JP4746019B2 - Optically active β-cyanoisobutyric acid and process for producing the same - Google Patents

Optically active β-cyanoisobutyric acid and process for producing the same Download PDF

Info

Publication number
JP4746019B2
JP4746019B2 JP2007223678A JP2007223678A JP4746019B2 JP 4746019 B2 JP4746019 B2 JP 4746019B2 JP 2007223678 A JP2007223678 A JP 2007223678A JP 2007223678 A JP2007223678 A JP 2007223678A JP 4746019 B2 JP4746019 B2 JP 4746019B2
Authority
JP
Japan
Prior art keywords
optically active
cyanoisobutyric
cyanoisobutyric acid
formula
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007223678A
Other languages
Japanese (ja)
Other versions
JP2007319165A (en
Inventor
兼彦 榎本
英司 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2007223678A priority Critical patent/JP4746019B2/en
Publication of JP2007319165A publication Critical patent/JP2007319165A/en
Application granted granted Critical
Publication of JP4746019B2 publication Critical patent/JP4746019B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、光学活性医薬品、光学活性農薬などの製造中間体として有用な、新規光学活性β−シアノイソ酪酸類及びその製造方法に関する。   The present invention relates to a novel optically active β-cyanoisobutyric acid useful as an intermediate for producing optically active pharmaceuticals, optically active agricultural chemicals and the like and a method for producing the same.

ラセミ体β−シアノイソ酪酸エステルの製造方法としては、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5、特許文献6等に記載される方法が公知である。しかしながら、これらの光学活性体及びその製造方法については知られていない。
米国特許第3,644,467号明細書 米国特許第3,644,468号明細書 米国特許第2,810,742号明細書 英国特許第808,835号公報 特開平8−291158公報 特開平9−67330号公報
As a method for producing a racemic β-cyanoisobutyric acid ester, methods described in Patent Literature 1, Patent Literature 2, Patent Literature 3, Patent Literature 4, Patent Literature 5, Patent Literature 6, and the like are known. However, these optically active substances and production methods thereof are not known.
US Pat. No. 3,644,467 US Pat. No. 3,644,468 US Pat. No. 2,810,742 British Patent No. 808,835 JP-A-8-291158 JP-A-9-67330

本発明の課題は、光学活性医薬品や光学活性農薬などの有効な製造中間体である光学活性β−シアノイソ酪酸類と、その製造方法を提供することにある。   An object of the present invention is to provide an optically active β-cyanoisobutyric acid that is an effective production intermediate for optically active pharmaceuticals and optically active agricultural chemicals, and a method for producing the same.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、ラセミ体β−シアノイソ酪酸エステルを、光学選択的に加水分解する能力のある酵素及び該酵素生産能を有する微生物を見い出し、本発明を完成した。
即ち、本発明は、一般式(1):
NCCH2*H(CH3)COOR1 (1)
(式中、R1は水素又は炭素原子数1〜6のアルキル基を示す。*が付された炭素原子は不斉炭素原子である。)
で表される光学活性β−シアノイソ酪酸類である。
As a result of intensive studies to solve the above problems, the present inventors have found an enzyme capable of optically hydrolyzing racemic β-cyanoisobutyric acid ester and a microorganism having the enzyme producing ability, The present invention has been completed.
That is, the present invention relates to the general formula (1):
NCCH 2 C * H (CH 3 ) COOR 1 (1)
(In the formula, R 1 represents hydrogen or an alkyl group having 1 to 6 carbon atoms. The carbon atom marked with * is an asymmetric carbon atom.)
Is an optically active β-cyanoisobutyric acid represented by

また、本発明は、一般式(2):
NCCH2*H(CH3)COOR2 (2)
(式中、R2は炭素原子数1〜6のアルキル基を示す。*が付された炭素原子は不斉炭素原子である。)
で表されるラセミ体β−シアノイソ酪酸エステルを、エステル不斉加水分解酵素、又は該酵素生産能を有する微生物の培養物、菌体もしくは菌体処理物の存在下で不斉加水分解することを特徴とする、一般式(3):
NCCH2*H(CH3)COOR2 (3)
(式中、R2は前記のとおりである。*が付された炭素原子は不斉炭素原子である。)
で表される光学活性β−シアノイソ酪酸エステル及び/又はその対掌体である式(4):
NCCH2*H(CH3)COOH (4)
(式中、*が付された炭素原子は不斉炭素原子である。)
で表される光学活性β−シアノイソ酪酸の製造方法である。
In addition, the present invention relates to a general formula (2):
NCCH 2 C * H (CH 3 ) COOR 2 (2)
(In the formula, R 2 represents an alkyl group having 1 to 6 carbon atoms. The carbon atom marked with * is an asymmetric carbon atom.)
Racemic β-cyanoisobutyric acid ester represented by the following: asymmetric hydrolysis in the presence of an ester asymmetric hydrolase, or a culture, cell or treated cell of a microorganism having the enzyme-producing ability Characteristic, general formula (3):
NCCH 2 C * H (CH 3 ) COOR 2 (3)
(In the formula, R 2 is as described above. The carbon atom marked with * is an asymmetric carbon atom.)
Formula (4) which is an optically active β-cyanoisobutyric acid ester represented by the formula:
NCCH 2 C * H (CH 3 ) COOH (4)
(In the formula, carbon atoms marked with * are asymmetric carbon atoms.)
It is a manufacturing method of optically active beta-cyanoisobutyric acid represented by these.

本発明によれば、光学活性医薬品や光学活性農薬等の有効な製造中間体である新規光学活性β−カルボキシアミノイソ酪酸類が得られる。   According to the present invention, novel optically active β-carboxyaminoisobutyric acids that are effective production intermediates for optically active pharmaceuticals and optically active agricultural chemicals can be obtained.

以下、本発明を詳細に説明する。
一般式(1)〜(3)において、R1又はR2で表される炭素原子数1〜6のアルキル基は、それぞれ直鎖状及び分岐状のいずれの構造でもよい。具体的には、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、sec-ブチル、tert−ブチル、イソブチル、n-ペンチル等が例示される。
Hereinafter, the present invention will be described in detail.
In the general formulas (1) to (3), the alkyl group having 1 to 6 carbon atoms represented by R 1 or R 2 may have a linear or branched structure. Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, isobutyl, n-pentyl and the like.

本発明の上記一般式(1)の光学活性化合物は以下の方法で製造することができる。
原料としては、上記一般式(2)で表されるラセミ体β−シアノイソ酪酸エステルを用いる。このラセミ体β−シアノイソ酪酸エステルは、従来公知の一般的な方法で製造することができる。例えば、ラセミ体β−シアノイソ酪酸メチルは、メチルメタクリレートと青酸をアルカリ性触媒存在下で反応させることにより製造することができる(英国特許第808,835号公報、米国特許第2,810,742号明細書,米国特許第3,644,467号明細書,特開平8−291158公報、特開平9−67330号公報)。
The optically active compound of the general formula (1) of the present invention can be produced by the following method.
As a raw material, a racemic β-cyanoisobutyric acid ester represented by the general formula (2) is used. This racemic β-cyanoisobutyric acid ester can be produced by a conventionally known general method. For example, racemic methyl β-cyanoisobutyrate can be produced by reacting methyl methacrylate and hydrocyanic acid in the presence of an alkaline catalyst (UK Patent 808,835, US Patent 2,810,742). (U.S. Pat. No. 3,644,467, JP-A-8-291158, JP-A-9-67330).

本発明において使用する酵素は、一般式(2)で表されるラセミ体β−シアノイソ酪酸エステルのエステル結合を不斉加水分解する活性を有するものであれば酵素の種類、その製造源を問わない。そのような酵素には、リパーゼ、エステラーゼ及びプロテアーゼ類が含まれる。酵素としては、例えば、エステル不斉加水分解酵素生産能を有する微生物由来の酵素を用いることができる。エステル不斉加水分解能を有する微生物の代表的なものとしては、シュードモナス(Pseudomonas) 属、及びエシェリキア(Escherichia)属に属する微生物が挙げられる。具体的には、シュードモナス・プチダ(Pseudomonas putida)FERM BP-3846、エシェリキア・コリ(Escherichia coli)FERM BP-3835等が挙げられる。尚、エシェリキア・コリ FERM BP-3835 は、シュードモナス・プチダ FERM BP-3846 由来のエステラーゼをコードする遺伝子によって形質転換された株である。   The enzyme used in the present invention is not limited to the kind of enzyme and its source as long as it has an activity to asymmetrically hydrolyze the ester bond of the racemic β-cyanoisobutyric acid ester represented by the general formula (2). . Such enzymes include lipases, esterases and proteases. As the enzyme, for example, a microorganism-derived enzyme having the ability to produce an ester asymmetric hydrolase can be used. Representative microorganisms having an ester asymmetric hydrolysis ability include microorganisms belonging to the genus Pseudomonas and the genus Escherichia. Specific examples include Pseudomonas putida FERM BP-3846, Escherichia coli FERM BP-3835, and the like. Escherichia coli FERM BP-3835 is a strain transformed with a gene encoding an esterase derived from Pseudomonas putida FERM BP-3846.

上記微生物の培養は、液体培地でも固体培地でも行うことができる。培地としては、微生物が通常資化しうる炭素源、窒素源、ビタミン、ミネラルなどの成分を適宜配合したものが用いられる。微生物の加水分解能を向上させるため、培地にエステルを少量添加することも可能である。培養は、微生物が生育可能である温度、pHで行われるが、使用する菌株の最適培養条件で行えばよい。微生物の生育を促進させるため、通気攪拌を行ってもよい。   The microorganism can be cultured in a liquid medium or a solid medium. As the medium, a medium in which components such as a carbon source, a nitrogen source, vitamins, and minerals that can normally be utilized by microorganisms are appropriately blended is used. In order to improve the hydrolytic ability of microorganisms, a small amount of ester can be added to the medium. The culture is performed at a temperature and pH at which the microorganism can grow, but may be performed under the optimal culture conditions for the strain to be used. In order to promote the growth of microorganisms, aeration and agitation may be performed.

また、本発明においては、精製酵素はもちろんのこと、上記のエステル不斉加水分解酵素生産能を有する微生物を培地中で培養して得られる培養物をそのままか、又は該培養物から遠心分離等の集菌操作によって得られる菌体若しくはその菌体処理物を用いることもできる。菌体処理物としては、アセトン、トルエン等で処理した菌体、凍結乾燥菌体、菌体破砕物、無細胞抽出物、無細胞抽出物からゲル濾過、イオン交換クロマトグラフィー等の分離操作により得られる粗酵素等が挙げられる。微生物菌体又は酵素は、架橋したアクリルアミドゲルなどに包括固定化したり、イオン交換樹脂、ケーソー土等の固体担体に物理的、化学的に固定化して用いることができる。これにより反応を行った後に回収再利用することが容易になる。   Further, in the present invention, not only the purified enzyme, but also the culture obtained by culturing the above-mentioned microorganism having the ability to produce an ester asymmetric hydrolase in a culture medium as it is, or centrifuged from the culture, etc. It is also possible to use microbial cells obtained by the above bacterial collection operation or processed microbial cells thereof. Cell processed products can be obtained from cells treated with acetone, toluene, etc., freeze-dried cells, crushed cells, cell-free extracts, and cell-free extracts by gel filtration, ion exchange chromatography and other separation operations. Crude enzyme and the like. The microbial cell or enzyme can be used by being comprehensively immobilized on a cross-linked acrylamide gel or the like, or physically and chemically immobilized on a solid support such as an ion exchange resin or caustic soil. This facilitates recovery and reuse after the reaction.

エステル不斉加水分解酵素としては市販品を用いることができる。具体的には、リパーゼOF(商品名、名糖産業社製、キャンディダ由来)、デュラザイム(商品名、NOVO社製、バシラス属由来)、サビナーゼ(商品名、NOVO社製、バシラス属由来)、Flavourzyme MG(商品名、NOVO社製、アスペルギルス属由来)、リパーゼA-6 (商品名、天野製薬製、アスペルギルス属由来)、リパーゼM(商品名、天野製薬製、ムコール属由来)、ニューラーゼF(商品名、天野製薬製、リゾプス属由来)、Lipase type VII (商品名、SIGMA社製、キャンディダ属由来)、Acylase I (商品名、SIGMA社製、アスペルギルス属由来)、Tripsin type II (商品名、SIGMA社製、ブタ膵臓由来)、Protease type XVI (商品名、SIGMA製、バシルス属由来)、Palatase(商品名、NOVO社製)等を用いることができる。   A commercially available product can be used as the ester asymmetric hydrolase. Specifically, lipase OF (trade name, manufactured by Meika Sangyo Co., Ltd., derived from Candida), durazyme (trade name, manufactured by NOVO, derived from Bacillus), sabinase (trade name, manufactured by NOVO, manufactured by Bacillus), Flavorzyme MG (trade name, manufactured by NOVO, Aspergillus genus), lipase A-6 (trade name, manufactured by Amano, Aspergillus genus), lipase M (trade name, manufactured by Amano, genus Mucor), Neurase F (Brand name, Amano Pharmaceutical, Rhizopus genus), Lipase type VII (Brand name, SIGMA, Candida genus), Acylase I (Brand name, SIGMA, Aspergillus genus), Tripsin type II (Product) Name, manufactured by SIGMA, derived from porcine pancreas), proteinase type XVI (trade name, manufactured by SIGMA, derived from Bacillus), Palatase (trade name, manufactured by NOVO) and the like can be used.

一般式(2)で表されるラセミ体β−シアノイソ酪酸エステルの光学選択的な加水分解は、以下のようにして行うことができる。すなわち、反応媒体に基質であるラセミ体β−シアノイソ酪酸エステルを添加して溶解乃至懸濁し、触媒である酵素又は微生物の培養物等を加える。ただし、この触媒は、基質を反応媒体に添加する前に加えてもよい。そして、反応温度及び必要により反応液のpHを制御しながらラセミ体β−シアノイソ酪酸エステルの加水分解反応を行う。この加水分解反応は半量程度が反応するまで行うが、場合によっては、基質の半量未満で反応を終了したり、基質の半量を越えて過剰に反応させることもある。   The optically selective hydrolysis of the racemic β-cyanoisobutyric acid ester represented by the general formula (2) can be carried out as follows. That is, a racemic β-cyanoisobutyric acid ester as a substrate is added to the reaction medium and dissolved or suspended, and an enzyme or microorganism culture as a catalyst is added. However, this catalyst may be added before the substrate is added to the reaction medium. Then, the racemic β-cyanoisobutyric acid ester is hydrolyzed while controlling the reaction temperature and, if necessary, the pH of the reaction solution. This hydrolysis reaction is carried out until about half of the amount has reacted, but depending on the case, the reaction may be completed with less than half of the substrate, or the reaction may be excessively performed with more than half of the substrate.

反応媒体としては、例えばイオン交換水、緩衝液等が用いられる。
反応液中の基質濃度は0.1〜70重量%の範囲であれば特に制限はないが、基質となるラセミ体β−シアノイソ酪酸エステルの溶解度、反応性などを考慮すると5〜40重量%の範囲であるのが好ましい。
反応温度は、好ましくは5〜70℃であり、より好ましくは20〜60℃である。
As the reaction medium, for example, ion exchange water, a buffer solution or the like is used.
The substrate concentration in the reaction solution is not particularly limited as long as it is in the range of 0.1 to 70% by weight, but it is 5 to 40% by weight in consideration of the solubility and reactivity of the racemic β-cyanoisobutyric acid ester serving as the substrate. A range is preferred.
The reaction temperature is preferably 5 to 70 ° C, more preferably 20 to 60 ° C.

反応液のpHは用いる酵素又は微生物の不斉加水分解能の至適pHに依存するが、一般的にはpH6〜8の範囲内で実施すると化学的加水分解反応による光学純度の低下を抑えることができるので好ましい。反応が進行するに従って、生成したカルボン酸により反応液のpHが低下してくるので、適当な中和剤で最適pHに維持しながら反応を行うことが望ましい。なお、以上のような基質濃度、媒体、温度、pH及びその反応条件は、反応収率、光学収量を考慮して目的とする光学活性化合物が有利に得られる条件を適宜選択することが望ましい。   The pH of the reaction solution depends on the optimum pH of the asymmetric hydrolysis ability of the enzyme or microorganism to be used, but in general, when carried out within the range of pH 6 to 8, it can suppress a decrease in optical purity due to chemical hydrolysis reaction. It is preferable because it is possible. As the reaction proceeds, the pH of the reaction solution is lowered due to the produced carboxylic acid. Therefore, it is desirable to carry out the reaction while maintaining the optimum pH with an appropriate neutralizing agent. The substrate concentration, medium, temperature, pH and reaction conditions as described above are preferably selected as appropriate so that the desired optically active compound can be advantageously obtained in consideration of the reaction yield and optical yield.

このような不斉加水分解反応により、上記式(4)で表される光学活性β−シアノイソ酪酸が生成する。また、未反応の残存基質は、生成した光学活性βシアノイソ酪酸の対掌体を主成分とする上記一般式(3)で表される光学活性β−シアノイソ酪酸エステルとなる。   By such asymmetric hydrolysis reaction, optically active β-cyanoisobutyric acid represented by the above formula (4) is generated. Further, the unreacted residual substrate is an optically active β-cyanoisobutyric acid ester represented by the above general formula (3) mainly composed of an enantiomer of the generated optically active β cyanoisobutyric acid.

反応終了後、反応液から、ヘキサン、酢酸エチルなどの溶剤で抽出することにより、本発明の化合物である未反応の光学活性β−シアノイソ酪酸エステルを分離することができる。その際、予め、触媒として使用した微生物菌体、酵素等を遠心分離、濾過などの操作により除去し、その後に溶剤抽出を行うことで抽出操作をより容易に行うことができる。一方、抽出残液を硫酸、塩酸などの酸でpH1〜2とした後に、ヘキサン、酢酸エチルなどの溶剤で抽出することによりその対掌体である光学活性β−シアノイソ酪酸を得ることができる。抽出された生成物と溶媒は、蒸留等の公知の方法により容易に分離できる。   After the reaction is completed, the unreacted optically active β-cyanoisobutyric acid ester which is the compound of the present invention can be separated from the reaction solution by extraction with a solvent such as hexane or ethyl acetate. At that time, the microbial cells, enzymes and the like used as the catalyst are removed in advance by an operation such as centrifugation and filtration, and then the solvent extraction is performed, whereby the extraction operation can be performed more easily. On the other hand, the extraction residual liquid is adjusted to pH 1-2 with an acid such as sulfuric acid or hydrochloric acid, and then extracted with a solvent such as hexane or ethyl acetate to obtain the enantiomer optically active β-cyanoisobutyric acid. The extracted product and solvent can be easily separated by a known method such as distillation.

さらに、得られた光学活性β−シアノイソ酪酸エステルは、通常の方法で加水分解することにより光学活性を維持したままβ−シアノイソ酪酸にすることができる。また、光学活性β−シアノイソ酪酸は、通常の方法でエステル化することにより光学活性を維持したままβ−シアノイソ酪酸エステルにすることができる。従って、任意の立体配置のβ−シアノイソ酪酸を取得することができる。   Furthermore, the obtained optically active β-cyanoisobutyric acid ester can be converted to β-cyanoisobutyric acid while maintaining the optical activity by hydrolysis by a usual method. Further, the optically active β-cyanoisobutyric acid can be converted to β-cyanoisobutyric acid ester while maintaining the optical activity by esterification by a usual method. Therefore, β-cyanoisobutyric acid having an arbitrary configuration can be obtained.

以下、本発明を実施例によって具体的に説明するが、本発明の範囲はこれらの実施例の範囲に限定されるものではない。
〔実施例1〕
光学活性−β−シアノイソ酪酸類の合成
エシェリキア・コリ(Escherichia coli) FERM BP-3835 を、アンピシリン50μg/mlを含むLB培地(1%ポリペプトン、0.5%酵母エキス、0.5%NaCl)50mlに植菌し、37℃で24時間振盪培養した。培養終了後、培養液を遠心分離して菌体を採取した。得られた菌体の全量をイオン交換水で洗浄した。洗浄後、50mMリン酸緩衝液(pH7.0)50mlに懸濁した。この菌体懸濁液にラセミ体β−シアノイソ酪酸メチルエステルを5g添加し、30℃で20時間反応させた。この間、反応液のpHを、1NのNaOH水溶液を用いて7.0に調整した。反応終了後、遠心分離により菌体を除き、未反応のβ−シアノイソ酪酸メチルを酢酸エチルで抽出した。有機相に無水硫酸ナトリウムを加えて脱水し、溶媒を蒸発留去した。このようにして、1.2gの光学活性β−シアノイソ酪酸メチルエステルを得た。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited to the scope of these examples.
[Example 1]
Synthesis of optically active β-cyanoisobutyric acid Escherichia coli FERM BP-3835 in LB medium (1% polypeptone, 0.5% yeast extract, 0.5% NaCl) containing 50 μg / ml of ampicillin And inoculated at 37 ° C. for 24 hours with shaking. After completion of the culture, the culture solution was centrifuged to collect microbial cells. The whole amount of the obtained microbial cells was washed with ion exchange water. After washing, it was suspended in 50 ml of 50 mM phosphate buffer (pH 7.0). To this bacterial cell suspension, 5 g of racemic β-cyanoisobutyric acid methyl ester was added and reacted at 30 ° C. for 20 hours. During this time, the pH of the reaction solution was adjusted to 7.0 using a 1N NaOH aqueous solution. After completion of the reaction, the cells were removed by centrifugation, and unreacted methyl β-cyanoisobutyrate was extracted with ethyl acetate. The organic phase was dehydrated by adding anhydrous sodium sulfate, and the solvent was distilled off. In this way, 1.2 g of optically active β-cyanoisobutyric acid methyl ester was obtained.

得られた光学活性β−シアノイソ酪酸メチルエステルについて、高速液体クロマトグラフィー(カラム:Chiralcel OD(ダイセル社製)、移動層:ヘキサン/イソプロパノール/TFA=90/10/0.1、流速:0.5ml/min)で光学純度を測定したところ、(S)体97.5%e.e.であった。   About the obtained optically active β-cyanoisobutyric acid methyl ester, high performance liquid chromatography (column: Chiralcel OD (manufactured by Daicel), moving bed: hexane / isopropanol / TFA = 90/10 / 0.1, flow rate: 0.5 ml / min), the optical purity was measured and found to be (S) 97.5% ee.

上記の酢酸エチル抽出における抽出残液である水相に2N塩酸を添加してpHを2.0に調整し、反応生成物である光学活性β−シアノイソ酪酸を酢酸エチルで抽出した。有機相に無水硫酸ナトリウムを加えて脱水し、溶媒を蒸発留去した。このようにして、2.5gの光学活性β−シアノイソ酪酸を得た。
得られた光学活性β−シアノイソ酪酸について上記と同様にして光学純度を測定したところ、(R)体31%e.e.であった。
2N hydrochloric acid was added to the aqueous phase that was the extraction residue in the above ethyl acetate extraction to adjust the pH to 2.0, and the optically active β-cyanoisobutyric acid that was the reaction product was extracted with ethyl acetate. The organic phase was dehydrated by adding anhydrous sodium sulfate, and the solvent was distilled off. In this way, 2.5 g of optically active β-cyanoisobutyric acid was obtained.
When the optical purity of the obtained optically active β-cyanoisobutyric acid was measured in the same manner as described above, it was (R) isomer 31% ee.

以下、(S)−β−シアノイソ酪酸メチルエステルの物性値を示す。
1H−NMRスペクトル(図1))
溶媒:CDCl3、内部標準:TMS
δH 1.23〜1.26(3H,d,−CH3
δH 2.70〜2.73(2H,m,−CH2 −)
δH 2.84〜2.92(1H,m,−CH−)
δH 3.67 (3H,s,−CH3
Hereinafter, physical property values of (S) -β-cyanoisobutyric acid methyl ester are shown.
( 1 H-NMR spectrum (FIG. 1))
Solvent: CDCl 3 Internal standard: TMS
δ H 1.23 to 1.26 (3H, d, —CH 3 )
δ H 2.70 to 2.73 (2H, m, —CH 2 —)
δ H 2.84 to 2.92 (1H, m, —CH—)
δ H 3.67 (3H, s, —CH 3 )

13C−NMRスペクトル(図2))
溶媒:CDCl3、内部標準:TMS
δC 16.24 (−CH3
δC 20.48 (−CH2 −)
δC 35.57 (−CH−)
δC 118.79 (−CN)
δC 173.70 (−COOCH3
( 13 C-NMR spectrum (FIG. 2))
Solvent: CDCl 3 Internal standard: TMS
δ C 16.24 (-CH 3 )
δ C 20.48 (-CH 2- )
δ C 35.57 (—CH—)
δ C 118.79 (-CN)
δ C 173.70 (—COOCH 3 )

(光学純度)
(S)体 97.5%e.e.
(比旋光度)
[α]D 25=−9.97(neat)
(Optical purity)
(S) Body 97.5% ee
(Specific rotation)
[α] D 25 = −9.97 (neat)

以下、(R)−β−シアノイソ酪酸の物性値を示す。
1H−NMRスペクトル(図3))
溶媒:CDCl3、内部標準:TMS
δH 1.21〜1.24(3H,d,−CH3
δH 2.63〜2.66(2H,m,−CH2 −)
δH 2.71〜2.79(1H,m,−CH−)
δH 10.47 (1H,s,−OH)
Hereinafter, physical property values of (R) -β-cyanoisobutyric acid are shown.
( 1 H-NMR spectrum (FIG. 3))
Solvent: CDCl 3 Internal standard: TMS
δ H 1.21-1.24 (3H, d, —CH 3 )
δ H 2.63 to 2.66 (2H, m, —CH 2 —)
δ H 2.71 to 2.79 (1H, m, —CH—)
δ H 10.47 (1H, s, -OH)

13C−NMRスペクトル(図4))
溶媒:CDCl3、内部標準:TMS
δC 16.29 (−CH3
δC 20.40 (−CH2 −)
δC 35.50 (−CH−)
δC 119.03 (−CN)
δC 174.83 (−COOH)
( 13 C-NMR spectrum (FIG. 4))
Solvent: CDCl 3 Internal standard: TMS
δ C 16.29 (-CH 3 )
δ C 20.40 (—CH 2 —)
δ C 35.50 (—CH—)
δ C 119.03 (-CN)
δ C 174.83 (—COOH)

(光学純度)
(R)体 31%e.e.
(Optical purity)
(R) Body 31% ee

〔実施例2〕
光学活性(R)−β−シアノイソ酪酸誘導体の合成
50mMリン酸緩衝液(pH7.0)50mlに1gのリパーゼOF(商品名、名糖産業社製、キャンディダ属由来)を溶解した。この溶液にラセミ体β−シアノイソ酪酸メチルエステルを2.5g添加し、30℃で20時間反応させた。この間、反応液のpHを、1NのNaOH水溶液を用いて7.0に調整した。反応終了後、未反応のβ−シアノイソ酪酸メチルを酢酸エチルで抽出した。有機相に無水硫酸ナトリウムを加えて脱水し、溶媒を蒸発留去した。このようにして、0.4gの光学活性β−シアノイソ酪酸メチルエステルを得た。
[Example 2]
Synthesis of optically active (R) -β-cyanoisobutyric acid derivative 1 g of lipase OF (trade name, manufactured by Meisho Sangyo Co., Ltd., Candida genus) was dissolved in 50 ml of 50 mM phosphate buffer (pH 7.0). To this solution, 2.5 g of racemic β-cyanoisobutyric acid methyl ester was added and reacted at 30 ° C. for 20 hours. During this time, the pH of the reaction solution was adjusted to 7.0 using a 1N NaOH aqueous solution. After completion of the reaction, unreacted methyl β-cyanoisobutyrate was extracted with ethyl acetate. The organic phase was dehydrated by adding anhydrous sodium sulfate, and the solvent was distilled off. In this way, 0.4 g of optically active β-cyanoisobutyric acid methyl ester was obtained.

さらに、得られた光学活性β−シアノイソ酪酸メチルエステルは、通常の方法で加水分解することにより光学活性を維持したままβ−シアノイソ酪酸にすることができる。また、光学活性β−シアノイソ酪酸は、通常の方法でエステル化することにより光学活性を維持したままβ−シアノイソ酪酸エステルにすることができる。従って、任意の立体配置を取得することができる。   Furthermore, the obtained optically active β-cyanoisobutyric acid methyl ester can be converted to β-cyanoisobutyric acid while maintaining the optical activity by hydrolysis by a usual method. Further, the optically active β-cyanoisobutyric acid can be converted to β-cyanoisobutyric acid ester while maintaining the optical activity by esterification by a usual method. Therefore, an arbitrary three-dimensional configuration can be acquired.

得られた光学活性β−シアノイソ酪酸メチルエステルについて、高速液体クロマトグラフィー(カラム:Chiralpak AS(ダイセル社製)、移動層:ヘキサン/イソプロパノール/TFA=90/10/0.1、流速:0.5ml/min)で光学純度を測定したところ、(R)体92.3%e.e.であった。   About the obtained optically active β-cyanoisobutyric acid methyl ester, high performance liquid chromatography (column: Chiralpak AS (manufactured by Daicel), moving bed: hexane / isopropanol / TFA = 90/10 / 0.1, flow rate: 0.5 ml / min), the optical purity was measured and found to be 92.3% ee of (R) isomer.

〔実施例3〜13〕
ラセミ体β−シアノイソ酪酸メチルエステルを2%溶解した50mMリン酸緩衝液(pH7.0)1mlに、表1に示す酵素0.02〜0.05gを加えた後、30℃で20時間反応させた。反応液に酢酸エチル1mlを加えて十分に攪拌した後、有機相を高速液体クロマトグラフィー(カラム:Chiralpak AS(ダイセル社製)、移動層:ヘキサン/イソプロパノール/TFA=90/10/0.1、流速:0.5ml/min)にかけて生成した光学活性β−シアノイソ酪酸メチルエステルの光学純度を測定した。その結果を表1に示す。
[Examples 3 to 13]
0.02 to 0.05 g of the enzyme shown in Table 1 was added to 1 ml of 50 mM phosphate buffer (pH 7.0) in which 2% of racemic β-cyanoisobutyric acid methyl ester was dissolved, and then reacted at 30 ° C. for 20 hours. It was. After adding 1 ml of ethyl acetate to the reaction solution and stirring sufficiently, the organic phase was subjected to high performance liquid chromatography (column: Chiralpak AS (manufactured by Daicel), moving bed: hexane / isopropanol / TFA = 90/10 / 0.1, The optical purity of the optically active β-cyanoisobutyric acid methyl ester produced at a flow rate of 0.5 ml / min was measured. The results are shown in Table 1.

Figure 0004746019
Figure 0004746019

実施例1で得られた(S)−β−シアノイソ酪酸メチルエステルの1H−NMRスペクトルを示す図である。1 is a diagram showing a 1 H-NMR spectrum of (S) -β-cyanoisobutyric acid methyl ester obtained in Example 1. FIG. 実施例1で得られた(S)−β−シアノイソ酪酸メチルエステルの13C−NMRスペクトルを示す図である。1 is a diagram showing a 13 C-NMR spectrum of (S) -β-cyanoisobutyric acid methyl ester obtained in Example 1. FIG. 実施例1で得られた(R)−β−シアノイソ酪酸の1H−NMRスペクトルを示す図である。1 is a diagram showing a 1 H-NMR spectrum of (R) -β-cyanoisobutyric acid obtained in Example 1. FIG. 実施例1で得られた(R)−β−シアノイソ酪酸の13C−NMRスペクトルを示す図である。1 is a diagram showing a 13 C-NMR spectrum of (R) -β-cyanoisobutyric acid obtained in Example 1. FIG.

Claims (1)

一般式(2):
NCCH2*H(CH3)COOR2 (2)
(式中、R2は炭素原子数1〜6のアルキル基を示す。*が付された炭素原子は不斉炭素原子である。)
で表されるラセミ体β−シアノイソ酪酸エステルを、エステル不斉加水分解酵素であるリパーゼOF(商標)の存在下で不斉加水分解することを特徴とする、一般式(3):
NCCH2*H(CH3)COOR2 (3)
(式中、R2は前記のとおりである。*が付された炭素原子は不斉炭素原子である。)
で表される光学活性β−シアノイソ酪酸エステル及び/又はその対掌体である式(4):
NCCH2*H(CH3)COOH (4)
(式中、*が付された炭素原子は不斉炭素原子である。)
で表される光学活性β−シアノイソ酪酸の製造方法。
General formula (2):
NCCH 2 C * H (CH 3 ) COOR 2 (2)
(In the formula, R 2 represents an alkyl group having 1 to 6 carbon atoms. The carbon atom marked with * is an asymmetric carbon atom.)
Wherein the racemic β-cyanoisobutyric acid ester is asymmetrically hydrolyzed in the presence of lipase OF (trademark) , which is an ester asymmetric hydrolase , represented by the general formula (3):
NCCH 2 C * H (CH 3 ) COOR 2 (3)
(In the formula, R 2 is as described above. The carbon atom marked with * is an asymmetric carbon atom.)
Formula (4) which is an optically active β-cyanoisobutyric acid ester represented by the formula:
NCCH 2 C * H (CH 3 ) COOH (4)
(In the formula, carbon atoms marked with * are asymmetric carbon atoms.)
The manufacturing method of optically active beta-cyanoisobutyric acid represented by these.
JP2007223678A 2007-08-30 2007-08-30 Optically active β-cyanoisobutyric acid and process for producing the same Expired - Fee Related JP4746019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007223678A JP4746019B2 (en) 2007-08-30 2007-08-30 Optically active β-cyanoisobutyric acid and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007223678A JP4746019B2 (en) 2007-08-30 2007-08-30 Optically active β-cyanoisobutyric acid and process for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24886497A Division JP4565672B2 (en) 1997-09-12 1997-09-12 Optically active β-cyanoisobutyric acid and process for producing the same

Publications (2)

Publication Number Publication Date
JP2007319165A JP2007319165A (en) 2007-12-13
JP4746019B2 true JP4746019B2 (en) 2011-08-10

Family

ID=38852461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007223678A Expired - Fee Related JP4746019B2 (en) 2007-08-30 2007-08-30 Optically active β-cyanoisobutyric acid and process for producing the same

Country Status (1)

Country Link
JP (1) JP4746019B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194392A (en) * 1993-12-28 1995-08-01 Nagase & Co Ltd Production of optically active 2-(4-hydroxy) phenylpropionic acid derivative and its ester
JPH0959217A (en) * 1995-08-25 1997-03-04 Mitsubishi Rayon Co Ltd New optically active halogen-containing carboxylic acid derivative and its production
JP3617556B2 (en) * 1995-09-01 2005-02-09 三菱瓦斯化学株式会社 Production of methyl cyanoisobutyrate

Also Published As

Publication number Publication date
JP2007319165A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JPS61239899A (en) Biotechnological production of optically active alpha-arylalkanoic acid
KR100657212B1 (en) The method of making optically active ester derivatives and their acids from racemic esters
JP4189032B2 (en) Biological resolution of N-acylazetidine-2-carboxylic acid
JP5157576B2 (en) Process for producing optically active 2-alkyl-1,1,3-trialkoxycarbonylpropane
JP3129663B2 (en) Method for producing optically active 3-quinuclidinol derivative
JP4746019B2 (en) Optically active β-cyanoisobutyric acid and process for producing the same
JP4565672B2 (en) Optically active β-cyanoisobutyric acid and process for producing the same
US6440721B2 (en) Method for preparing an R- or S-form of α-substituted heterocyclic carboxylic acid and a counter enantiomeric form of α-substituted heterocyclic carboxylic acid ester thereto using enzyme
US6455302B1 (en) Method for optically resolving a racemic α-substituted heterocyclic carboxylic acid using enzyme
JP3960667B2 (en) β-carbamoylisobutyric acid and process for producing the same
JP4042454B2 (en) Process for producing optically active 3-methylglutaric acid monoester
JP3732535B2 (en) Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester
JP2639651B2 (en) Process for producing optically active carboxylic acid and its enantiomer ester
WO1999004028A1 (en) PROCESS FOR PREPARING OPTICALLY ACTIVE α-TRIFLUOROMETHYLLACTIC ACID AND ANTIPODE ESTERS THEREOF AND METHOD OF PURIFICATION THEREOF
JP4765358B2 (en) Process for producing optically active N-protected-propargylglycine
JP4392812B2 (en) Novel optically active 4-amino-2-methylbutyric acid derivative and method for producing the same
JP2006050990A (en) Method for producing optically active 2-substituted-3-(4-substituted oxyphenyl)propionic acid and its antipodal ester
JP3970898B2 (en) Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester
JP4658315B2 (en) Process for producing optically active carboxylic acid and its enantiomer ester
JPH06319591A (en) Production of optically active norstatin derivative
JPS6363396A (en) Production of d-2-(6-methoxy-2-naphthyl)propionic acid
JPH0965891A (en) Production of optically active alpha-methylalkanoic acid derivative
JPH0959217A (en) New optically active halogen-containing carboxylic acid derivative and its production
JPH10287620A (en) Optically active methylsuccinic ester, and its production
JPH06319588A (en) Production of optically active norstatin derivative

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees