JP4747505B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP4747505B2
JP4747505B2 JP2004095190A JP2004095190A JP4747505B2 JP 4747505 B2 JP4747505 B2 JP 4747505B2 JP 2004095190 A JP2004095190 A JP 2004095190A JP 2004095190 A JP2004095190 A JP 2004095190A JP 4747505 B2 JP4747505 B2 JP 4747505B2
Authority
JP
Japan
Prior art keywords
lithium
aqueous electrolyte
electrolyte battery
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004095190A
Other languages
Japanese (ja)
Other versions
JP2005285440A (en
Inventor
真一 川口
幸宏 五反田
伸一郎 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004095190A priority Critical patent/JP4747505B2/en
Publication of JP2005285440A publication Critical patent/JP2005285440A/en
Application granted granted Critical
Publication of JP4747505B2 publication Critical patent/JP4747505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極にフッ化炭素を用い、負極にリチウム金属などのリチウムイオンを放出可能な材料を用いた非水電解液電池に関し、特に高容量で、高負荷放電特性に優れた非水電解液電池に関するものである。   The present invention relates to a non-aqueous electrolyte battery using carbon fluoride as a positive electrode and a material capable of releasing lithium ions such as lithium metal as a negative electrode, and more particularly, non-aqueous electrolysis with high capacity and excellent high-load discharge characteristics. The present invention relates to a liquid battery.

負極にリチウム金属またはリチウム合金などのリチウムイオンを放出可能な材料を用いる非水電解液電池は、エネルギー密度が高く、また、小型化・軽量化が可能であることから、各種電子機器の主電源やメモリーバックアップ用電源など、様々な用途に使用されている。非水電解液電池の正極材料としては、二酸化マンガン、塩化チオニル、酸化銅、硫化鉄、フッ化炭素などが使用されている。特に二酸化マンガンやフッ化炭素を用いた非水電解液電池では、3.0V以上の電圧が得られるため、各種電子機器の電源として、研究開発が行われてきた。   Non-aqueous electrolyte batteries that use lithium metal or lithium alloy capable of releasing lithium ions for the negative electrode have high energy density, and can be made smaller and lighter. It is used for various purposes such as power supplies for memory backup. Manganese dioxide, thionyl chloride, copper oxide, iron sulfide, carbon fluoride, etc. are used as the positive electrode material for nonaqueous electrolyte batteries. In particular, a non-aqueous electrolyte battery using manganese dioxide or carbon fluoride can obtain a voltage of 3.0 V or higher, and thus has been researched and developed as a power source for various electronic devices.

負極にリチウム金属またはリチウム合金などのリチウムイオンを放出可能な材料を用い、フッ化炭素を正極材料として用いた非水電解液電池は、その特徴として、高容量で、平坦な放電維持電圧を有し、また保存特性に優れているため、メモリーバックアップ用電源として使用されている。特に、黒鉛や石油コークスを熱処理した易黒鉛化性炭素をフッ化処理したフッ化炭素が最も放電維持電圧および放電利用率の点で優れているため、この種の非水電解液電池の正極の主材料として使用されてきた(例えば、特許文献1を参照)。
特開昭54−9730号公報
A non-aqueous electrolyte battery using a material capable of releasing lithium ions such as lithium metal or lithium alloy for the negative electrode and using fluorocarbon as the positive electrode material is characterized by high capacity and flat discharge sustaining voltage. In addition, because of its excellent storage characteristics, it is used as a power source for memory backup. In particular, carbon fluoride obtained by fluorination treatment of graphitizable carbon obtained by heat treatment of graphite or petroleum coke is most excellent in terms of discharge sustaining voltage and discharge utilization rate. It has been used as a main material (see, for example, Patent Document 1).
JP-A-54-9730

リチウム金属またはリチウム合金などのリチウムイオンを放出可能な材料を負極材料として用い、フッ化炭素を正極材料として用いた非水電解液電池をメモリーバックアップ用電源のように強負荷放電を要しない用途に使用する場合には問題はないが、例えばカメラなどの電源として使用すると、強負荷放電を要することがあり、強負荷放電時に電圧降下が大きく、低温環境下での放電電圧の低下により電子機器の必要電圧を確保できない場合がある。   Non-aqueous electrolyte batteries using lithium metal or lithium alloy capable of releasing lithium ions as a negative electrode material and fluorocarbon as a positive electrode material for applications that do not require a heavy load discharge, such as a memory backup power supply There is no problem when using it, but for example, when it is used as a power source for a camera or the like, a heavy load discharge may be required, and the voltage drop during heavy load discharge is large. The required voltage may not be secured.

本発明は、前記問題に鑑み、フッ化炭素を正極材料として用い、リチウム金属またはリチウム合金などのリチウムイオンを放出可能な材料を負極材料として用いた非水電解液電池において放電特性、特に強負荷放電特性に優れ、低温環境下での放電電圧の低下の少ない電池を提供することを目的とする。   In view of the above problems, the present invention provides a discharge characteristic, particularly a heavy load, in a non-aqueous electrolyte battery using fluorocarbon as a positive electrode material and a material capable of releasing lithium ions such as lithium metal or lithium alloy as a negative electrode material. An object of the present invention is to provide a battery having excellent discharge characteristics and a low decrease in discharge voltage in a low temperature environment.

上記課題を解決するために、本発明の非水電解液電池は、フッ化炭素を正極材料として用い、リチウム金属またはリチウム合金などのリチウムイオンを放出可能な材料を負極材料として用いた非水電解液電池において、正極に用いるフッ化炭素が末端の開いた単層の
カーボンナノチューブをフッ化処理してなるものをフッ化炭素全量の1重量%以上含んでいることを特徴とする。
In order to solve the above problems, the non-aqueous electrolyte battery of the present invention is a non-aqueous electrolyte using a fluorocarbon as a positive electrode material and a material capable of releasing lithium ions such as lithium metal or lithium alloy as a negative electrode material. The liquid battery is characterized in that the carbon fluoride used for the positive electrode contains 1% by weight or more of the total amount of fluorinated carbon obtained by fluorinating a single- walled carbon nanotube having an open end. .

フッ化炭素とリチウム金属またはリチウム合金などを組み合わせた電池では、リチウムがフッ化炭素と反応してフッ化リチウムと炭素を生成することで、放電反応が進行していく。この際、リチウムイオンは層状構造を持つフッ化炭素の層間に入り込み、その層内に拡散していくことで、反応が継続していくと考えられる。この結果、前述の高容量で、かつ平坦な放電電圧を得ることができるが、逆に強負荷放電時にリチウムイオンの拡散が律
速となり、放電電圧の低下につながっていると考えられる。この点について鑑み、本発明の非水電解液電池は、カーボンナノチューブをフッ化処理してなるフッ化炭素を正極の主材料として用いたものである。
In a battery in which fluorocarbon and lithium metal or a lithium alloy are combined, lithium reacts with fluorocarbon to generate lithium fluoride and carbon, so that a discharge reaction proceeds. At this time, it is considered that the reaction continues by lithium ions entering the layer of the fluorocarbon having a layered structure and diffusing into the layer. As a result, the above-mentioned high capacity and flat discharge voltage can be obtained, but conversely, the diffusion of lithium ions becomes rate-limiting during heavy load discharge, which is thought to lead to a decrease in the discharge voltage. In view of this point, the non-aqueous electrolyte battery of the present invention uses carbon fluoride formed by fluorinating carbon nanotubes as the main material of the positive electrode.

ところで、リチウム二次電池の負極材料として黒鉛が使用されているが、これに代わる材料として、カーボンナノチューブをサイクル特性の改良を目的として、リチウム二次電池の負極材料に使用することが提案されている。カーボンナノチューブは、炭素の同素体であり、黒鉛構造とは異なる円筒状の3次元的な構造を有する材料であり、その特異な構造に着目してリチウム二次電池のサイクル特性の改良をねらったものと推察される。しかし、カーボンナノチューブをリチウム二次電池における負極材料として使用する場合には、円筒形状をしたカーボンナノチューブの端部開口から内側中空部分にリチウムイオンが入り込むことでしか、容量を得ることができない
本発明の非水電解液電池ように、フッ化炭素を正極材料として用い、リチウム金属またはリチウム合金などのリチウムイオンを放出可能な材料を負極材料として用いた非水電解液電池において、カーボンナノチューブをフッ化処理してなるフッ化炭素を正極として機能させた場合には、端部開口から内側中空部分にリチウムイオンが入り込んで反応するだけでなく、円筒状の外側でもリチウムイオンと反応することが可能となり、高容量の電池を得ることができる。
By the way, graphite is used as a negative electrode material for lithium secondary batteries. As an alternative material, it has been proposed to use carbon nanotubes as a negative electrode material for lithium secondary batteries for the purpose of improving cycle characteristics. Yes. A carbon nanotube is an allotrope of carbon, and is a material having a cylindrical three-dimensional structure different from a graphite structure. The carbon nanotube is aimed at improving the cycle characteristics of a lithium secondary battery by paying attention to its unique structure. It is guessed. However, when the carbon nanotube is used as a negative electrode material in a lithium secondary battery, the capacity can be obtained only by the lithium ions entering the inner hollow portion from the end opening of the cylindrical carbon nanotube. In non-aqueous electrolyte batteries using carbon fluoride as the positive electrode material and materials capable of releasing lithium ions such as lithium metal or lithium alloys as the negative electrode material, the carbon nanotubes are fluorinated. When the treated fluorocarbon is made to function as a positive electrode, not only does lithium ions enter the inner hollow portion from the end opening and reacts, but it can also react with lithium ions outside the cylindrical shape. A high capacity battery can be obtained.

また、非水電解液は、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、及びγ−ブチルラクトンから選択される少なくとも1種の有機溶媒を含み、また、過塩素酸リチウム(LiClO4)、ホウフッ化リチウム(LiBF4)、リチウム六フッ化リン(LiPF6)トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、及び一般式(LiN(Cn2n+1SO22)で表されるイミド結合を有するリチウム塩から選択される少なくとも1種の溶質を含んだものが好ましい。 The non-aqueous electrolyte contains at least one organic solvent selected from propylene carbonate, ethylene carbonate, butylene carbonate, and γ-butyl lactone, and includes lithium perchlorate (LiClO 4 ), lithium borofluoride ( LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), and an imide bond represented by the general formula (LiN (C n F 2n + 1 SO 2 ) 2 ) Those containing at least one solute selected from lithium salts are preferred.

カーボンナノチューブをフッ化処理してなるフッ化炭素を正極に用い、リチウム金属またはリチウム合金などのリチウムイオンを放出可能な材料を負極材料として用いた本発明の非水電解液電池は、黒鉛や石油コークスを熱処理した易黒鉛化性炭素をフッ化処理してなるフッ化炭素を正極に用いた従来のものに比べ、強負荷放電特性に優れたものを提供することが可能であり、その工業的価値はきわめて大きい。   The non-aqueous electrolyte battery of the present invention using carbon fluoride obtained by fluorinating carbon nanotubes as a positive electrode and a material capable of releasing lithium ions such as lithium metal or lithium alloy as a negative electrode material is made of graphite or petroleum. Compared to conventional products using fluorinated carbon obtained by fluorination treatment of graphitizable carbon obtained by heat treatment of coke as the positive electrode, it is possible to provide products with excellent heavy load discharge characteristics. The value is extremely great.

以下、本発明を実施するための好ましい形態について説明する。   Hereinafter, preferred embodiments for carrying out the present invention will be described.

正極に用いるフッ化炭素の原料となるカーボンナノチューブは、種々の合成方法があり、条件等によっては、直径や末端構造に変化が生じるが、円筒状の構造を持つものであればよい。より好ましくは、直径が50nm以下で、かつ末端の開いた単層のカーボンナノチューブを使用することが望ましい。   There are various synthesis methods for carbon nanotubes used as a raw material for fluorocarbon used for the positive electrode. Depending on conditions and the like, the diameter and the terminal structure may change, but any carbon nanotube may be used as long as it has a cylindrical structure. More preferably, it is desirable to use a single-walled carbon nanotube having a diameter of 50 nm or less and having an open end.

カーボンナノチューブのフッ化処理は、慣用の方法、例えば、カーボンナノチューブとフッ素ガスとを250〜650℃程度の温度で反応させることにより得ることができる。フッ化処理に応じて、(CFxn(但し、x=0.5〜1)、(C2F)nあるいはこれら
の混合物を得ることができる。
The fluorination treatment of carbon nanotubes can be obtained by a conventional method, for example, by reacting carbon nanotubes with fluorine gas at a temperature of about 250 to 650 ° C. Depending on the fluorination treatment, (CF x ) n (where x = 0.5 to 1), (C 2 F) n or a mixture thereof can be obtained.

リチウムイオン放出可能な負極としては、金属リチウム、Li−Al、Li−Si、Li−Sn、Li−NiSi、Li−Pbなどのリチウム合金が使用可能である。また、あらかじめリチウムを吸蔵させた炭素材料や金属酸化物などでも良い。特に好ましくは、金属リチウムと組み合わせることにより、放電特性の向上が見られる。   As the negative electrode capable of releasing lithium ions, lithium alloys such as metallic lithium, Li—Al, Li—Si, Li—Sn, Li—NiSi, and Li—Pb can be used. Further, a carbon material or metal oxide in which lithium is occluded in advance may be used. Particularly preferably, the discharge characteristics are improved by combining with metallic lithium.

非水電解液には、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、及びγ−ブチルラクトンのうち、少なくとも1種の有機溶媒を含んだものに、過塩素酸リチウム(LiClO4)、ホウフッ化リチウム(LiBF4)、リチウム六フッ化リン(LiPF6)トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、及び一般式(LiN(Cn2n+1SO22)で表されるイミド結合を有するリチウム塩から選択される少なくとも1種の溶質を含んだものが使用できる。イミド結合を有するリチウム塩としては、LiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)などをあげることができる。より好ましくは、放電特性、および保存特性に優れたものであるプロピレンカーボネートに低粘度溶媒として1,2−ジメトキシエタンとを混合したものにホウフッ化リチウムを溶解させた非水電解液である。 Nonaqueous electrolytes include propylene carbonate, ethylene carbonate, butylene carbonate, and γ-butyl lactone containing at least one organic solvent, lithium perchlorate (LiClO 4 ), lithium borofluoride (LiBF). 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), and lithium having an imide bond represented by the general formula (LiN (C n F 2n + 1 SO 2 ) 2 ) Those containing at least one solute selected from salts can be used. Examples of the lithium salt having an imide bond include LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) and the like. . More preferably, it is a nonaqueous electrolytic solution in which lithium borofluoride is dissolved in a mixture of propylene carbonate having excellent discharge characteristics and storage characteristics and 1,2-dimethoxyethane as a low viscosity solvent.

(実施例1)
以下に本発明の実施例を、図1に示すコイン形電池を用いて説明する。本発明の内容は、これらの実施例に限定されるものではなく、コイン形、円筒形、角形などの形状にも限定されない。
Example 1
Hereinafter, an embodiment of the present invention will be described with reference to a coin-type battery shown in FIG. The contents of the present invention are not limited to these examples, and are not limited to coin shapes, cylindrical shapes, square shapes, and the like.

図1にコイン形電池の断面図を示す。正極缶1および負極缶2はともにステンレス鋼からなり、ポリプロピレン製のガスケット3を介して発電要素を収容している。負極5はリチウム金属であり、ポリプロピレン製不織布からなるセパレータ6を介して正極4に対向するよう配置されている。電解液は、γ−ブチルラクトン(GBL)と1,2−ジメトキシエタン(DME)を体積比1:1の割合で混合した溶媒にホウフッ化リチウム(LiBF4)を1モル/リットルの濃度で溶解させたものを用いた。なお、電池寸法は外径20mm、厚みが3.2mmである。以下、正極4について詳しく説明する。 FIG. 1 shows a cross-sectional view of a coin-type battery. Both the positive electrode can 1 and the negative electrode can 2 are made of stainless steel, and contain a power generation element via a gasket 3 made of polypropylene. The negative electrode 5 is a lithium metal, and is disposed so as to face the positive electrode 4 with a separator 6 made of a polypropylene nonwoven fabric interposed therebetween. The electrolytic solution is lithium borofluoride (LiBF 4 ) dissolved at a concentration of 1 mol / liter in a solvent in which γ-butyllactone (GBL) and 1,2-dimethoxyethane (DME) are mixed at a volume ratio of 1: 1. What was made to use was used. The battery dimensions are an outer diameter of 20 mm and a thickness of 3.2 mm. Hereinafter, the positive electrode 4 will be described in detail.

原料となるカーボンナノチューブの合成は以下のようにして行った。陽極としてNi粉末を50%含むグラファイト棒(直径10mm)を使用し、陰極として純グラファイト棒(直径10mm)を使用して400Torrのヘリウム雰囲気で200Aの直流放電を行うことにより陰極上に堆積物を得た。これを粉砕し空気中750℃で30分間保持した後、室温まで冷却後、1モル硝酸水溶液と混合し140℃で5時間保持した。得られた試料を濾過し、濾過物をエタノール中に分散させて超音波を当て、再び濾過して濾過物を得た。これを電子顕微鏡で観察すると、全体がチューブ状で、層が一層で末端が開放しているナノチューブが同軸方向に凝集しているカーボンナノチューブが合成されていることが確認された。   The synthesis of the carbon nanotube as a raw material was performed as follows. Using a graphite rod (diameter 10 mm) containing 50% Ni powder as the anode and a pure graphite rod (diameter 10 mm) as the cathode, a deposit was deposited on the cathode by performing a 200 A DC discharge in a 400 Torr helium atmosphere. Obtained. This was pulverized and kept in air at 750 ° C. for 30 minutes, cooled to room temperature, mixed with 1 molar aqueous nitric acid solution, and kept at 140 ° C. for 5 hours. The obtained sample was filtered, the filtrate was dispersed in ethanol, sonicated, and filtered again to obtain a filtrate. When this was observed with an electron microscope, it was confirmed that carbon nanotubes were synthesized in which nanotubes were entirely formed of a single layer, and the nanotubes having one end and an open end were aggregated in the coaxial direction.

上記のようにして得られたカーボンナノチューブをフッ素ガスの雰囲気下で400℃の温度で4時間のフッ化処理することでフッ化炭素とした。このフッ化炭素に導電剤としてアセチレンブラックを、結着剤としてフッ素系樹脂のPTFE(ポリテトラフルオロエチレン)を用い、これらを重量比で80:10:10の割合で混合し、正極合剤を得た。この正極合剤を直径16mmに打錠成型した後、110℃で乾燥して正極4を作製し、電池Aを作製した。また、カーボンナノチューブをフッ化処理してなるフッ化炭素を従来から使用されている石油コークスを熱処理した黒鉛をフッ化処理して作られているフッ化炭素に加えて、フッ化炭素全体のうちのカーボンナノチューブをフッ化処理してなるフッ化炭素の含有率が50重量%、10重量%、1重量%として混合したフッ化炭素を用いて正極を
作製し、正極以外は電池Aと同様にして電池B、C、Dを作製した。なお、比較例として、従来から使用されている石油コークスを熱処理した黒鉛をフッ素化処理して作られているフッ化炭素のみを用いた正極を作製し、正極以外は電池Aと同様にして電池を作製し、比較電池1とした。
The carbon nanotubes obtained as described above were subjected to fluorination treatment at a temperature of 400 ° C. for 4 hours in an atmosphere of fluorine gas to obtain carbon fluoride. Using acetylene black as a conductive agent and PTFE (polytetrafluoroethylene) as a binder in this fluorocarbon, these are mixed in a weight ratio of 80:10:10, and a positive electrode mixture is prepared. Obtained. The positive electrode mixture was tablet-molded to a diameter of 16 mm, and then dried at 110 ° C. to produce the positive electrode 4, and the battery A was produced. Moreover, in addition to the fluorocarbon produced by fluorination treatment of graphite, which has been heat-treated with petroleum coke, which has been conventionally used, by fluorination treatment of carbon nanotubes, A positive electrode was prepared using fluorocarbon mixed with a carbon fluoride content of 50% by weight, 10% by weight, and 1% by weight obtained by fluorinating carbon nanotubes. Thus, batteries B, C and D were produced. As a comparative example, a positive electrode using only fluorinated carbon produced by fluorinating graphite obtained by heat treatment of conventionally used petroleum coke was produced. Was produced as Comparative Battery 1.

電池A〜Dと比較電池1を、−20℃の環境下において、10kΩの負荷で放電した。そのときの放電維持電圧、及び正極の利用率(正極の理論容量に対する実放電容量の割合)を表1に示す。   The batteries A to D and the comparative battery 1 were discharged with a load of 10 kΩ in an environment of −20 ° C. Table 1 shows the discharge sustaining voltage and the utilization rate of the positive electrode (ratio of the actual discharge capacity to the theoretical capacity of the positive electrode).

表1から明らかなように、本発明の電池Aは、比較電池1に比べ、放電維持電圧が高く、かつ正極利用率が大幅に改善されている。また、正極として従来のフッ化炭素とカーボンナノチューブをフッ化処理してなるフッ化炭素とを混合して作製した電池B〜Dについても、カーボンナノチューブをフッ化処理してなるフッ化炭素の含有率の増加に伴い、電池特性が向上することが確認できた。このことは、フッ化炭素にカーボンナノチューブををフッ化処理したものを使用することにより、リチウムイオンの拡散性が向上し、また、正極の比表面積が大きくなったために、放電反応時の電圧降下が低減されたと考えられる。   As is clear from Table 1, the battery A of the present invention has a higher discharge sustaining voltage and a significantly improved positive electrode utilization rate as compared with the comparative battery 1. In addition, batteries B to D produced by mixing conventional fluorocarbon and fluorocarbon obtained by fluorinating carbon nanotubes as positive electrodes also contain fluorocarbon obtained by fluorinating carbon nanotubes. It was confirmed that the battery characteristics improved as the rate increased. This is because the use of fluorinated carbon nanotubes with fluorinated carbon improves the diffusibility of lithium ions and the specific surface area of the positive electrode has increased, resulting in a voltage drop during the discharge reaction. Is considered to have been reduced.

(実施例2)
実施例1の電池Aで使用した電解液に代えて他の電解液を用いた以外は電池Aと同様にして電池E〜Jを作製した。
(Example 2)
Batteries E to J were produced in the same manner as the battery A, except that another electrolytic solution was used instead of the electrolytic solution used in the battery A of Example 1.

電池Eは、溶媒にプロピレンカーボネート(PC)と1,2−ジメトキシエタン(DME)を体積比1:1の割合で混合したものを使用し、溶質にホウフッ化リチウム(LiBF4)を1モル/リットルの濃度で溶解させたものである。 Battery E uses a solvent in which propylene carbonate (PC) and 1,2-dimethoxyethane (DME) are mixed at a volume ratio of 1: 1, and lithium borofluoride (LiBF 4 ) as a solute is 1 mol / liter. It is dissolved at a concentration of 1 liter.

電池Fはブチレンカーボネート(BC)と1,2−ジメトキシエタン(DME)を体積比1:1の割合で混合したものを使用し、溶質にホウフッ化リチウム(LiBF4)を1モル/リットルの濃度で溶解させたものである。 Battery F uses a mixture of butylene carbonate (BC) and 1,2-dimethoxyethane (DME) at a volume ratio of 1: 1, and lithium borofluoride (LiBF 4 ) as a solute at a concentration of 1 mol / liter. It was dissolved in

電池Gはエチレンカーボネート(EC)と1,2−ジメトキシエタン(DME)を体積比1:1の割合で混合したものを使用し、溶質にホウフッ化リチウム(LiBF4)を1モル/リットルの濃度で溶解させたものである。 Battery G uses a mixture of ethylene carbonate (EC) and 1,2-dimethoxyethane (DME) at a volume ratio of 1: 1, and lithium borofluoride (LiBF 4 ) as a solute at a concentration of 1 mol / liter. It was dissolved in

電池Hは、γ−ブチルラクトン(GBL)と1,2−ジメトキシエタン(DME)を体積比1:1の割合で混合した溶媒に過塩素酸リチウム(LiClO4)を1モル/リットルの濃度で溶解させたものを用いた。 Battery H has a concentration of 1 mol / liter of lithium perchlorate (LiClO 4 ) in a solvent in which γ-butyllactone (GBL) and 1,2-dimethoxyethane (DME) are mixed at a volume ratio of 1: 1. What was dissolved was used.

電池Iは、γ−ブチルラクトン(GBL)と1,2−ジメトキシエタン(DME)を体積比1:1の割合で混合した溶媒にリチウム六フッ化リン(LiPF6)を1モル/リットルの濃度で溶解させたものを用いた。 Battery I has a concentration of 1 mol / liter of lithium hexafluorofluoride (LiPF 6 ) in a solvent in which γ-butyllactone (GBL) and 1,2-dimethoxyethane (DME) are mixed at a volume ratio of 1: 1. What was dissolved in was used.

電池Jは、γ−ブチルラクトン(GBL)と1,2−ジメトキシエタン(DME)を体積比1:1の割合で混合した溶媒にリチウムビスパーフルオロメチルスルホン酸(LiN(CF3SO22)を1モル/リットルの濃度で溶解させたものを用いた。なお、電解液以外の構成はすべて電池Aと同じ構成とした。 Battery J was prepared by mixing lithium bisperfluoromethylsulfonic acid (LiN (CF 3 SO 2 ) 2 with a solvent in which γ-butyllactone (GBL) and 1,2-dimethoxyethane (DME) were mixed at a volume ratio of 1: 1. ) Was dissolved at a concentration of 1 mol / liter. The configuration other than the electrolytic solution was the same as that of the battery A.

それぞれの電池を−20℃の環境下において、10kΩの負荷で放電した。そのときの放電維持電圧、及び正極の利用率(正極の理論容量に対する実放電容量の割合)を表2に示す。   Each battery was discharged under a load of 10 kΩ in an environment of −20 ° C. Table 2 shows the discharge sustaining voltage and the utilization rate of the positive electrode (the ratio of the actual discharge capacity to the theoretical capacity of the positive electrode).

表2の結果から、電池A〜Jのいずれも比較電池1よりも放電維持電圧、正極利用率共に改善されており、溶媒にプロピレンカーボネートと1,2−ジメトキシエタン(DME)との混合溶媒を用いた場合、または、溶質にホウフッ化リチウムを使用した場合が特に良好な結果となった。また、溶質としてイミド結合を有するLiN(C25SO22、LiN(CF3SO2)・(C49SO2)などについても同様の効果が得られた。 From the results in Table 2, all of the batteries A to J are improved in both the sustaining voltage and the positive electrode utilization rate as compared with the comparative battery 1, and a mixed solvent of propylene carbonate and 1,2-dimethoxyethane (DME) is used as a solvent. When it was used, or when lithium borofluoride was used as the solute, particularly good results were obtained. Also, LiN having an imide bond as the solute (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) · (C 4 F 9 SO 2) similar effect for such was obtained.

実施例では、本発明のカーボンナノチューブをフッ素化処理してなるフッ化炭素を正極に用いたコイン形電池のみについて述べたが、本発明は電池の形状に関係なく、その効果を発揮することができ、円筒形や角形などさまざまな形状の電池に応用することが可能である。なお、従来から用いられている黒鉛や石油コークスを熱処理した易黒鉛化性炭素をフッ化処理してなるフッ化炭素にカーボンナノチューブをフッ化処理して得られるフッ化炭素を混合する場合においても、その効果を得ることができることはいうまでもないが、あらかじめ黒鉛や石油コークスを熱処理した易黒鉛化性炭素とカーボンナノチューブを混合し、これをフッ化処理して得られるフッ化炭素を正極材料として用いることもできる。   In the examples, only the coin-type battery using the fluorocarbon obtained by fluorinating the carbon nanotube of the present invention as the positive electrode has been described, but the present invention can exert its effect regardless of the shape of the battery. It can be applied to batteries of various shapes such as cylindrical and rectangular. Even in the case of mixing fluorinated carbon obtained by fluorinating carbon nanotubes with fluorinated carbon obtained by fluorinating conventionally graphitizable carbon obtained by heat treating graphite or petroleum coke used in the past. Needless to say, the effect can be obtained, but graphitizable carbon and carbon nanotubes previously heat-treated with graphite or petroleum coke are mixed with fluorinated carbon fluoride to obtain positive electrode material. Can also be used.

カーボンナノチューブをフッ化処理してなるフッ化炭素を正極に用いた本発明の非水電解液電池は、黒鉛や石油コークスを熱処理した易黒鉛化性炭素をフッ化処理してなるフッ化炭素を正極に用いた従来のものに比べ、強負荷放電特性に優れたものを提供することが可能である。   The non-aqueous electrolyte battery of the present invention using carbon fluoride, which is obtained by fluorinating carbon nanotubes, as a positive electrode is obtained by using fluorinated carbon obtained by fluorinating graphitizable carbon obtained by heat treating graphite or petroleum coke. Compared with the conventional one used for the positive electrode, it is possible to provide one having excellent heavy load discharge characteristics.

本発面の一実施例における非水電解液電池の断面図Sectional drawing of the nonaqueous electrolyte battery in one Example of this surface

符号の説明Explanation of symbols

1 正極缶
2 負極缶
3 ガスケット
4 正極
5 負極
6 セパレータ
DESCRIPTION OF SYMBOLS 1 Positive electrode can 2 Negative electrode can 3 Gasket 4 Positive electrode 5 Negative electrode 6 Separator

Claims (5)

フッ化炭素を正極材料とし、リチウムイオンを放出可能な材料を負極材料とする非水電解液電池において、前記フッ化炭素が末端の開いた単層のカーボンナノチューブをフッ化処理してなるものをフッ化炭素全量の1重量%以上含んでいることを特徴とする非水電解液電池。 In a non-aqueous electrolyte battery using a fluorocarbon as a positive electrode material and a material capable of releasing lithium ions as a negative electrode material, the fluorocarbon is obtained by fluorinating a single-walled carbon nanotube having an open end. A non-aqueous electrolyte battery comprising 1% by weight or more of the total amount of fluorocarbon . 前記カーボンナノチューブの直径が50nm以下であることを特徴とする請求項1記載の非水電解液電池。2. The nonaqueous electrolyte battery according to claim 1, wherein the carbon nanotube has a diameter of 50 nm or less. 非水電解液が、過塩素酸リチウム(LiClO4)、ホウフッ化リチウム(LiBF4)、リチウム六フッ化リン(LiPF6)トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、及び一般式(LiN(Cn2n+1SO22)で表されるイミド結合を有するリチウム塩から選択される少なくとも1種の溶質を含むことを特徴とする請求項1記載の非水電解液電池。 The non-aqueous electrolyte includes lithium perchlorate (LiClO 4 ), lithium borofluoride (LiBF 4 ), lithium hexafluoride (LiPF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), and a general formula (LiN ( 2. The nonaqueous electrolyte battery according to claim 1, further comprising at least one solute selected from lithium salts having an imide bond represented by C n F 2n + 1 SO 2 ) 2 ). イミド結合を有するリチウム塩が、リチウムビスパーフルオロメチルスルホン酸イミド(LiN(CF2SO22)である請求項3記載の非水電解液電池。 The nonaqueous electrolyte battery according to claim 3, wherein the lithium salt having an imide bond is lithium bisperfluoromethylsulfonic acid imide (LiN (CF 2 SO 2 ) 2 ). 非水電解液が、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、及びγ−ブチルラクトンから選択される少なくとも1種の有機溶媒を含むことを特徴とする請求項1記載の非水電解液電池。 2. The non-aqueous electrolyte battery according to claim 1, wherein the non-aqueous electrolyte contains at least one organic solvent selected from propylene carbonate, ethylene carbonate, butylene carbonate, and γ-butyllactone.
JP2004095190A 2004-03-29 2004-03-29 Non-aqueous electrolyte battery Expired - Fee Related JP4747505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004095190A JP4747505B2 (en) 2004-03-29 2004-03-29 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004095190A JP4747505B2 (en) 2004-03-29 2004-03-29 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2005285440A JP2005285440A (en) 2005-10-13
JP4747505B2 true JP4747505B2 (en) 2011-08-17

Family

ID=35183608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095190A Expired - Fee Related JP4747505B2 (en) 2004-03-29 2004-03-29 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4747505B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8377586B2 (en) 2005-10-05 2013-02-19 California Institute Of Technology Fluoride ion electrochemical cell
US7794880B2 (en) 2005-11-16 2010-09-14 California Institute Of Technology Fluorination of multi-layered carbon nanomaterials
US8232007B2 (en) 2005-10-05 2012-07-31 California Institute Of Technology Electrochemistry of carbon subfluorides
EP1976792B1 (en) 2005-11-16 2014-07-02 California Institute of Technology Fluorination of multi-layered carbon nanomaterials
EP1992028A4 (en) * 2006-02-16 2010-03-17 California Inst Of Techn Low temperature electrochemical cell
US8658309B2 (en) 2006-08-11 2014-02-25 California Institute Of Technology Dissociating agents, formulations and methods providing enhanced solubility of fluorides
JP2008112652A (en) * 2006-10-31 2008-05-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
CN103181001B (en) * 2010-12-30 2015-03-25 海洋王照明科技股份有限公司 Conductive polymer materials and preparing method and uses thereof
GB2532035B (en) 2014-11-06 2018-01-10 Schlumberger Holdings Lithium carbon fluoride primary battery
CN116022775B (en) * 2022-12-29 2024-02-09 蜂巢能源科技(上饶)有限公司 Carbon nano tube purification method and application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342655A (en) * 1993-05-31 1994-12-13 Osaka Gas Co Ltd Electrode and battery provided therewith
JP4765161B2 (en) * 2000-11-30 2011-09-07 パナソニック株式会社 Non-aqueous electrolyte battery
JP4014832B2 (en) * 2001-03-21 2007-11-28 守信 遠藤 Fluorinated carbon fiber, battery active material and solid lubricant using the same

Also Published As

Publication number Publication date
JP2005285440A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP6764414B2 (en) High-energy lithium-ion battery that can be used with ionic liquids
Wang et al. Tungsten disulfide nanotubes for lithium storage
JP4417267B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP4431064B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP4207957B2 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL, MANUFACTURING METHOD THEREOF, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY USING THE SAME
CN100416894C (en) Negative electrode active material and its making method. negative electrode and nonaqueous electrolyte battery
EP3208872A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP3982658B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
US20070218364A1 (en) Low temperature electrochemical cell
JP2011210694A (en) Nonaqueous electrolyte secondary battery
US20110003204A1 (en) Positive electrode for lithium secondary battery and lithium secondary battery comprising the same
JP2013058479A (en) High-rate and high-energy cathode material for lithium cell
Srivastava et al. Thermally fabricated MoS2-graphene hybrids as high performance anode in lithium ion battery
JP4747505B2 (en) Non-aqueous electrolyte battery
JP2014010973A (en) Active material and secondary battery using the same
JP2002251992A (en) Electrode material for nonaqueous solvent secondary battery, electrode and secondary battery
JPH0785888A (en) Lithium secondary battery
JP2003007336A (en) Nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution for use in the same
US6998192B1 (en) Negative electrode for a nonaqueous battery
US20160133925A1 (en) Fullerene-like nanoparticles and inorganic nanotubes as host electrode materials for sodium/magnesium ion batteries
Kawano et al. Synthesis and cathode properties of a cubic rocksalt-type Si-doped Li2NiTiO4 for lithium-ion batteries
JP5533110B2 (en) Lithium primary battery
JP2006236890A (en) Nonaqueous electrolyte primary battery
JPWO2019065195A1 (en) Non-aqueous electrolyte secondary battery
WO2021177382A1 (en) Positive electrode material and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070313

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees