JPH0964821A - Space transmission optical communication equipment - Google Patents

Space transmission optical communication equipment

Info

Publication number
JPH0964821A
JPH0964821A JP7214793A JP21479395A JPH0964821A JP H0964821 A JPH0964821 A JP H0964821A JP 7214793 A JP7214793 A JP 7214793A JP 21479395 A JP21479395 A JP 21479395A JP H0964821 A JPH0964821 A JP H0964821A
Authority
JP
Japan
Prior art keywords
optical
light
optical fiber
infrared light
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7214793A
Other languages
Japanese (ja)
Inventor
Takao Takizawa
孝夫 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku Electric Co Ltd
Original Assignee
Totoku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totoku Electric Co Ltd filed Critical Totoku Electric Co Ltd
Priority to JP7214793A priority Critical patent/JPH0964821A/en
Publication of JPH0964821A publication Critical patent/JPH0964821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify the configuration of an optical system by driving a visual light semiconductor laser emitting a visual light for optical axis alignment and leading an infrared ray and the visual light to one optical fiber so as to convert emitted lights into an optical beam, thus facilitating the alignment. SOLUTION: An optical axis drive signal Sp is fed to an optical axis alignment drive circuit 14 of the space transmission optical communication equipment 100A to allow a visual light semiconductor laser 12 to emit a red light. Furthermore, a fine-adjustment base 17 is used to adjust an interval between the end of a 3rd optical fiber 150 and a lens 18 so as to match a focus of the lens 18 with respect to the red light and to emit a red light beam Lp to space. On the other hand, a screen plate 5 is mounted to a front side of an optical receiver 100B. Then the position and the direction of the space transmission optical communication equipment 100A and/or the optical receiver 100B are adjusted so that the red optical beam Lp is properly struck onto the plate 5. Moreover, in two space transmission optical communication equipments, an infrared ray and a visual light are led to an optical fiber coupler 19, in which emitted lights are converted into an optical beam to simplify the configuration of the optical system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空間伝送光通信装
置に関し、更に詳しくは、10m以上離れた光送信装置
と光受信装置の間で空間を介して高速光通信が可能であ
り且つ光送信装置と光受信装置の光軸合せを好適に行う
ことが出来る空間伝送光通信装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spatial transmission optical communication device, and more specifically, it enables high-speed optical communication via a space between an optical transmission device and an optical reception device which are separated by 10 m or more, and can perform optical transmission. The present invention relates to a spatial transmission optical communication device capable of suitably aligning the optical axes of a device and an optical receiving device.

【0002】[0002]

【従来の技術】従来、10m以上離れた光送信装置と光
受信装置の間で空間を介して光通信する空間伝送光通信
装置では、伝送信号の周波数帯域が数10MHz程度であ
り、発光素子として波長0.6μmの可視光を発光する
可視光半導体レーザや波長0.8μm〜0.9μmの近
赤外光を発光する近赤外光発光ダイオードが使用されて
いる。上記可視光半導体レーザの場合、光のコヒーレン
シィが強く、光ビームの広がりが小さいため、光送信装
置と光受信装置の光軸合せを十分に行う必要がある。し
かし、光ビームを視認することができる(赤く見える)
ため、光受信装置側で白いスクリーンを利用して光軸合
せを容易に行うことが出来る。他方、上記近赤外光発光
ダイオードの場合、光のコヒーレンシィが弱く、レンズ
を用いても光ビームが広がってしまうため、光送信装置
と光受信装置の光軸合せは適当でよい。従って、光ビー
ムを視認できないが、特に支障はない。
2. Description of the Related Art Conventionally, in a spatial transmission optical communication device in which an optical transmission device and an optical reception device separated by 10 m or more are optically communicated through a space, a frequency band of a transmission signal is about several tens of MHz, and a light emitting element is used. A visible light semiconductor laser that emits visible light having a wavelength of 0.6 μm and a near infrared light emitting diode that emits near infrared light having a wavelength of 0.8 μm to 0.9 μm are used. In the case of the visible light semiconductor laser, since the coherency of light is strong and the spread of the light beam is small, it is necessary to sufficiently align the optical axes of the optical transmitter and the optical receiver. But you can see the light beam (looks red)
Therefore, the optical axis can be easily adjusted by using the white screen on the optical receiver side. On the other hand, in the case of the near-infrared light emitting diode, since the coherency of light is weak and the light beam spreads even if a lens is used, the optical axes of the optical transmitter and the optical receiver may be properly aligned. Therefore, the light beam cannot be visually recognized, but there is no particular problem.

【0003】[0003]

【発明が解決しようとする課題】近年の通信量の増大傾
向に伴い、伝送信号の周波数帯域を数100MHz〜数G
Hzに高速化することが必要になってきている。このよう
な高速通信では、発光素子として波長0.8μm以上の
赤外光を発光する赤外光半導体レーザを使用する必要が
ある。しかし、赤外光半導体レーザを使用する場合、光
のコヒーレンシィが強く、光ビームの広がりが小さいた
め、光送信装置と光受信装置の光軸合せを十分に行う必
要があるにもかかわらず、光ビームを視認できないた
め、光軸合せを容易に行うことが出来ない問題点があ
る。そこで、本発明の目的は、10m以上離れた光送信
装置と光受信装置の間で空間を介して高速光通信が可能
であり且つ光送信装置と光受信装置の光軸合せを好適に
行うことが出来る空間伝送光通信装置を提供することに
ある。
With the recent trend of increasing communication volume, the frequency band of transmission signals is from several 100 MHz to several G.
It is necessary to speed up to Hz. In such high-speed communication, it is necessary to use an infrared semiconductor laser that emits infrared light having a wavelength of 0.8 μm or more as a light emitting element. However, when the infrared semiconductor laser is used, since the coherency of light is strong and the spread of the light beam is small, it is necessary to sufficiently align the optical axes of the optical transmitter and the optical receiver. Since the light beam cannot be visually recognized, there is a problem that the optical axis cannot be easily aligned. Therefore, an object of the present invention is to enable high-speed optical communication through space between an optical transmitter and an optical receiver that are separated by 10 m or more, and preferably perform optical axis alignment between the optical transmitter and the optical receiver. Another object of the present invention is to provide a spatial transmission optical communication device capable of performing the above.

【0004】[0004]

【課題を解決するための手段】第1の観点では、本発明
は、10m以上離れた地点に設置した光受信装置に対し
て空間を介して光信号を送信しうる空間伝送光通信装置
において、波長0.8μm以上の赤外光を発光する赤外
光半導体レーザと、可視光を発光する可視光半導体レー
ザと、通信のために前記赤外光半導体レーザを駆動する
通信用駆動手段と、光軸合せのために前記可視光半導体
レーザを駆動する光軸合せ用駆動手段と、前記赤外光と
前記可視光とを1つの光ファイバに導く光ファイバカプ
ラまたは前記赤外光か前記可視光かを選択的に1つの光
ファイバに導く光ファイバスイッチと、前記1つの光フ
ァイバの端部から出射した光を光ビームに形成して前記
空間へ出射するレンズとを具備したことを特徴とする空
間伝送光通信装置を提供する。上記第1の観点による空
間伝送光通信装置では、波長0.8μm以上の赤外光を
発光する赤外光半導体レーザを通信のために駆動するた
め、伝送信号の周波数帯域が数100MHz〜数GHzの高
速通信が可能である。また、可視光を発光する可視光半
導体レーザを光軸合せのために駆動するため、光軸合せ
を容易に且つ十分に行うことが出来る。さらに、前記赤
外光と前記可視光とを1つの光ファイバに導き、その1
つの光ファイバの端部から出射した光を光ビームに形成
して空間へ出射するため、光学系の構成が簡単になる。
According to a first aspect, the present invention provides a spatial transmission optical communication device capable of transmitting an optical signal through a space to an optical receiving device installed at a point separated by 10 m or more, An infrared light semiconductor laser that emits infrared light having a wavelength of 0.8 μm or more, a visible light semiconductor laser that emits visible light, a communication driving unit that drives the infrared light semiconductor laser for communication, and an optical A drive means for optical axis alignment for driving the visible light semiconductor laser for axis alignment, an optical fiber coupler for guiding the infrared light and the visible light into one optical fiber, or the infrared light or the visible light. An optical fiber switch that selectively guides light to one optical fiber, and a lens that forms light emitted from an end of the one optical fiber into a light beam and emits the light beam to the space. Transmission optical communication device To provide. In the space transmission optical communication device according to the first aspect, since the infrared semiconductor laser that emits infrared light having a wavelength of 0.8 μm or more is driven for communication, the frequency band of the transmission signal is several 100 MHz to several GHz. High-speed communication is possible. Further, since the visible light semiconductor laser that emits visible light is driven for optical axis alignment, the optical axis alignment can be performed easily and sufficiently. Further, the infrared light and the visible light are guided to one optical fiber, and
Since the light emitted from the ends of the two optical fibers is formed into a light beam and emitted into the space, the configuration of the optical system is simplified.

【0005】第2の観点では、この発明は、10m以上
離れた空間を介して2台を対向させ光信号を相互に送受
信しうる空間伝送光通信装置において、波長0.8μm
以上の赤外光を発光する赤外光半導体レーザと、可視光
を発光する可視光半導体レーザと、通信のために前記赤
外光半導体レーザを駆動する通信用駆動手段と、光軸合
せのために前記可視光半導体レーザを駆動する光軸合せ
用駆動手段と、波長0.8μm以上の赤外光を電気信号
に変換する赤外光受光手段と、前記赤外光と前記可視光
とを1つの光ファイバに導くと共にその光ファイバの端
部から入射した赤外光を前記赤外光受光手段に導く光フ
ァイバカプラまたは前記赤外光か前記可視光かを選択的
に1つの光ファイバに導くかその光ファイバの端部から
入射した赤外光を前記赤外光受光手段に導く光ファイバ
スイッチと、前記1つの光ファイバの端部から出射した
光を光ビームに形成して前記空間へ出射すると共に前記
空間から入射した光ビームを前記1つの光ファイバの端
部に集光するレンズとを具備したことを特徴とする空間
伝送光通信装置を提供する。上記第2の観点による空間
伝送光通信装置では、波長0.8μm以上の赤外光を発
光する赤外光半導体レーザを通信のために駆動するた
め、伝送信号の周波数帯域が数100MHz〜数GHzの高
速通信が可能である。また、可視光を発光する可視光半
導体レーザを光軸合せのために駆動するため、光軸合せ
を容易に且つ十分に行うことが出来る。さらに、前記赤
外光と前記可視光とを1つの光ファイバに導き、その1
つの光ファイバの端部から出射した光を光ビームに形成
して空間へ出射すると共に、空間から入射した光ビーム
を前記1つの光ファイバの端部に集光するため、光学系
の構成が簡単になる。
According to a second aspect, the present invention provides a space transmission optical communication device capable of transmitting and receiving optical signals with two units facing each other through a space separated by 10 m or more.
Infrared light semiconductor laser emitting the above infrared light, visible light semiconductor laser emitting visible light, communication drive means for driving the infrared light semiconductor laser for communication, for optical axis alignment An optical axis alignment driving means for driving the visible light semiconductor laser, an infrared light receiving means for converting infrared light having a wavelength of 0.8 μm or more into an electric signal, and the infrared light and the visible light An optical fiber coupler that guides the infrared light incident from one end of the optical fiber to the infrared light receiving means or selectively guides the infrared light or the visible light to one optical fiber. Or an optical fiber switch that guides infrared light incident from the end of the optical fiber to the infrared light receiving means, and light emitted from the end of the one optical fiber is formed into a light beam and emitted to the space. And incident from the space Providing space transmission optical communication apparatus characterized by comprising a lens for focusing the beam on the end of said one optical fiber. In the space transmission optical communication device according to the second aspect, since the infrared semiconductor laser that emits infrared light having a wavelength of 0.8 μm or more is driven for communication, the frequency band of the transmission signal is several 100 MHz to several GHz. High-speed communication is possible. Further, since the visible light semiconductor laser that emits visible light is driven for optical axis alignment, the optical axis alignment can be performed easily and sufficiently. Further, the infrared light and the visible light are guided to one optical fiber, and
The light emitted from the end of one optical fiber is formed into a light beam and emitted to the space, and the light beam incident from the space is focused on the end of the one optical fiber, which simplifies the configuration of the optical system. become.

【0006】第3の観点では、この発明は、上記構成の
空間伝送光通信装置において、前記1つの光ファイバの
端部と前記レンズの間の間隔を前記レンズの前記赤外光
に対する焦点距離に合せたり,前記間隔を前記可視光に
対する焦点距離に合せたりするための間隔調整手段を具
備したことを特徴とする空間伝送光通信装置を提供す
る。波長が異なれば同一のレンズにおける焦点距離が異
なる。このため、異なる焦点距離に対して前記1つの光
ファイバの端部と前記レンズの間の間隔が一定である
と、赤外光と可視光の両方に対して最適の光ビームを形
成することが出来ない。上記第3の観点による空間伝送
光通信装置では、前記1つの光ファイバの端部と前記レ
ンズの間の間隔を調整し、前記レンズの前記赤外光に対
する焦点距離に合せたり,前記可視光に対する焦点距離
に合せたりする。このため、赤外光と可視光の両方に対
して最適の光ビームを形成することが出来る。
According to a third aspect of the present invention, in the space transmission optical communication device having the above structure, the distance between the end of the one optical fiber and the lens is set to the focal length of the lens with respect to the infrared light. Provided is a space transmission optical communication device, which is provided with an interval adjusting means for adjusting or adjusting the interval to a focal length for the visible light. Different wavelengths have different focal lengths in the same lens. Therefore, if the distance between the end of the one optical fiber and the lens is constant for different focal lengths, an optimum light beam can be formed for both infrared light and visible light. Can not. In the space transmission optical communication device according to the third aspect, the distance between the end of the one optical fiber and the lens is adjusted to match the focal length of the lens with respect to the infrared light, or with respect to the visible light. Adjust to the focal length. Therefore, it is possible to form an optimal light beam for both infrared light and visible light.

【0007】第4の観点では、この発明は、上記構成の
空間伝送光通信装置において、前記レンズの前記赤外光
に対する焦点距離を前記1つの光ファイバの端部と前記
レンズの間の間隔に合せたり,前記可視光に対する焦点
距離を前記1つの光ファイバの端部と前記レンズの間の
間隔に合せるための焦点距離調整手段を具備したことを
特徴とする空間伝送光通信装置を提供する。上記第4の
観点による空間伝送光通信装置では、異なる波長に対し
て前記レンズの焦点距離が一定になるように前記レンズ
を調整し、前記赤外光に対する焦点距離を前記1つの光
ファイバの端部と前記レンズの間の間隔に合せたり,前
記可視光に対する焦点距離を前記1つの光ファイバの端
部と前記レンズの間の間隔に合せたりする。このため、
赤外光と可視光の両方に対して最適の光ビームを形成す
ることが出来る。
According to a fourth aspect of the present invention, in the spatial transmission optical communication device having the above structure, the focal length of the lens with respect to the infrared light is set to a distance between the end of the one optical fiber and the lens. Also, there is provided a spatial transmission optical communication device characterized by comprising focal length adjusting means for adjusting the focal length for the visible light to the distance between the end of the one optical fiber and the lens. In the spatial transmission optical communication device according to the fourth aspect, the lens is adjusted so that the focal length of the lens is constant for different wavelengths, and the focal length for the infrared light is set to the end of the one optical fiber. The distance between the lens and the lens, and the focal length for the visible light is adjusted to the distance between the end of the one optical fiber and the lens. For this reason,
Optimal light beams can be formed for both infrared light and visible light.

【0008】[0008]

【発明の実施の形態】以下、図に示す実施の形態により
本発明をさらに詳細に説明する。なお、これにより本発
明が限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the embodiments shown in the drawings. The present invention is not limited to this.

【0009】−第1の実施形態− 図1は、本発明の第1の実施形態の空間伝送光通信装置
100Aを示す構成図である。この空間伝送光通信装置
100Aは、波長1.31μmまたは1.55μmの近
赤外光を発光する近赤外光半導体レーザ11と、波長
0.66μmの赤色光を発光する高出力の可視光半導体
レーザ12と、伝送信号の周波数帯域が数100MHz〜
数GHzの高速通信のために前記近赤外光半導体レーザ1
1を駆動する通信用駆動回路13と、光軸合せのために
前記可視光半導体レーザ12を駆動する光軸合せ用駆動
回路14と、前記近赤外光を第1光ファイバ15cで第
3光ファイバ15oに導くと共に前記赤色光を第2光フ
ァイバ15pで前記第3光ファイバ15oに導く光ファ
イバカプラ15と、前記第3光ファイバ15oの端部に
取り付けられた光コネクタ16と、その光コネクタ16
を支持すると共に当該光コネクタ16の位置を前後に調
整可能な微調台17と、前記第3光ファイバ15oの端
部から出射された近赤外光および可視光を平行な光ビー
ムLに形成するためのレンズ18とを具備して構成され
る。Scは、通信用駆動信号である。また、Spは、光
軸合せ用駆動信号である。
First Embodiment FIG. 1 is a block diagram showing a spatial transmission optical communication device 100A according to a first embodiment of the present invention. This spatial transmission optical communication device 100A includes a near-infrared light semiconductor laser 11 that emits near-infrared light having a wavelength of 1.31 μm or 1.55 μm, and a high-output visible light semiconductor that emits red light having a wavelength of 0.66 μm. Laser 12 and transmission signal frequency band is several hundred MHz
Near-infrared semiconductor laser 1 for high-speed communication of several GHz
1, a communication drive circuit 13 for driving the optical axis 1, an optical axis alignment drive circuit 14 for driving the visible light semiconductor laser 12 for optical axis alignment, and the near-infrared light through the first optical fiber 15c as a third light beam. An optical fiber coupler 15 that guides the red light to the third optical fiber 15o through the second optical fiber 15p while guiding the red light to the fiber 15o, an optical connector 16 attached to the end of the third optical fiber 15o, and its optical connector. 16
And a near-infrared light and a visible light emitted from the end of the third optical fiber 15o are formed into a parallel light beam L. And a lens 18 for Sc is a communication drive signal. Further, Sp is a drive signal for optical axis alignment.

【0010】図2は、上記空間伝送光通信装置100A
から出射される光ビームLを受光する光受信装置100
Bと光軸合せに使用するスクリーン板5を示す構成図で
ある。この光受信装置100Bは、赤外光を電気信号に
変換する受光素子31と、前記電気信号を増幅する増幅
回路32と、端部から入射した赤外光を前記受光素子3
1に導く光ファイバ33と、その光ファイバ33の端部
に取り付けられた光コネクタ34と、その光コネクタ3
4を支持すると共に当該光コネクタ34の位置を前後に
調整可能な微調台35と、前記光ビームLを前記光ファ
イバ33の端部に集光するためのレンズ36とを具備し
て構成される。Srは、受信信号である。前記スクリー
ン板5は、上記光受信装置100Bの前面に着脱可能な
白色板であり、図4に示すように、ターゲットマーク5
1が描かれている。
FIG. 2 shows the spatial transmission optical communication device 100A.
Optical receiver 100 for receiving a light beam L emitted from
It is a block diagram which shows the screen board 5 used for B and an optical axis alignment. This optical receiving device 100B includes a light receiving element 31 that converts infrared light into an electric signal, an amplifier circuit 32 that amplifies the electric signal, and infrared light that enters from an end portion of the light receiving element 3.
1, an optical fiber 33 that leads to the optical fiber 1, an optical connector 34 attached to the end of the optical fiber 33, and an optical connector 3 thereof.
4, a fine adjustment table 35 that can adjust the position of the optical connector 34 back and forth, and a lens 36 that focuses the light beam L on the end of the optical fiber 33. . Sr is a received signal. The screen plate 5 is a white plate that can be attached to and detached from the front surface of the optical receiving device 100B. As shown in FIG.
1 is drawn.

【0011】図3および図4は、上記空間伝送光通信装
置100Aと上記光受信装置100Bの光軸合せ時の説
明図である。空間伝送光通信装置100Aでは、光軸合
せ用駆動信号Spを光軸合せ用駆動回路14に印加し、
可視光半導体レーザ12から赤色光を発光させる。ま
た、微調台17により第3光ファイバ15oの端部とレ
ンズ18の間の間隔を調整し、赤色光に対するレンズ1
8の焦点距離に合せ、赤色光ビームLpを空間に出射さ
せる。他方、光受信装置100Bでは、スクリーン板5
を前面に装着する。そして、スクリーン板5に赤色光ビ
ームLpが適正に当たるように、空間伝送光通信装置1
00Aおよび/または光受信装置100Bの位置や向き
を調整する。
3 and 4 are explanatory views when the optical axes of the spatial transmission optical communication device 100A and the optical receiving device 100B are aligned. In the spatial transmission optical communication device 100A, the optical axis alignment drive signal Sp is applied to the optical axis alignment drive circuit 14,
The visible light semiconductor laser 12 emits red light. Further, the distance between the end portion of the third optical fiber 15o and the lens 18 is adjusted by the fine adjustment table 17, and the lens 1 for the red light is adjusted.
The red light beam Lp is emitted to the space according to the focal length of 8. On the other hand, in the optical receiver 100B, the screen plate 5
To the front. Then, the spatial transmission optical communication device 1 is arranged so that the red light beam Lp properly strikes the screen plate 5.
00A and / or the position and orientation of the optical receiver 100B are adjusted.

【0012】図5および図6は、上記空間伝送光通信装
置100Aと上記光受信装置100Bの通信時の説明図
である。空間伝送光通信装置100Aでは、通信用駆動
信号Scを通信用駆動回路13に印加し、近赤外光半導
体レーザ11から近赤外光を発光させる。また、微調台
17により第3光ファイバ15oの端部とレンズ18の
間の間隔を調整し、近赤外光に対するレンズ18の焦点
距離に合せ、近赤外光ビームLcを空間に出射させる。
他方、光受信装置100Bでは、スクリーン板5を前面
から外し、微調台35により光ファイバ33の端部とレ
ンズ36の間の間隔を調整し、近赤外光に対するレンズ
36の焦点距離に合せる。そして、受信信号Srをモニ
タして感度が最大になるように空間伝送光通信装置10
0Aおよび/または光受信装置100Bの位置や向きを
再調整する。この状態になれば、以後、高速通信を行う
ことが出来る。
FIGS. 5 and 6 are explanatory views of the space transmission optical communication device 100A and the optical receiving device 100B during communication. In the spatial transmission optical communication device 100A, the communication drive signal Sc is applied to the communication drive circuit 13, and the near infrared semiconductor laser 11 emits near infrared light. Further, the fine adjustment table 17 adjusts the distance between the end of the third optical fiber 15o and the lens 18 to match the focal length of the lens 18 with respect to the near infrared light and emit the near infrared light beam Lc into the space.
On the other hand, in the optical receiver 100B, the screen plate 5 is removed from the front surface, and the distance between the end of the optical fiber 33 and the lens 36 is adjusted by the fine adjustment table 35 to match the focal length of the lens 36 with respect to near infrared light. Then, the spatial transmission optical communication device 10 is monitored so that the sensitivity is maximized by monitoring the reception signal Sr.
0A and / or the position and orientation of the optical receiver 100B are readjusted. In this state, high speed communication can be performed thereafter.

【0013】なお、平凸レンズの焦点距離fと,球面曲
率rと,屈折率nとには、 1/f=(n−1)/r の関係がある。そこで、レンズ18が平凸レンズであ
り、球面曲率rが62.28mmであり、波長0.66
μmに対して屈折率n=1.514,波長1.31μm
に対して屈折率n=1.504,波長1.55μmに対
して屈折率n=1.501の材料からなるものとすれ
ば、波長0.66μmに対して焦点距離f=121.1
mm,波長1.31μmに対して焦点距離f=123.
6mm,波長1.55μmに対して焦点距離f=12
4.3mmとなる。
The focal length f of the plano-convex lens, the spherical curvature r, and the refractive index n have a relationship of 1 / f = (n-1) / r. Therefore, the lens 18 is a plano-convex lens, the spherical curvature r is 62.28 mm, and the wavelength is 0.66.
Refractive index n = 1.514, wavelength 1.31 μm for μm
On the other hand, if a material having a refractive index n = 1.504 and a refractive index n = 1.501 for a wavelength of 1.55 μm is used, the focal length f = 121.1 for a wavelength of 0.66 μm.
mm, wavelength 1.31 μm, focal length f = 123.
6 mm, focal length f = 12 for wavelength 1.55 μm
It becomes 4.3 mm.

【0014】−第2の実施形態− 図7は、本発明の第2の実施形態の空間伝送光通信装置
200を示す構成図である。この空間伝送光通信装置2
00は、波長1.31μmまたは1.55μmの近赤外
光を発光する近赤外光半導体レーザ11と、波長0.6
6μmの赤色光を発光する高出力の可視光半導体レーザ
12と、伝送信号の周波数帯域が数100MHz〜数GHz
の高速通信のために前記近赤外光半導体レーザ11を駆
動する通信用駆動回路13と、光軸合せのために前記可
視光半導体レーザ12を駆動する光軸合せ用駆動回路1
4と、赤外光を電気信号に変換する受光素子31と、前
記電気信号を増幅する増幅回路32と、前記近赤外光を
1次側第1光ファイバ19cで2次側光ファイバ19o
に導くと共に前記赤色光を1次側第2光ファイバ19p
で前記2次側光ファイバ19oに導き且つ2次側光ファ
イバ19oの端部から入射した赤外光を前記受光素子3
1に導く光ファイバカプラ19と、前記2次側光ファイ
バ19oの端部に取り付けられた光コネクタ16と、そ
の光コネクタ16を支持すると共に当該光コネクタ16
の位置を前後に調整可能な微調台17と、前記2次側光
ファイバ19oの端部から出射された近赤外光および可
視光を平行な光ビームLに形成すると共に前記空間から
入射した光ビームLを前記2次側光ファイバ19oの端
部に集光するためのレンズ18とを具備して構成され
る。Scは、通信用駆動信号である。また、Spは、光
軸合せ用駆動信号である。また、Srは、受信信号であ
る。微調台17により2次側光ファイバ19oの端部と
レンズ18の間の間隔を調整し、近赤外光に対するレン
ズ18の焦点距離に合せておく。
-Second Embodiment- FIG. 7 is a block diagram showing a spatial transmission optical communication device 200 according to a second embodiment of the present invention. This space transmission optical communication device 2
00 is a near infrared light semiconductor laser 11 that emits near infrared light having a wavelength of 1.31 μm or 1.55 μm, and a wavelength of 0.6
A high-power visible light semiconductor laser 12 that emits red light of 6 μm and a transmission signal frequency band of several 100 MHz to several GHz
Communication driving circuit 13 for driving the near-infrared light semiconductor laser 11 for high-speed communication and optical axis alignment drive circuit 1 for driving the visible light semiconductor laser 12 for optical axis alignment.
4, a light receiving element 31 for converting infrared light into an electric signal, an amplifier circuit 32 for amplifying the electric signal, and the near-infrared light by the primary side first optical fiber 19c to the secondary side optical fiber 19o.
To the primary side second optical fiber 19p
Infrared light guided to the secondary side optical fiber 19o and incident from the end of the secondary side optical fiber 19o is received by the light receiving element 3
1, the optical fiber coupler 19, the optical connector 16 attached to the end of the secondary side optical fiber 19o, and the optical connector 16 supporting the optical connector 16
Of the fine adjustment table 17 whose front and rear positions can be adjusted, and the near-infrared light and visible light emitted from the end of the secondary side optical fiber 19o are formed into a parallel light beam L and the light incident from the space And a lens 18 for condensing the beam L on the end portion of the secondary side optical fiber 19o. Sc is a communication drive signal. Further, Sp is a drive signal for optical axis alignment. Further, Sr is a received signal. The distance between the end of the secondary-side optical fiber 19o and the lens 18 is adjusted by the fine adjustment table 17 to match the focal length of the lens 18 with respect to the near infrared light.

【0015】図8は、前記空間伝送光通信装置200の
前面に装着する焦点距離調整用アダプタ6の説明図であ
る。この焦点距離調整用アダプタ6のレンズ61は、こ
のレンズ61と前記空間伝送光通信装置200のレンズ
18とを合成した場合の赤色光に対する焦点距離が、近
赤外光に対するレンズ18の焦点距離に合致するように
選ばれている。
FIG. 8 is an explanatory view of the focal length adjusting adapter 6 mounted on the front surface of the spatial transmission optical communication device 200. In the lens 61 of the focal length adjusting adapter 6, the focal length for red light when the lens 61 and the lens 18 of the spatial transmission optical communication device 200 are combined is the focal length of the lens 18 for near infrared light. Selected to match.

【0016】図9は、2台の上記空間伝送光通信装置2
00の間の光軸合せ時の説明図である。発光側の空間伝
送光通信装置200では、光軸合せ用駆動信号Spを光
軸合せ用駆動回路14に印加し、可視光半導体レーザ1
2から赤色光を発光させる。また、焦点距離調整用アダ
プタ6を装着し、赤色光ビームLpを空間に出射させ
る。他方、受光側の空間伝送光通信装置200では、ス
クリーン板5を前面に装着する。そして、スクリーン板
5に赤色光ビームLpが適正に当たるように、発光側の
空間伝送光通信装置200および/または受光側の空間
伝送光通信装置200の位置や向きを調整する。
FIG. 9 shows two above-mentioned space transmission optical communication devices 2.
It is explanatory drawing at the time of optical axis alignment between 00. In the light emitting side spatial transmission optical communication device 200, the optical axis alignment drive signal Sp is applied to the optical axis alignment drive circuit 14, and the visible light semiconductor laser 1 is applied.
2 emits red light. Further, the focal length adjusting adapter 6 is attached to emit the red light beam Lp into the space. On the other hand, in the light receiving side spatial transmission optical communication device 200, the screen plate 5 is mounted on the front surface. Then, the position and orientation of the light emitting side spatial transmission optical communication device 200 and / or the light receiving side spatial transmission optical communication device 200 are adjusted so that the red light beam Lp properly strikes the screen plate 5.

【0017】図10は、2台の上記空間伝送光通信装置
200の間の通信時の説明図である。発光側の空間伝送
光通信装置200では、焦点距離調整用アダプタ6を外
し、通信用駆動信号Scを通信用駆動回路13に印加
し、近赤外光半導体レーザ11から近赤外光を発光さ
せ、近赤外光ビームLcを空間に出射させる。他方、受
光側の空間伝送光通信装置200では、スクリーン板5
を前面から外し、近赤外光ビームLcをレンズ36に入
射させ、受信信号Srをモニタして感度が最大になるよ
うに発光側の空間伝送光通信装置200および/または
受光側の空間伝送光通信装置200の位置や向きを再調
整する。この状態になれば、以後、双方向の高速通信を
行うことが出来る。
FIG. 10 is an explanatory diagram at the time of communication between the two space transmission optical communication devices 200. In the light emitting side spatial transmission optical communication device 200, the focal length adjusting adapter 6 is removed, the communication drive signal Sc is applied to the communication drive circuit 13, and the near infrared light semiconductor laser 11 emits near infrared light. , Emits the near infrared light beam Lc into the space. On the other hand, in the spatial transmission optical communication device 200 on the light receiving side, the screen plate 5
Is removed from the front surface, the near-infrared light beam Lc is made incident on the lens 36, the reception signal Sr is monitored, and the spatial transmission optical communication device 200 on the light emitting side and / or the spatial transmission light on the light receiving side is set so as to maximize the sensitivity. Readjust the position and orientation of the communication device 200. In this state, bidirectional high speed communication can be performed thereafter.

【0018】[0018]

【発明の効果】本発明の空間伝送光通信装置によれば、
10m以上離れた光送信装置と光受信装置の間で空間を
介して高速光通信が可能であり且つ光送信装置と光受信
装置の光軸合せを好適に行うことが出来る。
According to the spatial transmission optical communication device of the present invention,
High-speed optical communication is possible between the optical transmitter and the optical receiver separated by 10 m or more via a space, and the optical axes of the optical transmitter and the optical receiver can be suitably aligned.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態の空間伝送光通信装置
を示す構成図である。
FIG. 1 is a configuration diagram showing a spatial transmission optical communication device according to a first embodiment of the present invention.

【図2】光受信装置とスクリーン板を示す構成図であ
る。
FIG. 2 is a configuration diagram showing an optical receiving device and a screen plate.

【図3】光軸合せ時の説明図である。FIG. 3 is an explanatory diagram for optical axis alignment.

【図4】光軸合せ時の斜視図である。FIG. 4 is a perspective view at the time of optical axis alignment.

【図5】通信時の説明図である。FIG. 5 is an explanatory diagram during communication.

【図6】通信時の斜視図である。FIG. 6 is a perspective view during communication.

【図7】本発明の第2の実施形態の空間伝送光通信装置
を示す構成図である。
FIG. 7 is a configuration diagram showing a spatial transmission optical communication device according to a second embodiment of the present invention.

【図8】焦点距離調整用アダプタの構成図である。FIG. 8 is a configuration diagram of a focal length adjustment adapter.

【図9】光軸合せ時の斜視図である。FIG. 9 is a perspective view at the time of optical axis alignment.

【図10】通信時の斜視図である。FIG. 10 is a perspective view during communication.

【符号の説明】[Explanation of symbols]

5 スクリーン 6 焦点距離調整用アダプタ 11 近赤外光半導体レーザ 12 可視光半導体レーザ 13 通信用駆動回路 14 光軸合せ用駆動回路 15,19 光ファイバカプラ 16 光コネクタ 17,35 微調台 18,36,61 レンズ 31 受光素子 32 増幅回路 33 光ファイバ 34 光コネクタ 100A,200 空間伝送光通信装置 100B 光受信装置 5 Screen 6 Focal length adjustment adapter 11 Near infrared semiconductor laser 12 Visible semiconductor laser 13 Communication drive circuit 14 Optical axis alignment drive circuit 15,19 Optical fiber coupler 16 Optical connector 17,35 Fine adjustment stage 18,36, 61 lens 31 light receiving element 32 amplification circuit 33 optical fiber 34 optical connector 100A, 200 spatial transmission optical communication device 100B optical receiving device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 10m以上離れた地点に設置した光受信
装置に対して空間を介して光信号を送信しうる空間伝送
光通信装置において、 波長0.8μm以上の赤外光を発光する赤外光半導体レ
ーザと、可視光を発光する可視光半導体レーザと、通信
のために前記赤外光半導体レーザを駆動する通信用駆動
手段と、光軸合せのために前記可視光半導体レーザを駆
動する光軸合せ用駆動手段と、前記赤外光と前記可視光
とを1つの光ファイバに導く光ファイバカプラまたは前
記赤外光か前記可視光かを選択的に1つの光ファイバに
導く光ファイバスイッチと、前記1つの光ファイバの端
部から出射した光を光ビームに形成して前記空間へ出射
するレンズとを具備したことを特徴とする空間伝送光通
信装置。
1. A spatial transmission optical communication device capable of transmitting an optical signal through a space to an optical receiving device installed at a point separated by 10 m or more, wherein infrared light emitting infrared light having a wavelength of 0.8 μm or more. Optical semiconductor laser, visible light semiconductor laser emitting visible light, communication driving means for driving the infrared light semiconductor laser for communication, light for driving the visible light semiconductor laser for optical axis alignment An axis alignment driving means, an optical fiber coupler for guiding the infrared light and the visible light into one optical fiber, or an optical fiber switch for selectively guiding the infrared light or the visible light into one optical fiber And a lens which forms light emitted from an end of the one optical fiber into a light beam and emits the light beam into the space.
【請求項2】 10m以上離れた空間を介して2台を対
向させ光信号を相互に送受信しうる空間伝送光通信装置
において、 波長0.8μm以上の赤外光を発光する赤外光半導体レ
ーザと、可視光を発光する可視光半導体レーザと、通信
のために前記赤外光半導体レーザを駆動する通信用駆動
手段と、光軸合せのために前記可視光半導体レーザを駆
動する光軸合せ用駆動手段と、波長0.8μm以上の赤
外光を電気信号に変換する赤外光受光手段と、前記赤外
光と前記可視光とを1つの光ファイバに導くと共にその
光ファイバの端部から入射した赤外光を前記赤外光受光
手段に導く光ファイバカプラまたは前記赤外光か前記可
視光かを選択的に1つの光ファイバに導くかその光ファ
イバの端部から入射した赤外光を前記赤外光受光手段に
導く光ファイバスイッチと、前記1つの光ファイバの端
部から出射した光を光ビームに形成して前記空間へ出射
すると共に前記空間から入射した光ビームを前記1つの
光ファイバの端部に集光するレンズとを具備したことを
特徴とする空間伝送光通信装置。
2. In a space transmission optical communication device capable of transmitting and receiving optical signals with two units facing each other through a space separated by 10 m or more, an infrared semiconductor laser emitting infrared light having a wavelength of 0.8 μm or more. A visible light semiconductor laser that emits visible light, a communication drive means that drives the infrared light semiconductor laser for communication, and an optical axis alignment that drives the visible light semiconductor laser for optical axis alignment Driving means, infrared light receiving means for converting infrared light having a wavelength of 0.8 μm or more into an electric signal, the infrared light and the visible light are guided to one optical fiber, and from the end of the optical fiber. An optical fiber coupler that guides the incident infrared light to the infrared light receiving means or an infrared light that selectively guides the infrared light or the visible light to one optical fiber or enters from the end of the optical fiber. To guide the infrared light to the infrared light receiving means. An iva switch and a lens that forms a light beam emitted from the end portion of the one optical fiber into a light beam and emits the light beam into the space, and collects the light beam incident from the space at the end portion of the one optical fiber. A spatial transmission optical communication device comprising:
【請求項3】 請求項1または請求項2に記載の空間伝
送光通信装置において、前記1つの光ファイバの端部と
前記レンズの間の間隔を前記レンズの前記赤外光に対す
る焦点距離に合せたり,前記間隔を前記可視光に対する
焦点距離に合せたりするための間隔調整手段を具備した
ことを特徴とする空間伝送光通信装置。
3. The space transmission optical communication device according to claim 1, wherein the distance between the end of the one optical fiber and the lens is adjusted to the focal length of the lens with respect to the infrared light. And a space transmission optical communication device comprising a space adjusting means for adjusting the space to a focal length with respect to the visible light.
【請求項4】 請求項1または請求項2に記載の空間伝
送光通信装置において、前記レンズの前記赤外光に対す
る焦点距離を前記1つの光ファイバの端部と前記レンズ
の間の間隔に合せたり,前記可視光に対する焦点距離を
前記1つの光ファイバの端部と前記レンズの間の間隔に
合せるための焦点距離調整手段を具備したことを特徴と
する空間伝送光通信装置。
4. The spatial transmission optical communication device according to claim 1, wherein a focal length of the lens with respect to the infrared light is adjusted to a distance between an end of the one optical fiber and the lens. In addition, the spatial transmission optical communication device is provided with a focal length adjusting means for adjusting the focal length for the visible light to the distance between the end of the one optical fiber and the lens.
JP7214793A 1995-08-23 1995-08-23 Space transmission optical communication equipment Pending JPH0964821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7214793A JPH0964821A (en) 1995-08-23 1995-08-23 Space transmission optical communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7214793A JPH0964821A (en) 1995-08-23 1995-08-23 Space transmission optical communication equipment

Publications (1)

Publication Number Publication Date
JPH0964821A true JPH0964821A (en) 1997-03-07

Family

ID=16661629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7214793A Pending JPH0964821A (en) 1995-08-23 1995-08-23 Space transmission optical communication equipment

Country Status (1)

Country Link
JP (1) JPH0964821A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004068746A1 (en) * 2003-01-31 2004-08-12 Mitsubishi Denki Kabushiki Kaisha Optical antenna
JP2007295050A (en) * 2006-04-21 2007-11-08 Kddi Corp Optical receiver
JP2008109598A (en) * 2006-10-27 2008-05-08 Nippon Telegr & Teleph Corp <Ntt> Optical communication apparatus
WO2016042637A1 (en) * 2014-09-18 2016-03-24 Necディスプレイソリューションズ株式会社 Light source device, electronic blackboard system, and method of controlling light source device
CN107870396A (en) * 2017-09-19 2018-04-03 广州光束信息技术有限公司 A kind of space optical coupling device
KR20180116548A (en) * 2017-04-17 2018-10-25 서강대학교산학협력단 Monostatic bidrectional focusing and collecting optics system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004068746A1 (en) * 2003-01-31 2004-08-12 Mitsubishi Denki Kabushiki Kaisha Optical antenna
US7151882B2 (en) 2003-01-31 2006-12-19 Mitsubishi Denki Kabushiki Kaisha Optical antenna
JP2007295050A (en) * 2006-04-21 2007-11-08 Kddi Corp Optical receiver
JP2008109598A (en) * 2006-10-27 2008-05-08 Nippon Telegr & Teleph Corp <Ntt> Optical communication apparatus
JP4747073B2 (en) * 2006-10-27 2011-08-10 日本電信電話株式会社 Optical communication device
WO2016042637A1 (en) * 2014-09-18 2016-03-24 Necディスプレイソリューションズ株式会社 Light source device, electronic blackboard system, and method of controlling light source device
JPWO2016042637A1 (en) * 2014-09-18 2017-07-13 Necディスプレイソリューションズ株式会社 Light source device, electronic blackboard system, and control method of light source device
US10331274B2 (en) 2014-09-18 2019-06-25 Nec Display Solutions, Ltd. Light source device, electronic blackboard system, and method of controlling light source device
KR20180116548A (en) * 2017-04-17 2018-10-25 서강대학교산학협력단 Monostatic bidrectional focusing and collecting optics system
CN107870396A (en) * 2017-09-19 2018-04-03 广州光束信息技术有限公司 A kind of space optical coupling device

Similar Documents

Publication Publication Date Title
JP2684603B2 (en) Transmission and reception module for two-way communication network and manufacturing method thereof
KR101041570B1 (en) Optical communication module
JP4759380B2 (en) Optical prism for optical communication and optical transceiver module
US10386579B2 (en) Optical transmitting module and multi-lane transmitter optical module
US7220065B2 (en) Connection apparatus for parallel optical interconnect module and parallel optical interconnect module using the same
JP2005537521A (en) System and method for mounting one monitor photodiode together with one laser in one optical subassembly
EP0974856A3 (en) Fiber optic header with integrated power monitor
EP1207599A3 (en) Micro-lens built-in vertical cavity surface emitting laser
WO2002079824A3 (en) High frequency emmiter and detector packaging scheme for 10gb/s transceiver
EP0963063A3 (en) Free-space optical lasercom system
US9383528B2 (en) Light-receiving module
US6792185B1 (en) Method and apparatus for automatic tracking of an optical signal in a wireless optical communication system
JP3699852B2 (en) Bidirectional optical communication device and bidirectional optical communication device
US6965713B2 (en) Optical beam generating and shaping device
JPH0964821A (en) Space transmission optical communication equipment
US7103238B2 (en) COB package type bi-directional transceiver module
US6661951B1 (en) Optoelectric alignment apparatus
KR19980058497A (en) Fiber Pigtail and Manufacturing Method for Optical Communication Module
US11303357B1 (en) Systems, methods, and devices for optical assemblies
US9225428B1 (en) Method and system for alignment of photodetector array to optical demultiplexer outputs
US7099536B1 (en) Single lens system integrating both transmissive and reflective surfaces for light focusing to an optical fiber and light reflection back to a monitor photodetector
US6827506B2 (en) Duplex focusing device
KR100299983B1 (en) Optical transmitting and receiving module
LV14146B (en) Optical system for free space optical communication device
US6519099B1 (en) Lens system and optoelectric alignment apparatus