JP4747073B2 - Optical communication device - Google Patents

Optical communication device Download PDF

Info

Publication number
JP4747073B2
JP4747073B2 JP2006292925A JP2006292925A JP4747073B2 JP 4747073 B2 JP4747073 B2 JP 4747073B2 JP 2006292925 A JP2006292925 A JP 2006292925A JP 2006292925 A JP2006292925 A JP 2006292925A JP 4747073 B2 JP4747073 B2 JP 4747073B2
Authority
JP
Japan
Prior art keywords
optical
optical system
transmission unit
signal transmission
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006292925A
Other languages
Japanese (ja)
Other versions
JP2008109598A (en
Inventor
健 辻村
耕一 吉田
泉 三川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006292925A priority Critical patent/JP4747073B2/en
Publication of JP2008109598A publication Critical patent/JP2008109598A/en
Application granted granted Critical
Publication of JP4747073B2 publication Critical patent/JP4747073B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Description

本発明は、光を透過する媒質よりなる光透過部材を挟む2点間で信号を伝送する光通信線路として作用する光通信装置に関するものである。   The present invention relates to an optical communication device that functions as an optical communication line for transmitting a signal between two points sandwiching a light transmitting member made of a light transmitting medium.

光通信線路は電話局からユーザ宅まで光ファイバケーブルを敷設し、ユーザ宅のONU(Optical Network Unit)装置に配線されている。通常ONUから通信ケーブルをユーザ宅内に導入しているが、家屋に穴を開け通信ケーブルを通す工事が必要であり、時間・費用等の点で問題があった。   The optical communication line lays an optical fiber cable from the telephone station to the user's house, and is wired to an ONU (Optical Network Unit) device in the user's house. Normally, a communication cable is introduced into the user's house from the ONU, but it is necessary to construct a hole in the house and pass the communication cable, which causes problems in terms of time and cost.

また、電波により無線信号を伝送する方法もあるが、利用可能周波数の制限・干渉によるスループットの低下・セキュリティの問題等があった。   There is also a method of transmitting a radio signal by radio waves, but there are problems such as a limitation of available frequencies, a decrease in throughput due to interference, and a security problem.

ガラスエクステンダ(例えば、特許文献1参照。)は窓ガラスの内外面に1対の装置を貼付しガラスを透過するレーザ光を用いて通信を行う技術である。各装置はLEDとフォトダイオードを内蔵し、屋外通信機器(ONU)と屋内通信機器(HUB等)を結んで双方向通信を行う。ONUからの電気信号は窓ガラス外面装置のLEDによりE/O(電気/光)変換され、発生したレーザ光がガラスを透過する。内面装置のフォトダイオードでこれを受信して、O/E(光/電気)変換した後、電気信号として屋内通信機器に送られる。逆方向も同様である。ガラスエクステンダを用いることにより家屋に穴を開けず簡易な通信配線が可能となる。窓ガラス外面装置のLEDとフォトダイオードに駆動電力を供給する必要があり、コイルを内蔵した電磁誘導によりこれを実現するため、装置が大型煩雑になるという欠点があった。   A glass extender (for example, refer to Patent Document 1) is a technique for performing communication using a laser beam that passes through a glass by attaching a pair of devices to the inner and outer surfaces of the window glass. Each device includes an LED and a photodiode, and performs two-way communication by connecting an outdoor communication device (ONU) and an indoor communication device (HUB, etc.). The electrical signal from the ONU is E / O (electrical / optical) converted by the LED of the window glass outer surface device, and the generated laser light passes through the glass. This is received by the photodiode of the inner surface device, converted to O / E (light / electricity), and then sent as an electrical signal to the indoor communication device. The same applies to the reverse direction. By using the glass extender, simple communication wiring is possible without making a hole in the house. Driving power needs to be supplied to the LEDs and photodiodes of the window glass outer surface device, and this is realized by electromagnetic induction with a built-in coil.

特開2004−80595号公報JP 2004-80595 A

本発明は上記の事情に鑑みてなされたもので、光通信線路の光透過部材に、光ファイバから発射された光ビームを光学系を用いて絞り、受光したレーザ光を光学系を用いて集光して光ファイバコア部に集中する光学部品のみを配置するだけでよく、通信線路中間に電源を必要とする光/電気変換等の装置を用いることなく光通信線路を実現する光通信装置を提供することを目的とする。   The present invention has been made in view of the above circumstances. A light beam emitted from an optical fiber is focused on a light transmitting member of an optical communication line using an optical system, and received laser light is collected using an optical system. An optical communication device that realizes an optical communication line without using an optical / electrical conversion device that requires a power source in the middle of the communication line, and only needs to arrange optical components that shine and concentrate on the optical fiber core. The purpose is to provide.

上記目的を達成するために本発明は、光透過部材によって隔てられた2地点間で光伝送する光通信装置であって、光ファイバを伝搬してきた光信号を光学系で絞り光透過部材方向に送信する送信部分を有する一方の信号伝送ユニットと、前記光透過部材を透過した光信号を光学系で集光して光ファイバに取り込む受信部分を有し、当該受信部分が前記一方の信号伝送ユニットの送信部分に対し光透過部材を挟んで対向するように配置される他方の信号伝送ユニットと、前記信号伝送ユニットの光学系の位置と傾きを調整する光学系調整装置と、前記信号伝送ユニットの光学系を調整後に固定する固定機構とを具備する。そして、前記光学系調整装置を、前記信号伝送ユニットの光学系の一端近傍をロータリージョイントを介して前記固定機構に取り付け、前記信号伝送ユニットの光学系の他端近傍にモータにより駆動される駆動部を取り付けるように構成したことを特徴とするものである。 In order to achieve the above object, the present invention is an optical communication device for optical transmission between two points separated by a light transmitting member, and an optical signal propagating through an optical fiber is directed toward an aperture light transmitting member by an optical system. and one of the signal transmission unit having a transmission portion that transmits the light transmitting member have a receiving portion for taking the optical fiber and condensed by the optical system of the optical signal transmitted through, the receiving part is said one of the signal transmission unit The other signal transmission unit disposed so as to oppose the transmitting part with a light transmission member interposed therebetween, an optical system adjustment device for adjusting the position and inclination of the optical system of the signal transmission unit, and the signal transmission unit And a fixing mechanism that fixes the optical system after adjustment. And the optical system adjusting device is attached to the fixing mechanism near one end of the optical system of the signal transmission unit via a rotary joint, and is driven by a motor near the other end of the optical system of the signal transmission unit. It is characterized by comprising so that it may attach .

また本発明は、光透過部材によって隔てられた2地点間で双方向光伝送する光通信装置であって、光ファイバを伝搬してきた光信号を光学系で絞り光透過部材方向に送信する送信部分と、光透過部材を透過した光信号を光学系で集光して光ファイバに取り込む受信部分を一体の光学系で兼用する一方の信号伝送ユニットと、光透過部材を透過した光信号を光学系で集光して光ファイバに取り込む受信部分と、光ファイバを伝搬してきた光信号を光学系で絞り光透過部材方向に送信する送信部分を一体の光学系で兼用し、当該受信部分と送信部分とを兼用する光学系が、前記一方の信号伝送ユニットの送信部分と受信部分とを兼用する光学系に対し光透過部材を挟んで対向するように配置される他方の信号伝送ユニットと、前記信号伝送ユニットの光学系の位置と傾きを調整する光学系調整装置と、前記信号伝送ユニットの光学系を調整後に固定する固定機構とを具備する。そして、前記光学系調整装置を、前記信号伝送ユニットの光学系の一端近傍をロータリージョイントを介して前記固定機構に取り付け、前記信号伝送ユニットの光学系の他端近傍にモータにより駆動される駆動部を取り付けるように構成したことを特徴とするものである。 Further, the present invention is an optical communication device for bidirectional optical transmission between two points separated by a light transmitting member, wherein the optical signal transmitted through the optical fiber is transmitted by the optical system in the direction of the aperture light transmitting member. And an optical system that collects the optical signal transmitted through the light transmitting member and collects the optical signal into the optical fiber as an integrated optical system, and the optical signal transmitted through the light transmitting member as the optical system. The receiving part that collects light into the optical fiber and the transmission part that transmits the optical signal propagating through the optical fiber in the direction of the aperture light transmitting member by the optical system is used as an integrated optical system. And the other signal transmission unit disposed so as to face the optical system also serving as a transmission part and a reception part of the one signal transmission unit with a light transmission member interposed therebetween, and the signal Transmission unit An optical system adjusting device for adjusting the position and inclination of the optical system, comprising a fixing mechanism for fixing after adjusting the optical system of the signal transmission unit. And the optical system adjusting device is attached to the fixing mechanism near one end of the optical system of the signal transmission unit via a rotary joint, and is driven by a motor near the other end of the optical system of the signal transmission unit. It is characterized by comprising so that it may attach .

また本発明は、前記光通信装置において、各信号伝送ユニットの光学系として、コリメータレンズを用いることを特徴とするものである。   According to the present invention, in the optical communication device, a collimator lens is used as an optical system of each signal transmission unit.

また本発明は、前記光通信装置において、信号伝送ユニットの光学系を調整後に固定する固定機構を備えたことを特徴とするものである。   According to the present invention, the optical communication device further includes a fixing mechanism that fixes the optical system of the signal transmission unit after adjustment.

また本発明は、前記光通信装置において、光学系調整装置として、信号伝送ユニットの光学系の調整・固定後に、光学系傾き調節機構を取り外し可能にすることを特徴とするものである。   According to the present invention, in the optical communication device, as an optical system adjusting device, the optical system tilt adjusting mechanism can be removed after adjusting and fixing the optical system of the signal transmission unit.

また本発明は、前記光通信装置において、一方の信号伝送ユニットの光学系受光部に照準マークを設け、他方の信号伝送ユニットの光学系から可視光を発射する可視光源を設けた粗調整装置を備えたことを特徴とするものである。   According to the present invention, in the optical communication device, the coarse adjustment device is provided with a sight mark in the optical system light receiving portion of one signal transmission unit and a visible light source that emits visible light from the optical system of the other signal transmission unit. It is characterized by having.

また本発明は、前記光通信装置において、一方の信号伝送ユニットの光学系からレーザ光を発射するための通信用光源と、他方の信号伝送ユニットの光学系で受光したレーザ光の光強度を計測する光パワーメータと、信号伝送ユニットの光学系の傾きを駆動するモータと、前記通信用光源及びモータを制御し、前記光パワーメータで計測した光強度を評価して2つの光学系が正対する位置を判別する計算機とを備えたことを特徴とするものである。   According to the present invention, in the optical communication device, a light source for communication for emitting laser light from the optical system of one signal transmission unit and a light intensity of the laser light received by the optical system of the other signal transmission unit are measured. The optical power meter, a motor for driving the tilt of the optical system of the signal transmission unit, the communication light source and the motor are controlled, the light intensity measured by the optical power meter is evaluated, and the two optical systems face each other And a computer for discriminating the position.

また本発明は、前記光通信装置において、光透過部材として、ガラス、プラスチック、もしくは窓ガラスを用いることを特徴とするものである。   In the optical communication apparatus, the present invention is characterized in that glass, plastic, or window glass is used as the light transmitting member.

本発明の光通信装置は、光通信線路の光透過部材に、光ファイバから発射された光ビームを光学系を用いて絞り、受光したレーザ光を光学系を用いて集光して光ファイバコア部に集中する光学部品のみを配置するだけでよく、通信線路中間に電源を必要とする光/電気変換等の装置を用いることなく光通信線路を実現する。例えば、ONUをユーザ宅内に配置し、電話局からONUまでの光通信線路において、窓ガラス間で光信号と電気信号の変換を行わず、光学部品のみを配置するだけでそのまま信号光を伝播して通信経路を構成する光通信装置を提供することができる。   An optical communication apparatus according to the present invention includes an optical fiber core that condenses a light beam emitted from an optical fiber on an optical transmission line of an optical communication line using an optical system, and collects the received laser light using an optical system. The optical communication line is realized without using any optical / electrical conversion device that requires a power source in the middle of the communication line. For example, an ONU is placed in the user's house, and in the optical communication line from the telephone office to the ONU, the optical signal and the electric signal are not converted between the window glasses, and the signal light is propagated as it is by arranging only the optical components. Thus, an optical communication device constituting a communication path can be provided.

以下図面を参照して本発明の実施の形態を詳細に説明する。
図1は本発明の実施形態の使用例を示す構成説明図である。図1に示すように、ユーザ宅3には窓ガラス2が屋外と屋内を仕切るようにして設けられる。前記窓ガラス2の屋内側の面には屋内側信号伝送ユニット1aが取り付けられ、前記窓ガラス2の屋外側の面には屋外側信号伝送ユニット1bが取り付けられる。前記屋内側信号伝送ユニット1a及び屋外側信号伝送ユニット1bは窓ガラス2を挟んで対向して取り付けられて光通信装置を構成する。前記ユーザ宅3内にはONU(Optical Network Unit)4が設置され、前記ONU4はユーザ端末3aと導電線により接続されると共に光ファイバケーブルにより屋内側信号伝送ユニット1aと接続される。前記屋外側伝送ユニット1bは電話局5に光ファイバケーブル6を介して接続されて有線光通信が行われる。屋内側信号伝送ユニット1aと屋外側信号伝送ユニット1bの間は窓ガラス2を媒質とする空間を光信号が伝搬する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory diagram of a configuration showing an example of use of an embodiment of the present invention. As shown in FIG. 1, a window glass 2 is provided in the user's house 3 so as to partition the outdoors and the indoors. An indoor side signal transmission unit 1 a is attached to the indoor side surface of the window glass 2, and an outdoor side signal transmission unit 1 b is attached to the outdoor side surface of the window glass 2. The indoor-side signal transmission unit 1a and the outdoor-side signal transmission unit 1b are attached to face each other with the window glass 2 in between to constitute an optical communication device. An ONU (Optical Network Unit) 4 is installed in the user's home 3, and the ONU 4 is connected to the user terminal 3a by a conductive wire and to the indoor signal transmission unit 1a by an optical fiber cable. The outdoor transmission unit 1b is connected to the telephone station 5 through an optical fiber cable 6 to perform wired optical communication. Between the indoor side signal transmission unit 1a and the outdoor side signal transmission unit 1b, an optical signal propagates in a space using the window glass 2 as a medium.

図2は本発明の実施形態に係る光通信装置を示す構成説明図であり、双方向通信を1本の光ファイバで実行する場合の光通信装置内部の構成例を窓ガラス面に対して垂直な断面で示している。図2に示すように、屋内側伝送ユニット1aは送信光を絞り受信光を集光する光学部品としての光学レンズ(コリメータレンズ)7及び送受信用光ファイバ6aを内蔵し、コネクタ8aを備えている。ユーザ宅の屋内側ではコリメータレンズ7とコネクタ8aが送受信用光ファイバ6aにより接続されると共に、前記コネクタ8aを介して屋内配線用の光ファイバケーブル6と送受信用光ファイバ6aが接続され、送信信号・受信信号を伝送する。屋外側信号伝送ユニット1bは送信光を絞り受信光を集光する光学部品としての光学レンズ(コリメータレンズ)7を内蔵し、コネクタ8bを備えている。ユーザ宅の屋外側ではコネクタ8bの先端をコリメータレンズ7の焦点位置となるよう配置することにより、屋外側信号伝送ユニット1b内の配線を不要とした構成例である。前記コネクタ8bには屋外配線用の光ファイバケーブル6が接続される。例えば、電話局からユーザ宅へ向かう光信号は屋外配線用の光ファイバケーブル6を経由して屋外側信号伝送ユニット1bのコネクタ8bから放射しコリメータレンズ7によって絞られた後、窓ガラス2に入射する。窓ガラス2を透過した光信号は屋内側信号伝送ユニット1aのコリメータレンズ7により送受信用ファイバ6aのコア部に集光され、コネクタ8a及び屋内配線用の光ファイバケーブル6を経由してユーザ宅内のONUに伝送される。   FIG. 2 is an explanatory diagram showing the configuration of the optical communication apparatus according to the embodiment of the present invention. An example of the configuration inside the optical communication apparatus when bidirectional communication is performed with one optical fiber is perpendicular to the window glass surface. The cross section is shown. As shown in FIG. 2, the indoor transmission unit 1a includes an optical lens (collimator lens) 7 and an optical fiber 6a for transmission / reception as an optical component that restricts transmission light and collects reception light, and includes a connector 8a. . On the indoor side of the user's house, the collimator lens 7 and the connector 8a are connected by the transmission / reception optical fiber 6a, and the optical fiber cable 6 for indoor wiring and the transmission / reception optical fiber 6a are connected via the connector 8a to transmit signals.・ Transmit the received signal. The outdoor-side signal transmission unit 1b incorporates an optical lens (collimator lens) 7 as an optical component that restricts transmission light and condenses reception light, and includes a connector 8b. In this configuration example, the wiring inside the outdoor signal transmission unit 1b is not required by disposing the tip of the connector 8b at the focal position of the collimator lens 7 on the outdoor side of the user's house. An optical fiber cable 6 for outdoor wiring is connected to the connector 8b. For example, an optical signal traveling from a telephone office to a user's house is radiated from a connector 8b of an outdoor signal transmission unit 1b via an optical fiber cable 6 for outdoor wiring, and is narrowed by a collimator lens 7 and then incident on a window glass 2. To do. The optical signal that has passed through the window glass 2 is collected on the core of the transmission / reception fiber 6a by the collimator lens 7 of the indoor signal transmission unit 1a and passes through the connector 8a and the optical fiber cable 6 for indoor wiring. Transmitted to the ONU.

図3は本発明の実施形態に係る光通信装置を示す概略的斜視図であり、窓ガラス2を挟んで一対の光学レンズ(コリメータレンズ)が対向した状態を示す。図3に示すように、各コリメータレンズ7は窓ガラス2の窓枠9に取り付けられた固定用治具10に固定される。光ファイバケーブル6を伝搬した光信号はコリメータレンズ7から発射し、窓ガラス2を通過して対向するコリメータレンズ7に到達する。固定用治具10は位置調節用ねじ11により上下左右方向に位置調節が可能であり、固定用治具10に固定されるコリメータレンズ7は位置調節用ねじ11により上下左右方向への位置調節ができる。また、コリメータレンズ7はロータリージョイント18を介して固定用治具10に配置されており、光軸の角度を自由に調節できる。調節後は固定用ねじ16を強く締めることによりコリメータレンズ7を固着できる。14bは固定用治具10に設けられ、光学系の傾きを調節する光学系傾き調節機構の着脱を行う光学系傾き調節機構取付け穴である。   FIG. 3 is a schematic perspective view showing the optical communication apparatus according to the embodiment of the present invention, and shows a state in which a pair of optical lenses (collimator lenses) face each other with the window glass 2 interposed therebetween. As shown in FIG. 3, each collimator lens 7 is fixed to a fixing jig 10 attached to a window frame 9 of the window glass 2. The optical signal propagated through the optical fiber cable 6 is emitted from the collimator lens 7, passes through the window glass 2 and reaches the opposing collimator lens 7. The fixing jig 10 can be adjusted in the vertical and horizontal directions by the position adjusting screw 11, and the collimator lens 7 fixed to the fixing jig 10 can be adjusted in the vertical and horizontal directions by the position adjusting screw 11. it can. Further, the collimator lens 7 is disposed in the fixing jig 10 via the rotary joint 18, and the angle of the optical axis can be freely adjusted. After the adjustment, the collimator lens 7 can be fixed by strongly tightening the fixing screw 16. An optical system tilt adjusting mechanism mounting hole 14b is provided in the fixing jig 10 and attaches / detaches the optical system tilt adjusting mechanism for adjusting the tilt of the optical system.

図4は本発明の実施形態に係る光学系傾き調節機構を示す概略的斜視図である。光学系傾き調節機構12は光学系傾き調節機構取付けねじ14aにより固定用治具10の光学系傾き調節機構取付け穴14bに着脱される。前記光学系傾き調節機構12の上部にはモータ13が取り付けられ、前記モータ13を駆動源とし枠状の駆動アーム15が上下左右に駆動する。駆動アーム15は枠内にコリメータレンズ7を把握するためのピン17を備えている。   FIG. 4 is a schematic perspective view showing the optical system tilt adjusting mechanism according to the embodiment of the present invention. The optical system tilt adjusting mechanism 12 is attached to and detached from the optical system tilt adjusting mechanism mounting hole 14b of the fixing jig 10 by an optical system tilt adjusting mechanism mounting screw 14a. A motor 13 is attached to the upper part of the optical system tilt adjusting mechanism 12, and a frame-like drive arm 15 is driven vertically and horizontally by using the motor 13 as a drive source. The drive arm 15 includes a pin 17 for grasping the collimator lens 7 in the frame.

図5は本発明の実施形態に係る光学系調整装置の動作を説明するための概略的斜視図であり、光学系の傾き調節を説明する図である。図5に示すように、コリメータレンズ7の一端近傍はロータリージョイント18を介して固定用治具10に取り付け、コリメータレンズ7の他端近傍はモータにより上下左右に駆動される駆動アーム15に取り付ける。すなわち、駆動アーム15の上下左右の直動動作に従って、コリメータレンズ7の傾き角度がロータリージョイント18を中心に調節される。   FIG. 5 is a schematic perspective view for explaining the operation of the optical system adjusting apparatus according to the embodiment of the present invention, and is a view for explaining the adjustment of the inclination of the optical system. As shown in FIG. 5, the vicinity of one end of the collimator lens 7 is attached to the fixing jig 10 via the rotary joint 18, and the vicinity of the other end of the collimator lens 7 is attached to the drive arm 15 driven up and down and left and right by the motor. That is, the tilt angle of the collimator lens 7 is adjusted around the rotary joint 18 according to the vertical movement of the drive arm 15 in the vertical and horizontal directions.

このように光学系調整装置は、駆動アーム15を上下左右に駆動することにより、信号伝送ユニットのコリメータレンズ7の傾きを調整する。また、光学系傾き調節機構12は、信号伝送ユニットのコリメータレンズ7の調整・固定後に光学系傾き調節機構取付けねじ14aを固定用治具10の光学系傾き調節機構取付け穴14bから抜くことにより取り外しが可能である。   In this way, the optical system adjustment device adjusts the inclination of the collimator lens 7 of the signal transmission unit by driving the drive arm 15 up and down and left and right. The optical system tilt adjusting mechanism 12 is removed by removing the optical system tilt adjusting mechanism mounting screw 14 a from the optical system tilt adjusting mechanism mounting hole 14 b of the fixing jig 10 after adjusting and fixing the collimator lens 7 of the signal transmission unit. Is possible.

図6は本発明の実施形態に係る粗調整装置を示す構成説明図である。図6に示すように、受光側の信号伝送ユニットのコリメータレンズ7には受光面に反射点21を有する照準マーク19が配置され、他方の信号伝送ユニットのコリメータレンズ7には可視光を発射する可視光源20が光ファイバケーブル6により接続される。すなわち、可視光源20から発射された可視光は光ファイバケーブル6及びコリメータレンズ7を経由して照準マーク19の表面に照射され、照準マーク19上の反射点21として目視されるので、送信側のコリメータレンズ7の光軸が確認できる。   FIG. 6 is an explanatory diagram showing the configuration of the coarse adjustment device according to the embodiment of the present invention. As shown in FIG. 6, the collimator lens 7 of the signal transmission unit on the light receiving side is provided with an aiming mark 19 having a reflection point 21 on the light receiving surface, and visible light is emitted to the collimator lens 7 of the other signal transmission unit. A visible light source 20 is connected by an optical fiber cable 6. That is, the visible light emitted from the visible light source 20 is irradiated on the surface of the aiming mark 19 via the optical fiber cable 6 and the collimator lens 7 and is visually observed as the reflection point 21 on the aiming mark 19. The optical axis of the collimator lens 7 can be confirmed.

図7は本発明の実施形態に係る自動光軸調整系を示す構成説明図である。図7において、13は駆動アーム15に把持された他方の信号伝送ユニットのコリメータレンズ7の傾きを駆動するモータ、22は光ファイバケーブル6で接続された一方の信号伝送ユニットのコリメータレンズ7からレーザ光を発射するための通信用光源、23は光ファイバケーブル6で接続された他方の信号伝送ユニットのコリメータレンズ7で受光したレーザ光の光強度を計測する光パワーメータ、24は通信用光源22及びモータ13を制御し、光パワーメータ23で計測した光強度を評価して2つのコリメータレンズ7が正対する位置を判別する計算機である。すなわち、通信用光源22から送られたレーザ光は光ファイバケーブル6、コリメータレンズ7、窓ガラス2を経由して光パワーメータ23で受光強度を測定し、計算機24で記憶する。モータ13は計算機24からの指令値に従って光学系傾き調節機構の駆動アーム15を作動しコリメータレンズ7の位置姿勢を制御する。計算機24は様々なコリメータレンズ7の位置姿勢に対する受光強度を評価して2つのコリメータレンズ7が正対する位置を判別する。   FIG. 7 is an explanatory diagram showing a configuration of an automatic optical axis adjustment system according to an embodiment of the present invention. In FIG. 7, reference numeral 13 denotes a motor for driving the inclination of the collimator lens 7 of the other signal transmission unit held by the drive arm 15, and reference numeral 22 denotes a laser beam from the collimator lens 7 of one signal transmission unit connected by the optical fiber cable 6. A communication light source for emitting light, 23 is an optical power meter that measures the light intensity of the laser beam received by the collimator lens 7 of the other signal transmission unit connected by the optical fiber cable 6, and 24 is a communication light source 22. And a computer that controls the motor 13 and evaluates the light intensity measured by the optical power meter 23 to determine the position where the two collimator lenses 7 face each other. That is, the laser light transmitted from the communication light source 22 is measured by the optical power meter 23 via the optical fiber cable 6, the collimator lens 7, and the window glass 2, and stored in the computer 24. The motor 13 controls the position and orientation of the collimator lens 7 by operating the drive arm 15 of the optical system tilt adjustment mechanism according to the command value from the computer 24. The computer 24 evaluates the received light intensity with respect to the positions and orientations of various collimator lenses 7 and discriminates positions where the two collimator lenses 7 face each other.

図8は本発明の実施形態に係る光通信装置のコリメータレンズの位置を変えたときの受光強度測定値を示す特性図であり、図9は本発明の実施形態に係る光通信装置のコリメータレンズの傾きを変えたときの受光強度測定値を示す特性図である。いずれも2つのコリメータレンズが正対位置を頂点として光軸がずれるに従い受光強度が低下する。2つのコリメータレンズの正対位置を決定するためには、受光強度の分布からその最大値を探索すればよいことが確認された。このようにして実験装置の光軸を調整した結果、入力光強度−5.97dBmに対して受光強度−11.2dBmという伝送特性が得られ、約5dBの損失で窓ガラス越し光空間通信が実施できることを検証した。   FIG. 8 is a characteristic diagram showing received light intensity measurement values when the position of the collimator lens of the optical communication apparatus according to the embodiment of the present invention is changed, and FIG. 9 is a collimator lens of the optical communication apparatus according to the embodiment of the present invention. It is a characteristic view which shows the received light intensity measurement value when changing the inclination of. In either case, the received light intensity decreases as the optical axis shifts with the two collimator lenses at the apex position. It was confirmed that in order to determine the directly facing positions of the two collimator lenses, the maximum value should be searched from the distribution of received light intensity. As a result of adjusting the optical axis of the experimental device in this way, a transmission characteristic of received light intensity of 11.2 dBm is obtained with respect to input light intensity of −5.97 dBm, and optical space communication through the window glass is performed with a loss of about 5 dB. I verified that I can do it.

本発明の実施形態はONUをユーザ宅内に配置し、電話局からONUまでの光通信線路において窓ガラス部分を空間通信化する技術であり、光信号の電気信号への変換を行わずそのまま信号光を伝播して通信経路を構成する。   The embodiment of the present invention is a technology in which an ONU is placed in a user's house and the window glass portion is spatially communicated in an optical communication line from the telephone office to the ONU, and the signal light is directly converted without converting the optical signal into an electrical signal. To establish a communication path.

尚、窓ガラスの両面で単に光ファイバ端面を対向しただけでは、信号光を空間伝送するには不十分である。光ファイバ端面から発射される信号光が発散するため、信号強度が低下し発射方向を制御するには不十分である。また受信側でも、単純に光ファイバ端面を受光面としただけでは、受光面積が極めて小さい(シングルモードファイバで直径約10ミクロン)ため十分な光強度を取り込むことができず、信号光を集中して照射する場合にもターゲットとして制御困難な小ささである。   Note that simply facing the optical fiber end faces on both sides of the window glass is not sufficient for spatial transmission of signal light. Since the signal light emitted from the end face of the optical fiber diverges, the signal intensity is lowered and is insufficient for controlling the emission direction. On the receiving side, simply by using the end face of the optical fiber as the light receiving surface, the light receiving area is extremely small (diameter of about 10 microns with a single mode fiber), so that sufficient light intensity cannot be captured, and signal light is concentrated. Even when irradiating, it is difficult to control as a target.

これを解決するためには光ファイバから発射された光ビームを光学系を用いて絞り、受光したレーザ光を光学系を用いて集光して光ファイバコア部に集中する必要がある。その場合にも光学系の位置調整には微妙な精度を必要とし、システム設置後には光ビーム光軸がずれない安定性が求められる。光学系の調整には自動化が有効であるが、2つの光学系が正対したことを検出する計測系と光学系を微細に動かす駆動系の連携が不可欠となる。また、実用的な見地からは機構の単純化や、駆動系などの設置ツールを回収する手段も重要である。   In order to solve this, it is necessary to stop the light beam emitted from the optical fiber using an optical system, and collect the received laser light using the optical system and concentrate it on the optical fiber core. Even in such a case, fine adjustment is required for the position adjustment of the optical system, and it is required that the light beam optical axis be stable after the system is installed. Automation is effective for adjusting the optical system, but it is essential to link a measurement system that detects that the two optical systems are facing each other and a drive system that moves the optical system finely. From a practical standpoint, simplification of the mechanism and means for collecting installation tools such as a drive train are also important.

また、上記本発明の実施形態では光を透過する媒質よりなる光透過部材として、窓ガラスについて説明したが、これに限らずガラス、プラスチックなどの光透過部材についても同様に実施することができる。   In the above-described embodiment of the present invention, the window glass has been described as the light transmitting member made of a medium that transmits light. However, the present invention is not limited to this, and the present invention can be similarly applied to a light transmitting member such as glass or plastic.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

本発明の実施形態の使用例を示す構成説明図である。It is structure explanatory drawing which shows the usage example of embodiment of this invention. 本発明の実施形態に係る光通信装置を示す構成説明図である。1 is a configuration explanatory diagram illustrating an optical communication device according to an embodiment of the present invention. 本発明の実施形態に係る光通信装置を示す概略的斜視図である。1 is a schematic perspective view showing an optical communication apparatus according to an embodiment of the present invention. 本発明の実施形態に係る光学系傾き調節機構を示す概略的斜視図である。It is a schematic perspective view which shows the optical system inclination adjustment mechanism which concerns on embodiment of this invention. 本発明の実施形態に係る光学系調整装置の動作を説明するための概略的斜視図である。It is a schematic perspective view for demonstrating operation | movement of the optical system adjustment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る粗調整装置を示す構成説明図である。It is composition explanatory drawing which shows the rough adjustment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る自動光軸調整系を示す構成説明図である。1 is a configuration explanatory view showing an automatic optical axis adjustment system according to an embodiment of the present invention. FIG. 本発明の実施形態に係る光通信装置のコリメータレンズの位置を変えたときの受光強度測定値を示す特性図である。It is a characteristic view which shows the light reception intensity | strength measured value when the position of the collimator lens of the optical communication apparatus which concerns on embodiment of this invention is changed. 本発明の実施形態に係る光通信装置のコリメータレンズの傾きを変えたときの受光強度測定値を示す特性図である。It is a characteristic view which shows the light reception intensity measurement value when changing the inclination of the collimator lens of the optical communication apparatus which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1a…屋内側信号伝送ユニット、1b…屋外側信号伝送ユニット、2…窓ガラス、3…ユーザ宅、3a…ユーザ端末、4…ONU、5…電話局、6…光ファイバケーブル、6a…光ファイバ、7…光学レンズ(コリメータレンズ)、8a,8b…コネクタ、9…窓枠、10…固定用治具、11…位置調節用ねじ、12…光学系傾き調節機構、13…モータ、14a…光学系傾き調節機構取付けねじ、14b…光学系傾き調節機構取付け穴、15…駆動アーム、16…固定用ねじ、17…ピン、18…ロータリージョイント、19…照準マーク、20…可視光源、21…反射点、22…通信用光源、23…光パワーメータ、24…計算機。   DESCRIPTION OF SYMBOLS 1a ... Indoor side signal transmission unit, 1b ... Outdoor side signal transmission unit, 2 ... Window glass, 3 ... User house, 3a ... User terminal, 4 ... ONU, 5 ... Telephone office, 6 ... Optical fiber cable, 6a ... Optical fiber 7, optical lenses (collimator lenses), 8a, 8b, connectors, 9 ... window frame, 10 ... fixing jig, 11 ... position adjusting screw, 12 ... optical system tilt adjusting mechanism, 13 ... motor, 14a ... optical. System tilt adjusting mechanism mounting screw, 14b ... Optical system tilt adjusting mechanism mounting hole, 15 ... Drive arm, 16 ... Fixing screw, 17 ... Pin, 18 ... Rotary joint, 19 ... Aiming mark, 20 ... Visible light source, 21 ... Reflection Point, 22 ... Communication light source, 23 ... Optical power meter, 24 ... Computer.

Claims (7)

光透過部材によって隔てられた2地点間で光伝送する光通信装置であって、
光ファイバを伝搬してきた光信号を光学系で絞り光透過部材方向に送信する送信部分を有する一方の信号伝送ユニットと、
前記光透過部材を透過した光信号を光学系で集光して光ファイバに取り込む受信部分を有し、当該受信部分が前記一方の信号伝送ユニットの送信部分に対し光透過部材を挟んで対向するように配置される他方の信号伝送ユニットと、
前記信号伝送ユニットの光学系の位置と傾きを調整する光学系調整装置と、
前記信号伝送ユニットの光学系を調整後に固定する固定機構と
を具備し、
前記光学系調整装置は、前記信号伝送ユニットの光学系の一端近傍をロータリージョイントを介して前記固定機構に取り付け、前記信号伝送ユニットの光学系の他端近傍にモータにより駆動される駆動部を取り付けたことを特徴とする光通信装置。
An optical communication device that transmits light between two points separated by a light transmitting member,
One signal transmission unit having a transmission part that transmits an optical signal propagating through the optical fiber in the direction of the aperture light transmitting member in the optical system;
Have a receiving portion for taking the optical fiber to collect light signal transmitted through the light transmitting member in the optical system, to face each other across the light transmitting member with respect to the transmit portion of the received portion said one of the signal transmission unit The other signal transmission unit arranged as follows:
An optical system adjustment device for adjusting the position and inclination of the optical system of the signal transmission unit;
A fixing mechanism for fixing the optical system of the signal transmission unit after adjustment;
Comprising
The optical system adjustment device attaches a vicinity of one end of the optical system of the signal transmission unit to the fixing mechanism via a rotary joint, and attaches a drive unit driven by a motor near the other end of the optical system of the signal transmission unit. An optical communication device characterized by that.
光透過部材によって隔てられた2地点間で双方向光伝送する光通信装置であって、
光ファイバを伝搬してきた光信号を光学系で絞り光透過部材方向に送信する送信部分と、光透過部材を透過した光信号を光学系で集光して光ファイバに取り込む受信部分を一体の光学系で兼用する一方の信号伝送ユニットと、
光透過部材を透過した光信号を光学系で集光して光ファイバに取り込む受信部分と、光ファイバを伝搬してきた光信号を光学系で絞り光透過部材方向に送信する送信部分を一体の光学系で兼用し、当該受信部分と送信部分とを兼用する光学系が、前記一方の信号伝送ユニットの送信部分と受信部分とを兼用する光学系に対し光透過部材を挟んで対向するように配置される他方の信号伝送ユニットと、
前記信号伝送ユニットの光学系の位置と傾きを調整する光学系調整装置と、
前記信号伝送ユニットの光学系を調整後に固定する固定機構と
を具備し、
前記光学系調整装置は、前記信号伝送ユニットの光学系の一端近傍をロータリージョイントを介して前記固定機構に取り付け、前記信号伝送ユニットの光学系の他端近傍にモータにより駆動される駆動部を取り付けたことを特徴とする光通信装置。
An optical communication device for bidirectional optical transmission between two points separated by a light transmitting member,
The optical part that transmits the optical signal propagated through the optical fiber in the direction of the aperture light transmitting member by the optical system and the receiving part that collects the optical signal that has passed through the optical transmitting member by the optical system and takes it into the optical fiber are integrated optics. One signal transmission unit that is also used in the system,
A receiving part that collects the optical signal that has passed through the light transmitting member with an optical system and takes it into the optical fiber, and a transmission part that transmits the optical signal that has propagated through the optical fiber in the direction of the aperture light transmitting member with the optical system are integrated optics. The optical system that is shared by the system and that is also used as the receiving part and the transmitting part is disposed so as to face the optical system that is also used as the transmitting part and the receiving part of the one signal transmission unit with a light transmission member interposed therebetween. The other signal transmission unit to be
An optical system adjustment device for adjusting the position and inclination of the optical system of the signal transmission unit;
A fixing mechanism for fixing the optical system of the signal transmission unit after adjustment;
Comprising
The optical system adjustment device attaches a vicinity of one end of the optical system of the signal transmission unit to the fixing mechanism via a rotary joint, and attaches a drive unit driven by a motor near the other end of the optical system of the signal transmission unit. An optical communication device characterized by that.
請求項1又は2に記載の光通信装置において、
各信号伝送ユニットの光学系として、コリメータレンズを用いることを特徴とする光通信装置。
The optical communication device according to claim 1 or 2,
An optical communication apparatus using a collimator lens as an optical system of each signal transmission unit.
請求項1又は2に記載の光通信装置において、
光学系調整装置として、信号伝送ユニットの光学系の調整・固定後に光学系傾き調節機構を取り外し可能にすることを特徴とする光通信装置。
The optical communication device according to claim 1 or 2 ,
An optical communication device characterized in that an optical system tilt adjusting mechanism is removable as an optical system adjusting device after adjusting and fixing an optical system of a signal transmission unit.
請求項1乃至のいずれかに記載の光通信装置において、
一方の信号伝送ユニットの光学系受光部に照準マークを設け、他方の信号伝送ユニットの光学系から可視光を発射する可視光源を設けた粗調整装置を備えたことを特徴とする光通信装置。
An optical communication apparatus according to any one of claims 1 to 4,
An optical communication apparatus comprising: a coarse adjustment device provided with an aiming mark in an optical system light receiving portion of one signal transmission unit and a visible light source that emits visible light from the optical system of the other signal transmission unit.
請求項1乃至のいずれかに記載の光通信装置において、
一方の信号伝送ユニットの光学系からレーザ光を発射するための通信用光源と、
他方の信号伝送ユニットの光学系で受光したレーザ光の光強度を計測する光パワーメータと、
信号伝送ユニットの光学系の傾きを駆動するモータと、
前記通信用光源及びモータを制御し、前記光パワーメータで計測した光強度を評価して2つの光学系が正対する位置を判別する計算機と
を備えたことを特徴とする光通信装置。
The optical communication device according to any one of claims 1 to 5 ,
A communication light source for emitting laser light from the optical system of one signal transmission unit;
An optical power meter that measures the light intensity of the laser beam received by the optical system of the other signal transmission unit;
A motor that drives the tilt of the optical system of the signal transmission unit;
An optical communication apparatus comprising: a computer that controls the communication light source and the motor, and evaluates the light intensity measured by the optical power meter to determine a position where the two optical systems face each other.
請求項1乃至のいずれかに記載の光通信装置において、
光透過部材として、ガラス、プラスチック、もしくは窓ガラスを用いることを特徴とする光通信装置。
The optical communication device according to any one of claims 1 to 6 ,
An optical communication device using glass, plastic, or window glass as a light transmitting member.
JP2006292925A 2006-10-27 2006-10-27 Optical communication device Expired - Fee Related JP4747073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006292925A JP4747073B2 (en) 2006-10-27 2006-10-27 Optical communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006292925A JP4747073B2 (en) 2006-10-27 2006-10-27 Optical communication device

Publications (2)

Publication Number Publication Date
JP2008109598A JP2008109598A (en) 2008-05-08
JP4747073B2 true JP4747073B2 (en) 2011-08-10

Family

ID=39442559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006292925A Expired - Fee Related JP4747073B2 (en) 2006-10-27 2006-10-27 Optical communication device

Country Status (1)

Country Link
JP (1) JP4747073B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5575514B2 (en) * 2010-03-23 2014-08-20 日本エムエムアイテクノロジー株式会社 Communications system
JP6051469B2 (en) 2011-09-09 2016-12-27 国立研究開発法人情報通信研究機構 Optical fiber type optical functional element cartridge module
KR101438456B1 (en) 2013-10-29 2014-10-30 한국해양대학교 산학협력단 Under water multi-purpose led lamp
DE102016103551A1 (en) * 2016-02-29 2017-08-31 Deutsche Telekom Ag Improved radio coverage within buildings
US10018799B2 (en) * 2016-12-07 2018-07-10 Google Llc Optical bridge between exterior and interior networks
US20200204212A1 (en) * 2018-12-20 2020-06-25 Arris Enterprises Llc Last meter wireless broadband
CN110299944B (en) * 2019-06-28 2021-07-23 衢州学院 LED visible light communication system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135534A (en) * 1981-02-16 1982-08-21 Nec Corp Transmitter and receiver for space traveling light
JPS58105502U (en) * 1982-01-08 1983-07-18 日本電気株式会社 Optical space propagation device
JPS62197108U (en) * 1986-06-04 1987-12-15
JPH0964821A (en) * 1995-08-23 1997-03-07 Totoku Electric Co Ltd Space transmission optical communication equipment
JPH09243851A (en) * 1996-03-06 1997-09-19 Nec Eng Ltd Rotary joint
JP2002315131A (en) * 2001-04-05 2002-10-25 Sanyo Electric Co Ltd Wiring structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135534A (en) * 1981-02-16 1982-08-21 Nec Corp Transmitter and receiver for space traveling light
JPS58105502U (en) * 1982-01-08 1983-07-18 日本電気株式会社 Optical space propagation device
JPS62197108U (en) * 1986-06-04 1987-12-15
JPH0964821A (en) * 1995-08-23 1997-03-07 Totoku Electric Co Ltd Space transmission optical communication equipment
JPH09243851A (en) * 1996-03-06 1997-09-19 Nec Eng Ltd Rotary joint
JP2002315131A (en) * 2001-04-05 2002-10-25 Sanyo Electric Co Ltd Wiring structure

Also Published As

Publication number Publication date
JP2008109598A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
JP4747073B2 (en) Optical communication device
KR101219455B1 (en) Method and apparatus for coupling optical signal with packaged circuits via optical cables and lightguide couplers
CN102854582B (en) Optical transmitting assembly, optical transceiver and manufacturing and applying method
CN100460911C (en) Method and apparatus providing an electrical-optical coupler
CN101223559A (en) Infra-red beam smoke detection device and method
US10386579B2 (en) Optical transmitting module and multi-lane transmitter optical module
CN1121281A (en) Low cost optical fiber RF signal distribution system
CN1593028A (en) Free-space optical communication system employing wavelength conversion
US20210356681A1 (en) Intelligent Panel System
US6944403B2 (en) MEMS based over-the-air optical data transmission system
CN109286437A (en) A kind of controllable light transmitting device and method based on optoisolator
JP2004523160A (en) Window-mounted free-space optical wireless communication system
KR101181668B1 (en) Hybrid Solar Lighting System
JP2007259179A (en) Optical communication apparatus
CN107367800A (en) Laser emission component and optical module with monitoring back light
WO2005055436A2 (en) Transceiver for optical transmission
JP2003248172A (en) Transmission device for optical observation unit of operation microscope or the like
JPH0964821A (en) Space transmission optical communication equipment
TW201631345A (en) Optical transmission device, optical reception device, and optical cable
WO2003092192A1 (en) Optical wireless communication device and method for adjusting the position of optical wireless communication device
KR101339886B1 (en) Free space optical communication module
KR100386813B1 (en) Free-space optical transmission apparatus with optical alignment function by using the visible optical signal
JP2000332698A (en) Optical communication apparatus
CN113253405B (en) Device and method for controlling AWG coupling height of optical receive submodule of optical module
JPH10178393A (en) Light transmitter-receiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees