸力により弾性変形して接触面が完全に一致して密着した状態になる。 When the male screw portion 32 of the sensor housing 3 is screwed into the female screw portion 22 provided in the boss end 2 and the lock portion 34 is tightened with a tool such as a spanner, the housing seal portion 33, the boss end seal portion 23, When the male surfaces 32 are in contact with each other and the male threaded portion 32 is further screwed in, both sealing surfaces are elastically deformed by the axial force of the screwing so that the contact surfaces are completely in close contact with each other.
ここで雄ネジ部32のネジ込みを止めても、雌ネジ部22と雄ネジ部32との摩擦力により上記両シール面が互いに密に接触するメタルシール構造を維持し、このメタルシール構造により上記高圧水素容器1の内部と外部とを完全に隔離するので、強固に気密性を保つことができる。 Even if the screwing of the male screw portion 32 is stopped, the metal seal structure in which the two sealing surfaces are in close contact with each other by the frictional force between the female screw portion 22 and the male screw portion 32 is maintained. Since the inside and outside of the high-pressure hydrogen container 1 are completely separated, the airtightness can be maintained firmly.
上記雌ネジ部22と上記雄ネジ部32とを螺合する際に、過剰な力を加えてネジ込むと上記両シール面が降伏値を越えて塑性変形してしまうので、上記両シール面同士の密着から降伏値を超えない範囲までの締め付け回転角度から適正な面圧を導き出す弾性域角度法、または上記両シール面が弾性変形する範囲内にネジ締めトルクを制限するトルク法により、適正な締め付け状態を管理する。 When the female screw portion 22 and the male screw portion 32 are screwed together, if both of the sealing surfaces exceed the yield value when they are screwed in with an excessive force, the two sealing surfaces are By using the elastic range angle method that derives the appropriate surface pressure from the tightening rotation angle up to the range that does not exceed the yield value, or the torque method that limits the screw tightening torque within the range where both the seal surfaces are elastically deformed. Manage the tightening condition.
温度センサ素子40とリード線41、42とが電気的に接続されて構成された温度センサ4は上記ボスエンド2の上記挿入孔20から挿入され、上記温度センサ素子40が上記センサハウジング3の保護管部31の上記挿入孔20a先端の閉塞端の内側で固定されており、上記温度センサ素子40から引き出されたリード線41、42が上記挿入孔20aおよび上記挿入孔20を通って、外部の制御装置43に電気的に繋がっている。 The temperature sensor 4 configured by electrically connecting the temperature sensor element 40 and the lead wires 41 and 42 is inserted from the insertion hole 20 of the boss end 2, and the temperature sensor element 40 is a protective tube of the sensor housing 3. The lead wires 41 and 42 led out from the temperature sensor element 40 pass through the insertion hole 20a and the insertion hole 20 and are externally controlled. It is electrically connected to the device 43.
上記温度センサ素子40としてサーミスタが用いられているが、サーミスタに限定するものではなく、白金測温抵抗体等でも良い。 Although the thermistor is used as the temperature sensor element 40, it is not limited to the thermistor, and a platinum resistance thermometer or the like may be used.
また、センサハウジング3の内壁と上記温度センサ4とは上記温度センサ4に施された図略の絶縁性被覆等の絶縁手段により電気的な絶縁性が確保されている。 The inner wall of the sensor housing 3 and the temperature sensor 4 are electrically insulated by an insulating means such as an insulating coating (not shown) applied to the temperature sensor 4.
上記センサハウジング3の保護管部31の閉塞端が、上記高圧水素容器1の内側に位置するように上記ハウジング3が付設されているので、上記閉塞端内に保持される温度センサ素子40も上記高圧水素容器の内側に支持されることになり、かつ、上記保護管31の薄い壁面のみを介して直接上記高圧水素容器1内部の温度を測定できるので温度の測定誤差が少なくなるとともに上記高圧水素容器1の内部の温度変化に対して速やかに応答できる。 Since the housing 3 is attached so that the closed end of the protective tube portion 31 of the sensor housing 3 is located inside the high-pressure hydrogen container 1, the temperature sensor element 40 held in the closed end is also the above-mentioned. Since the temperature inside the high-pressure hydrogen container 1 can be measured directly only through the thin wall surface of the protective tube 31, the temperature measurement error is reduced and the high-pressure hydrogen is reduced. It is possible to respond quickly to a temperature change inside the container 1.
また、上記センサハウジング3は上記高圧水素容器1の内側に取り付けられているので、上記高圧水素容器1内の水素ガス圧力が上記センサハウジング3に加わり、シール面の密着力を増す方向に作用する。 In addition, since the sensor housing 3 is attached to the inside of the high-pressure hydrogen container 1, the hydrogen gas pressure in the high-pressure hydrogen container 1 is applied to the sensor housing 3 and acts in the direction of increasing the adhesion of the seal surface. .
しかしながら、同時に上記高圧水素容器1内の水素ガス圧力は上記両ネジ部22、32のネジ締めの軸力をうち消す方向にも加わる。しかし、上記水素ガス圧からはネジ締めのゆるみ方向の回転力は与えられないので、嫌気性ネジ固定剤341等のゆるみ回転防止手段により、振動等の外力による上記センサハウジング3の回転を防止すれば、上記雌ネジ部22と上記雄ネジ部32との螺合のゆるみは生じない。 However, at the same time, the hydrogen gas pressure in the high-pressure hydrogen container 1 is also applied in the direction of eliminating the axial force of the screw tightening of the screw portions 22 and 32. However, since the rotational force in the loosening direction of the screw tightening is not given from the hydrogen gas pressure, the rotation of the sensor housing 3 due to external force such as vibration can be prevented by means of loose rotation prevention means such as the anaerobic screw fixing agent 341. In this case, the threaded engagement between the female screw portion 22 and the male screw portion 32 does not occur.
また、上記ゆるみ回転防止手段は上記嫌気性ネジ固定剤341の他、機械的な係合部を設けた係止手段によるもの等でも良い。 Further, the loosening rotation preventing means may be a locking means provided with a mechanical engaging portion in addition to the anaerobic screw fixing agent 341.
また、温度応答性をさらに向上させるために、上記保護管31と上記温度センサ素子40との熱伝導性を良くする熱伝導率の高い素材をフィラーとして上記挿入孔20aと温度センサ素子40との空隙に充填しても良い。 In order to further improve the temperature responsiveness, a material having high thermal conductivity that improves the thermal conductivity between the protective tube 31 and the temperature sensor element 40 is used as a filler to form the insertion hole 20a and the temperature sensor element 40. The gap may be filled.
なお、本実施形態においては、上記温度センサ4を単独で上記ボスエンド2の一方に設けたが、本発明によれば、上記温度センサ4は比較的小さくできるので、上記バルブ6側のボスエンド2にバルブ6等の他の部材とともに取付けることも可能で、片側のボスエンド2に配管や配線を集中させることにより、取り扱い時の注意労力を軽減できる。 In the present embodiment, the temperature sensor 4 is provided on one of the boss ends 2 alone. However, according to the present invention, the temperature sensor 4 can be made relatively small. It can also be attached together with other members such as the valve 6, and by concentrating the piping and wiring on the boss end 2 on one side, it is possible to reduce the labor required for handling.
1 高圧水素容器
2 ボスエンド
20、20a 挿入孔
22 雌ネジ部
23 ボスエンドシール部
3 センサハウジング
31 保護管部
32 雄ネジ部
33 ハウジングシール部
331、332 テーパー面
34 ナット部
341 嫌気性ネジ固定剤
4 温度センサ
40 温度センサ素子
41、42 リード線
43 制御装置
5 高圧水素ガス
DESCRIPTION OF SYMBOLS 1 High pressure hydrogen container 2 Boss end 20, 20a Insertion hole 22 Female screw part 23 Boss end seal part 3 Sensor housing 31 Protection pipe part 32 Male screw part 33 Housing seal part 331, 332 Tapered surface 34 Nut part 341 Anaerobic screw fixing agent 4 Temperature sensor 40 Temperature sensor element 41, 42 Lead wire 43 Control device 5
Claims (4)
上記温度センサが上記高圧水素の温度を計測するセンサ素子と、該センサ素子の計測結果を外部に引き出すリード線とからなり、
上記ボスエンドに設けた上記高圧水素容器の内側から外部に開放する挿入孔から上記リード線を引き出すと共に、上記センサ素子を上記高圧水素容器の内部に突出する位置に載置すべく、
上記センサハウジングを、上記ボスエンドとは別体に設けて、
一端が上記挿入孔に連通する開口端と他端が閉塞する閉塞端とを具備し、
該閉塞端の内部に上記センサ素子を保持する保護管部と、
該保護管部の開口端側に、上記ボスエンドに設けたシール部と密着して上記挿入孔との気密を保持するシール部と、
上記ボスエンドに設けたネジ部と螺合して、上記シール部を密着せしめるネジ部と、
を耐水素脆性の高いステンレス材料の削り出し加工によって一体的に形成して、
上記ボスエンドの上記高圧水素容器の内側となる方向から上記センサハウジングを組み付け、上記ボスエンドの上記高圧水素容器の外側となる方向から上記センサ素子を上記保護管部内に挿入したことを特徴とする高圧水素容器用温度センサ取付構造。 A temperature sensor that measures the temperature in the high-pressure hydrogen container in which high-pressure hydrogen is sealed is held inside the boss end that closes the opening provided in the boss that seals the end of the high-pressure hydrogen container. A temperature sensor mounting structure for a high-pressure hydrogen container mounted via a sensor housing that protects the temperature sensor,
The temperature sensor consists of a sensor element that measures the temperature of the high-pressure hydrogen, and a lead wire that draws the measurement result of the sensor element to the outside,
In order to draw out the lead wire from the insertion hole that opens to the outside from the inside of the high-pressure hydrogen container provided at the boss end, and to place the sensor element at a position protruding inside the high-pressure hydrogen container,
The sensor housing is provided separately from the boss end,
One end has an open end that communicates with the insertion hole and a closed end that the other end closes,
A protective tube part for holding the sensor element inside the closed end;
A seal portion that is in close contact with the seal portion provided on the boss end on the opening end side of the protective tube portion and maintains airtightness with the insertion hole;
A screw part that is screwed with a screw part provided on the boss end to bring the seal part into close contact;
Is integrally formed by machining stainless steel with high hydrogen embrittlement resistance,
The high-pressure hydrogen, wherein the sensor housing is assembled from the direction of the boss end inside the high-pressure hydrogen container, and the sensor element is inserted into the protective tube portion from the direction of the boss end outside the high-pressure hydrogen container. Temperature sensor mounting structure for containers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006032422A JP4747866B2 (en) | 2006-02-09 | 2006-02-09 | Temperature sensor mounting structure for high-pressure hydrogen containers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006032422A JP4747866B2 (en) | 2006-02-09 | 2006-02-09 | Temperature sensor mounting structure for high-pressure hydrogen containers |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007212287A JP2007212287A (en) | 2007-08-23 |
JP4747866B2 true JP4747866B2 (en) | 2011-08-17 |
Family
ID=38490873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006032422A Expired - Fee Related JP4747866B2 (en) | 2006-02-09 | 2006-02-09 | Temperature sensor mounting structure for high-pressure hydrogen containers |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4747866B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009092160A (en) * | 2007-10-10 | 2009-04-30 | Honda Motor Co Ltd | Fuel gas tank |
FR2923575A1 (en) * | 2007-11-13 | 2009-05-15 | Michelin Soc Tech | PRESSURIZED FLUID RESERVOIR, METHOD AND APPARATUS FOR MANUFACTURING SUCH A RESERVOIR. |
JP5249652B2 (en) * | 2008-07-04 | 2013-07-31 | スズキ株式会社 | Vehicle fuel cell system |
JP5471143B2 (en) * | 2009-08-07 | 2014-04-16 | スズキ株式会社 | High pressure gas tank system |
JP5576424B2 (en) * | 2012-04-04 | 2014-08-20 | 本田技研工業株式会社 | Fuel gas tank |
CN103207027A (en) * | 2013-04-07 | 2013-07-17 | 北京工业大学 | Built-in off-line temperature detection instrument and method for high pressure vessel |
CN103657503B (en) * | 2013-12-06 | 2015-05-27 | 柳州市豪杰特化工机械有限责任公司 | Stirring equipment temperature measurement structure |
DE102014002660A1 (en) | 2014-02-25 | 2015-08-27 | Daimler Ag | Device for receiving a temperature sensor |
JP6761438B2 (en) * | 2014-07-24 | 2020-09-23 | 株式会社デンソー | Temperature sensor |
CN104155016B (en) * | 2014-08-26 | 2017-10-31 | 上海舜华新能源系统有限公司 | A kind of measurement apparatus for being used to measure gas cylinder internal temperature |
KR101814593B1 (en) * | 2016-12-27 | 2018-01-03 | 한국가스안전공사 | Jig apparatus for testing gas cylinder |
DE102017011722A1 (en) | 2017-12-18 | 2019-06-19 | Daimler Ag | Device for detecting the gas temperature in a pressurized gas container |
CN110010344A (en) * | 2019-05-08 | 2019-07-12 | 奕顺龙能源科技(北京)有限公司 | Energy-storage travelling wave tube and electrical energy storage device |
LU101271B1 (en) * | 2019-06-18 | 2020-12-18 | Luxembourg Patent Co | Valve with integrated temperature sensor for compressed gas cylinder |
CN113531383B (en) * | 2021-07-21 | 2023-08-25 | 浙江浙能航天氢能技术有限公司 | High-pressure gas cylinder sealing structure |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4898190A (en) * | 1972-03-27 | 1973-12-13 | ||
JPS582021B2 (en) * | 1977-12-29 | 1983-01-13 | スズキ株式会社 | Tightening device for screws etc. |
US4237091A (en) * | 1978-06-21 | 1980-12-02 | Cobe Laboratories, Inc. | Temperature probe |
JPS5646843A (en) * | 1979-09-23 | 1981-04-28 | Yoshio Katsuta | Novel carboxylic acid ester derivative, preparation of novel carboxylic acid ester derivative, and insecticide containing novel carboxylic acid ester derivative |
JP2510653Y2 (en) * | 1990-02-23 | 1996-09-18 | 松下電工株式会社 | Supporting legs for the floor |
JPH04152231A (en) * | 1990-10-17 | 1992-05-26 | Chino Corp | Sensor plug for high pressure and manufacture of the same |
JP3145281B2 (en) * | 1995-08-31 | 2001-03-12 | 株式会社山武 | Insertion type detector |
US5743646A (en) * | 1996-07-01 | 1998-04-28 | General Motors Corporation | Temperature sensor with improved thermal barrier and gas seal between the probe and housing |
-
2006
- 2006-02-09 JP JP2006032422A patent/JP4747866B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007212287A (en) | 2007-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4747866B2 (en) | Temperature sensor mounting structure for high-pressure hydrogen containers | |
JP7371707B2 (en) | high pressure vessel | |
KR102436790B1 (en) | pressure sensor | |
US20130343427A1 (en) | Temperature-measuring device with a temperature-measuring sleeve for measuring the temperature of a flowing medium | |
US8763846B2 (en) | Bonding structure of metal member and composite-material member | |
JP5541095B2 (en) | tank | |
BR112013033497B1 (en) | protrusion for composite pressure vessel | |
KR100356778B1 (en) | Membrane pressure sensor | |
US8375807B2 (en) | Messgerat | |
US20160003649A1 (en) | Sensor and sensor mounting structure | |
JP2024505629A (en) | Containers for cryogenic storage and transportation | |
US9134147B2 (en) | Measuring arrangement system for a universal process connection | |
JP2021085531A (en) | Valve core opening device | |
US8485535B2 (en) | Sealing gland for ribbon-shaped probe | |
US7525072B2 (en) | Heated O-ring | |
US20090301207A1 (en) | Pressure gauge and pressure gauge assembly | |
JP2009542515A (en) | Valve for tire | |
CN205808893U (en) | A kind of new type rubber oil resistant test device | |
JP2008002655A (en) | Tank and tank component fastening structure | |
KR101608394B1 (en) | The butterfly valve that have a pressure gauge and thermometer | |
JP2009168708A (en) | Cylinder pressure sensor and cylinder pressure computing device | |
US20120320945A1 (en) | Robust media sealing temperature probe | |
JP5812077B2 (en) | Temperature sensor | |
KR101038056B1 (en) | Pressure sensor with temperature-sensing element and mounting structure of the same | |
JP7380151B2 (en) | Liquid level measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080321 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110419 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110502 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4747866 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140527 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |