JP4746047B2 - Planar heating element, electric heating board for floor heating, and electric heating board assembly for floor heating - Google Patents

Planar heating element, electric heating board for floor heating, and electric heating board assembly for floor heating Download PDF

Info

Publication number
JP4746047B2
JP4746047B2 JP2007534469A JP2007534469A JP4746047B2 JP 4746047 B2 JP4746047 B2 JP 4746047B2 JP 2007534469 A JP2007534469 A JP 2007534469A JP 2007534469 A JP2007534469 A JP 2007534469A JP 4746047 B2 JP4746047 B2 JP 4746047B2
Authority
JP
Japan
Prior art keywords
heating
parallel
parallel circuit
floor
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007534469A
Other languages
Japanese (ja)
Other versions
JPWO2007029774A1 (en
Inventor
岳史 河野
章義 小島
一宏 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2007534469A priority Critical patent/JP4746047B2/en
Publication of JPWO2007029774A1 publication Critical patent/JPWO2007029774A1/en
Application granted granted Critical
Publication of JP4746047B2 publication Critical patent/JP4746047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D13/00Electric heating systems
    • F24D13/02Electric heating systems solely using resistance heating, e.g. underfloor heating
    • F24D13/022Electric heating systems solely using resistance heating, e.g. underfloor heating resistances incorporated in construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D13/00Electric heating systems
    • F24D13/02Electric heating systems solely using resistance heating, e.g. underfloor heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Heating Systems (AREA)

Description

本発明は面状発熱体、床暖房用電熱ボード、および床暖房用電熱ボード集合体に関し、特に、面状発熱体に用いられる発熱抵抗線の配置方式に関する。   The present invention relates to a planar heating element, an electric heating board for floor heating, and an electric heating board assembly for floor heating, and more particularly to an arrangement system of heating resistance wires used for the planar heating element.

近年、建物内を暖める手段として、ストーブ、ファンヒーター、エアコンの他に、熱の放射、伝導熱、および対流を効率よく利用した床暖房システムが注目されている。床暖房システムは熱の3つの伝わり方を効率的に利用するために室内を均一に暖めることができるとともに、静かでクリーンな暖房システムであるため、今後のさらなる需要の増加が見込まれている。   In recent years, floor heating systems that efficiently use heat radiation, conduction heat, and convection have attracted attention as means for heating the interior of buildings, in addition to stoves, fan heaters, and air conditioners. Since the floor heating system can uniformly warm the room in order to efficiently use the three ways of transferring heat, it is a quiet and clean heating system, so further demand is expected to increase in the future.

床暖房システムは、1枚の床暖房用電熱ボードから構成される場合もあるが、通常は複数枚の床暖房用電熱ボードが互いに連結された床暖房用電熱ボード集合体で構成されている。床暖房用電熱ボードに用いられる発熱手段としては、例えば特許第3463898号に記載された面状発熱体が知られている。   Although the floor heating system may be composed of a single floor heating electric heating board, it is usually composed of a floor heating electric board assembly in which a plurality of floor heating electric boards are connected to each other. As a heating means used for an electric heating board for floor heating, for example, a planar heating element described in Japanese Patent No. 3463898 is known.

図1は、従来技術の床暖房用電熱ボードの、主面に平行な面で切断した断面図である。床暖房用電熱ボード120の上面には面状発熱体130が形成されている。面状発熱体130は、通電することによって発熱する複数本の発熱抵抗線133が並列に接続されてなる複数の並列回路141〜144を備えている。各並列回路141〜144は互いに隣接しながら平行に延び、隣り合う並列回路同士が電極131a、131d、131b、131e、131cを介して順次電気的に直列に接続されることによってヒーター回路を構成している。   FIG. 1 is a cross-sectional view of a conventional floor heating electric heating board cut along a plane parallel to the main surface. A planar heating element 130 is formed on the upper surface of the floor heating electric heating board 120. The planar heating element 130 includes a plurality of parallel circuits 141 to 144 in which a plurality of heating resistance wires 133 that generate heat when energized are connected in parallel. Each of the parallel circuits 141 to 144 extends in parallel while being adjacent to each other, and the adjacent parallel circuits are sequentially electrically connected in series via the electrodes 131a, 131d, 131b, 131e, and 131c to form a heater circuit. ing.

床暖房用電熱ボードを設置するには、床暖房用電熱ボードを根太間あるいは床下地の上に1枚ずつ敷設固定し、その上に床材を敷設する。床暖房用電熱ボードを床下地に固定したり、床暖房用電熱ボードの上にフローリング床等を固定したりするためには釘打ち領域が必要である。このため、一般に面状発熱体130の裏面には外周部に沿って桟木122が固定され、桟木122の設けられた領域は釘打ち領域105となっている。   In order to install the floor heating electric heating board, the floor heating electric heating boards are laid and fixed one by one on the joists or floor floor, and the floor material is laid thereon. A nailing area is required to fix the floor heating electric board to the floor base or to fix the flooring floor or the like on the floor heating electric board. For this reason, generally, a crosspiece 122 is fixed along the outer peripheral portion of the back surface of the sheet heating element 130, and a region where the crosspiece 122 is provided is a nail driving region 105.

図2は、床暖房用電熱ボードの端部の一例を示す平面図である。面状発熱体は、並列回路141〜144の延びる方向(以下、敷設方向xという。)と直交する方向(以下、敷設直交方向yという。)に幅Wを有している。しかし、図1のように、面状発熱体130の外周部に桟木122を配置し、釘打ち領域105を形成する場合、釘打ち領域105には発熱抵抗線133を配置することができない(以下、釘打ち領域に代えて不設置領域105という場合もある。)。このため、面状発熱体130の不設置領域105を含まない幅wの領域を等間隔に領域A141〜A144に分割して、各領域A141〜A144に並列回路141〜144を配置していた。   FIG. 2 is a plan view showing an example of an end portion of the floor heating electric heating board. The planar heating element has a width W in a direction orthogonal to the direction in which the parallel circuits 141 to 144 extend (hereinafter referred to as laying direction x) (hereinafter referred to as laying orthogonal direction y). However, as shown in FIG. 1, when the crosspiece 122 is arranged on the outer peripheral portion of the planar heating element 130 and the nail driving region 105 is formed, the heating resistance wire 133 cannot be arranged in the nail driving region 105 (hereinafter referred to as the nail driving region 105). The non-installation area 105 may be used instead of the nailing area.) For this reason, the area | region of the width | variety w which does not contain the non-installation area | region 105 of the planar heating element 130 was divided | segmented into area | region A141-A144 at equal intervals, and the parallel circuits 141-144 were arrange | positioned in each area | region A141-A144.

このような従来技術の発熱抵抗線の配置方式では、面状発熱体の敷設方向xと平行して延びる外周部の釘打ち領域に発熱抵抗線を配置することができないため、このエリアの温度が低下し、コールドゾーンが発生しやすい。特に、複数の床暖房用電熱ボードを並べて配置した場合、釘打ち領域同士が隣接して配置されるため、発熱抵抗線を配置することができない範囲が拡大する。このため、コールドゾーンが広がり、温度低下も拡大するおそれがある。   In such a conventional heating resistor wire arrangement method, since the heating resistor wire cannot be arranged in the nail area of the outer peripheral portion extending parallel to the laying direction x of the planar heating element, the temperature of this area is The cold zone is likely to occur. In particular, when a plurality of floor heating electric boards are arranged side by side, the nailing areas are arranged adjacent to each other, so that the range in which the heating resistance lines cannot be arranged is expanded. For this reason, there is a possibility that the cold zone expands and the temperature drop also increases.

本発明の目的は、発熱抵抗線の不設置領域がある場合でも、不設置領域における温度低下を抑制することのできる面状発熱体を提供することである。   An object of the present invention is to provide a planar heating element that can suppress a temperature drop in a non-installation region even when there is a non-installation region of a heating resistance wire.

本発明の他の目的は、かかる面状発熱体を用いた床暖房用電熱ボードおよび床暖房用電熱ボード集合体を提供することである。   Another object of the present invention is to provide a floor heating electric board and a floor heating electric board assembly using such a planar heating element.

本発明の面状発熱体は、通電することによって発熱する複数本の発熱抵抗線が並列に接続されてなる並列回路を複数個備えた面状発熱体である。各並列回路は互いに隣接しながら平行に延び、隣り合う並列回路同士が順次電気的に直列に接続されることによってヒーター回路を構成している。面状発熱体の、並列回路と平行に延びる少なくとも一つの周縁部に沿って、発熱抵抗線の不設置領域が設けられている。並列回路の各々は、並列回路の延びる方向と直交する方向における、不設置領域を含む面状発熱体の全幅をW、各並列回路の電気抵抗をRi、ヒーター回路の全電気抵抗をRとしたときに、(Ri/R)×Wによって定められる幅を有する並列回路領域に配置されている。   The planar heating element of the present invention is a planar heating element provided with a plurality of parallel circuits in which a plurality of heating resistance wires that generate heat when energized are connected in parallel. Each parallel circuit extends in parallel while being adjacent to each other, and adjacent parallel circuits are sequentially electrically connected in series to form a heater circuit. A heating resistance line non-installation area is provided along at least one peripheral edge of the planar heating element extending in parallel with the parallel circuit. In each of the parallel circuits, in the direction orthogonal to the direction in which the parallel circuit extends, the entire width of the planar heating element including the non-installation region is W, the electric resistance of each parallel circuit is Ri, and the total electric resistance of the heater circuit is R. Sometimes it is arranged in a parallel circuit region having a width defined by (Ri / R) × W.

各並列回路は、不設置領域を含む面状発熱体の全幅を各並列回路の抵抗比、すなわち発熱比に比例して割り振った幅の並列回路領域に配置されている。したがって、不設置領域を含む並列回路領域では、不設置領域自体には発熱抵抗線を設置できないものの、それ以外の領域に発熱抵抗線を設置することによって、各並列回路領域の単位面積当たりの平均発熱量を揃えることが可能となる。換言すれば、不設置領域からの発熱は生じないが、その近傍領域における単位面積当たりの平均発熱量を増加させることによって、不設置領域の温度低下を抑制することが可能となる。   Each parallel circuit is arranged in a parallel circuit region having a width obtained by allocating the entire width of the planar heating element including the non-installed region in proportion to the resistance ratio of each parallel circuit, that is, the heat generation ratio. Therefore, in the parallel circuit area including the non-installation area, the heating resistance line cannot be installed in the non-installation area itself, but by installing the heating resistance line in other areas, the average per unit area of each parallel circuit area It becomes possible to arrange the calorific value. In other words, although no heat is generated from the non-installation area, a decrease in temperature of the non-installation area can be suppressed by increasing the average heat generation amount per unit area in the vicinity area.

各並列回路を構成する各発熱抵抗線は、各並列回路の並列回路領域の幅を各並列回路の発熱抵抗線の本数で除した幅を有する発熱抵抗線領域に配置されていることが好ましい。   Each heating resistance line constituting each parallel circuit is preferably arranged in a heating resistance line area having a width obtained by dividing the width of the parallel circuit area of each parallel circuit by the number of heating resistance lines of each parallel circuit.

本発明の床暖房用電熱ボードは、上述の面状発熱体が上面に配置された床暖房用電熱ボードである。床暖房用電熱ボードは、電熱ボードの少なくとも周縁部に沿って、面状発熱体の裏面に固定された釘打可能な桟木と、面状発熱体の裏面の、桟木に囲まれた部分に固定された断熱材と、面状発熱体の裏面に固定され、電源線と面状発熱体との電気接続部を含む樹脂製の補強部材と、を有している。補強部材は、電源線を曲げ変形させて収納する空隙部を備えている。   An electric heating board for floor heating according to the present invention is an electric heating board for floor heating in which the above-described planar heating element is disposed on the upper surface. The electric heating board for floor heating is fixed to the nailable frame fixed to the back surface of the sheet heating element and the part surrounded by the frame frame on the back surface of the sheet heating element along at least the peripheral edge of the heating board. And a resin-made reinforcing member that is fixed to the back surface of the sheet heating element and includes an electrical connection portion between the power line and the sheet heating element. The reinforcing member is provided with a gap for accommodating the power line by bending it.

本発明の床暖房用電熱ボード集合体は、上述の床暖房用電熱ボードが複数枚連結された床暖房用電熱ボード集合体である。隣接する床暖房用電熱ボード同士は、並列回路と平行に延び互いに対向する周縁部の間で、両床暖房用電熱ボードの間を延びる電源線によって電気的に接続され、かつ、各電熱ボードが重ねられて折りたたまれるように機械的な連結手段によって連結されている。折りたたまれた床暖房用電熱ボードを開いて各床暖房用電熱ボードの対向する周縁部同士が接するように各床暖房用電熱ボードを敷設する際に、空隙部は前記電源線の余長部を収納することができる。   The electric heating board assembly for floor heating according to the present invention is an electric heating board assembly for floor heating in which a plurality of floor heating electric heating boards are connected. Adjacent floor heating electric boards are electrically connected by power lines extending between the floor heating electric boards between peripheral edges extending in parallel with the parallel circuit and facing each other, and each electric heating board is They are connected by mechanical connecting means so as to be overlapped and folded. When opening the folded floor heating electric heating board and laying each floor heating electric heating board so that the opposing peripheral edges of each floor heating electric heating board are in contact with each other, the gap portion is an extra length portion of the power line. Can be stored.

以上説明したように、本発明によれば、発熱抵抗線の不設置領域がある場合でも、不設置領域における温度低下を抑制することのできる面状発熱体を提供することができる。また、本発明によれば、かかる面状発熱体を用いた床暖房用電熱ボードおよび床暖房用電熱ボード集合体を提供することができる。   As described above, according to the present invention, it is possible to provide a planar heating element that can suppress a temperature drop in the non-installation region even when there is a non-installation region of the heating resistance wire. Moreover, according to this invention, the heating board for floor heating using this planar heating element and the heating board aggregate | assembly for floor heating can be provided.

従来技術の床暖房用電熱ボードの、主面に平行な面で切断した断面図である。It is sectional drawing cut | disconnected by the surface parallel to the main surface of the electric heating board for floor heating of a prior art. 床暖房用電熱ボードの端部の一例を示す平面図である。It is a top view which shows an example of the edge part of the electric heating board for floor heating. 本発明の一実施形態に係る床暖房用電熱ボードの、主面と平行な面で切断した断面図である。It is sectional drawing cut | disconnected by the surface parallel to the main surface of the electric heating board for floor heating which concerns on one Embodiment of this invention. 図3に示した床暖房用電熱ボードの、線A−A’に沿って切断した断面図である。It is sectional drawing cut | disconnected along line A-A 'of the electric heating board for floor heating shown in FIG. 図3に示した床暖房用電熱ボードの、線B−B’に沿って切断した断面図である。It is sectional drawing cut | disconnected along line B-B 'of the electric heating board for floor heating shown in FIG. 床暖房用電熱ボード集合体の施工方法を説明する模式図である。It is a schematic diagram explaining the construction method of the electric heating board aggregate | assembly for floor heating. 補強部材10の内部を示す、主面に平行な面で切断した断面図である。2 is a cross-sectional view showing the inside of a reinforcing member 10 cut along a plane parallel to a main surface. FIG. 図3に示した床暖房用電熱ボードの、均熱板の設けられた主面の反対側から見た平面図である。It is the top view seen from the opposite side of the main surface in which the heat equalization board was provided of the electric heating board for floor heating shown in FIG. 図7AのA−A’線に沿った面状発熱体の部分断面図である。It is a fragmentary sectional view of the planar heating element along the A-A 'line of Drawing 7A. 面状発熱体への電源線の接続方法を説明するための図である。It is a figure for demonstrating the connection method of the power wire to a planar heating element. 図7Aに示す面状発熱体の、同図中B部付近の部分詳細図である。FIG. 7B is a partial detail view of the planar heating element shown in FIG. 並列回路内の各発熱抵抗線の配置パターンを説明するための、図7Aに示す面状発熱体のB部付近の部分詳細図である。FIG. 7B is a partial detail view of the vicinity of part B of the planar heating element shown in FIG. 7A for explaining the arrangement pattern of each heating resistance line in the parallel circuit. 並列回路領域の幅が異なる場合の、図7AのB部付近に対応する面状発熱体の部分詳細図である。FIG. 7B is a partial detail view of a planar heating element corresponding to the vicinity of portion B in FIG. 7A when the widths of the parallel circuit regions are different. 並列回路領域の幅が異なる場合の、図7AのB部付近に対応する面状発熱体の部分詳細図である。FIG. 7B is a partial detail view of a planar heating element corresponding to the vicinity of portion B in FIG. 7A when the widths of the parallel circuit regions are different. 実施例1における2つの床暖房用電熱ボードの温度分布を示すグラフである。It is a graph which shows the temperature distribution of the two electric heating boards for floor heating in Example 1. FIG. 実施例2における2つの床暖房用電熱ボードの温度分布を示すグラフである。It is a graph which shows the temperature distribution of the two electric heating boards for floor heating in Example 2. FIG.

以下に、本発明の実施形態を図面を参照して説明する。図3は、本発明の一実施形態に係る床暖房用電熱ボードの、主面と平行な面で切断した断面図である。図4Aは、図3に示した床暖房用電熱ボードの、線A−A’に沿って切断した断面図、図4Bは、線B−B’に沿って切断した断面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a cross-sectional view of the floor heating electric board according to the embodiment of the present invention, cut along a plane parallel to the main surface. 4A is a cross-sectional view taken along line A-A ′ of the floor heating electric heating board shown in FIG. 3, and FIG. 4B is a cross-sectional view taken along line B-B ′.

床暖房用電熱ボード20が敷設可能な床下地は特に限定されないが、例えば、木質床下地、コンクリート床下地、乾式遮音二重床などが挙げられる。床暖房用電熱ボード20の上に敷設可能な床材も特に限定されないが、床暖房用の畳、床暖房用木質フロアー材、合板+カーペットなどが好適に使用できる。   The floor base on which the floor heating electric heating board 20 can be laid is not particularly limited, and examples thereof include a wooden floor base, a concrete floor base, and a dry sound insulation double floor. The floor material that can be laid on the floor heating electric heating board 20 is also not particularly limited, but floor heating tatami mat, floor heating wood floor material, plywood + carpet, and the like can be suitably used.

床暖房用電熱ボード20の上面には、面状発熱体30が配置されている。面状発熱体30の裏面には、床暖房用電熱ボード20の周縁部に沿って桟木22が配置されている。面状発熱体30の裏面の桟木22に囲まれた部分には、断熱材21と樹脂製の補強部材10とが固定されている。補強部材10は、電源線12と面状発熱体30との電気接続部を含んでいる。面状発熱体30の上面は均熱板24で覆われている。床暖房用電熱ボード20の裏面の一部または全面には補強シート25が配されている。以下、各部の構造について詳細に説明する。   A planar heating element 30 is disposed on the upper surface of the floor heating electric heating board 20. On the back surface of the sheet heating element 30, a crosspiece 22 is disposed along the peripheral edge of the floor heating electric heating board 20. The heat insulating material 21 and the resin reinforcing member 10 are fixed to a portion surrounded by the crosspiece 22 on the back surface of the planar heating element 30. The reinforcing member 10 includes an electrical connection portion between the power line 12 and the planar heating element 30. The upper surface of the sheet heating element 30 is covered with a soaking plate 24. A reinforcing sheet 25 is disposed on a part or the entire back surface of the floor heating electric heating board 20. Hereinafter, the structure of each part will be described in detail.

断熱材21は、面状発熱体30から発生した熱が床暖房用電熱ボード20の裏面に伝わることを抑え、熱を床暖房用電熱ボード20の上方の床材に有効に伝えるために用いられる。断熱材21としては、軽量で断熱効果が高く、床暖房用電熱ボード20の通常使用温度に対する耐熱性を有するものが好ましい。断熱材21は、例えば、発泡ポリウレタン、発泡ポリエチレン、発泡ポリプロピレンなどの発泡樹脂、硬質木質繊維板あるいは軽量木質繊維板などの木質繊維成形体、ポリエステル繊維あるいはポリエーテルケトン繊維などの合成繊維などからなるフェルトマットで形成される。   The heat insulating material 21 is used to suppress the heat generated from the planar heating element 30 from being transmitted to the back surface of the floor heating electric heating board 20 and to effectively transfer the heat to the floor material above the floor heating electric heating board 20. . As the heat insulating material 21, a material that is lightweight and has a high heat insulating effect and has heat resistance with respect to the normal use temperature of the floor heating electric heating board 20 is preferable. The heat insulating material 21 is made of, for example, a foamed resin such as foamed polyurethane, foamed polyethylene, or foamed polypropylene, a wood fiber molded body such as a hard wood fiber board or a lightweight wood fiber board, or a synthetic fiber such as polyester fiber or polyether ketone fiber. Made of felt mat.

桟木22は、軽量で強度のある材料、例えば、木材、合板、軽量プラスチックなどから形成される。桟木22を設けることで、床暖房用電熱ボード20の全体としての強度が高められる。桟木22は床暖房用電熱ボード20の外周部に枠状に配されており、これによって、床暖房用電熱ボード20全体の重量が軽減され、自重による反り等の変形が抑制され、かつ床暖房用電熱ボード20の設置作業性が向上する。   The pier 22 is formed of a light and strong material, for example, wood, plywood, lightweight plastic and the like. By providing the pier 22, the overall strength of the floor heating electric heating board 20 can be increased. The pier 22 is arranged in a frame shape on the outer periphery of the floor heating electric heating board 20, whereby the weight of the entire floor heating electric heating board 20 is reduced, deformation such as warpage due to its own weight is suppressed, and floor heating is performed. The installation workability of the electrical heating board 20 is improved.

桟木22は、床暖房用電熱ボード20を床下地に固定するための領域を確保するという機能も有している。床暖房用電熱ボード20は床下地に、例えば、釘打ち、ビス止め、接着、嵌め込みなどによって固定される。床暖房用電熱ボード20を固定する際には、桟木22が設けられた領域が利用される。床暖房用電熱ボード20に釘打ち可能領域を表示しておくことにより、釘打ち等により床暖房用電熱ボード20を床下地に固定する際に電気配線や面状発熱体30の電気部品等に悪影響を及ぼすことを防止できる。面状発熱体30の桟木22が固定された領域は、発熱抵抗線(後述)を設置することができない不設置領域105となる。   The pier 22 also has a function of securing an area for fixing the floor heating electric heating board 20 to the floor base. The floor heating electric heating board 20 is fixed to the floor base by, for example, nailing, screwing, adhesion, or fitting. When the floor heating electric heating board 20 is fixed, an area where the pier 22 is provided is used. By displaying the nailable area on the floor heating electric heating board 20, when the floor heating electric heating board 20 is fixed to the floor base by nailing or the like, it is used as an electric wiring or an electric component of the sheet heating element 30. It can prevent adverse effects. The area where the crosspiece 22 of the planar heating element 30 is fixed becomes a non-installation area 105 where a heating resistance wire (described later) cannot be installed.

均熱板24は、面状発熱体30から発生した熱を面内方向に均一に分散させ、床材に伝える。均熱板24は例えば、アルミニウムや銅といった金属の箔あるいは板で形成される。均熱板24は、例えば厚さ40〜150μmのアルミ板からなり、面状発熱体30の表面に貼りつけられている。均熱板24を設けることによって、面状発熱体30の温度分布のばらつきを小さくすることができる。   The heat equalizing plate 24 uniformly disperses the heat generated from the planar heating element 30 in the in-plane direction and transmits it to the flooring. The soaking plate 24 is formed of, for example, a metal foil or plate such as aluminum or copper. The soaking plate 24 is made of, for example, an aluminum plate having a thickness of 40 to 150 μm, and is attached to the surface of the planar heating element 30. By providing the soaking plate 24, the variation in the temperature distribution of the planar heating element 30 can be reduced.

補強シート25は、床暖房用電熱ボード20の裏面に固定されている。補強シート25は、補強部材10、断熱材21および桟木22の下面に固定され、床暖房用電熱ボード20の強度を向上させるとともに、床暖房用電熱ボード20の内部回路を保護する。補強シート25は、例えば、クレープ紙などの紙、ポリプロピレン、ポリエチレン、ポリエステル等のワリフ(登録商標)、あるいはワリフと紙のラミネート品、プラスチック系やアスファルト系の各種防水シート、ベークライト(登録商標)等のプラスチック成形板、ブリキやアルミあるいはステンレス等の金属板で形成される。補強シート25は、これらの材料の複合材で形成することもできる。   The reinforcing sheet 25 is fixed to the back surface of the floor heating electric heating board 20. The reinforcing sheet 25 is fixed to the lower surface of the reinforcing member 10, the heat insulating material 21, and the pier 22, improves the strength of the floor heating electric heating board 20, and protects the internal circuit of the floor heating electric heating board 20. Reinforcing sheet 25 is, for example, paper such as crepe paper, polypropylene (polyethylene, polyethylene, polyester, etc.), laminates of paper and paper, various plastic or asphalt waterproof sheets, bakelite (registered trademark), etc. It is made of a plastic plate, a metal plate such as tinplate, aluminum or stainless steel. The reinforcing sheet 25 can also be formed of a composite material of these materials.

補強部材10は、基体15から立ち上がるリブ13によって厚さ方向の形状が保持されている。補強部材10の内部にはリブ13によって空隙部14が確保されている。空隙部14には、面状発熱体30に電源を供給する電源線12が収納される。電源線12から分岐したリード線12a〜12c(図8参照)が面状発熱体30に設けられた電極31a〜31c(図7A参照)に向けて立ち上がるためのスペースを確保するため、補強部材10には、厚さ方向に延びる貫通穴11a〜11cが設けられている。   The shape of the reinforcing member 10 in the thickness direction is held by the rib 13 rising from the base body 15. A gap 14 is secured by a rib 13 inside the reinforcing member 10. A power line 12 for supplying power to the planar heating element 30 is accommodated in the gap portion 14. In order to secure a space for the lead wires 12 a to 12 c (see FIG. 8) branched from the power supply line 12 to rise toward the electrodes 31 a to 31 c (see FIG. 7A) provided on the planar heating element 30, the reinforcing member 10. Are provided with through holes 11a to 11c extending in the thickness direction.

敷設方向xに延びる周縁部28同士を隣接させることによって、複数枚の床暖房用電熱ボード20を隣接して用いることができる。床暖房用電熱ボードが複数枚連結された構成を、本明細書では床暖房用電熱ボード集合体100と呼ぶ。電源線12は、隣接する床暖房用電熱ボード20の間を敷設直交方向yに延びて、2つの床暖房用電熱ボード20を電気的に接続している。床暖房用電熱ボード20の周縁部28には孔22cが設けられ、隣接する床暖房用電熱ボード20の孔22cと連結帯27で連結されている。これによって、隣り合う床暖房用電熱ボード20が機械的に連結されている。隣接する床暖房用電熱ボード20間には連結帯27によって適宜の間隔が確保され、床暖房用電熱ボード20同士を無理なく重ねて折りたたむことができる。床暖房用電熱ボード20同士の間隔は連結帯27の長さによって調整することができる。   By adjoining the peripheral portions 28 extending in the laying direction x, a plurality of floor heating electric boards 20 can be used adjacently. A configuration in which a plurality of floor heating electric boards are connected is referred to as a floor heating electric board assembly 100 in this specification. The power line 12 extends between the adjacent floor heating electric heating boards 20 in the orthogonal direction y, and electrically connects the two floor heating electric heating boards 20. A hole 22 c is provided in the peripheral portion 28 of the floor heating electric heating board 20, and is connected to the hole 22 c of the adjacent floor heating electric heating board 20 by a connection band 27. As a result, the adjacent floor heating electric heating boards 20 are mechanically connected. An appropriate space is secured between the adjacent floor heating electric heating boards 20 by the connecting band 27, and the floor heating electric heating boards 20 can be easily overlapped and folded. The interval between the floor heating electric heating boards 20 can be adjusted by the length of the connecting band 27.

図5は、床暖房用電熱ボード集合体の施工方法を説明する模式図である。まず、左上図に示すように、集合体100を床暖房用電熱ボード20の連結部で交互に折り畳んだ状態で室内に搬入する。次に、右上図に示すように、集合体100を引き伸ばして展開する。次いで、左下図に示すように、集合体100を完全に展開して、床下地上に敷き込む。次いで、床暖房用電熱ボード20同士を連結している連結帯27を引き上げて、床暖房用電熱ボードの対向する周縁部28同士が接するように床暖房用電熱ボード20同士の間隔を詰め、その後、連結帯27を切断、除去する。以上の工程を経て、右下図に示すように、床暖房用電熱ボード20が互いに密着した状態で据付けられ、集合体100の設置が完了する。   Drawing 5 is a mimetic diagram explaining the construction method of the electric heating board aggregate for floor heating. First, as shown in the upper left diagram, the assembly 100 is carried into the room in a state where the assembly 100 is alternately folded at the connecting portion of the floor heating electric heating board 20. Next, as shown in the upper right view, the assembly 100 is stretched and developed. Next, as shown in the lower left figure, the assembly 100 is completely unfolded and laid on the floor base. Then, the connecting band 27 that connects the floor heating electric boards 20 is pulled up, and the space between the floor heating electric boards 20 is reduced so that the opposite peripheral edges 28 of the floor heating electric boards are in contact with each other. Then, the connecting band 27 is cut and removed. Through the above steps, the floor heating electric heating boards 20 are installed in close contact with each other, as shown in the lower right diagram, and the installation of the assembly 100 is completed.

このように、床暖房用電熱ボード20は折りたたまれた状態では、隣接する床暖房用電熱ボード20との間に間隔が設けられ、据付け後は隣接する床暖房用電熱ボード20と密着させられる。そのため、図6に示すように、補強部材10の空隙部14には、床暖房用電熱ボード20同士が密着したときに生じる電源線12の余長部を、電源線12を破線のように曲げ変形させることによって収納するだけの余裕が設けられている。   As described above, when the floor heating electric heating board 20 is folded, a space is provided between the floor heating electric heating board 20 and the floor heating electric heating board 20 so as to be in close contact with the adjacent floor heating electric heating board 20 after installation. Therefore, as shown in FIG. 6, in the gap portion 14 of the reinforcing member 10, the extra length portion of the power line 12 that is generated when the floor heating electric heating boards 20 are in close contact with each other, the power line 12 is bent like a broken line. There is room for storage by deforming.

面状発熱体30は、炭素繊維からなる複数本の発熱抵抗線から構成されている。面状発熱体30の厚さは、好ましくは2mm以下、より好ましくは0.8mm以下である。面状発熱体30の例としては、例えば、特開平8−207191号公報に開示された繊維強化樹脂成形体が挙げられる。繊維強化樹脂成形体は、非導電性繊維と炭素繊維からなる導電性繊維との交点を接合してなる網目構造体の両端で導電性繊維と電極とを接続した後、ガラスエポキシなどからなる繊維強化プリプレグシートおよびポリエステルフィルムなどの絶縁用の樹脂フィルムを積層して形成される。   The planar heating element 30 is composed of a plurality of heating resistance wires made of carbon fiber. The thickness of the planar heating element 30 is preferably 2 mm or less, more preferably 0.8 mm or less. Examples of the planar heating element 30 include, for example, a fiber reinforced resin molded article disclosed in Japanese Patent Application Laid-Open No. 8-207191. A fiber reinforced resin molded product is a fiber made of glass epoxy after connecting conductive fibers and electrodes at both ends of a network structure formed by joining intersections of non-conductive fibers and conductive fibers made of carbon fibers. It is formed by laminating a resin film for insulation such as a reinforced prepreg sheet and a polyester film.

図7Aは、図3に示した床暖房用電熱ボードの、均熱板の設けられた主面の反対側から見た平面図である。図7Bは、図7AのA−A’線に沿った面状発熱体の部分断面図である。図7Bは、上下を逆に表示している。図7Aでは、厳密には桟木や発熱抵抗線は表示されないが、説明の便宜上図示している。面状発熱体30は、一定の長さを有し、直線的にかつ互いに平行に配置された発熱抵抗線32a〜32e、33a〜33e、34a〜34e、35a〜35eを有している。図7Aにおいて、面状発熱体30は床暖房用電熱ボード20の平面寸法と一致している。発熱抵抗線32a〜35eは矩形状の繊維強化プリプレグ2、4に挟み込まれている。繊維強化プリプレグ2には、樹脂フィルム1が積層され、その上に均熱板24が積層されている。繊維強化プリプレグ4には、樹脂フィルム5が積層されている。   FIG. 7A is a plan view of the floor heating electric heating board shown in FIG. 3 as viewed from the opposite side of the main surface on which the heat equalizing plate is provided. FIG. 7B is a partial cross-sectional view of the planar heating element along the line A-A ′ in FIG. 7A. FIG. 7B shows the image upside down. In FIG. 7A, strictly speaking, a crosspiece and a heating resistance line are not displayed, but are illustrated for convenience of explanation. The planar heating element 30 has heating resistance lines 32a to 32e, 33a to 33e, 34a to 34e, and 35a to 35e that have a certain length and are arranged linearly and in parallel with each other. In FIG. 7A, the planar heating element 30 matches the planar dimension of the floor heating electric heating board 20. The heating resistance wires 32a to 35e are sandwiched between rectangular fiber reinforced prepregs 2 and 4. A resin film 1 is laminated on the fiber reinforced prepreg 2, and a soaking plate 24 is laminated thereon. A resin film 5 is laminated on the fiber reinforced prepreg 4.

発熱抵抗線32a〜35eは通電することによって発熱する。発熱抵抗線32a〜32eは、電極31aと電極31dとの間で並列に接続され、電極31aと電極31dとを接続する一つの並列回路41を形成している。発熱抵抗線33a〜33eは、電極31dと電極31bとの間で並列に接続され、電極31dと電極31bとを接続する一つの並列回路42を形成している。発熱抵抗線34a〜34eは、電極31bと電極31eとの間で並列に接続され、電極31bと電極31eとを接続する一つの並列回路43を形成している。発熱抵抗線35a〜35eは、電極31eと電極31cとの間で並列に接続され、電極31eと電極31cとを接続する一つの並列回路44を形成している。このように、各並列回路は互いに隣接しながら平行に延び、隣り合う並列回路同士が順次電気的に直列に接続されることによってヒーター回路を構成している。電極31aと電源線12の間にサーモスタット等の過熱防止装置(図示せず)を設け、これを床暖房用電熱ボード20に内蔵する構成とすることもできる。   The heating resistance wires 32a to 35e generate heat when energized. The heating resistance lines 32a to 32e are connected in parallel between the electrode 31a and the electrode 31d, and form one parallel circuit 41 that connects the electrode 31a and the electrode 31d. The heating resistance lines 33a to 33e are connected in parallel between the electrode 31d and the electrode 31b, and form one parallel circuit 42 that connects the electrode 31d and the electrode 31b. The heating resistance lines 34a to 34e are connected in parallel between the electrode 31b and the electrode 31e, and form one parallel circuit 43 that connects the electrode 31b and the electrode 31e. The heating resistance lines 35a to 35e are connected in parallel between the electrode 31e and the electrode 31c, and form one parallel circuit 44 that connects the electrode 31e and the electrode 31c. As described above, the parallel circuits extend in parallel while being adjacent to each other, and the adjacent parallel circuits are sequentially electrically connected in series to form a heater circuit. An overheat prevention device (not shown) such as a thermostat may be provided between the electrode 31a and the power supply line 12, and this may be built in the floor heating electric heating board 20.

並列回路41〜44を構成する発熱抵抗線の本数は特に限定されないが、3〜12本程度が望ましい。並列回路の個数も特に限定されないが、4個〜8個の並列回路を直列に接続してヒーター回路を構成することが望ましい。   The number of heat generating resistance lines constituting the parallel circuits 41 to 44 is not particularly limited, but is preferably about 3 to 12. The number of parallel circuits is not particularly limited, but it is desirable to configure a heater circuit by connecting 4 to 8 parallel circuits in series.

なお、直線状の発熱抵抗線を、電源線12に接続されない電極31d、31eを介して、床暖房用電熱ボード20の両端間で折り返す構成に代えて、電極31d、31eを設けずに発熱抵抗線自身を折り返す構成を採用することも可能である。   In addition, it replaces with the structure which folds between the both ends of the electric heating board 20 for floor heating via the electrodes 31d and 31e which are not connected to the power supply line 12, and it does not provide the electrodes 31d and 31e, but generates heat resistance. It is also possible to adopt a configuration in which the line itself is folded back.

発熱抵抗線32a〜35eは、全て同じ径を有する炭素繊維から構成されている。炭素繊維は耐久性に優れ、発熱抵抗線32a〜35eに適した材料である。発熱抵抗線32a〜35eはニクロム線で形成してもよく、あるいはカーボン系導電性塗料を印刷技術を用いて塗布形成することもできる。   The heating resistance wires 32a to 35e are all composed of carbon fibers having the same diameter. The carbon fiber is excellent in durability and is a material suitable for the heating resistance wires 32a to 35e. The heating resistance wires 32a to 35e may be formed of nichrome wires, or a carbon-based conductive paint can be applied and formed using a printing technique.

直列に連結される並列回路の個数が相等しくなる中央位置、すなわち並列回路42と並列回路43の間には、中央電気接続部となる電極31bが設けられている。このため、電極31bをはさんだ両側の並列回路(並列回路41、42の組、および並列回路43、44の組)は、電極31bと対応する端部(電極31a、31c)との間の電気抵抗が互いに等しくされている。   An electrode 31b serving as a central electrical connection is provided at a central position where the number of parallel circuits connected in series is equal, that is, between the parallel circuit 42 and the parallel circuit 43. For this reason, the parallel circuits (the set of parallel circuits 41 and 42 and the set of parallel circuits 43 and 44) on both sides of the electrode 31b are electrically connected between the electrode 31b and the corresponding end (electrodes 31a and 31c). The resistances are made equal to each other.

本実施形態の床暖房用電熱ボード20では、並列回路41〜44全体を一つの直列回路として、電極31aと電極31cとの間に通電することが可能である(運転パターン1)。また、並列回路41、42の組を電極31a、31b間の直列回路として通電し、これと同時に並列回路43、44の組を電極31b、31c間の別の直列回路として通電することも可能である(運転パターン2)。2つの運転モードは、電極31bの電源への接続を切替えることによって容易に切替えることができる。   In the floor heating electric heating board 20 of the present embodiment, the entire parallel circuits 41 to 44 can be energized between the electrode 31a and the electrode 31c as one series circuit (operation pattern 1). It is also possible to energize the set of parallel circuits 41 and 42 as a series circuit between the electrodes 31a and 31b, and at the same time energize the set of parallel circuits 43 and 44 as another series circuit between the electrodes 31b and 31c. There is (operation pattern 2). The two operation modes can be easily switched by switching the connection of the electrode 31b to the power source.

このような運転モード切替え方法は、床暖房用電熱ボード20を異なる電源電圧で使用する際に有効である。発熱量は電圧の二乗に比例するため、電源電圧が異なると床暖房用電熱ボード20の発熱量が大きく異なり好ましくない。しかし、電源電圧は国によって異なるものの、大きく100V系と200V系とに大別できるため、両者の電源電圧に対して発熱量を同程度に制御することができれば十分である。   Such an operation mode switching method is effective when the floor heating electric heating board 20 is used at different power supply voltages. Since the heat generation amount is proportional to the square of the voltage, if the power supply voltage is different, the heat generation amount of the floor heating electric heating board 20 is greatly different, which is not preferable. However, although the power supply voltage varies depending on the country, it can be roughly divided into a 100V system and a 200V system. Therefore, it is sufficient if the amount of heat generated can be controlled to the same level with respect to both power supply voltages.

電極31a、31b間の抵抗値、および電極31b、31c間の並列回路の抵抗値を各々Rとすると、運転パターン1での面状発熱体30の抵抗値は2Rとなる。発熱量は電圧V、抵抗Rに対してV/Rで求められるので、200[V]の電源電圧に対して運転パターン1を選択すれば、発熱量はP=200/2R=20000/Rとなる。一方、運転パターン2では抵抗Rの回路が2列並列して設けられた状態になるので、面状発熱体30の抵抗値は1/{(1/R)+(1/R)}=R/2となる。100[V]の電源電圧に対して運転パターン2を選択すれば、発熱量はP=100/(R/2)=20000/Rとなり、理論的には100[V]電源電圧と200[V]の電源電圧に対して同じ発熱量が得られる。このように、印加される電圧が100[V]である場合と200[V]である場合とで、電源線に接続する電極を変えるだけで、発生する熱量を等しくすることができる。When the resistance value between the electrodes 31a and 31b and the resistance value of the parallel circuit between the electrodes 31b and 31c are R, the resistance value of the planar heating element 30 in the operation pattern 1 is 2R. Since the heat generation amount is obtained by V 2 / R with respect to the voltage V and the resistance R, if the operation pattern 1 is selected with respect to the power supply voltage of 200 [V], the heat generation amount is P = 200 2 / 2R = 20000 / R. On the other hand, in the operation pattern 2, the resistance R of the planar heating element 30 is 1 / {(1 / R) + (1 / R)} = R because the resistance R circuit is provided in parallel in two rows. / 2. If the operation pattern 2 is selected with respect to a power supply voltage of 100 [V], the calorific value is P = 100 2 / (R / 2) = 20000 / R, theoretically 100 [V] power supply voltage and 200 [V]. The same calorific value is obtained for the power supply voltage of V]. In this way, the amount of heat generated can be made equal by simply changing the electrode connected to the power supply line between when the applied voltage is 100 [V] and when it is 200 [V].

運転パターン2を可能とするためには、電極31bを中央電気接続部として用いることが必要となるため、電極31bは電極31a、31cと同じ側に設けられているのが有利である。したがって、並列回路の数は偶数が望ましく、さらに中央電気接続部の両側の電気抵抗を揃えるために、各並列回路および各並列回路内の発熱抵抗線の配置は、中央電気接続部を通り敷設方向xに延びる中心線cを中心に線対称であることが望ましい。   In order to enable the operation pattern 2, it is necessary to use the electrode 31 b as a central electrical connection portion. Therefore, the electrode 31 b is advantageously provided on the same side as the electrodes 31 a and 31 c. Therefore, the number of parallel circuits is desirably an even number, and in order to align the electric resistances on both sides of the central electrical connection portion, the arrangement of the heating resistor lines in each parallel circuit and each parallel circuit is laid through the central electrical connection portion. It is desirable that the line is symmetrical about the center line c extending in x.

電極31a〜31eは、例えば、銅やアルミなどの金属箔片から構成されている。電極31a〜31cには、電源線12と接続される接続部36a〜36cがそれぞれ設けられている。   Electrode 31a-31e is comprised from metal foil pieces, such as copper and aluminum, for example. Connection portions 36a to 36c connected to the power supply line 12 are provided on the electrodes 31a to 31c, respectively.

図7Bを参照すると、電極31a〜31eは、発熱抵抗線32a〜35eを片面から覆うように形成されている(図7Bは電極31bのみを表示。他の部材についても同様。)。電極31a〜31cの上には金属金網3a〜3cがそれぞれ積層されている。金属金網3a〜3cは、金属繊維、金属繊維織物、パンチングメタル、エキスパンドメタル、金属メッシュベルトなどから構成されている。金属金網3a〜3cは、電源線12に接続されたリード線12a(図8参照)を電極31a〜31cに接続する際に、接続手段である半田を固定する効果を有している。   Referring to FIG. 7B, the electrodes 31a to 31e are formed so as to cover the heating resistance lines 32a to 35e from one side (FIG. 7B shows only the electrode 31b. The same applies to other members). Metal wire meshes 3a to 3c are laminated on the electrodes 31a to 31c, respectively. The metal wire meshes 3a to 3c are composed of metal fibers, metal fiber fabrics, punching metal, expanded metal, metal mesh belts, and the like. The metal wire meshes 3a to 3c have an effect of fixing solder as connection means when the lead wire 12a (see FIG. 8) connected to the power supply line 12 is connected to the electrodes 31a to 31c.

繊維強化プリプレグ4の電極31a〜31cの近傍となる位置には、電源線12と電極31a〜31cとの電気接続をとるために貫通穴4a〜4cが形成されている。貫通穴4a〜4cは5〜50mm程度の直径を有している。繊維強化プリプレグ4上に積層される樹脂フィルム5にも、貫通穴4a〜4cを含む大きさの貫通穴5a〜5cが形成されている。   Through holes 4a to 4c are formed at positions near the electrodes 31a to 31c of the fiber reinforced prepreg 4 in order to make electrical connection between the power line 12 and the electrodes 31a to 31c. The through holes 4a to 4c have a diameter of about 5 to 50 mm. The resin film 5 laminated on the fiber reinforced prepreg 4 also has through holes 5a to 5c having a size including the through holes 4a to 4c.

図8は、面状発熱体への電源線の接続方法を説明するための図である。まず、面状発熱体30を、繊維強化プリプレグ4に設けられた貫通穴4a〜4cが、補強部材10に設けられた貫通穴11a〜11cと各々対向するように、床暖房用電熱ボード20に組み込む。なお、図には貫通孔4a、11aのみ示しており、以下の説明は貫通孔4a、11aについておこなうが、貫通穴4b、4c、11b、11cについても全く同様である。次に、電源線12に接続されたリード線12aを貫通穴4a、11aを介して電極31aにはんだ6によって接続する。はんだ6は、電極31a上に設けられた金属金網3aのアンカー効果によって、電極31aに強固に接続される。電極31aを設けず、金属金網3aのみを介して発熱抵抗線に接続することも考えられるが、成形時に繊維強化プリプレグ2から樹脂が染み込んで金属金網3aを被覆してしまう可能性がある。したがって、電極31aを設け、その上に金属金網3aを積層する構成が好ましい。   FIG. 8 is a diagram for explaining a method of connecting the power supply line to the planar heating element. First, the planar heating element 30 is placed on the floor heating electric heating board 20 so that the through holes 4a to 4c provided in the fiber reinforced prepreg 4 face the through holes 11a to 11c provided in the reinforcing member 10, respectively. Include. In the figure, only the through holes 4a and 11a are shown, and the following description will be given for the through holes 4a and 11a, but the same applies to the through holes 4b, 4c, 11b and 11c. Next, the lead wire 12a connected to the power supply line 12 is connected to the electrode 31a by the solder 6 through the through holes 4a and 11a. The solder 6 is firmly connected to the electrode 31a by the anchor effect of the metal wire mesh 3a provided on the electrode 31a. Although it is conceivable that the electrode 31a is not provided and the heating resistance wire is connected only through the metal wire mesh 3a, there is a possibility that the resin penetrates from the fiber reinforced prepreg 2 and covers the metal wire mesh 3a at the time of molding. Therefore, a configuration in which the electrode 31a is provided and the metal wire mesh 3a is laminated thereon is preferable.

その後、補強部材10に設けられた貫通穴11aに樹脂7を充填することによって、電源線12に接続されたリード線12aを面状発熱体30に強固に接続し、防水することができる。貫通穴11aに充填する樹脂7としては、例えば、エポキシ樹脂やシリコーン樹脂等の熱硬化性樹脂や、ポリプロピレン等の熱可塑性樹脂等が挙げられる。   Thereafter, by filling the through hole 11a provided in the reinforcing member 10 with the resin 7, the lead wire 12a connected to the power supply line 12 can be firmly connected to the planar heating element 30 and waterproofed. Examples of the resin 7 that fills the through hole 11a include thermosetting resins such as epoxy resins and silicone resins, and thermoplastic resins such as polypropylene.

次に、発熱抵抗線の配置パターンについて説明する。図9は、図7Aに示す面状発熱体の、同図中B部付近の部分詳細図である。各並列回路41〜44は、面状発熱体30の敷設直交方向yにおける全幅W、各並列回路41〜44の電気抵抗Ri(ただし、i=41〜44)、ヒーター回路の全電気抵抗R(すなわち、各並列回路41〜44の電気抵抗の和)に対して、
wi=(Ri/R)×W (式1)
によって定められる幅w41〜w44を有する並列回路領域A41〜A44の中に配置されている。発熱体30の全幅Wは不設置領域105の幅を含んでいる。
Next, the arrangement pattern of the heating resistance lines will be described. FIG. 9 is a partial detailed view of the planar heating element shown in FIG. 7A in the vicinity of portion B in FIG. Each of the parallel circuits 41 to 44 has a full width W in the laying-orthogonal direction y of the planar heating element 30, an electrical resistance Ri (where i = 41 to 44) of each parallel circuit 41 to 44, and an overall electrical resistance R ( That is, for the sum of the electrical resistances of the parallel circuits 41 to 44),
wi = (Ri / R) × W (Formula 1)
Are arranged in parallel circuit areas A41 to A44 having widths w41 to w44 defined by The total width W of the heating element 30 includes the width of the non-installation area 105.

まず、簡単な例として、並列回路領域A41〜A44の幅w41〜w44がすべて同一である場合を考える。この場合、式(1)より並列回路41〜44の電気抵抗R41〜R44はすべて同一となる。並列回路領域A41は、桟木22を配置したことにより生じる発熱抵抗線の不設置領域105を含んでいるが、並列回路41は不設置領域105には配置できない。このため、発熱抵抗線32a〜32eは、並列回路領域A41のうち不設置領域105を除いた幅w41’の領域に集中して配置される。すなわち、発熱抵抗線32a〜32eは、並列回路領域A42に設置される発熱抵抗線33a〜33eの配列ピッチよりも小さな配列ピッチで配置される。並列回路41、42の電気抵抗R41、R42は同じであるから、並列回路領域A41で発生する熱量と並列回路領域A42で発生する熱量とは等しい。同様にして、並列回路領域A43で発生する熱量と並列回路領域A44で発生する熱量とは等しくなり、結局、各並列回路領域A41〜A44で発生する熱量は全て等しい。並列回路領域A41〜A44の幅w41〜w44も全て等しいので、並列回路領域A41〜A44の単位面積当たりの平均発熱量は等しくなる。このようにして、並列回路領域A41、A44が一部発熱抵抗線を設置できないエリアを含んでいても、発熱抵抗線を密に配置することによって、式(1)を満たすように発熱抵抗線を配置し、面状発熱体30の発熱を均等化することができる。   First, as a simple example, consider a case where the widths w41 to w44 of the parallel circuit regions A41 to A44 are all the same. In this case, the electric resistances R41 to R44 of the parallel circuits 41 to 44 are all the same from the equation (1). Although the parallel circuit area A41 includes the non-installation area 105 of the heat generation resistance line generated by arranging the crosspiece 22, the parallel circuit 41 cannot be arranged in the non-installation area 105. For this reason, the heating resistance lines 32a to 32e are concentrated in the area of the width w41 'excluding the non-installation area 105 in the parallel circuit area A41. That is, the heating resistance lines 32a to 32e are arranged at an arrangement pitch smaller than the arrangement pitch of the heating resistance lines 33a to 33e installed in the parallel circuit region A42. Since the electric resistances R41 and R42 of the parallel circuits 41 and 42 are the same, the amount of heat generated in the parallel circuit region A41 is equal to the amount of heat generated in the parallel circuit region A42. Similarly, the amount of heat generated in the parallel circuit region A43 is equal to the amount of heat generated in the parallel circuit region A44. Eventually, the amount of heat generated in each parallel circuit region A41 to A44 is all equal. Since the widths w41 to w44 of the parallel circuit areas A41 to A44 are all equal, the average heat generation amount per unit area of the parallel circuit areas A41 to A44 is equal. In this way, even if the parallel circuit regions A41 and A44 include an area where a part of the heating resistance lines cannot be installed, the heating resistance lines are arranged so as to satisfy the formula (1) by arranging the heating resistance lines densely. It can arrange | position and can equalize the heat_generation | fever of the planar heating element 30. FIG.

図10は、並列回路内の各発熱抵抗線の配置パターンを説明するための、図7Aに示す面状発熱体のB部付近の部分詳細図である。発熱抵抗線領域(a11〜a45)と不設置領域105とが重なり、配置できない発熱抵抗線の全ては、不設置領域付近の配置可能な発熱抵抗線領域に配置されている。すなわち、各並列回路を構成する発熱抵抗線の一部は、各並列回路の並列回路領域の幅を各並列回路の発熱抵抗線の本数で除した幅を有する発熱抵抗線領域に配置されている。しかし、不設置領域と少なくとも一部が重なる発熱線領域に割り当てられるべき残りの発熱抵抗線は、不設置領域の近傍の発熱線領域に配置されている。具体的には、並列回路領域A41は領域a11〜a15に5分割され、発熱抵抗線32b〜32eは対応する領域a12〜a15に配置される。しかし、発熱抵抗線32aは対応する領域a11に配置できないため、不設置領域105付近の隣接する領域a12に発熱抵抗線32bとともに配置される。並列回路領域A44の発熱抵抗線35eについても同様である。この配置パターンでは、並列回路領域A41〜A44の単位面積当たりの平均発熱量が等しくなるだけでなく、並列回路領域A41のうち領域a13〜a15の単位面積当たりの平均発熱量、および並列回路領域A44のうち領域a41〜a43の単位面積当たりの平均発熱量が並列回路領域A42、A43のそれと等しくなり、面状発熱体30の発熱を一層均等化することができる。また、不設置領域105で必要な熱量を隣接する領域a12から供給できるので、温度低下を最小限にすることができる。   FIG. 10 is a partial detail view of the vicinity of part B of the planar heating element shown in FIG. 7A for explaining the arrangement pattern of each heating resistance line in the parallel circuit. The heating resistance line regions (a11 to a45) and the non-installation area 105 overlap, and all of the heating resistance lines that cannot be arranged are arranged in the heat generation resistance line area that can be arranged near the non-installation area. That is, a part of the heating resistance lines constituting each parallel circuit is disposed in the heating resistance line area having a width obtained by dividing the width of the parallel circuit area of each parallel circuit by the number of heating resistance lines of each parallel circuit. . However, the remaining heating resistance lines to be allocated to the heating line area that at least partially overlaps the non-installation area are arranged in the heating line area near the non-installation area. Specifically, the parallel circuit region A41 is divided into five regions a11 to a15, and the heating resistance lines 32b to 32e are disposed in the corresponding regions a12 to a15. However, since the heating resistance line 32a cannot be arranged in the corresponding area a11, it is arranged with the heating resistance line 32b in the adjacent area a12 near the non-installation area 105. The same applies to the heating resistance line 35e in the parallel circuit region A44. In this arrangement pattern, not only the average heat generation amount per unit area of the parallel circuit regions A41 to A44 is equal, but also the average heat generation amount per unit area of the regions a13 to a15 in the parallel circuit region A41, and the parallel circuit region A44. Among them, the average heat generation amount per unit area of the regions a41 to a43 is equal to that of the parallel circuit regions A42 and A43, and the heat generation of the planar heating element 30 can be further equalized. Further, since the heat quantity necessary for the non-installation area 105 can be supplied from the adjacent area a12, the temperature drop can be minimized.

なお、本実施形態では発熱抵抗線の不設置領域105は敷設方向xに延びる両方の周縁部28に沿って設けられているが、片側の周縁部28だけに設ける構成も可能である。この場合、不設置領域が設けられていないほうの領域では、発熱抵抗線は中央部と同一ピッチで配置すればよい。   In the present embodiment, the heating resistance wire non-installation region 105 is provided along both peripheral portions 28 extending in the laying direction x. However, a configuration in which only one peripheral portion 28 is provided is also possible. In this case, in the area where the non-installation area is not provided, the heating resistance lines may be arranged at the same pitch as the central portion.

次に、並列回路領域の幅w41〜w44が異なる場合は、まず、電気抵抗R41〜R44を式(1)によって算出する。式(1)より、電気抵抗R41〜R44は対応する並列回路領域A41〜A44の幅w41〜w44に比例した値となるため、電気抵抗R41〜R44も異なる。電気抵抗R41〜R44を互いに異ならせるには2つの方法がある。一つは、各発熱抵抗線の単位長さ当りの抵抗値を並列回路領域A41〜A44ごとに異ならせる方法で、具体的には、個々の並列回路中の発熱抵抗線の太さを全部または部分的に変えることが考えられる。例えば後述する実施例では、3000フィラメントの発熱抵抗線を1000フィラメントあるいは6000フィラメント等の発熱抵抗線に変更すればよい。   Next, when the widths w41 to w44 of the parallel circuit regions are different, first, the electric resistances R41 to R44 are calculated by the equation (1). From the equation (1), the electrical resistances R41 to R44 are values proportional to the widths w41 to w44 of the corresponding parallel circuit regions A41 to A44, and thus the electrical resistances R41 to R44 are also different. There are two methods for making the electrical resistances R41 to R44 different from each other. One is a method in which the resistance value per unit length of each heating resistance line is made different for each of the parallel circuit regions A41 to A44. Specifically, the thickness of the heating resistance line in each parallel circuit is all or It is possible to change partly. For example, in an embodiment described later, the heating resistance wire of 3000 filaments may be changed to a heating resistance wire of 1000 filaments or 6000 filaments.

もう一つの方法は、発熱抵抗線の本数を並列回路領域A41〜A44ごとに異ならせる方法である。図11は、並列回路領域の幅が異なる場合において、発熱抵抗線の本数を並列回路領域の幅に応じて変えた場合の発熱抵抗線の配置パターンを説明するための図で、図7AのB部付近に対応する面状発熱体の部分詳細図である。並列回路領域A41の幅w41と並列回路領域A42の幅w42の比率は7:4であるとする。したがって、式(1)より並列回路41の抵抗R41と並列回路42の抵抗R42の抵抗比は7:4となる。この抵抗比を実現するため、図に示すように、並列回路領域A41には同一径の4本の発熱抵抗線を、並列回路領域A42には当該4本の発熱抵抗線と同一径の7本の発熱抵抗線を設けている。   Another method is a method in which the number of heating resistance lines is made different for each of the parallel circuit regions A41 to A44. FIG. 11 is a diagram for explaining the arrangement pattern of the heating resistance lines when the number of heating resistance lines is changed according to the width of the parallel circuit area when the widths of the parallel circuit areas are different. FIG. 3 is a partial detail view of a planar heating element corresponding to the vicinity of a portion. It is assumed that the ratio of the width w41 of the parallel circuit region A41 and the width w42 of the parallel circuit region A42 is 7: 4. Therefore, from the equation (1), the resistance ratio of the resistor R41 of the parallel circuit 41 and the resistor R42 of the parallel circuit 42 is 7: 4. In order to realize this resistance ratio, as shown in the figure, the parallel circuit region A41 has four heating resistor wires having the same diameter, and the parallel circuit region A42 has seven wires having the same diameter as the four heating resistor wires. The heating resistance wire is provided.

以上は次のように言い換えることもできる。すなわち、並列回路領域の発熱抵抗線の本数を減らすと、電気抵抗が本数と反比例で増加する結果、式(1)より並列回路領域の幅が大きくなる。そして、発熱抵抗線の本数自体も減少しているので、両者の相乗効果によって各発熱抵抗線の領域幅を大きく確保することが可能となる。この結果、不設置領域を含む領域にも発熱抵抗線を配置することができる。本配置パターンでは、各並列回路領域A41〜A44の領域a11〜a14、b11〜b17、c11〜c17、d11〜d14のすべてに発熱抵抗線を配置することができる。   The above can be paraphrased as follows. That is, when the number of heating resistance lines in the parallel circuit region is reduced, the electrical resistance increases in inverse proportion to the number, and as a result, the width of the parallel circuit region becomes larger from the equation (1). Since the number of heating resistance lines itself is also reduced, it is possible to secure a large area width of each heating resistance line by the synergistic effect of both. As a result, it is possible to dispose the heating resistance wire in the region including the non-installation region. In this arrangement pattern, the heating resistance lines can be arranged in all the areas a11 to a14, b11 to b17, c11 to c17, and d11 to d14 of the parallel circuit areas A41 to A44.

上述したように、不設置領域と隣接する領域では発熱抵抗線を均等に配置することが困難な場合がある。しかし、本実施形態では不設置領域を含む並列回路領域で発熱抵抗線の本数を減らすことにより各発熱抵抗線の分担幅を大きくすることができるため、発熱抵抗線同士の間隔を広げることが可能となる。このため、本配置パターンでは、並列回路領域A41〜A44の単位面積当たりの平均発熱量が等しくなるだけでなく、並列回路領域を等分した各領域の単位面積当たりの平均発熱量もすべて揃えることができ、面状発熱体30の発熱を一層均等化することができる。   As described above, it may be difficult to evenly arrange the heating resistance lines in the area adjacent to the non-installation area. However, in this embodiment, by reducing the number of heating resistance lines in the parallel circuit area including the non-installation area, it is possible to increase the sharing width of each heating resistance line, so it is possible to widen the interval between the heating resistance lines. It becomes. For this reason, in this arrangement pattern, not only the average heat generation amount per unit area of the parallel circuit regions A41 to A44 is equal, but also the average heat generation amount per unit area of each region obtained by equally dividing the parallel circuit region. Thus, the heat generated by the planar heating element 30 can be further equalized.

桟木22の幅を縮小すると領域a11に発熱抵抗線32aを配置しやすくなり、一層効果的である。しかし、領域a11に発熱抵抗線32aを配置できない場合でも、図12に示すように不設置領域と隣接する領域に2本の発熱抵抗線をまとめて設置することで、同等の効果が得られる。   If the width of the crosspiece 22 is reduced, the heating resistance wire 32a can be easily arranged in the region a11, which is more effective. However, even when the heat generation resistance wire 32a cannot be arranged in the region a11, the same effect can be obtained by installing two heat generation resistance wires in a region adjacent to the non-installation region as shown in FIG.

(実施例1)
まず、発熱抵抗線を4本並列に接続した並列回路41、44と、7本並列に接続した並列回路42、43とからなる面状発熱体を作成した。本実施例で作成した面状発熱体は図7Aに示すものと同様であるが、並列回路41〜44を構成する発熱抵抗線の本数と配置は、図12のようになっている。
Example 1
First, a planar heating element including parallel circuits 41 and 44 in which four heating resistance wires are connected in parallel and parallel circuits 42 and 43 in which seven heating resistance wires are connected in parallel was created. The planar heating element created in this example is the same as that shown in FIG. 7A, but the number and arrangement of the heating resistance lines constituting the parallel circuits 41 to 44 are as shown in FIG.

まず、各並列回路領域の幅を式(1)より表1のように求め、並列回路41〜44が対応する並列回路領域A41〜A44に配置されるように、各発熱抵抗線を配置した。発熱抵抗線としては、1m当たりの抵抗値が153Ω/mの炭素繊維(東レT300 3000フィラメント)を用いた。並列回路領域A41、A44を4等分した領域のうち、領域a11、d14には幅30mmの釘打ち領域があり、発熱抵抗線を配置する余裕がなかったため、領域a12、d13に2本の発熱抵抗線を配置した。その他の領域には発熱抵抗線を1本ずつ配置した。   First, the width of each parallel circuit region was obtained as shown in Table 1 from Equation (1), and each heating resistance line was arranged so that the parallel circuits 41 to 44 were arranged in the corresponding parallel circuit regions A41 to A44. As the heating resistance wire, a carbon fiber (Toray T300 3000 filament) having a resistance value per meter of 153 Ω / m was used. Of the areas obtained by dividing the parallel circuit areas A41 and A44 into four equal parts, the areas a11 and d14 have nail areas with a width of 30 mm, and there was no room for arranging the heating resistance wires, so two heat generations were made in the areas a12 and d13. A resistance wire was placed. One heating resistance wire was arranged in each other region.

次に、発熱抵抗線を目開き5mmのガラス繊維組布によって上下から挟み込み、熱可塑性樹脂で交点を接合した網目状の組布を作った。この組布を長さ1720mmに切断し、幅15mmの銅箔テープによって隣り合う並列回路を順次電気的に接続して、所定の並列回路と直列回路を形成した。その後、組布をガラス繊維織物にエポキシ樹脂を含浸したプリプレグで上下から挟み込み、積層体を形成した。積層体の上側に、厚さ100μmのアルミ板と厚さ100μmのPETフィルムとを貼り合わせたアルペットを、PETフィルムが積層体側になるように乗せた。さらに、積層体の下側に厚さ50μmのPETフィルムを置き、圧力をかけながら加熱してエポキシ樹脂を硬化させた。以上によって、発熱抵抗線が直線的かつ平行に長さ1690mmで配置された、長さ1820mm、幅455mm、厚さ0.5mmの面状発熱体を得た。   Next, a heating resistance wire was sandwiched from above and below by a glass fiber braid having a mesh opening of 5 mm, and a mesh-like braid having an intersection point joined by a thermoplastic resin was produced. The assembled fabric was cut to a length of 1720 mm, and adjacent parallel circuits were sequentially electrically connected by a copper foil tape having a width of 15 mm to form a predetermined parallel circuit and a series circuit. Thereafter, the braid was sandwiched from above and below with a prepreg in which a glass fiber fabric was impregnated with an epoxy resin to form a laminate. On the upper side of the laminate, an Alpet in which an aluminum plate having a thickness of 100 μm and a PET film having a thickness of 100 μm were bonded together was placed so that the PET film was on the laminate side. Further, a PET film having a thickness of 50 μm was placed on the lower side of the laminate, and the epoxy resin was cured by heating while applying pressure. As described above, a planar heating element having a length of 1820 mm, a width of 455 mm, and a thickness of 0.5 mm, in which the heating resistance lines were linearly and parallelly arranged with a length of 1690 mm, was obtained.

次に、この面状発熱体のアルミ板の付いていない方の面の外周に幅30mm、厚さ8.5mmの桟木を貼り付けた。さらに、桟木に囲まれた部分に厚さ8.5mmの発泡ポリプロピレン製断熱材(発泡倍率12倍)を貼り付けた。そして、面状発熱体の電源との接続部に図6の樹脂製の補強部材を取り付け、電極に電源線を取り付けた。その後、桟木と断熱材の部分にクレープ紙を貼り、補強部材の部分に厚さ0.4mmのアルミ板を貼って蓋をして、床暖房用電熱ボードを形成した。この床暖房用電熱ボード2枚を、面状発熱体のアルミ板が付いている方を上にして床下地に並べて固定し、フローリングを模擬した厚さ12mmの合板を乗せて、気温20℃の環境下で200Vの電圧を印加した。その際、合板表面温度が約30℃となるように制御し、合板表面の幅方向(敷設直交方向y)の温度分布を測定した。   Next, a pedestal having a width of 30 mm and a thickness of 8.5 mm was attached to the outer periphery of the surface of the sheet heating element on which the aluminum plate was not attached. Furthermore, an insulating material made of foamed polypropylene having a thickness of 8.5 mm (foaming ratio 12 times) was attached to the portion surrounded by the pier. And the resin-made reinforcement member of FIG. 6 was attached to the connection part with the power supply of a planar heating element, and the power wire was attached to the electrode. After that, crepe paper was pasted on the pier and the heat insulating material, an aluminum plate having a thickness of 0.4 mm was pasted on the reinforcing member, and a lid was formed to form an electric heating board for floor heating. Two electric heating boards for floor heating are arranged and fixed on the floor base with the aluminum plate of the sheet heating element facing up, and a 12 mm thick plywood that simulates flooring is placed on the floor heating element. A voltage of 200 V was applied under the environment. At that time, the plywood surface temperature was controlled to be about 30 ° C., and the temperature distribution in the width direction (laying orthogonal direction y) of the plywood surface was measured.

その結果、図13に示すように、2つの床暖房用電熱ボードの継ぎ目における温度低下が1℃程度に抑えられ、コールドゾーンの少ない床暖房が実現できた。   As a result, as shown in FIG. 13, the temperature drop at the joint between the two electric heating boards for floor heating was suppressed to about 1 ° C., and floor heating with few cold zones was realized.

Figure 0004746047
Figure 0004746047

(実施例2)
実施例1と同様に、発熱抵抗線を4本並列に接続した並列回路41、44と、7本並列に接続した並列回路42、43とからなる面状発熱体を作成した。本実施例では桟木の幅を15mmと小さく設定した。このため、図11のように並列回路領域A41、A44を4等分した領域、および並列回路領域A42、A43を7等分した領域のすべてに1本の発熱抵抗線を配置することができた。その他の作成方法および測定方法は実施例1と同じである。
(Example 2)
Similar to Example 1, a planar heating element including parallel circuits 41 and 44 in which four heating resistance wires are connected in parallel and parallel circuits 42 and 43 in which seven heating resistance wires are connected in parallel was created. In this embodiment, the width of the pier was set to a small value of 15 mm. For this reason, as shown in FIG. 11, one heating resistor line could be arranged in all of the parallel circuit regions A41 and A44 divided into four equal regions and the parallel circuit regions A42 and A43 divided into seven equal regions. . Other preparation methods and measurement methods are the same as those in the first embodiment.

その結果、図14に示すように、2つの電熱ボードの継ぎ目における温度低下は0.5℃程度とさらに小さく抑えられ、コールドゾーンがほとんど生じない床暖房を実現することができた。   As a result, as shown in FIG. 14, the temperature drop at the joint between the two electric heating boards was further suppressed to about 0.5 ° C., and floor heating with almost no cold zone was realized.

Claims (7)

通電することによって発熱する複数本の発熱抵抗線が並列に接続されてなる並列回路を複数個備えた面状発熱体であって、
各並列回路は互いに隣接しながら平行に延び、隣り合う並列回路同士が順次電気的に直列に接続されることによってヒーター回路を構成し、
前記面状発熱体の、前記並列回路と平行に延びる少なくとも一つの周縁部に沿って、前記発熱抵抗線の不設置領域が設けられ、
前記並列回路の各々は、前記並列回路の延びる方向と直交する方向における、前記不設置領域を含む前記面状発熱体の全幅をW、各並列回路の電気抵抗をRi、前記ヒーター回路の全電気抵抗をRとしたときに、(Ri/R)×Wによって定められる幅を有する並列回路領域に配置されている、面状発熱体。
A planar heating element comprising a plurality of parallel circuits in which a plurality of heating resistance wires that generate heat when energized are connected in parallel,
Each parallel circuit extends in parallel while adjacent to each other, and the adjacent parallel circuits are sequentially electrically connected in series to constitute a heater circuit,
A non-installation area of the heating resistance wire is provided along at least one peripheral edge of the planar heating element extending in parallel with the parallel circuit,
Each of the parallel circuits has a width W of the planar heating element including the non-installation region in a direction orthogonal to a direction in which the parallel circuit extends, Ri, an electric resistance of each parallel circuit, and a total electric power of the heater circuit. A planar heating element disposed in a parallel circuit region having a width defined by (Ri / R) × W, where R is resistance.
各並列回路を構成する各発熱抵抗線は、各並列回路の前記並列回路領域の幅を各並列回路の前記発熱抵抗線の本数で除した幅を有する発熱抵抗線領域に配置されている、請求項1に記載の面状発熱体。  Each heating resistance line constituting each parallel circuit is disposed in a heating resistance line area having a width obtained by dividing the width of the parallel circuit area of each parallel circuit by the number of the heating resistance lines of each parallel circuit. Item 2. The sheet heating element according to Item 1. 各並列回路を構成する前記発熱抵抗線の一部は、各並列回路の前記並列回路領域の幅を各並列回路の前記発熱抵抗線の本数で除した幅を有する発熱抵抗線領域に配置され、
前記不設置領域と少なくとも一部が重なる前記発熱線領域に割り当てられるべき残りの前記発熱抵抗線は、該不設置領域の近傍の前記発熱線領域に配置されている、
請求項1に記載の面状発熱体。
A part of the heating resistance line constituting each parallel circuit is arranged in a heating resistance line area having a width obtained by dividing the width of the parallel circuit area of each parallel circuit by the number of the heating resistance lines of each parallel circuit,
The remaining heating resistance lines to be assigned to the heating line area at least partially overlapping the non-installation area are arranged in the heating line area in the vicinity of the non-installation area,
The planar heating element according to claim 1.
一部の前記並列回路は他の前記並列回路よりも大きな幅を有し、
前記の大きな幅を有する並列回路は、他の前記並列回路よりも少ない数の前記発熱抵抗線から構成されている、請求項1に記載の面状発熱体。
Some of the parallel circuits have a larger width than the other parallel circuits;
2. The planar heating element according to claim 1, wherein the parallel circuit having the large width includes a smaller number of the heating resistance wires than the other parallel circuits.
前記並列回路は偶数個設けられ、
前記並列回路が直列に連結される個数が相等しくなる中央位置に中央電気接続部が設けられ、
前記中央電気接続部をはさんだ両側の前記並列回路は、該中央電気接続部と対応する端部との間における全電気抵抗が互いに等しくされ、かつ互いに独立した直列回路として通電可能となるようにされている、
請求項1に記載の面状発熱体。
The even number of parallel circuits are provided,
A central electrical connection is provided at a central position where the number of the parallel circuits connected in series is equal,
The parallel circuits on both sides of the central electrical connection portion are configured such that the total electrical resistance between the central electrical connection portion and the corresponding end portion is equal to each other and can be energized as a series circuit independent of each other. Being
The planar heating element according to claim 1.
請求項1に記載の面状発熱体が上面に配置された床暖房用電熱ボードであって、
前記電熱ボードの少なくとも周縁部に沿って、前記面状発熱体の裏面に固定された釘打可能な桟木と、
前記面状発熱体の裏面の、前記桟木に囲まれた部分に固定された断熱材と、
前記面状発熱体の裏面に固定され、電源線と該面状発熱体との電気接続部を含む樹脂製の補強部材と、
を有し、
前記補強部材は、前記電源線を曲げ変形させて収納する空隙部を備えている、床暖房用電熱ボード。
An electric heating board for floor heating in which the planar heating element according to claim 1 is disposed on an upper surface,
A nailable pier fixed to the back surface of the planar heating element along at least the peripheral edge of the electric heating board;
A heat insulating material fixed to a portion surrounded by the pier on the back surface of the planar heating element;
A resin reinforcing member fixed to the back surface of the planar heating element and including an electrical connection between the power line and the planar heating element;
Have
The reinforcing member is an electric heating board for floor heating, which includes a gap portion for bending and storing the power line.
請求項6に記載の床暖房用電熱ボードが複数枚連結された床暖房用電熱ボード集合体であって、
隣接する前記床暖房用電熱ボード同士は、前記並列回路と平行に延び互いに対向する周縁部の間で、両床暖房用電熱ボードの間を延びる前記電源線によって電気的に接続され、かつ、各電熱ボードが重ねられて折りたたまれるように機械的な連結手段によって連結されており、
前記折りたたまれた床暖房用電熱ボードを開いて各床暖房用電熱ボードの前記対向する周縁部同士が接するように各床暖房用電熱ボードを敷設する際に、前記空隙部は前記電源線の余長部を収納することができる、
床暖房用電熱ボード集合体。
A floor heating electric board assembly in which a plurality of floor heating electric boards according to claim 6 are connected,
The adjacent floor heating electric heating boards are electrically connected by the power line extending between the floor heating electric heating boards between the peripheral edges extending in parallel with the parallel circuit and facing each other, and It is connected by mechanical connecting means so that the electric heating boards are stacked and folded,
When opening the folded floor heating electric heating board and laying each floor heating electric heating board so that the opposing peripheral portions of each floor heating electric heating board are in contact with each other, the gap portion is a surplus of the power line. The long part can be stored,
Electric heating board assembly for floor heating.
JP2007534469A 2005-09-07 2006-09-07 Planar heating element, electric heating board for floor heating, and electric heating board assembly for floor heating Active JP4746047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007534469A JP4746047B2 (en) 2005-09-07 2006-09-07 Planar heating element, electric heating board for floor heating, and electric heating board assembly for floor heating

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005259360 2005-09-07
JP2005259360 2005-09-07
JP2007534469A JP4746047B2 (en) 2005-09-07 2006-09-07 Planar heating element, electric heating board for floor heating, and electric heating board assembly for floor heating
PCT/JP2006/317749 WO2007029774A1 (en) 2005-09-07 2006-09-07 Planar heat producing body, electric heating board for floor heating, and electric heating board aggregate for floor heating

Publications (2)

Publication Number Publication Date
JPWO2007029774A1 JPWO2007029774A1 (en) 2009-03-19
JP4746047B2 true JP4746047B2 (en) 2011-08-10

Family

ID=37835889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007534469A Active JP4746047B2 (en) 2005-09-07 2006-09-07 Planar heating element, electric heating board for floor heating, and electric heating board assembly for floor heating

Country Status (4)

Country Link
JP (1) JP4746047B2 (en)
KR (1) KR20080041735A (en)
CN (1) CN101258365B (en)
WO (1) WO2007029774A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTV20080126A1 (en) * 2008-10-10 2010-04-11 Gino Tonello HEATING SYSTEM WITH HEATING PANELS ELECTRICALLY POWERED WITH A PERFECT ELECTRICAL CONNECTION DEVICE, PARTICULARLY FOR FLOOR HEATING.
WO2010140452A1 (en) * 2009-06-04 2010-12-09 富士電機リテイルシステムズ株式会社 Heater jacket and container device provided with same
JP6569346B2 (en) * 2015-07-15 2019-09-04 大日本印刷株式会社 Transparent heating plate and window with transparent heating plate
JP6869882B2 (en) * 2017-12-21 2021-05-12 株式会社ニフコ Plane heating element and windshield device for vehicles
CN112822798B (en) * 2020-12-31 2022-11-25 博宇(天津)半导体材料有限公司 Vertical ceramic heater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252295A (en) * 1988-07-06 1990-02-21 Electricite De France Method and apparatus for specifying leak in control rod for nuclear reactor
JPH044589A (en) * 1990-04-23 1992-01-09 Daikin Ind Ltd Surface form heat emitting element for warming floor
JPH05343167A (en) * 1992-06-04 1993-12-24 Matsushita Seiko Co Ltd Face heating element
JP3463898B2 (en) * 1995-02-06 2003-11-05 新日本石油株式会社 Heating element and network structure for heating element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878332A (en) * 1988-01-11 1989-11-07 Infloor, Inc. Electric radiant floor heating system
JP2528304Y2 (en) * 1990-11-26 1997-03-12 東芝機器株式会社 Electric carpet
CN2231468Y (en) * 1995-02-24 1996-07-17 杨墨文 Low temp. radiation electric heating plate
IT1319291B1 (en) * 1999-11-09 2003-10-10 Cadif Srl PANEL FOR ELECTRIC HEATING WITH HIGH SAFETY PERFORMANCE
CN2676072Y (en) * 2003-09-17 2005-02-02 郭德璞 Electrothermal membrane glass heating floor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252295A (en) * 1988-07-06 1990-02-21 Electricite De France Method and apparatus for specifying leak in control rod for nuclear reactor
JPH044589A (en) * 1990-04-23 1992-01-09 Daikin Ind Ltd Surface form heat emitting element for warming floor
JPH05343167A (en) * 1992-06-04 1993-12-24 Matsushita Seiko Co Ltd Face heating element
JP3463898B2 (en) * 1995-02-06 2003-11-05 新日本石油株式会社 Heating element and network structure for heating element

Also Published As

Publication number Publication date
CN101258365B (en) 2010-10-06
JPWO2007029774A1 (en) 2009-03-19
WO2007029774A1 (en) 2007-03-15
KR20080041735A (en) 2008-05-13
CN101258365A (en) 2008-09-03

Similar Documents

Publication Publication Date Title
JP4746047B2 (en) Planar heating element, electric heating board for floor heating, and electric heating board assembly for floor heating
US20060086717A1 (en) Roll-up heating for a floor, or wall
EP3884213B1 (en) A panel and an electrical end connector, a method for coupling of panels and a heating system
US20200173665A1 (en) A heat panel, a heating system and a method for installing such a heating system
KR20040035844A (en) Low-temperature burn preventing electric floor heating system, electric floor heating panel, floor heating floor material, and electric floor heating device
JP2008539347A (en) Building interior wall structure and laying module with electrically controlled flat heating elements
JP2007010304A (en) Floor heater
JP3586588B2 (en) Heater panel for floor heating and method of construction
JP3592691B2 (en) Electric heating board for floor heating
JP3059298U (en) Electric heating board and heater panel for floor heating
JP7333507B2 (en) heating tatami mats
JP4606982B2 (en) Electric heating board and heater panel for floor heating
JPH04251128A (en) Floor board unit for floor heating
JP4041065B2 (en) Low temperature burn prevention electric floor heating system, electric floor heating panel, floor heating floor material, and electric floor heating device
KR100686423B1 (en) Electric heat board for heating a floor, Heater panel, and Establishing method of heater panel for heating a floor
JP2018169146A (en) Floor heating device
JPH0679946U (en) Heating double floor structure
JP4578722B2 (en) Flooring materials and floor heating panels for floor heating floors and floor heating floors
JPH044589A (en) Surface form heat emitting element for warming floor
JP2016091884A (en) Planar carbon heater and method of manufacturing planar carbon heater
JP3953838B2 (en) Floor heating structure for tatami room, planar base material for electric supply and heating tatami
JP3986157B2 (en) Heating unit for floor heating
JPH08152147A (en) Panel for floor heating
JP5253205B2 (en) Electric floor heating panel, electric floor heating structure using the same, and construction method thereof
JP2002050455A (en) Surface-formed heat generation body and thermal equipment using it

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation due to abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350