JP4747549B2 - Lead-acid battery charging method - Google Patents

Lead-acid battery charging method Download PDF

Info

Publication number
JP4747549B2
JP4747549B2 JP2004299859A JP2004299859A JP4747549B2 JP 4747549 B2 JP4747549 B2 JP 4747549B2 JP 2004299859 A JP2004299859 A JP 2004299859A JP 2004299859 A JP2004299859 A JP 2004299859A JP 4747549 B2 JP4747549 B2 JP 4747549B2
Authority
JP
Japan
Prior art keywords
charging
battery
constant current
stage
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004299859A
Other languages
Japanese (ja)
Other versions
JP2006114312A (en
Inventor
哲志 梶川
宏之 今井
靖之 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004299859A priority Critical patent/JP4747549B2/en
Publication of JP2006114312A publication Critical patent/JP2006114312A/en
Application granted granted Critical
Publication of JP4747549B2 publication Critical patent/JP4747549B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、鉛蓄電池の充電方法、特に電動車用といったサイクル用途に用いられる鉛蓄電池の充電方法に関するものである。   The present invention relates to a method for charging a lead storage battery, and more particularly to a method for charging a lead storage battery used for cycle applications such as for electric vehicles.

鉛蓄電池の充電方法として、充電中、一定の電流で充電する定電流充電の一種である定電流多段充電が用いられている。これは、充電電流を充電の進行に伴い段階的に減少させる方式である。この方式は最終の電流が小さいので水の分解が少なく、また電池温度の上昇が少ないという利点がある。   As a method for charging a lead storage battery, constant current multistage charging, which is a kind of constant current charging in which charging is performed at a constant current during charging, is used. This is a method in which the charging current is gradually reduced as the charging progresses. This method has the advantages that the final current is small, so there is little water decomposition and there is little increase in battery temperature.

近年では、鉛蓄電池の充電方法は鉛蓄電池の能力を十分に発揮させる上で、過不足のない適正な充電が求められている。そこで、上記のような定電流多段充電において、過不足のない適正な充電を行うために、様々な充電方法が提案されてきた。   In recent years, the charging method of a lead storage battery has been required to be charged properly without excess or deficiency in order to fully demonstrate the capacity of the lead storage battery. Accordingly, various charging methods have been proposed in order to perform appropriate charging without excess or deficiency in the constant current multistage charging as described above.

例えば、特許文献1では、1段目において、鉛蓄電池を所定の充電電流で充電し、電池電圧が所定値に達した時点で2段目に移行し、2段目では1段目の充電電流よりも段階的に低い充電電流で定電流充電を行う2段定電流充電において、2段目の充電時間t2を1段目の充電時間t1を基準として設定制御し、放電電気量に一定の定数を乗じることにより設定した必要電気量を充電する。ここでは、鉛蓄電池の放電時にその放電電流、放電時間を測定し、放電電気量を積算し、放電電気量に一定の係数を乗じることにより設定した必要電気量を充電する。 For example, in Patent Document 1, in the first stage, the lead storage battery is charged with a predetermined charging current, and when the battery voltage reaches a predetermined value, the process proceeds to the second stage, and in the second stage, the first stage charging current. In two-stage constant-current charging, in which constant-current charging is performed at a stepwise lower charging current, the second-stage charging time t 2 is set and controlled based on the first-stage charging time t 1 , and the discharge electricity quantity is constant. The required amount of electricity set by multiplying the constant is charged. Here, when the lead storage battery is discharged, the discharge current and discharge time are measured, the discharge electricity amount is integrated, and the required electricity amount set by multiplying the discharge electricity amount by a certain coefficient is charged.

さらに、特許文献2では、上述の2段定電流充電において、1段目の充電時間t1と電池温度Tに基づいて2段目の充電時間t2を決定することにより、鉛蓄電池に過不足のない適正な充電を行うことが示されている。
特開平7−78637号公報 特開平11−89104号公報
Further, in Patent Document 2, in the above-described two-stage constant current charging, the lead-acid battery is excessive or insufficient by determining the second-stage charging time t 2 based on the first-stage charging time t 1 and the battery temperature T. It has been shown to perform a proper charge without.
JP-A-7-78637 JP 11-89104 A

しかしながら、上記したような従来の充電方法では、以下のような課題を有していた。すなわち、電池温度が一定しない使用条件では1段目から2段目への切替え電圧を温度補正することにより10〜40℃の範囲では鉛蓄電池への充電電気量を適正な範囲とすることが可能である。ところが、切替え電圧の温度補正のみでは、10℃を下回るような低温領域では充電不足、40℃を上回るような高温領域では過充電となり、適正な電気量を充電することが困難であった。   However, the conventional charging method as described above has the following problems. In other words, under usage conditions where the battery temperature is not constant, the amount of electricity charged to the lead-acid battery can be set to an appropriate range in the range of 10 to 40 ° C by correcting the temperature of the switching voltage from the first stage to the second stage. It is. However, with only the temperature correction of the switching voltage, charging is insufficient in a low temperature region below 10 ° C., and overcharging is performed in a high temperature region above 40 ° C., making it difficult to charge an appropriate amount of electricity.

さらに、鉛蓄電池を製造した直後と、その後充放電サイクルを繰り返した後では、鉛蓄電池の内部抵抗が上昇したり、充電効率が低下しているため、同じ1段目充電時間と電池温度であっても、2段目の適正な充電量も変化している。したがって、製造直後の鉛蓄電池において、適正な充電電気量が確保できる設定とした場合、充放電サイクルを繰り返すうちに充電不足が生じて容量低下を起こしてしまう。   Furthermore, immediately after manufacturing the lead storage battery and after repeating the charge / discharge cycle thereafter, the internal resistance of the lead storage battery increases or the charging efficiency decreases. However, the appropriate charge amount in the second stage has also changed. Therefore, in the lead storage battery immediately after manufacture, when setting is made such that an appropriate amount of charge electricity can be secured, shortage of charge occurs while the charge / discharge cycle is repeated, resulting in a decrease in capacity.

そのため、充放電サイクルを繰り返した後でも充電不足を起こさないように初期の過充電量を多めに設定した場合、過充電によって急激にサイクル寿命が低下するという課題があり、適正な充電量の設定は極めて困難であった。   For this reason, if the initial overcharge amount is set to be large so as not to cause insufficient charge even after repeated charge / discharge cycles, there is a problem that the cycle life will be drastically reduced due to overcharge. Was extremely difficult.

本発明は、鉛蓄電池の充電前の状態にかかわらず、また、鉛蓄電池を繰り返して充放電することによって、その内部抵抗や充電効率が変化した場合においても、過不足のない適正な充電を行う鉛蓄電池の充電方法を提供するものである。   The present invention performs appropriate charging without excess or deficiency, regardless of the state before charging of the lead storage battery, or by repeatedly charging and discharging the lead storage battery, even when its internal resistance or charging efficiency changes. A method for charging a lead storage battery is provided.

(課題を解決するための手段)
上記目的を達成するために、本発明の請求項1に係る発明は、N(N≧3以上の自然数)段の定電流充電ステップを有し、1段からN−1段の定電流充電ステップにおいて、kを2≦k≦N−1である自然数としたときに、k−1段目の定電流充電ステップで鉛蓄電池を充電電流Ik-1で電池電圧VがVrに到達するまで充電し、k段目の定電流充電ステップに移行し、k段目の定電流充電ステップにおいて、前記鉛蓄電池をIk-1>Ikである充電電流Ikで電池電圧VがVrになるまで充電し、1段目の定電流充電ステップにおける充電電気量C1と電池温度Tを計測し、充電電気量C1 が増加した場合あるいは電池温度Tが下降した場合にN段目の定電流充電ステップにおける充電時間t N を増加させるように設定したマップに応じて充電時間tNを決定し、N−1段目の定電流充電ステップにおける充電電流をIN-1としたときに、IN-1≧INである充電電流INで前記鉛蓄電池を前記充電時間tN間充電する鉛蓄電池の充電方法であって、充電回数を計測するステップを有し、前記充電時間tNが所定値tc未満である充電が所定回数(r)連続して行われた場合、前記マップの設定にかかわらず、次回の充電におけるN段目の定電流充電ステップの充電時間tNを少なくとも前記所定値tc以上に設定することを特徴とする鉛蓄電池の充電方法を示すものである。
(Means for solving the problem)
In order to achieve the above object, the invention according to claim 1 of the present invention has N (N ≧ N 3 or more) constant current charging steps, and has 1 to N−1 constant current charging steps. , When k is a natural number satisfying 2 ≦ k ≦ N−1, the lead-acid battery is charged with the charging current I k−1 until the battery voltage V reaches Vr in the constant current charging step of the k−1th stage. Then, the process proceeds to the k-th constant current charging step, and in the k-th constant current charging step, the lead storage battery is charged with the charging current I k satisfying I k−1 > I k until the battery voltage V becomes Vr. charged, the charged electricity quantity C 1 and the battery temperature T in the constant current charging step of the first stage is measured, N-th stage constant current charging when the case is charged electricity quantity C 1 increases or the battery temperature T is lowered during charging in accordance with the map configured to increase the charging time t N in step Determining between t N, the charge current in the constant current charging step of (N-1) th stage when the I N-1, wherein said lead-acid battery charged at the charging current I N is a I N-1 ≧ I N a method of charging a lead-acid battery to be charged between the time t N, comprising the step of measuring the number of charges, charging the charging time t N is less than the predetermined value t c is performed continuously for a predetermined number of times (r) and if, regardless of the setting of the map, the method of charging the lead storage battery and sets the charging time t N of the constant current charging step of the N-th stage to at least the predetermined value or more t c in the next charging It is shown.

本発明の鉛蓄電池の充電方法は、上記の構成を有し、定電流多段充電の最終段の充電時間を適切に制御することにより、過充電量を低減し、かつ充電不足を抑制する。これにより、広範な温度範囲や使用条件においても、サイクル使用における充電電気量を適切に制御でき、鉛蓄電池のサイクル寿命特性を顕著に改善できる。   The method for charging a lead storage battery of the present invention has the above-described configuration, and appropriately controls the charging time of the final stage of constant current multistage charging, thereby reducing the overcharge amount and suppressing insufficient charging. Thereby, even in a wide temperature range and use conditions, the charge electricity amount in cycle use can be appropriately controlled, and the cycle life characteristics of the lead storage battery can be remarkably improved.

以下、本発明の実施の形態を、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の鉛蓄電池の第1の実施形態による充電方法における充電パターンを示す図である。   FIG. 1 is a diagram showing a charging pattern in the charging method according to the first embodiment of the lead storage battery of the present invention.

本発明の鉛蓄電池の充電パターンは図1に示したような、N段(Nは3以上の自然数)の定電流充電ステップから構成される。1段目からN−1段目間は、電池電圧が検知電圧Vrに到達したことを検知し、次段の定電流充電ステップに以降する。すなわち、kを2≦k≦N−1である自然数としたときに、k−1段目の定電流充電ステップで鉛蓄電池を充電電流Ik-1で電池電圧VがVrに到達するまで充電し、次段であるk段目の定電流充電ステップに移行し、k段目の定電流充電ステップにおいて、鉛蓄電池をIk-1>Ikである充電電流Ikで電池電圧VがVrになるまで充電を行う。N−1段目の定電流充電ステップにおいて、電池電圧VがVrに到達した時点でN段目の定電流充電ステップに以降する。このように、充電電流を段階的に減少させることにより、各定電流充電ステップでの電池からのガス発生と、これによる電解液中の水分減少と電池内部抵抗の増大を抑制する。 The charge pattern of the lead storage battery of the present invention is composed of constant current charging steps of N stages (N is a natural number of 3 or more) as shown in FIG. Between the first stage and the (N-1) th stage, it is detected that the battery voltage has reached the detection voltage Vr, and the subsequent constant current charging step is performed. That is, when k is a natural number satisfying 2 ≦ k ≦ N−1, the lead storage battery is charged with the charging current I k−1 at the constant current charging step of the k−1th stage until the battery voltage V reaches Vr. Then, the process proceeds to the k-th constant current charging step which is the next stage. In the k-th constant current charging step, the battery voltage V is set to Vr with the charging current I k satisfying I k-1 > I k. Charge until. In the N- 1th constant current charging step, when the battery voltage V reaches Vr, the Nth constant current charging step is followed. In this way, by gradually reducing the charging current, gas generation from the battery in each constant current charging step, thereby reducing moisture in the electrolyte and increasing the battery internal resistance are suppressed.

定電流充電ステップ数Nを増加させることにより、充電電流をより徐々に低下させることができるので、同一電気量を充電する時間はより短くできる。しかしながら、定電流充電ステップ数Nを増加させると充電制御が複雑となる。実用上、定電流充電ステップ数は3段、最大でも7〜8段でよい。 By increasing the number N of constant current charging steps, the charging current can be gradually decreased, so that the time for charging the same amount of electricity can be shortened. However, increasing the number N of constant current charging steps complicates charging control. In practice, the number of constant current charging steps may be three, and may be 7 to 8 at maximum.

N段目の定電流充電ステップでは、前段の充電電流IN-1としたときに、この充電電流IN-1以下の充電電流値INで充電を行う。すなわち、IN-1≧INとする。ここで、N段目の定電流充電ステップにおける充電時間は、1段目の定電流充電ステップにおける充電電気量C1と電池温度Tを計測し、この充電電気量C1と電池温度Tに応じてN段目の充電時間tNを決定する。なお、充電電流が一定である場合には、充電電気量の計測に換えて、一段目の充電時間t1を計測し、I1×t1として充電電気量C1を求めてもよい。 In the N-stage constant current charging step, charging is performed with a charging current value I N equal to or lower than the charging current I N-1 when the charging current I N-1 is set to the preceding stage. That is, I N-1 ≧ I N. Here, the charge time in the constant current charging step of the N-th stage, the charged electricity quantity C 1 and the battery temperature T in the constant current charging step of the first stage is measured, depending on the amount of charge C 1 and the battery temperature T The N-th charging time t N is determined. If the charging current is constant, the charging time t 1 of the first stage may be measured instead of measuring the charging charge, and the charging charge C 1 may be obtained as I 1 × t 1 .

1段目の充電電気量C1を計測することにより、充電前の電池の放電深度が推測できる。すなわち、放電深度が深い場合、1段目の充電電気量C1が増加する。深い放電深度の電池に適切な充電電気量を供給するため、N段目での充電電気量を増大させるよう、N段目の充電時間tNをより長く制御する。また、1段目の充電電気量C1が減少した場合には、電池の放電深度が浅いと推測できるため、N段目での充電電気量を減少させるよう、N段目の充電時間tNをより短く制御する。このようにtNを制御することにより、電池の放電深度に応じた適切な充電電気量を電池に供給し、電池の過充電や充電不足を抑制する。 By measuring the first stage charge amount C 1 , the depth of discharge of the battery before charging can be estimated. That is, when the discharge depth is deep, the first stage charge amount C 1 increases. In order to supply an appropriate amount of charge electricity to a battery having a deep discharge depth, the N-th stage charging time t N is controlled to be longer so as to increase the amount of charge electricity at the N-th stage. Further, when the amount of charged electricity C 1 at the first stage is reduced, it can be estimated that the discharge depth of the battery is shallow. Therefore, the charging time t N at the Nth stage is set so as to reduce the amount of charged electricity at the Nth stage. Is controlled shorter. By controlling t N in this way, an appropriate amount of charge electricity corresponding to the discharge depth of the battery is supplied to the battery, and overcharging and insufficient charging of the battery are suppressed.

また、本発明では、N段目の充電時間を前記した1段目の充電電気量C1に加えて、1段目の定電流充電ステップにおける電池温度Tによっても制御する。電池温度Tが上昇した場合、充電効率が増大し、電池に充電すべき充電電気量は減少する。反対に、電池温度Tが下降した場合、充電効率は低下し、電池に充電すべき充電電気量は増加する。本発明では、電池温度Tによる充電効率の変化を補正するため、同一の充電電気量C1において、電池温度Tの上昇とともに、N段目の充電時間tNを減少させ、電池温度Tの下降とともに充電時間tNを増加させる。これにより、電池温度Tが変化しても、電池の充電不足や過充電を抑制することができる。 Further, in the present invention, the N-th charging time is controlled by the battery temperature T in the first constant current charging step in addition to the first-stage charging electricity amount C 1 . When the battery temperature T rises, the charging efficiency increases, and the amount of charge electricity that should be charged in the battery decreases. On the other hand, when the battery temperature T decreases, the charging efficiency decreases, and the amount of electricity to charge the battery increases. In the present invention, in order to correct the change in charging efficiency due to the battery temperature T, the N-th charging time t N is decreased and the battery temperature T is decreased with the increase in the battery temperature T at the same charge amount C 1 . At the same time, the charging time t N is increased. Thereby, even if the battery temperature T changes, insufficient charging or overcharging of the battery can be suppressed.

本発明では、C1と電池温度Tから充電時間tNを決定するために、予め図2に示したようなC1,T−tNマップを設定しておき、C1値と電池温度Tから充電時間tNを決定することができる。なお、充電時間tNの設定は、初期状態の電池において、放電電気量に対して適切な充電電気量が確保できる時間とする。なお、放電電気量に対して適切な充電電気量は105〜125%であるが、この比率は電池品種毎に変わるため、電池毎に都度設定すべきである。 In the present invention, in order to determine the charging time t N from C 1 and the battery temperature T, a C 1 , T−t N map as shown in FIG. 2 is set in advance, and the C 1 value and the battery temperature T From this, the charging time t N can be determined. The charging time t N is set to a time during which an appropriate amount of charging electricity can be secured with respect to the amount of discharging electricity in the battery in the initial state. In addition, although the suitable charge electricity amount with respect to the discharge electricity amount is 105 to 125%, since this ratio changes for each battery type, it should be set for each battery.

なお、図2に示したような、充電時間tNを段階的に変更するマップにかえて、マップ内の一部もしくはすべての領域において、充電電気量C1および電池温度Tに対してtNを連続して変化するマップとすることもできる。 In place of the map in which the charging time t N is changed stepwise as shown in FIG. 2, in some or all regions in the map, t N with respect to the charge electricity amount C 1 and the battery temperature T Can be a continuously changing map.

本発明においては、充電回数を計測するステップを有し、1充電毎に充電時間tNが所定値tc未満であったかどうかの判定を行い、tNがtc未満であった充電が所定回数(r)連続した場合、次回の充電におけるtN値を強制的にtc以上の値に設定する。 In the present invention, the method includes a step of measuring the number of times of charging, and for each charging, it is determined whether or not the charging time t N is less than a predetermined value t c , and charging where t N is less than t c is a predetermined number of times. (R) When continuous, the t N value in the next charge is forcibly set to a value equal to or greater than t c .

一般に電池の使用時間が長くなると、その内部抵抗が増加し、充電効率が低下する。内部抵抗の増加により、充電電圧が上昇するため、1段目の定電流充電ステップの充電時間が短く、充電電気量C1が減少する。その結果、電池の放電深度は実際よりも浅いと判定され、tNをより短く設定され、充電効率の低下と相まって電池が充電不足に陥る危険性がある。 In general, as the battery usage time increases, the internal resistance increases and the charging efficiency decreases. Since the charging voltage increases due to the increase in internal resistance, the charging time of the first constant current charging step is short, and the amount of charged electricity C 1 decreases. As a result, discharge depth of the battery is determined to be actually shallower than are shorter set to t N, there is a risk that combined battery and decrease in the charging efficiency falls insufficiently charged.

本発明では、充電回数を計測するステップを有し、この計測ステップにより、tNが所定値tc未満であった充電が所定回数(r)連続した場合、次回の充電におけるN段目の充電時間tNを所定値tc以上とする。これにより、電池内部抵抗が増加した場合にも、適切な頻度で充電時間tNを強制的に増加させることにより、電池の充電不足を抑制することができる。 In the present invention, the method includes a step of measuring the number of times of charging, and when the charging in which t N is less than the predetermined value t c continues for a predetermined number of times (r) by this measuring step, the N-th stage charging in the next charging is performed. The time t N is set to a predetermined value t c or more. Thus, even when the battery internal resistance increases, the battery charging shortage can be suppressed by forcibly increasing the charging time t N at an appropriate frequency.

所定回数(r)は大きいほど、全体の過充電量が少なくなるため、過充電量による電池の劣化は少なくなるが、前記したように、電池の内部抵抗の増大や、放電状態で放置された場合は、充電不足が進行しやすくなる。一方、所定回数(r)が小さいほど、過充電量が増加しやすくなる。したがって、所定回数(r)は電池が搭載された機器が実際に使われる頻度と、次回の使用までの放置期間と電池の自己放電量を勘案して、適切な回数を決めることが好ましく、例えば3〜6回程度に設定することができる。   As the predetermined number of times (r) is larger, the overall overcharge amount is reduced, so that the deterioration of the battery due to the overcharge amount is reduced. However, as described above, the internal resistance of the battery is increased or the battery is left in a discharged state. In this case, insufficient charging is likely to proceed. On the other hand, the smaller the predetermined number of times (r), the easier the overcharge amount increases. Therefore, the predetermined number (r) is preferably determined in consideration of the frequency with which a battery-equipped device is actually used, the leaving period until the next use, and the amount of self-discharge of the battery. It can be set to about 3 to 6 times.

本発明例および比較例による鉛蓄電池の充電方法により、12V60Ahの制御弁式鉛蓄電池を6個直列にした組電池のサイクル寿命試験をおこなった。試験条件は以下の2パターンとした。   A cycle life test of an assembled battery in which six control valve type lead acid batteries of 12V60Ah were connected in series was conducted by the method of charging lead acid batteries according to the present invention example and the comparative example. The test conditions were the following two patterns.

(試験パターン1)
パターン1のサイクル寿命試験は、20A×1時間放電+180A×3分20秒間放電と、以下に示す本発明例1、比較例2もしくは比較例3による充電で構成される充放電サイクルを行う。この充放電サイクルの50サイクル毎に25℃で20A定電流放電(放電終止電圧9.9V)を行い、容量推移を確認した。なお、試験温度は50サイクル毎に変え、25℃で50サイクル→45℃で50サイクル→25℃で50回→0℃で50サイクルという温度サイクルを行った。
(Test pattern 1)
The cycle life test of the pattern 1 is a charge / discharge cycle composed of 20 A × 1 hour discharge + 180 A × 3 minutes 20 seconds discharge and charging according to Invention Example 1, Comparative Example 2 or Comparative Example 3 shown below. 20 A constant current discharge (discharge end voltage 9.9 V) was performed at 25 ° C. every 50 cycles of this charge / discharge cycle, and the capacity transition was confirmed. The test temperature was changed every 50 cycles, and a temperature cycle of 50 cycles at 25 ° C. → 50 cycles at 45 ° C. → 50 cycles at 25 ° C. → 50 cycles at 0 ° C. was performed.

(試験パターン2)
パターン2のサイクル寿命試験は、20A×1時間放電+180A×3分20秒間放電と、以下に示す本発明例1、比較例2もしくは比較例3による充電で構成される充放電サイクルを行う。この充放電サイクルの50サイクル毎に25℃で20A定電流放電(放電終止電圧9.9V)を行い、容量推移を確認した。なお、試験温度は50サイクル毎に変え、25℃で50サイクル→45℃で50サイクル→25℃で50サイクル→0℃で50サイクルという温度サイクルを行った。そして、パターン2ではこの50サイクル毎に行われる20A放電による容量確認の後に、試験電池を40℃において2週間放電状態で放置した後、再び充電を行うサイクルとした。これは実使用時において、電池が使用され、充電されない状態で放置された場合を想定した。
(Test pattern 2)
The cycle life test of pattern 2 is a charge / discharge cycle composed of 20 A × 1 hour discharge + 180 A × 3 minutes 20 seconds discharge and charging according to Invention Example 1, Comparative Example 2 or Comparative Example 3 shown below. 20 A constant current discharge (discharge end voltage 9.9 V) was performed at 25 ° C. every 50 cycles of this charge / discharge cycle, and the capacity transition was confirmed. The test temperature was changed every 50 cycles, and a temperature cycle of 50 cycles at 25 ° C. → 50 cycles at 45 ° C. → 50 cycles at 25 ° C. → 50 cycles at 0 ° C. was performed. In pattern 2, after confirming the capacity by 20 A discharge performed every 50 cycles, the test battery was left in a discharged state at 40 ° C. for 2 weeks and then charged again. This is based on the assumption that the battery is used and left uncharged during actual use.

(本発明例)
前記した本発明の第1の実施形態によるものであり、図1に示した充電パターンにおいて、段数Nを5とした。1段目の定電流充電ステップの充電電流I1値を12A、2段目の充電ステップの充電電流I2値を6A、以下、3段目はI3=3A、4段目はI4=1.5A、5段目はI5=1.2Aとした。また各定電流充電ステップで次のステップに切替える検知電圧Vrは、電池温度T(℃)により制御を行い、Vr=[2.4+(25−T)×0.005]V/セルとした。t5の所定時間tc=2.5時間、所定回数r=4とした。
(Example of the present invention)
According to the first embodiment of the present invention described above, the number N of stages is set to 5 in the charging pattern shown in FIG. The charging current I 1 value of the first constant current charging step is 12 A, the charging current I 2 value of the second charging step is 6 A, the third stage is I 3 = 3 A, the fourth stage is I 4 = 1.5A, 5th stage was I 5 = 1.2A. The detection voltage Vr to be switched to the next step in each constant current charging step is controlled by the battery temperature T (° C.), and is set to Vr = [2.4+ (25−T) × 0.005] V / cell. The predetermined time t 5 is t c = 2.5 hours, and the predetermined number of times r is 4.

図2に示した1段目の定電流充電ステップにおける充電電気量C1および電池温度TとN段目の充電時間tNとの関係を示すマップに基づき、充電電気量C1と電池温度Tに応じて5段目の充電時間t5を決定して充電した。そして、t5が所定時間2.5時間未満の場合、すなわち、1.5時間もしくは0.5時間の場合が連続して4回続いた場合、次回の充電における充電時間t5を所定時間tcである2.5時間とする制御を行った。 Based on the map showing the relationship between the charge electricity amount C 1 and the battery temperature T and the N-th charge time t N in the first constant current charging step shown in FIG. 2, the charge electricity amount C 1 and the battery temperature T It was charged to determine the charging time t 5 of the fifth stage in accordance with the. When t 5 is less than 2.5 hours, that is, when 1.5 hours or 0.5 hours continues four times continuously, the charging time t 5 in the next charging is changed to the predetermined time t. Control was carried out to c for 2.5 hours.

(比較例1)
比較例1の構成は、本発明例と同様の図1に示した充電パターンにおいて、5段目の充電時間t5を図2に示したマップのみによって決定した。すなわち、本発明例では充電時間t5が2.5時間未満、すなわち1.5時間もしくは0.5時間になった充電が4回連続した場合に、次回の充電を2.5時間としたが、比較例1では、そのような回数の計測は行わず、充電時間C1および電池温度Tと図2のマップのみにしたがって充電時間t5を決定した。
(Comparative Example 1)
In the configuration of Comparative Example 1, in the charging pattern shown in FIG. 1 similar to the example of the present invention, the charging time t 5 at the fifth stage was determined only by the map shown in FIG. That is, in the example of the present invention, when the charging time t 5 is less than 2.5 hours, that is, when charging is 1.5 hours or 0.5 hours four times continuously, the next charging is set to 2.5 hours. In Comparative Example 1, such a measurement was not performed, and the charging time t 5 was determined according to only the charging time C 1 and the battery temperature T and the map of FIG.

なお、1段目の定電流充電ステップの充電電流I1値を12A、2段目の充電ステップの充電電流I2値を6A、以下、3段目はI3=3A、4段目はI4=1.5A、5段目はI5=1.2Aとした。また各定電流充電ステップで次のステップに切替える検知電圧Vrは、電池温度T(℃)により制御を行い、Vr=[2.4+(25−T)×0.005]V/セルとした。 Note that the charging current I 1 value of the first constant current charging step is 12 A, the charging current I 2 value of the second charging step is 6 A, the third stage is I 3 = 3 A, the fourth stage is I 4 = 1.5A, 5th stage was I 5 = 1.2A. The detection voltage Vr to be switched to the next step in each constant current charging step is controlled by the battery temperature T (° C.), and is set to Vr = [2.4+ (25−T) × 0.005] V / cell.

(比較例2)
比較例2の構成は、比較例1の構成において、5段目の充電時間t5を図3に示したマップによって決定するものとした。この図3に示したマップは図2のマップに比較して充電時間を長く設定することによって、電池内部抵抗の増大によっても、充電電気量が確保される設定とした。
(Comparative Example 2)
In the configuration of Comparative Example 2, the fifth charging time t 5 in the configuration of Comparative Example 1 is determined by the map shown in FIG. The map shown in FIG. 3 is set such that the amount of charge electricity is ensured by increasing the battery internal resistance by setting the charging time longer than the map of FIG.

なお、比較例2も、本発明例1および比較例1と同様、1段目の定電流充電ステップの充電電流I1値を12A、2段目の定電流充電ステップの充電電流I2値を6A、以下、3段目はI3=3A、4段目はI4=1.5A、5段目はI5=1.2Aとした。また各定電流充電ステップで次のステップに切替える検知電圧Vrは、電池温度T(℃)により制御を行い、Vr=[2.4+(25−T)×0.005]V/セルとした。 In Comparative Example 2, similarly to Invention Example 1 and Comparative Example 1, the charging current I 1 value of the first constant current charging step is set to 12A, and the charging current I 2 value of the second constant current charging step is set to 12A. 6A, the third stage is I 3 = 3A, the fourth stage is I 4 = 1.5A, and the fifth stage is I 5 = 1.2A. The detection voltage Vr to be switched to the next step in each constant current charging step is controlled by the battery temperature T (° C.), and is set to Vr = [2.4+ (25−T) × 0.005] V / cell.

本発明例、比較例1および比較例2についてそれぞれ試験パターン1および試験パターン2によるサイクル寿命試験の結果を図4に示す。図4より明らかなように、本発明例によるものは、いずれの試験パターンにおいても950〜1000サイクルと比較例と対して極めて良好な寿命特性を有していることがわかる。   FIG. 4 shows the results of the cycle life test using Test Pattern 1 and Test Pattern 2 for the inventive example, Comparative Example 1 and Comparative Example 2, respectively. As is apparent from FIG. 4, it can be seen that the sample according to the example of the present invention has a very good life characteristic with respect to the comparative example of 950 to 1000 cycles in any test pattern.

一方、比較例1のものは、充放電サイクルが連続する試験パターン1では、660サイクル程度の寿命特性が得られたものの、充放電サイクル中に放電状態での放置が入る試験パターン2においては、充電不足により、急激に容量低下し、450サイクルで寿命となった。これは、充放電サイクル中の放電状態の放置により、電池の内部抵抗が増加し、その結果、1段目の充電電気量C1が低下し、それに伴い、5段目での充電時間t5が短い設定が連続するため、さらに充電不足が進行したものである。 On the other hand, in the test pattern 2 in which the charge / discharge cycle is continuous in the test pattern 1 in the comparative example 1, a life characteristic of about 660 cycles was obtained, but in the test pattern 2 in which the discharge state is left in the charge / discharge cycle, Due to insufficient charging, the capacity suddenly decreased and the life was reached after 450 cycles. This is because the internal resistance of the battery is increased by leaving the discharge state during the charge / discharge cycle, and as a result, the first stage charge electricity amount C 1 is lowered, and accordingly, the charge time t 5 at the fifth stage is reduced. However, since short settings continue, insufficient charging has further progressed.

また、比較例2のものは、充放電サイクル中に放電状態での放置が入る試験パターン2においては、700サイクルの寿命特性が得られたものの、充放電サイクルが連続する試験パターン1では、過充電により、早期に容量低下し、300サイクルで寿命となった。試験パターン2では、内部抵抗の増加によっても、5段目充電時間t5が比較例1のものと比較して長いため、充電不足を抑制できる。ところが、放電状態の放置がない、試験パターン1では過充電となり、100サイクルまでは電池の容量は増加するものの、その後急激に容量低下した。 Further, in the case of test pattern 2 in which the battery was left in a discharged state during the charge / discharge cycle, 700 cycles of life characteristics were obtained, but in test pattern 1 in which the charge / discharge cycle continued, Due to the charging, the capacity was quickly reduced and the life was reached after 300 cycles. In test pattern 2, the shortage of charging can be suppressed because the fifth stage charging time t 5 is longer than that of Comparative Example 1 even when the internal resistance increases. However, in the test pattern 1 in which the discharged state was not left, the battery was overcharged, and the battery capacity increased until 100 cycles, but then the capacity rapidly decreased.

以上から、本発明による鉛蓄電池の充電方法によれば、機器の実際の使用を想定した、充放電サイクル中に放電状態の放置が入る試験パターン2においても、最終のN段目の充電時間tNを適切に制御することにより、充電不足を抑制し、優れた寿命特性を得られることがわかる。また、連続して充放電が行われる使用形態においても優れた寿命特性が得られることがわかる。 From the above, according to the lead-acid battery charging method according to the present invention, the final N-stage charging time t also in the test pattern 2 in which the discharge state is left during the charge / discharge cycle, assuming actual use of the device. It can be seen that by controlling N appropriately, insufficient charging can be suppressed and excellent life characteristics can be obtained. Moreover, it turns out that the outstanding life characteristic is acquired also in the usage type in which charging / discharging is performed continuously.

以上、説明してきたように、本発明の鉛蓄電池の充電方法は、電動車用鉛蓄電池等の、サイクル用途で用いられる鉛蓄電池の充電方法として好適である。   As described above, the method for charging a lead storage battery of the present invention is suitable as a method for charging a lead storage battery used in cycle applications, such as a lead storage battery for an electric vehicle.

本発明の第1の実施形態における充電パターンを示す図The figure which shows the charge pattern in the 1st Embodiment of this invention 充電電気量C1および電池温度TからN段目の充電時間tNを求めるマップを示す図It shows a map for determining the charging time t N of the N-th stage from the charged electricity amount C 1 and the battery temperature T 比較例2における充電電気量C1および電池温度TからN段目の充電時間tNを求めるマップを示す図It shows a map for determining the charging time t N of the N-th stage from the charged electricity amount C 1 and the battery temperature T in Comparative Example 2 本発明例および比較例の充電方法による寿命試験結果を示す図The figure which shows the life test result by the charging method of this invention example and a comparative example

Claims (1)

N(N≧3以上の自然数)段の定電流充電ステップを有し、
1段からN−1段の定電流充電ステップにおいて、kを2≦k≦N−1である自然数としたときに、k−1段目の定電流充電ステップで鉛蓄電池を充電電流Ik-1で電池電圧VがVrに到達するまで充電して、k段目の定電流充電ステップに移行し、
k段目の定電流充電ステップにおいて、前記鉛蓄電池をIk-1>Ikである充電電流Ikで電池電圧VがVrになるまで充電し、
1段目の定電流充電ステップにおける充電電気量C1と電池温度Tを計測し、
充電電気量C1 が増加した場合あるいは電池温度Tが下降した場合にN段目の定電流充電ステップにおける充電時間t N を増加させるように設定したマップに応じて充電時間tNを決定し、
N−1段目の定電流充電ステップにおける充電電流をIN-1としたときに、IN-1≧INである充電電流INで前記鉛蓄電池を前記充電時間tN間充電する鉛蓄電池の充電方法であって、
充電回数を計測するステップを有し、
前記充電時間tNが所定値tc未満である充電が所定回数(r)連続して行われた場合、前記マップの設定にかかわらず、次回の充電におけるN段目の定電流充電ステップの充電時間tNを少なくとも前記所定値tc以上に設定することを特徴とする鉛蓄電池の充電方法。
A constant current charging step of N (natural number of N ≧ 3) stages,
In the constant current charging step from the first stage to the N−1 stage, when k is a natural number satisfying 2 ≦ k ≦ N−1, the lead storage battery is charged with the charging current I k− in the k−1th constant current charging step. 1 until the battery voltage V reaches Vr, and the process proceeds to the k-th constant current charging step.
In the k-th constant current charging step, the lead storage battery is charged with a charging current I k satisfying I k−1 > I k until the battery voltage V becomes Vr,
Measure charge electricity amount C 1 and battery temperature T in the first constant current charging step,
Determines the charging time t N in accordance with a map that is set so as to increase the charging time t N in the constant current charging step of the N-th stage when the when the charge electrical quantity C 1 is increased or the battery temperature T is lowered ,
The charging current in the constant current charging step of (N-1) th stage when the I N-1, lead to charge between I N-1 ≧ I charging current is N I N in the lead-acid battery the charging time t N A storage battery charging method,
A step of measuring the number of times of charging,
When the charging in which the charging time t N is less than the predetermined value t c is continuously performed a predetermined number of times (r), the charging at the N-th constant current charging step in the next charging is performed regardless of the setting of the map. A method for charging a lead-acid battery, wherein the time t N is set to at least the predetermined value t c or more.
JP2004299859A 2004-10-14 2004-10-14 Lead-acid battery charging method Expired - Fee Related JP4747549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004299859A JP4747549B2 (en) 2004-10-14 2004-10-14 Lead-acid battery charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299859A JP4747549B2 (en) 2004-10-14 2004-10-14 Lead-acid battery charging method

Publications (2)

Publication Number Publication Date
JP2006114312A JP2006114312A (en) 2006-04-27
JP4747549B2 true JP4747549B2 (en) 2011-08-17

Family

ID=36382663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299859A Expired - Fee Related JP4747549B2 (en) 2004-10-14 2004-10-14 Lead-acid battery charging method

Country Status (1)

Country Link
JP (1) JP4747549B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130368A (en) * 2011-02-16 2011-07-20 江苏技术师范学院 Preheating charging method of valve-controlled type lead-acid storage battery

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4657148B2 (en) 2006-05-24 2011-03-23 ヤマハモーターパワープロダクツ株式会社 Charge control device
JP5268085B2 (en) 2007-01-10 2013-08-21 ヤマハモーターパワープロダクツ株式会社 Battery capacity management device
WO2010016275A1 (en) * 2008-08-07 2010-02-11 パナソニック株式会社 Method of controlling lead-acid battery and power supply system
KR101469444B1 (en) * 2008-12-26 2014-12-05 린나이코리아 주식회사 Charge-discharge controlling method for battery in commercial mulit-stage rice cooker
US8288995B2 (en) 2009-01-07 2012-10-16 Panasonic Corporation Assembled battery charging method and battery charging system
CN101800336B (en) * 2010-03-24 2014-12-17 衡阳瑞达电源有限公司 Valve-control sealed lead acid battery quick formation method
CN102136613B (en) * 2011-02-18 2013-06-19 江苏理工学院 Valve-regulated lead-acid battery equalizing charge method
CN102263305B (en) * 2011-05-31 2013-06-19 江苏永达电源股份有限公司 Charging process for valve-regulated lead-acid storage battery
PL2741395T3 (en) * 2011-10-04 2019-07-31 Lg Chem, Ltd. Apparatus and method for charging a battery
CN102403536B (en) * 2011-11-30 2013-11-06 南京双登科技发展研究院有限公司 Formation method for cylindrical lithium battery
US20150280477A1 (en) * 2012-10-10 2015-10-01 Panasonic Corporation Fuel cell system including fuel cell and lead-acid battery, and charging method for the same
JP6103246B2 (en) * 2014-02-06 2017-03-29 株式会社豊田自動織機 Charger
KR102255130B1 (en) * 2014-07-16 2021-05-24 삼성전자주식회사 Electronic device and method for controlling charging of battery
JP7459531B2 (en) 2020-01-31 2024-04-02 株式会社Gsユアサ Lead-acid battery charging method, control device, and computer program
CN114859251B (en) * 2021-01-20 2024-06-04 广汽埃安新能源汽车有限公司 Method and device for calculating battery charging remaining time and vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3391227B2 (en) * 1997-09-09 2003-03-31 松下電器産業株式会社 How to charge lead storage batteries
JPH11297363A (en) * 1998-04-07 1999-10-29 Matsushita Electric Ind Co Ltd Charging method for lead-acid battery
JP2001143765A (en) * 1999-11-12 2001-05-25 Yuasa Corp Method of charging lead battery
JP2001157376A (en) * 1999-11-26 2001-06-08 Shin Kobe Electric Mach Co Ltd Method of charging sealed lead accumulator
JP3879981B2 (en) * 2002-01-17 2007-02-14 本田技研工業株式会社 Charge control device for secondary battery
JP2003288951A (en) * 2002-03-27 2003-10-10 Fuji Heavy Ind Ltd Charging method for lead storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130368A (en) * 2011-02-16 2011-07-20 江苏技术师范学院 Preheating charging method of valve-controlled type lead-acid storage battery

Also Published As

Publication number Publication date
JP2006114312A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
JP4747549B2 (en) Lead-acid battery charging method
CN107359378B (en) Battery charging method, device and equipment
KR101985812B1 (en) Charging limit evaluation method of battery, method and apparatus for fast charging using the same
US8143852B2 (en) State of charge optimizing device and assembled battery system including same
US6107782A (en) Multi-staged method for recharging a lead acid battery as a function of intrinsic battery characteristics
CN104600383B (en) Battery pack electric quantity equalization method and apparatus thereof
JP2010160955A (en) Method of charging battery pack
JP6965770B2 (en) Lead-acid battery control device, lead-acid battery device, uninterruptible power supply, power supply system, and charge control method
JP2003288951A (en) Charging method for lead storage battery
CN116722621B (en) Charging method of charger and charger thereof
JP7382940B2 (en) Energy storage system and charging control method
CN109444750A (en) A kind of capacity of lead acid battery predictor method
JP3391227B2 (en) How to charge lead storage batteries
JP7040015B2 (en) Secondary battery control device, secondary battery device, uninterruptible power supply, power supply system, method
JP3678045B2 (en) Battery charging method
JP2007214052A (en) Method of charging lead-acid battery
JP2000023388A (en) Secondary battery system
Brost Performance of valve-regulated lead acid batteries in EV1 extended series strings
JPH1174001A (en) Charging method for lead-acid battery
JP6062919B2 (en) Method for optimal charging of electrochemical batteries
JP2004039434A (en) Charge control method of lead-acid battery
JPH1014121A (en) Charging method for battery
JP4120084B2 (en) Lead-acid battery charging method
JPH11297364A (en) Charging method for lead-acid battery
JPH0778637A (en) Charging method for lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071009

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R151 Written notification of patent or utility model registration

Ref document number: 4747549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees