JP2007212287A - Temperature sensor mounting structure for high-pressure vessel - Google Patents

Temperature sensor mounting structure for high-pressure vessel Download PDF

Info

Publication number
JP2007212287A
JP2007212287A JP2006032422A JP2006032422A JP2007212287A JP 2007212287 A JP2007212287 A JP 2007212287A JP 2006032422 A JP2006032422 A JP 2006032422A JP 2006032422 A JP2006032422 A JP 2006032422A JP 2007212287 A JP2007212287 A JP 2007212287A
Authority
JP
Japan
Prior art keywords
pressure vessel
temperature sensor
pressure
boss end
mounting structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006032422A
Other languages
Japanese (ja)
Other versions
JP4747866B2 (en
Inventor
Susumu Shibayama
進 芝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006032422A priority Critical patent/JP4747866B2/en
Publication of JP2007212287A publication Critical patent/JP2007212287A/en
Application granted granted Critical
Publication of JP4747866B2 publication Critical patent/JP4747866B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mounting structure of a temperature sensor for a high-pressure vessel capable of measuring accurately the temperature in a high pressure hydrogen vessel, and having superior responsiveness. <P>SOLUTION: In this temperature sensor mounting structure for the high pressure vessel, a sensor housing 3 is screwed with a boss end 2 and fixed inside the boss end 2 of the high-pressure hydrogen vessel 1, and a plane part 33 orthogonal to the axis of the sensor housing 3 and a planar part 23 orthogonal to the axis of the boss end 2 exist outside the screwing position, and airtightness is secured by close contact of each plane, and a temperature sensor element 40 of the temperature sensor 4 is held by the blocking end of a protection tube part 31 of the sensor housing 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内部に高圧流体が封入される高圧容器の内部の温度を測定する温度センサの取付構造に関するものであり、特に燃料電池自動車の水素貯蔵用高圧水素容器の温度センサの取付構造に好適なものである。   The present invention relates to a temperature sensor mounting structure for measuring the temperature inside a high-pressure vessel in which a high-pressure fluid is sealed, and is particularly suitable for a temperature sensor mounting structure for a high-pressure hydrogen vessel for hydrogen storage in a fuel cell vehicle. It is a thing.

高圧容器として例えば燃料電池自動車の水素貯蔵用高圧水素容器は、非特許文献1の図2に示されたような、両端にステンレス製のボスを有し、射出成形によって形成された樹脂製ライナーに炭素繊維強化プラスチック(CFRP)を巻き付け形成され、ガラス繊維強化プラスチック(GFRP)で補強され、衝撃吸収パッドを付された高圧水素容器が知られている。上記ボスに設けられた開口はステンレス製のボスエンドによって閉鎖され、上記ボスエンドの一方には、水素を充填、排出するバルブ等が設けられる。   As a high-pressure container, for example, a high-pressure hydrogen container for hydrogen storage of a fuel cell vehicle has a stainless steel boss at both ends, as shown in FIG. 2 of Non-Patent Document 1, and a resin liner formed by injection molding. A high-pressure hydrogen container is known which is formed by wrapping carbon fiber reinforced plastic (CFRP), reinforced with glass fiber reinforced plastic (GFRP), and attached with an impact absorbing pad. An opening provided in the boss is closed by a stainless steel boss end, and one of the boss ends is provided with a valve for filling and discharging hydrogen.

高圧水素容器は水素充填圧として35MPaから70MPa程度の極めて高い圧力で使用されるので、安全性確保のため1.5倍耐圧として105MPaを耐圧保証値として規定し、また、使用環境としては−40〜85℃の温度範囲に耐え得るものであることとされている。(例えば、下記非特許文献1、非特許文献2参照)。   Since the high-pressure hydrogen container is used at an extremely high pressure of about 35 MPa to 70 MPa as the hydrogen filling pressure, 105 MPa is defined as a pressure-guaranteed value as a 1.5-fold pressure resistance to ensure safety, and the use environment is −40 It is supposed to be able to withstand a temperature range of ˜85 ° C. (For example, see Non-Patent Document 1 and Non-Patent Document 2 below).

また、高圧水素容器内の水素ガスの温度は、水素を充填するときには圧縮により上昇し、水素を消費するときには減圧により下降する。従って、水素ガスの圧力と温度とから気体の状態方程式を利用して、最適な充填量や正確な消費量を演算し、上記高圧水素容器への水素ガスの充填をより安全でより高速に行ったり、より正確な燃費制御を行ったりするためには、上記高圧水素容器内部の水素ガス圧力および水素ガス温度をより正確に計測することが必要である(例えば、下記非特許文献2、3参照)。   Further, the temperature of the hydrogen gas in the high-pressure hydrogen container rises by compression when filling with hydrogen, and falls by decompression when consuming hydrogen. Therefore, using the gas equation of state from the pressure and temperature of the hydrogen gas, the optimal filling amount and accurate consumption amount are calculated, and the high-pressure hydrogen container is filled with hydrogen gas in a safer and faster manner. In order to perform more accurate fuel consumption control, it is necessary to more accurately measure the hydrogen gas pressure and the hydrogen gas temperature inside the high-pressure hydrogen container (for example, see Non-Patent Documents 2 and 3 below). ).

一方、一般的な高圧容器に対する温度センサの取付構造に関しては、特許文献1の図1に示すように、スパナ等で締め付けやすい6角形状をした肉厚部14を有するハウジング12を含む温度センサ10を、高圧容器のシリンダー部82に設けた雌ネジ83と温度センサ10のハウジング12に設けた雄ネジ36との螺合により締め付け固定するものがある。   On the other hand, as shown in FIG. 1 of Patent Document 1, the temperature sensor 10 includes a housing 12 having a hexagonal thick portion 14 that can be easily tightened with a spanner or the like. Are fastened and fixed by screwing a female screw 83 provided in the cylinder portion 82 of the high-pressure vessel and a male screw 36 provided in the housing 12 of the temperature sensor 10.

しかしながら、燃料電池車用高圧水素容器のような高圧容器内の温度測定をする場合に、上記特許文献1の図1に記載のように、高圧容器のシリンダー部82に設けられた雌ネジ83に、上記雌ネジ83に螺合する雄ネジ36を設けたハウジング12を含む温度センサ10を上記高圧容器の外側から取り付けたとしても、水素分子は非常に小さいため、上記雌ネジ83と上記雄ネジ36との螺合のみによる特許文献1に記載の取付構造では、上記雌ネジ83と上記雄ネジ36とのクリアランスによる隙間から水素がリークする恐れがあり、また、温度センサ10の保護管58とハウジング12とが別体で設けられており、保護管58とガラスシリンダー48との接合部56やガラスシリンダー48とハウジング12との接合部54などからも水素がリークする恐れがある。   However, when measuring the temperature in a high-pressure vessel such as a high-pressure hydrogen vessel for a fuel cell vehicle, as shown in FIG. 1 of Patent Document 1, the female screw 83 provided in the cylinder portion 82 of the high-pressure vessel is used. Even if the temperature sensor 10 including the housing 12 provided with the male screw 36 screwed to the female screw 83 is attached from the outside of the high-pressure vessel, the hydrogen molecule is very small, so the female screw 83 and the male screw In the mounting structure described in Patent Document 1 only by screwing with the screw 36, hydrogen may leak from a gap due to the clearance between the female screw 83 and the male screw 36, and the protective tube 58 of the temperature sensor 10 The housing 12 is provided as a separate body, and from the joint 56 between the protective tube 58 and the glass cylinder 48, the joint 54 between the glass cylinder 48 and the housing 12, and the like. Containing there is a risk of leakage.

そこで、従来は、本明細書に添付した図4および図5に示すように、気密性を確保するため、削り出しによって、保護管部31と雄ネジ部32とハウジングシール部33とロック部34とを一体的に形成したセンサハウジング3の内部に設けた挿入口35に温度センサ素子40とリード線41、42とを電気的に結合した温度センサ4を収納し、ボスエンド2に設けられ外部に開放する開口に雌ネジ部22およびボスエンドシール部23を設け、上記センサハウジング3を上記ボスエンド2に上記雌ネジ部22と上記雄ネジ部32との螺合による締め付けにより、上記ハウジングシール部33とボスエンドシール部23とが密着し、気密性を保持する気密構造により取り付けている。   Therefore, conventionally, as shown in FIGS. 4 and 5 attached to this specification, in order to ensure airtightness, the protective tube portion 31, the male screw portion 32, the housing seal portion 33, and the lock portion 34 are cut out by cutting. The temperature sensor 4 in which the temperature sensor element 40 and the lead wires 41 and 42 are electrically coupled is accommodated in the insertion port 35 provided in the sensor housing 3 formed integrally with the boss end 2 and provided outside. A female screw portion 22 and a boss end seal portion 23 are provided in the opening to be opened, and the sensor housing 3 is fastened to the boss end 2 by screwing the female screw portion 22 and the male screw portion 32 into the housing seal portion 33. And the boss end seal portion 23 are in close contact with each other and are attached by an airtight structure that maintains airtightness.

温度測定の応答性を向上させようとした場合、上記保護管部31はできる限り肉薄であることが望ましいが、上記保護管部31を気密性確保のために削り出して形成する場合、ステンレスは加工が困難であることに加えて、高圧に耐えうるものでなければならないので、上記保護管部31の長さは自ずと制限されてしまう。   When trying to improve the responsiveness of temperature measurement, it is desirable that the protective tube portion 31 is as thin as possible. However, when the protective tube portion 31 is cut and formed to ensure airtightness, In addition to being difficult to process, the length of the protective tube portion 31 is naturally limited because it must be able to withstand high pressure.

そのため、外部からボスエンド2にセンサハウジング3を取り付けようとすると、上記高圧水素容器1の内側まで到達する長さの上記保護管部31を形成することは困難なので、上記保護管部31の先端を上記高圧水素容器1の内側に突出させることが出来ない。   For this reason, if the sensor housing 3 is to be attached to the boss end 2 from the outside, it is difficult to form the protective tube portion 31 having a length that reaches the inside of the high-pressure hydrogen container 1. It cannot project inside the high-pressure hydrogen container 1.

そこで、上記ボスエンド2の上記開口部に上記高圧水素容器1の内側からポート200を設け、このポート200内に上記センサハウジング3の保護管部31が突出するように配設し、上記高圧水素容器1の内部の水素ガス5をポート200内に導入し、上記保護管部31と接触させ、上記温度センサ4による温度測定を可能にしている。
米国特許第5,743,646号明細書 水野基弘、他3名、「FCHV用高圧水素タンク」、社団法人自動車技術会春期学術講演会前刷集、社団法人自動車技術会、2005年5月20日、NO.84−05、p.13−16 吉田泰樹、他5名、「燃料電池自動車における高圧水素急速充てんシステムの構築」、社団法人自動車技術会春期学術講演会前刷集、社団法人自動車技術会、2003年5月22日、NO.29−03、p13−16 青柳暁、他3名、「燃料電池自動車における燃費計測法の開発」、社団法人自動車技術会秋期学術講演会前刷集、社団法人自動車技術会、2003年9月18日、NO.80−03、p.5−8
Therefore, a port 200 is provided in the opening of the boss end 2 from the inside of the high-pressure hydrogen container 1, and a protective tube portion 31 of the sensor housing 3 is disposed in the port 200 so that the high-pressure hydrogen container 1 is introduced into the port 200 and brought into contact with the protective tube portion 31 to enable temperature measurement by the temperature sensor 4.
US Pat. No. 5,743,646 Motohiro Mizuno and three others, "High-pressure hydrogen tank for FCHV", Japan Society of Automotive Engineers Spring Academic Lecture Preprint, Japan Society of Automotive Engineers, May 20, 2005, NO. 84-05, p. 13-16 Yasuki Yoshida and five others, "Building a high-pressure hydrogen rapid filling system for fuel cell vehicles", Japan Society of Automotive Engineers Spring Conference Lecture Preprint, Japan Society of Automotive Engineers, May 22, 2003, NO. 29-03, p13-16 Atsushi Aoyagi and three others, “Development of fuel consumption measurement method for fuel cell vehicles”, Japan Society for Automotive Engineers Autumn Preliminary Lecture Collection, Japan Society for Automotive Technology, September 18, 2003, NO. 80-03, p. 5-8

しかしながら、従来の高圧容器用温度センサの取付構造では、上記高圧水素ガス5が上記ポート200に導入され上記温度センサ4によって温度を検出されるまでに、外気温度等の条件によっては、上記ボスエンド2に放熱あるいは上記ボスエンド2から吸熱するため、測定される温度は実際の上記高圧容器内の水素ガスの温度と異なる恐れがある。   However, in the conventional pressure sensor mounting structure for a high-pressure vessel, the boss end 2 depends on conditions such as the outside air temperature until the high-pressure hydrogen gas 5 is introduced into the port 200 and the temperature is detected by the temperature sensor 4. Therefore, the measured temperature may be different from the actual temperature of the hydrogen gas in the high-pressure vessel.

また、上記ポート200内に導入される水素ガスの入れ替わりが速やかに行われなかった場合、上記高圧容器内の水素ガスの温度と測定温度との誤差は更に大きくなり得る。   Further, when the replacement of the hydrogen gas introduced into the port 200 is not performed quickly, the error between the temperature of the hydrogen gas in the high-pressure vessel and the measured temperature can be further increased.

そこで、本発明は上記実情に鑑み、上記高圧水素容器内の温度を正確に測定できる応答性に優れた高圧容器用温度センサの取付構造を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a mounting structure for a temperature sensor for a high-pressure vessel that is capable of accurately measuring the temperature in the high-pressure hydrogen vessel and has excellent responsiveness.

請求項1記載の発明では、内部に高圧流体が封入される高圧容器のボスに設けられた開口を閉鎖するボスエンドに、上記高圧容器内の温度を計測する温度センサを、これを保護するセンサハウジングを介して取り付けた高圧容器用温度センサ取付構造であって、
上記ボスエンドに上記高圧容器の内側から外部に開放する挿入孔を形成し、
一端が閉塞し他端が開口する保護管部を備えた上記センサハウジングを、
その開口端を上記挿入孔に連通せしめるとともに、その閉塞端を上記高圧容器の内側に突出せしめ、上記ボスエンドとの間に気密性を保持して、上記ボスエンドの上記高圧容器内側に設け、
上記高圧容器内部の温度を計測するセンサ素子と計測結果を上記高圧容器の外部の制御装置に出力するリード線とからなる上記温度センサを、上記挿入孔から上記保護管部へ挿入し、
上記センサ素子を上記高圧容器の内側に位置する上記保護管部の閉塞端内に保持せしめることを特徴とする。
According to the first aspect of the present invention, the temperature sensor for measuring the temperature in the high-pressure vessel is provided at the boss end for closing the opening provided in the boss of the high-pressure vessel in which the high-pressure fluid is sealed. The sensor housing protects the temperature sensor. A temperature sensor mounting structure for a high-pressure vessel attached via
Forming an insertion hole in the boss end that opens from the inside of the high-pressure vessel to the outside,
The sensor housing provided with a protective tube part having one end closed and the other end opened.
The open end communicates with the insertion hole, the closed end protrudes inside the high-pressure vessel, maintains airtightness with the boss end, and is provided inside the high-pressure vessel of the boss end.
The temperature sensor consisting of a sensor element that measures the temperature inside the high-pressure vessel and a lead wire that outputs a measurement result to a control device outside the high-pressure vessel is inserted into the protective tube portion from the insertion hole,
The sensor element is held in a closed end of the protective tube portion positioned inside the high-pressure vessel.

上記センサ素子をその内部に保持する上記保護管部が上記高圧容器の内壁よりも内側の位置に配設され、上記保護管部の壁面のみを介して上記高圧流体内部に接するので、より正確で応答性の良い温度測定が可能となる。   Since the protective tube portion that holds the sensor element therein is disposed at a position inside the inner wall of the high-pressure vessel and contacts the high-pressure fluid only through the wall surface of the protective tube portion, it is more accurate. Temperature measurement with good response is possible.

請求項2記載の発明では、上記ボスエンドとは別体の上記センサハウジングを上記ボスエンドに付設した。   According to a second aspect of the present invention, the sensor housing separate from the boss end is attached to the boss end.

上記センサハウジングが別体に設けられているので、加工の自由度が増し、上記センサハウジング全体の大きさを小さくすることが可能となる上、より精密な加工が可能となり、さらに上記センサハウジングの保護管部と上記センサ素子との空隙を狭くすることができ、上記センサ素子の応答性の向上が図られる。   Since the sensor housing is provided separately, the degree of freedom of processing is increased, the overall size of the sensor housing can be reduced, and more precise processing is possible. The gap between the protective tube portion and the sensor element can be narrowed, and the responsiveness of the sensor element can be improved.

また、上記ボスエンドを上記高圧容器から取り外した状態で上記保護管内に上記温度センサを組み付けることが可能となるので取付の作業性が向上する。   Further, since the temperature sensor can be assembled in the protective tube with the boss end removed from the high-pressure vessel, the mounting workability is improved.

請求項3記載の発明では、上記センサハウジングと上記ボスエンドは、互いに螺合するネジ部と相互間の気密性を保持するシール部とを有し、上記シール部をネジ締めにより互いに密着するメタルシール構造とした。   According to a third aspect of the present invention, the sensor housing and the boss end each have a screw portion that is screwed together and a seal portion that maintains airtightness between them, and the metal seal that tightly contacts the seal portion by screwing. The structure.

上記センサハウジングをネジ締めにより簡単に上記ボスエンドに組付けることができる上に、その締め付けによって発生する軸力によって、上記センサハウジングのシール面と上記ボスエンドのシール面とが弾性変形してシール面同士が食い込んで密に接触して強固に気密性を保持できる。   The sensor housing can be easily assembled to the boss end by screw tightening, and the seal surface of the sensor housing and the seal surface of the boss end are elastically deformed by the axial force generated by the tightening. Can penetrate and come into close contact with each other to maintain strong airtightness.

請求項4記載の発明では、上記両シール部のシール位置を上記センサハウジングと上記ボスエンドとが螺合した状態で上記ネジ部よりも上記ボスエンドの外側位置に設定した。   According to a fourth aspect of the present invention, the seal position of the both seal portions is set at a position outside the boss end with respect to the screw portion in a state where the sensor housing and the boss end are screwed together.

上記シール部の位置が上記ネジ締め位置の後方にある場合に比べ、上記シール部の密着面の面積が小さくなるので、ネジの締付による軸力により上記シール部に加わる単位面積当たりの面圧が大きくなり、更に気密性の向上が図られる。   Compared with the case where the position of the seal portion is behind the screw tightening position, the area of the contact surface of the seal portion is smaller, so the surface pressure per unit area applied to the seal portion by the axial force due to screw tightening The airtightness is further improved.

請求項5記載の発明では、上記両シール部のシール面をネジ締め方向と直交する平面に形成した。   In the invention according to claim 5, the sealing surfaces of the both seal portions are formed on a plane orthogonal to the screw tightening direction.

一般的なテーパー面同士の密着によるメタルシール構造ではテーパー面の角度を厳密に加工したとしても、一度シールした後、シールを緩めると、シール時に変形したシール面が完全には元の形に復元せず、また、ネジ締めの強さによってもシール位置が完全には元の位置に一致しないので、再シールした場合にリークが発生してしまう可能性があるが、ネジ締め方向に直交する平面同士のメタルシール構造の場合、ネジ締めの角度の違いによる影響が少ないのでリークの防止には有利である。   Even if the angle of the taper surface is strictly processed in the metal seal structure with the general contact between the taper surfaces, if the seal is loosened once it is sealed, the deformed seal surface is completely restored to the original shape. In addition, since the sealing position does not completely match the original position depending on the screw tightening strength, there is a possibility that leakage will occur when resealed. In the case of the metal seal structure between the two, since there is little influence due to the difference in the screw fastening angle, it is advantageous in preventing leakage.

請求項6記載の発明では、上記高圧容器が燃料電池車用高圧水素容器であることを特徴とする。   The invention described in claim 6 is characterized in that the high-pressure vessel is a high-pressure hydrogen vessel for a fuel cell vehicle.

本発明によれば、燃料電池車用高圧水素容器の内部温度の測定精度および応答性が向上され、水素充填時の充填制御および走行時の燃費計測等の精度向上を図ることができる。   According to the present invention, the measurement accuracy and responsiveness of the internal temperature of the high-pressure hydrogen container for a fuel cell vehicle can be improved, and the accuracy of filling control during hydrogen filling and fuel consumption measurement during traveling can be improved.

以下、図面を参照して、本発明の実施の形態を説明する。図1は本発明に係る高圧水素容器の温度センサ取付構造の要部断面図であり、図2は図1中の円で囲ったA部の詳細を示す拡大断面図であり、図3は本発明が適用された高圧水素容器の一部断面図である。   Embodiments of the present invention will be described below with reference to the drawings. 1 is a cross-sectional view of a main part of a temperature sensor mounting structure for a high-pressure hydrogen container according to the present invention, FIG. 2 is an enlarged cross-sectional view showing details of a portion A surrounded by a circle in FIG. 1, and FIG. It is a partial sectional view of a high pressure hydrogen container to which the invention is applied.

高圧水素容器1は内部に高圧流体として水素ガス5が封入される高圧容器である。上記高圧水素容器1は両端に肉厚のステンレス製のボス10を有し、射出成形によって上記ボス10と一体的に形成された樹脂製ライナー11によって容器本体が形成されている。上記樹脂製ライナー11の外部表面に炭素繊維強化プラスチック(CFRP)12を連続的に切れ目無く何層にも巻き付けられることにより、気密性を保持しつつ極めて高い強度に形成されている。   The high-pressure hydrogen container 1 is a high-pressure container in which hydrogen gas 5 is sealed as a high-pressure fluid. The high-pressure hydrogen container 1 has thick stainless steel bosses 10 at both ends, and a container body is formed by a resin liner 11 formed integrally with the boss 10 by injection molding. The carbon fiber reinforced plastic (CFRP) 12 is continuously wound around the outer surface of the resin liner 11 in a number of layers, thereby forming an extremely high strength while maintaining airtightness.

さらに上記CFRP12の層の外部表面は更にガラス繊維強化プラスチック(GFRP)13により補強され、両側が衝撃吸収パッド14により外部からの衝撃から保護されている。   Further, the outer surface of the CFRP 12 layer is further reinforced by glass fiber reinforced plastic (GFRP) 13, and both sides are protected from external impacts by shock absorbing pads 14.

上記高圧水素容器1の両端の上記ボス10の中心には、外部に開放する開口部が設けられ、上記開口部には六角形状の頭部を有す略円柱状のステンレス製のボスエンド2が詳述略の公知のシール方法により気密構造で装着されている。   At the center of the boss 10 at both ends of the high-pressure hydrogen container 1, an opening that opens to the outside is provided, and the opening has an approximately cylindrical boss end 2 made of stainless steel having a hexagonal head. It is mounted with an airtight structure by a well-known sealing method.

上記ボス10および上記ボスエンド2の材質は、耐水素脆性を考慮してステンレス(SUS316L)が用いられている。   The boss 10 and the boss end 2 are made of stainless steel (SUS316L) in consideration of hydrogen embrittlement resistance.

上記高圧水素容器1の樹脂部分(ライナー11、CFRP12、GFRP13)に温度センサを取り付けようとすると曲面への取付となるので気密性の確保が困難であるばかりでなく、上記高圧水素容器1の耐圧性が失われかねない。   If a temperature sensor is to be attached to the resin portion (liner 11, CFRP12, GFRP13) of the high-pressure hydrogen container 1, not only is it difficult to ensure hermeticity because it is attached to a curved surface, but also the pressure resistance of the high-pressure hydrogen container 1 is Sex can be lost.

そこで、上記高圧水素容器1の上記ボスエンド2は、上記高圧水素容器1の両端のボス10の開口部を塞ぐためだけでなく、肉厚で部品取付スペースの確保が容易であるから、上記樹脂部分の気密性および耐圧性を阻害することなく、上記高圧水素容器1に水素ガス充填あるいは水素ガス排出用の開閉バルブ6および配管、あるいは温度センサ4や圧力センサ等の他の部品等を組み付けるための取付基部としての役割を果たしている。   Therefore, the boss end 2 of the high-pressure hydrogen container 1 is not only for closing the openings of the bosses 10 at both ends of the high-pressure hydrogen container 1, but it is easy to secure a part mounting space due to its thickness. Without hindering the airtightness and pressure resistance of the high pressure hydrogen container 1 for assembling the open / close valve 6 and piping for filling or discharging hydrogen gas, or other components such as the temperature sensor 4 and pressure sensor, etc. It serves as a mounting base.

図3に示すように上記高圧水素容器1の両端のボス10に装着された上記ボスエンド2のうち一方のボスエンド2には、上述した詳述略の気密構造により、上記高圧水素容器1に高圧水素ガス5を充填したり、上記高圧水素容器1から高圧水素ガス5を取り出したりする開閉バルブ6および配管部材、図略の安全弁等が取り付けられている。   As shown in FIG. 3, one of the boss ends 2 attached to the bosses 10 at both ends of the high-pressure hydrogen container 1 has a high-pressure hydrogen container 1 in the high-pressure hydrogen container 1 due to the above-described detailed airtight structure. An opening / closing valve 6 for filling the gas 5 and taking out the high-pressure hydrogen gas 5 from the high-pressure hydrogen container 1, a piping member, a safety valve (not shown), and the like are attached.

他方の上記ボスエンド2には、 図1および図2に示すように、その軸線に沿って外部に開放する挿入孔20が、後述する温度センサ4が挿入可能となる内径で設けられている。   As shown in FIGS. 1 and 2, the other boss end 2 is provided with an insertion hole 20 that opens to the outside along its axis with an inner diameter through which a temperature sensor 4 to be described later can be inserted.

上記挿入孔20の上記高圧水素容器1側には後述するセンサハウジング3を組み付けるための雌ネジ部22が上記挿入孔20よりも太い径で形成されている。   On the high-pressure hydrogen container 1 side of the insertion hole 20, a female screw portion 22 for assembling a sensor housing 3 described later is formed with a diameter larger than that of the insertion hole 20.

また、上記ボスエンド2には上記雌ネジ部22のネジ締め方向の先方には気密性を確保するためのボスエンドシール部23が形成されている。上記ボスエンドシール部23はネジ締め方向に対して垂直平面を形成しており、後述するメタルシール構造の密着性を良好にするため表面は精度良く仕上げられている。   The boss end 2 is formed with a boss end seal portion 23 for securing airtightness at the tip of the female screw portion 22 in the screw tightening direction. The boss end seal portion 23 forms a plane perpendicular to the screw tightening direction, and the surface is finished with high accuracy in order to improve the adhesion of the metal seal structure described later.

センサハウジング3はボスエンド2と同材質のステンレス(SUS316L)からなり、円筒状の保護管部31と上記ボスエンド2に設けられた上記雌ネジ部22に螺合する雄ネジ部32とハウジングシール部33とナット部34が切削加工により一体的に形成されている。   The sensor housing 3 is made of stainless steel (SUS316L) made of the same material as the boss end 2, and has a cylindrical protective tube portion 31, a male screw portion 32 that engages with the female screw portion 22 provided on the boss end 2, and a housing seal portion 33. And the nut portion 34 are integrally formed by cutting.

また、上記センサハウジング3の内側には上記センサハウジング3を上記ボスエンドに組み付けたときに一端が上記ボスエンド2に設けた挿入孔20に連通し、他端が上記保護管部31の先端で閉塞する挿入孔20aが軸心に沿って設けられている。   Further, when the sensor housing 3 is assembled to the boss end, one end communicates with the insertion hole 20 provided in the boss end 2 inside the sensor housing 3, and the other end is blocked by the tip of the protective tube portion 31. An insertion hole 20a is provided along the axis.

上記センサハウジング3は上記ボスエンド2とは別体で上記ボスエンド2に付設されている。即ち両者は分解可能な構造であり、両者を加工する際には比較的精密な加工が可能である。特に上記ボスエンド2の挿入孔20や保護管部31の挿入孔20aなどの細い孔を形成するとき、上記ボスエンド2と上記センサハウジング3とが別体であると孔加工が極めて容易である。   The sensor housing 3 is attached to the boss end 2 separately from the boss end 2. That is, both have a structure that can be disassembled, and relatively precise processing is possible when processing both. In particular, when forming a thin hole such as the insertion hole 20 of the boss end 2 or the insertion hole 20a of the protective tube portion 31, if the boss end 2 and the sensor housing 3 are separate, the hole processing is extremely easy.

上記センサハウジング3の保護管部31は温度応答性と耐圧性とを考慮した厚さに形成され、上記ナット部34はスパナ等の工具により締め付けが可能な強度を有するように外形が六角形状で厚肉に形成され、上記雄ネジ部32は上記保護管部31の外径よりも太いネジ径でかつ上記ナット部34の締め付けに十分耐えうる強度に形成されている。   The protective tube portion 31 of the sensor housing 3 is formed with a thickness that takes temperature response and pressure resistance into consideration, and the nut portion 34 has a hexagonal outer shape so that it can be tightened with a tool such as a spanner. The male screw portion 32 is formed to be thick and has a screw diameter that is thicker than the outer diameter of the protective tube portion 31 and is strong enough to withstand the tightening of the nut portion 34.

上記雄ネジ部32および上記雌ネジ部22のそれぞれのネジ山のサイズ、ピッチ、ネジ山数、谷径等はシール面の適正な面圧を考慮して決定されている。   The thread size, pitch, number of threads, valley diameter, etc. of each of the male screw portion 32 and the female screw portion 22 are determined in consideration of an appropriate surface pressure of the seal surface.

また、上記ボス10と上記ボスエンド2と上記センサハウジング3とが同材質により形成されているので熱膨張係数の違いによるネジの緩みの発生を押さえることができる。   Further, since the boss 10, the boss end 2 and the sensor housing 3 are formed of the same material, it is possible to suppress the occurrence of loosening of the screw due to the difference in thermal expansion coefficient.

なお、上記両シール部23、33のシール位置は、上記ボスエンド2の上記雌ネジ部22と上記センサハウジング3の上記雄ネジ部32とが螺合した状態で上記両ネジ部22、32よりも先方、即ち上記ボスエンド2の外側方向の位置にある。   It should be noted that the sealing positions of both the seal portions 23 and 33 are set to be higher than those of the both screw portions 22 and 32 in a state where the female screw portion 22 of the boss end 2 and the male screw portion 32 of the sensor housing 3 are screwed together. It is in the front, that is, the position in the outer direction of the boss end 2.

上記両シール部23、33の位置が上記ネジ締め位置22、32よりも後方、即ち上記ボスエンド2の内側方向に設けた場合、両シール部23、33は上記ボスエンド2に設けられた上記雌ネジ部22よりも必然的に大きくせざるを得なく両シール部のシール面積が大きくなり、面圧が小さくなる。   When the positions of the seal portions 23 and 33 are provided behind the screw tightening positions 22 and 32, that is, in the inner direction of the boss end 2, the seal portions 23 and 33 are provided with the female screw provided on the boss end 2. Inevitably larger than the portion 22, the seal area of both seal portions is increased, and the surface pressure is reduced.

一方、上記両シール部23、33の位置が上記ネジ締め位置22、32よりも先方に設けることにより、上記両シール部23、33は必然的に上記両ネジ部22、32の内径より小さくなるので密着面積も小さくなり、上記両ネジ部22、23の締め付けによる軸力により加わる単位面積当たりの面圧は大きくなり、気密性の向上が図られる。   On the other hand, the seal portions 23 and 33 are inevitably smaller than the inner diameters of the screw portions 22 and 32 by providing the seal portions 23 and 33 ahead of the screw tightening positions 22 and 32. Therefore, the contact area is also reduced, and the surface pressure per unit area applied by the axial force generated by tightening the screw portions 22 and 23 is increased, thereby improving the airtightness.

上記ハウジングシール部33はネジ締め方向に対して垂直平面を形成しており、密着性を良好にするためシール面は精度良く仕上げられている。   The housing seal portion 33 forms a vertical plane with respect to the screw tightening direction, and the seal surface is finished with high accuracy in order to improve adhesion.

また、上記ハウジングシール部33は密着面の面積を更に小さくしてシール面にかかる単位面積当たりの面圧を大きくするとともに、上記ボスエンドハウジングシール部23に当接する際にかじりを起こさないようにするため上記ハウジングシール部33の外径側には円錐状にテーパー面331が施され、内径側には円錐状のテーパー面332が施してあり、シール面はリング状の平面となっている。   The housing seal portion 33 further reduces the area of the contact surface to increase the surface pressure per unit area on the seal surface, and does not cause galling when contacting the boss end housing seal portion 23. Therefore, a conical tapered surface 331 is provided on the outer diameter side of the housing seal portion 33, a conical tapered surface 332 is provided on the inner diameter side, and the sealing surface is a ring-shaped flat surface.

上記センサハウジング3の雄ネジ部32を上記ボスエンド2に設けられた雌ネジ部22にねじ込んで、ロック部34をスパナ等の工具により締め付けると、上記ハウジングシール部33と上記ボスエンドシール部23とが平面同士で接触し、さらに雄ネジ部32をネジ込むと、両シール面がネジ込みの軸力により弾性変形して接触面が完全に一致して密着した状態になる。   When the male screw portion 32 of the sensor housing 3 is screwed into the female screw portion 22 provided in the boss end 2 and the lock portion 34 is tightened with a tool such as a spanner, the housing seal portion 33, the boss end seal portion 23, When the male surfaces 32 are in contact with each other and the male threaded portion 32 is further screwed in, both sealing surfaces are elastically deformed by the axial force of the screwing so that the contact surfaces are completely in close contact with each other.

ここで雄ネジ部32のネジ込みを止めても、雌ネジ部22と雄ネジ部32との摩擦力により上記両シール面が互いに密に接触するメタルシール構造を維持し、このメタルシール構造により上記高圧水素容器1の内部と外部とを完全に隔離するので、強固に気密性を保つことができる。   Even if the screwing of the male screw portion 32 is stopped, the metal seal structure in which the two sealing surfaces are in close contact with each other by the frictional force between the female screw portion 22 and the male screw portion 32 is maintained. Since the inside and outside of the high-pressure hydrogen container 1 are completely separated, the airtightness can be maintained firmly.

上記雌ネジ部22と上記雄ネジ部32とを螺合する際に、過剰な力を加えてネジ込むと上記両シール面が降伏値を越えて塑性変形してしまうので、上記両シール面同士の密着から降伏値を超えない範囲までの締め付け回転角度から適正な面圧を導き出す弾性域角度法、または上記両シール面が弾性変形する範囲内にネジ締めトルクを制限するトルク法により、適正な締め付け状態を管理する。   When the female screw portion 22 and the male screw portion 32 are screwed together, if both of the sealing surfaces exceed the yield value when they are screwed in with an excessive force, the two sealing surfaces are By using the elastic range angle method that derives the appropriate surface pressure from the tightening rotation angle up to the range that does not exceed the yield value, or the torque method that limits the screw tightening torque within the range where both the seal surfaces are elastically deformed. Manage the tightening condition.

温度センサ素子40とリード線41、42とが電気的に接続されて構成された温度センサ4は上記ボスエンド2の上記挿入孔20から挿入され、上記温度センサ素子40が上記センサハウジング3の保護管部31の上記挿入孔20a先端の閉塞端の内側で固定されており、上記温度センサ素子40から引き出されたリード線41、42が上記挿入孔20aおよび上記挿入孔20を通って、外部の制御装置43に電気的に繋がっている。   The temperature sensor 4 configured by electrically connecting the temperature sensor element 40 and the lead wires 41 and 42 is inserted from the insertion hole 20 of the boss end 2, and the temperature sensor element 40 is a protective tube of the sensor housing 3. The lead wires 41 and 42 led out from the temperature sensor element 40 pass through the insertion hole 20a and the insertion hole 20 and are externally controlled. It is electrically connected to the device 43.

上記温度センサ素子40としてサーミスタが用いられているが、サーミスタに限定するものではなく、白金測温抵抗体等でも良い。   Although the thermistor is used as the temperature sensor element 40, it is not limited to the thermistor, and a platinum resistance thermometer or the like may be used.

また、センサハウジング3の内壁と上記温度センサ4とは上記温度センサ4に施された図略の絶縁性被覆等の絶縁手段により電気的な絶縁性が確保されている。   The inner wall of the sensor housing 3 and the temperature sensor 4 are electrically insulated by an insulating means such as an insulating coating (not shown) applied to the temperature sensor 4.

上記センサハウジング3の保護管部31の閉塞端が、上記高圧水素容器1の内側に位置するように上記ハウジング3が付設されているので、上記閉塞端内に保持される温度センサ素子40も上記高圧水素容器の内側に支持されることになり、かつ、上記保護管31の薄い壁面のみを介して直接上記高圧水素容器1内部の温度を測定できるので温度の測定誤差が少なくなるとともに上記高圧水素容器1の内部の温度変化に対して速やかに応答できる。   Since the housing 3 is attached so that the closed end of the protective tube portion 31 of the sensor housing 3 is located inside the high-pressure hydrogen container 1, the temperature sensor element 40 held in the closed end is also the above-mentioned. Since the temperature inside the high-pressure hydrogen container 1 can be measured directly only through the thin wall surface of the protective tube 31, the temperature measurement error is reduced and the high-pressure hydrogen is reduced. It is possible to respond quickly to a temperature change inside the container 1.

また、上記センサハウジング3は上記高圧水素容器1の内側に取り付けられているので、上記高圧水素容器1内の水素ガス圧力が上記センサハウジング3に加わり、シール面の密着力を増す方向に作用する。   In addition, since the sensor housing 3 is attached to the inside of the high-pressure hydrogen container 1, the hydrogen gas pressure in the high-pressure hydrogen container 1 is applied to the sensor housing 3 and acts in the direction of increasing the adhesion of the seal surface. .

しかしながら、同時に上記高圧水素容器1内の水素ガス圧力は上記両ネジ部22、32のネジ締めの軸力をうち消す方向にも加わる。しかし、上記水素ガス圧からはネジ締めのゆるみ方向の回転力は与えられないので、嫌気性ネジ固定剤341等のゆるみ回転防止手段により、振動等の外力による上記センサハウジング3の回転を防止すれば、上記雌ネジ部22と上記雄ネジ部32との螺合のゆるみは生じない。   However, at the same time, the hydrogen gas pressure in the high-pressure hydrogen container 1 is also applied in the direction of eliminating the axial force of the screw tightening of the screw portions 22 and 32. However, since the rotational force in the loosening direction of the screw tightening is not given from the hydrogen gas pressure, the rotation of the sensor housing 3 due to external force such as vibration can be prevented by means of loose rotation prevention means such as the anaerobic screw fixing agent 341. In this case, the threaded engagement between the female screw portion 22 and the male screw portion 32 does not occur.

また、上記ゆるみ回転防止手段は上記嫌気性ネジ固定剤341の他、機械的な係合部を設けた係止手段によるもの等でも良い。   Further, the loosening rotation preventing means may be a locking means provided with a mechanical engaging portion in addition to the anaerobic screw fixing agent 341.

また、温度応答性をさらに向上させるために、上記保護管31と上記温度センサ素子40との熱伝導性を良くする熱伝導率の高い素材をフィラーとして上記挿入孔20aと温度センサ素子40との空隙に充填しても良い。   In order to further improve the temperature responsiveness, a material having high thermal conductivity that improves the thermal conductivity between the protective tube 31 and the temperature sensor element 40 is used as a filler to form the insertion hole 20a and the temperature sensor element 40. The gap may be filled.

なお、本実施形態においては、上記温度センサ4を単独で上記ボスエンド2の一方に設けたが、本発明によれば、上記温度センサ4は比較的小さくできるので、上記バルブ6側のボスエンド2にバルブ6等の他の部材とともに取付けることも可能で、片側のボスエンド2に配管や配線を集中させることにより、取り扱い時の注意労力を軽減できる。   In the present embodiment, the temperature sensor 4 is provided on one of the boss ends 2 alone. However, according to the present invention, the temperature sensor 4 can be made relatively small. It can also be attached together with other members such as the valve 6, and by concentrating the piping and wiring on the boss end 2 on one side, it is possible to reduce the labor required for handling.

また、本実施形態においては、上記ボスエンド2と上記センサハウジング3は別体で設けられ、雌ネジ部22と雄ネジ部32との螺合により結合されているが、上記センサハウジング3と上記ボスエンド2とを一体的に形成したものでもよく、上記センサハウジング3の保護管部31が上記高圧水素容器1の内側に突出するように形成すればよい。   Further, in the present embodiment, the boss end 2 and the sensor housing 3 are provided separately and are coupled by screwing the female screw portion 22 and the male screw portion 32. However, the sensor housing 3 and the boss end are connected to each other. 2 may be formed integrally, and the protective tube portion 31 of the sensor housing 3 may be formed so as to protrude inside the high-pressure hydrogen container 1.

この場合、上記保護管部31と上記ボスエンド2とは一体であるので、両者の気密性は完全に保持される。   In this case, since the protective tube portion 31 and the boss end 2 are integrated, the airtightness of both is completely maintained.

さらに、本発明においては、上記温度センサ4の上記センサハウジング3への取付を作業容易にするとともに絶縁性を確保するものとして上記温度センサ4を予め別のケーシング等に納めたものとしても良い。   Furthermore, in the present invention, the temperature sensor 4 may be stored in another casing or the like in advance so as to facilitate the attachment of the temperature sensor 4 to the sensor housing 3 and to ensure insulation.

さらに、本発明に適用できる高圧容器は上記実施形態に例示した構造の高圧水素容器に限定するものではなく、他の構造の高圧水素容器であっても良く、また、高圧容器内に封入される高圧流体は水素以外の他の高圧流体用容器でも良い。   Further, the high-pressure vessel applicable to the present invention is not limited to the high-pressure hydrogen vessel having the structure exemplified in the above embodiment, and may be a high-pressure hydrogen vessel having another structure, and is enclosed in the high-pressure vessel. The high-pressure fluid may be a container for high-pressure fluid other than hydrogen.

さらに、高圧容器内に封入される高圧流体が水素以外の他の高圧流体である場合、センサハウジングの保護管部を高圧容器内に突出せしめるという本発明の特徴を保有していれば良く、またセンサハウジング内に配設されるセンサ類も上記温度センサに限定されるものではない。   Furthermore, when the high-pressure fluid sealed in the high-pressure vessel is a high-pressure fluid other than hydrogen, it is only necessary to have the feature of the present invention that the protective tube portion of the sensor housing protrudes into the high-pressure vessel. Sensors arranged in the sensor housing are not limited to the temperature sensor.

本発明の実施形態における高圧容器用温度センサの取付構造を示す要部断面図。The principal part sectional drawing which shows the attachment structure of the temperature sensor for high pressure containers in embodiment of this invention. 図1中A部の拡大断面図。The expanded sectional view of the A section in FIG. 本発明の適用された高圧水素容器の一部断面図。The partial sectional view of the high-pressure hydrogen container to which the present invention was applied. 従来の高圧水素容器用温度センサの取付構造を示す要部断面図。The principal part sectional drawing which shows the attachment structure of the conventional temperature sensor for high pressure hydrogen containers. 図4中A部の拡大断面図。The expanded sectional view of the A section in FIG.

符号の説明Explanation of symbols

1 高圧水素容器
2 ボスエンド
20、20a 挿入孔
22 雌ネジ部
23 ボスエンドシール部
3 センサハウジング
31 保護管部
32 雄ネジ部
33 ハウジングシール部
331、332 テーパー面
34 ナット部
341 嫌気性ネジ固定剤
4 温度センサ
40 温度センサ素子
41、42 リード線
43 制御装置
5 高圧水素ガス
DESCRIPTION OF SYMBOLS 1 High pressure hydrogen container 2 Boss end 20, 20a Insertion hole 22 Female screw part 23 Boss end seal part 3 Sensor housing 31 Protection pipe part 32 Male screw part 33 Housing seal part 331, 332 Tapered surface 34 Nut part 341 Anaerobic screw fixing agent 4 Temperature sensor 40 Temperature sensor element 41, 42 Lead wire 43 Controller 5 High-pressure hydrogen gas

Claims (6)

内部に高圧流体が封入される高圧容器のボスに設けられた開口を閉鎖するボスエンドに、上記高圧容器内の温度を計測する温度センサを、これを保護するセンサハウジングを介して取り付けた高圧容器用温度センサ取付構造であって、
上記ボスエンドに上記高圧容器の内側から外部に開放する挿入孔を形成し、
一端が閉塞し他端が開口する保護管部を備えた上記センサハウジングを、
その開口端を上記挿入孔に連通せしめるとともに、その閉塞端を上記高圧容器の内側に突出せしめ、上記ボスエンドとの間に気密性を保持して、上記ボスエンドの上記高圧容器内側に設け、
上記高圧容器内部の温度を計測するセンサ素子と計測結果を上記高圧容器の外部の制御装置に出力するリード線とからなる上記温度センサを、上記挿入孔から上記保護管部へ挿入し、
上記センサ素子を上記高圧容器の内側に位置する上記保護管部の閉塞端内に保持せしめることを特徴とする高圧容器用温度センサ取付構造。
For high-pressure vessels in which a temperature sensor that measures the temperature in the high-pressure vessel is attached to a boss end that closes an opening provided in the boss of the high-pressure vessel in which high-pressure fluid is enclosed, via a sensor housing that protects the temperature sensor. A temperature sensor mounting structure,
Forming an insertion hole in the boss end that opens from the inside of the high-pressure vessel to the outside,
The sensor housing provided with a protective tube part having one end closed and the other end opened.
The open end communicates with the insertion hole, the closed end protrudes inside the high-pressure vessel, maintains airtightness with the boss end, and is provided inside the high-pressure vessel of the boss end.
The temperature sensor consisting of a sensor element that measures the temperature inside the high-pressure vessel and a lead wire that outputs a measurement result to a control device outside the high-pressure vessel is inserted into the protective tube portion from the insertion hole,
A temperature sensor mounting structure for a high-pressure vessel, wherein the sensor element is held in a closed end of the protective tube portion located inside the high-pressure vessel.
上記ボスエンドとは別体の上記センサハウジングを上記ボスエンドに付設した請求項1に記載の高圧容器用温度センサ取付構造。   The temperature sensor mounting structure for a high-pressure vessel according to claim 1, wherein the sensor housing separate from the boss end is attached to the boss end. 上記センサハウジングと上記ボスエンドは、互いに螺合するネジ部と相互間の気密性を保持するシール部とを有し、
上記シール部をネジ締めにより互いに密着するメタルシール構造とした請求項2に記載の高圧容器用温度センサ取付構造。
The sensor housing and the boss end have a threaded portion that is screwed together and a seal portion that maintains airtightness between each other,
The temperature sensor mounting structure for a high-pressure vessel according to claim 2, wherein the seal portion has a metal seal structure that is in close contact with each other by screwing.
上記両シール部のシール位置を上記センサハウジングと上記ボスエンドとが螺合した状態で上記ネジ部よりも上記ボスエンドの外側位置に設定した請求項3に記載の高圧容器用温度センサ取付構造。   4. The temperature sensor mounting structure for a high-pressure vessel according to claim 3, wherein the seal position of both the seal portions is set at a position outside the boss end with respect to the screw portion in a state where the sensor housing and the boss end are screwed together. 上記両シール部のシール面をネジ締め方向と直交する平面に形成した請求項3または4に記載の高圧容器用温度センサ取付構造。   The temperature sensor mounting structure for a high-pressure vessel according to claim 3 or 4, wherein the sealing surfaces of both the sealing portions are formed on a plane orthogonal to the screw tightening direction. 上記高圧容器が燃料電池車用高圧水素容器である請求項1ないし4のいずれかに記載の高圧容器用温度センサ取付構造。   The temperature sensor mounting structure for a high-pressure vessel according to any one of claims 1 to 4, wherein the high-pressure vessel is a high-pressure hydrogen vessel for a fuel cell vehicle.
JP2006032422A 2006-02-09 2006-02-09 Temperature sensor mounting structure for high-pressure hydrogen containers Expired - Fee Related JP4747866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032422A JP4747866B2 (en) 2006-02-09 2006-02-09 Temperature sensor mounting structure for high-pressure hydrogen containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032422A JP4747866B2 (en) 2006-02-09 2006-02-09 Temperature sensor mounting structure for high-pressure hydrogen containers

Publications (2)

Publication Number Publication Date
JP2007212287A true JP2007212287A (en) 2007-08-23
JP4747866B2 JP4747866B2 (en) 2011-08-17

Family

ID=38490873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032422A Expired - Fee Related JP4747866B2 (en) 2006-02-09 2006-02-09 Temperature sensor mounting structure for high-pressure hydrogen containers

Country Status (1)

Country Link
JP (1) JP4747866B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092160A (en) * 2007-10-10 2009-04-30 Honda Motor Co Ltd Fuel gas tank
JP2010015847A (en) * 2008-07-04 2010-01-21 Suzuki Motor Corp Fuel cell system for vehicle
JP2011505523A (en) * 2007-11-13 2011-02-24 ソシエテ ド テクノロジー ミシュラン Pressurized fuel tank, method and apparatus for manufacturing such a tank
JP2011038559A (en) * 2009-08-07 2011-02-24 Suzuki Motor Corp High pressure gas tank system
JP2012127512A (en) * 2012-04-04 2012-07-05 Honda Motor Co Ltd Fuel gas tank
CN103207027A (en) * 2013-04-07 2013-07-17 北京工业大学 Built-in off-line temperature detection instrument and method for high pressure vessel
CN103657503A (en) * 2013-12-06 2014-03-26 柳州市豪杰特化工机械有限责任公司 Stirring equipment temperature measurement structure
DE102014002660A1 (en) 2014-02-25 2015-08-27 Daimler Ag Device for receiving a temperature sensor
CN104155016B (en) * 2014-08-26 2017-10-31 上海舜华新能源系统有限公司 A kind of measurement apparatus for being used to measure gas cylinder internal temperature
KR101814593B1 (en) * 2016-12-27 2018-01-03 한국가스안전공사 Jig apparatus for testing gas cylinder
JP2018100984A (en) * 2014-07-24 2018-06-28 株式会社デンソー Temperature sensor
DE102017011722A1 (en) 2017-12-18 2019-06-19 Daimler Ag Device for detecting the gas temperature in a pressurized gas container
CN110010344A (en) * 2019-05-08 2019-07-12 奕顺龙能源科技(北京)有限公司 Energy-storage travelling wave tube and electrical energy storage device
LU101271B1 (en) * 2019-06-18 2020-12-18 Luxembourg Patent Co Valve with integrated temperature sensor for compressed gas cylinder
CN113531383A (en) * 2021-07-21 2021-10-22 浙江浙能航天氢能技术有限公司 High-pressure gas cylinder sealing structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4898190A (en) * 1972-03-27 1973-12-13
JPS5491882A (en) * 1977-12-29 1979-07-20 Suzuki Motor Co Ltd Fasteners such as screws
US4237091A (en) * 1978-06-21 1980-12-02 Cobe Laboratories, Inc. Temperature probe
JPS5646843A (en) * 1979-09-23 1981-04-28 Yoshio Katsuta Novel carboxylic acid ester derivative, preparation of novel carboxylic acid ester derivative, and insecticide containing novel carboxylic acid ester derivative
JPH03108736U (en) * 1990-02-23 1991-11-08
JPH04152231A (en) * 1990-10-17 1992-05-26 Chino Corp Sensor plug for high pressure and manufacture of the same
JPH0968467A (en) * 1995-08-31 1997-03-11 Yamatake Honeywell Co Ltd Insertion type detector
US5743646A (en) * 1996-07-01 1998-04-28 General Motors Corporation Temperature sensor with improved thermal barrier and gas seal between the probe and housing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4898190A (en) * 1972-03-27 1973-12-13
JPS5491882A (en) * 1977-12-29 1979-07-20 Suzuki Motor Co Ltd Fasteners such as screws
US4237091A (en) * 1978-06-21 1980-12-02 Cobe Laboratories, Inc. Temperature probe
JPS5646843A (en) * 1979-09-23 1981-04-28 Yoshio Katsuta Novel carboxylic acid ester derivative, preparation of novel carboxylic acid ester derivative, and insecticide containing novel carboxylic acid ester derivative
JPH03108736U (en) * 1990-02-23 1991-11-08
JPH04152231A (en) * 1990-10-17 1992-05-26 Chino Corp Sensor plug for high pressure and manufacture of the same
JPH0968467A (en) * 1995-08-31 1997-03-11 Yamatake Honeywell Co Ltd Insertion type detector
US5743646A (en) * 1996-07-01 1998-04-28 General Motors Corporation Temperature sensor with improved thermal barrier and gas seal between the probe and housing

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092160A (en) * 2007-10-10 2009-04-30 Honda Motor Co Ltd Fuel gas tank
JP2011505523A (en) * 2007-11-13 2011-02-24 ソシエテ ド テクノロジー ミシュラン Pressurized fuel tank, method and apparatus for manufacturing such a tank
JP2010015847A (en) * 2008-07-04 2010-01-21 Suzuki Motor Corp Fuel cell system for vehicle
JP2011038559A (en) * 2009-08-07 2011-02-24 Suzuki Motor Corp High pressure gas tank system
JP2012127512A (en) * 2012-04-04 2012-07-05 Honda Motor Co Ltd Fuel gas tank
CN103207027A (en) * 2013-04-07 2013-07-17 北京工业大学 Built-in off-line temperature detection instrument and method for high pressure vessel
CN103657503A (en) * 2013-12-06 2014-03-26 柳州市豪杰特化工机械有限责任公司 Stirring equipment temperature measurement structure
DE102014002660A1 (en) 2014-02-25 2015-08-27 Daimler Ag Device for receiving a temperature sensor
JP2018100984A (en) * 2014-07-24 2018-06-28 株式会社デンソー Temperature sensor
CN104155016B (en) * 2014-08-26 2017-10-31 上海舜华新能源系统有限公司 A kind of measurement apparatus for being used to measure gas cylinder internal temperature
KR101814593B1 (en) * 2016-12-27 2018-01-03 한국가스안전공사 Jig apparatus for testing gas cylinder
DE102017011722A1 (en) 2017-12-18 2019-06-19 Daimler Ag Device for detecting the gas temperature in a pressurized gas container
CN110010344A (en) * 2019-05-08 2019-07-12 奕顺龙能源科技(北京)有限公司 Energy-storage travelling wave tube and electrical energy storage device
LU101271B1 (en) * 2019-06-18 2020-12-18 Luxembourg Patent Co Valve with integrated temperature sensor for compressed gas cylinder
WO2020254361A1 (en) * 2019-06-18 2020-12-24 Luxembourg Patent Company S.A. Valve with integrated temperature sensor for compressed gas cylinder
CN113531383A (en) * 2021-07-21 2021-10-22 浙江浙能航天氢能技术有限公司 High-pressure gas cylinder sealing structure
CN113531383B (en) * 2021-07-21 2023-08-25 浙江浙能航天氢能技术有限公司 High-pressure gas cylinder sealing structure

Also Published As

Publication number Publication date
JP4747866B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4747866B2 (en) Temperature sensor mounting structure for high-pressure hydrogen containers
JP7066995B2 (en) High pressure container
KR102436790B1 (en) pressure sensor
US9074946B2 (en) Protective tube inner part for a thermometer with a protective tube
JP5541095B2 (en) tank
US8763846B2 (en) Bonding structure of metal member and composite-material member
KR101448240B1 (en) Vacuum insulated pipe
KR100356778B1 (en) Membrane pressure sensor
US8375807B2 (en) Messgerat
US9581503B2 (en) Sensor and sensor mounting structure
BR112013033497B1 (en) protrusion for composite pressure vessel
US9134147B2 (en) Measuring arrangement system for a universal process connection
US7525072B2 (en) Heated O-ring
US8485535B2 (en) Sealing gland for ribbon-shaped probe
CN205808893U (en) A kind of new type rubber oil resistant test device
JP6037112B2 (en) Differential pressure / pressure transmitter
CN210567487U (en) Low-temperature storage tank
EP0978712A1 (en) Temperature sensor holding means
JP2024505629A (en) Containers for cryogenic storage and transportation
JP2008002655A (en) Tank and tank component fastening structure
JP2009168708A (en) Cylinder pressure sensor and cylinder pressure computing device
KR101608394B1 (en) The butterfly valve that have a pressure gauge and thermometer
US20120320945A1 (en) Robust media sealing temperature probe
KR101038056B1 (en) Pressure sensor with temperature-sensing element and mounting structure of the same
KR101081946B1 (en) Pressure sensor with a semi-permeable membrane and mounting structure of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R151 Written notification of patent or utility model registration

Ref document number: 4747866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees