JP4658315B2 - Process for producing optically active carboxylic acid and its enantiomer ester - Google Patents

Process for producing optically active carboxylic acid and its enantiomer ester Download PDF

Info

Publication number
JP4658315B2
JP4658315B2 JP2000398589A JP2000398589A JP4658315B2 JP 4658315 B2 JP4658315 B2 JP 4658315B2 JP 2000398589 A JP2000398589 A JP 2000398589A JP 2000398589 A JP2000398589 A JP 2000398589A JP 4658315 B2 JP4658315 B2 JP 4658315B2
Authority
JP
Japan
Prior art keywords
group
carboxylic acid
optically active
active carboxylic
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000398589A
Other languages
Japanese (ja)
Other versions
JP2002191393A (en
Inventor
昌 清水
道彦 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2000398589A priority Critical patent/JP4658315B2/en
Publication of JP2002191393A publication Critical patent/JP2002191393A/en
Application granted granted Critical
Publication of JP4658315B2 publication Critical patent/JP4658315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、医薬等の原料又は中間体として有用な光学活性カルボン酸の製造方法に関する。
【0002】
【従来の技術】
一般式(II)
【化3】

Figure 0004658315
で表される光学活性カルボン酸の製造方法としては、特開平07-32769号公報、特開平08-000285号公報、特開平08-259500号公報、特開平10-033191号公報および特開平11-080113号公報に記載のとおり、数属の微生物由来の菌体あるいは酵素を用いて合成する方法が報告されている。しかし、これらの方法で使用されている生体触媒は、いずれもその種類が限定されており、一般的な方法とは言い難い。
【0003】
一方、J. Chem. Soc., Chem.Commun.,1080,(1987)でEryka Guibe-Jampelらは豚膵臓リパーゼをもちい、α−メチルコハク酸−1−モノエステルを得る方法が報告している。しかしながら、この方法で得られるモノエステルの光学純度、位置選択性は高いものの、高価な動物由来の酵素を使用するため、工業的に有利な方法とは言い難い。
【0004】
また、特開平2−195890号公報には微生物由来の酵素を用いてα−メチルコハク酸ジエステルを加水分解し、α−メチルコハク酸−4−モノエステルを得る方法が記載されている。この方法では4−モノエステルが95〜98%と位置選択性は高いものの、立体選択的な加水分解は殆ど達成されておらず、ラセミ体ジエステルを原料とした場合、生成物の光学純度は16%e.e.程度にすぎないという問題がある。
さらに、 Chem. Pharm. Bull. 41(6),1149 (1993)でT.Morimotoらは、イタコン酸又はイタコン酸ジメチルを不斉還元し、光学活性α−メチルコハク酸又は光学活性α−メチルコハク酸ジメチルを得る方法も報告しているが、高価な不斉触媒を使用しなければならないため、工業的に有利な方法とは言い難い。
【0005】
さらに、光学活性β−ヒドロキシカルボン酸の製造法としては、化学的又は微生物的方法としてβ−ケト酸エステルの不斉還元法、光学分割法、1,3−ジオールの酸化法、脂肪酸のβ−水酸化法、直接発酵法等が報告されている。
この中で、微生物の代謝経路を利用した各種光学活性β−ヒドロキシカルボン酸の生産が、工業的規模で実施されている(特公昭59−21599号公報、特公昭59−21600号公報、特公昭60−16235号公報、特公昭61−12676号公報等)。これらの微生物の代謝経路を利用した方法は、各種脂肪酸、アルコールを原料として使用し、脂肪酸の主代謝経路であるβ−酸化酵素系や、類縁の分岐状アミノ酸代謝経路と共通すると思われる酵素系を利用するものである。
【0006】
また、J. Am. Chem. Soc.,111, 6354(1989)には、2−アシルアミノ酸の光学分割には有効であるアシラーゼが3−アシルアミノイソ酪酸の光学分割には適用することができないことが報告されている。光学活性3−アミノイソ酪酸の製造方法として、特開昭59-67252号公報記載の光学活性3−ヒドロキシイソ酪酸を出発原料とする方法が公知であるが、工業的に有利な方法とは言い難い。
【0007】
以上のように一般式(I)および(II)で示される光学活性体の製造はその方法あるいは種類が限定されており、アシネトバクター(Acinetobacter)属由来の微生物の菌体あるいは酵素により製造するという報告はない。従って、有効で且つ一般的な合成方法の開発が望まれていた。
【0008】
【発明が解決しようとする手段】
本発明の課題は、光学活性医農薬合成中間体として有用な光学活性カルボン酸およびその対掌体エステルの一般的且つ工業的に有利な製造方法を提供することである。
【0009】
【課題を解決するための手段】
本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、ラセミ体カルボン酸エステルを光学選択的に加水分解する活性を有する微生物を新たに見い出し、本発明を完成した。
すなわち、本発明は、一般式(I)
【化4】
Figure 0004658315
[式中、R1は置換又は非置換のアルキル基、アルケニル基、アラルキル基、アシル基、アミノ基、アミノアシル基、水酸基、ニトリル基、ニトロ基、アルコキシル基、水素原子、-COOR'3、(R'3は置換又は非置換の炭素原子数1〜6のアルキル基を示す)を示し、R2は置換又は非置換の炭素原子数1〜3のアルキル基を示し、R3は置換又は非置換の炭素原子数1〜6のアルキル基を示し、n=1〜3の整数を示す]で表されるラセミ体カルボン酸エステルに、アシネトバクター(Acinetobacter)属に属し、且つ該エステル結合を不斉加水分解する能力を有する微生物菌体、菌体培養液、菌体処理物あるいはこれら微生物により生産される酵素を作用させることを特徴とする下記一般式(II);
【化5】
Figure 0004658315
(式中、R1、R2およびnは前記と同義であり、*は不斉炭素を示す)
で示される光学活性カルボン酸及びその未反応対掌体エステルの製造方法である。また、 本発明はアシネトバクター(Acinetobacter)属由来の不斉加水分解酵素遺伝子を導入した遺伝子組換え体微生物を用いることを特徴とする一般式(II)で示される光学活性カルボン酸及びその未反応対掌体エステルの製造方法、である。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明において反応基質として使用可能な化合物は一般式(I)に示される化合物が挙げられる。
【0011】
一般式(I) において、 R1は置換又は非置換のアルキル基、アルケニル基、アラルキル基、アシル基、アミノ基、アミノアシル基、水酸基、ニトリル基、ニトロ基、アルコキシル基、水素原子、-COOR'3、(R'3は置換又は非置換の炭素原子数1〜6のアルキル基を示す)を示し、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、n-ヘキシル基等の炭素原子数1〜6のアルキル基;エテン基、プロペン基、イソプロペン基、ブテン基、イソブテン基、n−ヘキセン基等の炭素原子数2〜6のアルケニル基;ベンジル基などのアラルキル基;アセチル基、プロピオニル基等のアシル基;メトキシ基、エトキシ基等のアルコキシル基等が例示される。
【0012】
また、一般式(I) 中、 R1が-COOR'3 で示される場合において、R'3は置換又は非置換の炭素原子数1〜6のアルキル基を示し、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、n-ヘキシル基等が挙げられる。
さらに、一般式(I) において、 R2は置換又は非置換のアルキル基を示し、具体的には、メチル基、エチル基、プロピル基等が挙げられる。また、R3は置換又は非置換のアルキル基を示し、具体的には、 R2のメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、n-ヘキシル基等が挙げられる。これらのR2およびR3で示される置換基は、その炭素原子に結合する水素原子がハロゲン等の置換基で置換されていてもよい。
【0013】
本発明で用いる微生物は、アシネトバクター(Acinetobacter)属に属し、且つ一般式(I)で表されるラセミ体カルボン酸エステルのエステル結合を不斉加水分解する能力を有するものであればいかなるものでも使用可能であり、特に制限はないが、代表的なものとして例えば、Acinetobacter calcoaceticus F46 ( AKU 724)株等が例示される。本株は公知であり、京都大学農学部(AKU)などの微生物保存機関から入手できる。
【0014】
また、これらの微生物から単離した酵素遺伝子を通常の方法で公知の各種宿主ベクター系に導入した遺伝子操作微生物の利用も可能である。これら遺伝子操作微生物に特に制限はなく、Acinetobacter属由来で且つ一般式(I)で表されるラセミ体カルボン酸エステルのエステル結合を不斉加水分解できる酵素遺伝子が発現されたものであれば、いかなる各種宿主ベクター系でも構わない。
【0015】
本発明においてこれらの微生物を培養するための培地としては、通常これらの微生物が生育し得るものであれば何れのものでも使用できる。炭素源としては、例えば、グルコース、シュークロースやマルトース等の糖類、酢酸、クエン酸やフマル酸等の有機酸あるいはその塩、エタノールやグリセロール等のアルコール類等を使用できる。窒素源としては、例えば、ペプトン、肉エキス、酵母エキスやアミノ酸等の一般天然窒素源の他、各種無機、有機酸アンモニウム塩等が使用できる。その他、無機塩、微量金属塩、ビタミン等が必要に応じて適宜添加される。また、高い酵素活性を得るために、一般式(I)で示されるカルボン酸エステル、エステル結合あるいはアミド結合を持つ化合物等を酵素産生の誘導物質として培地に添加することも有効である。
その培養は常法に従って行えばよく、例えば、pH4〜10、温度15〜40℃の範囲にて好気的に6〜96時間培養する。
【0016】
不斉加水分解反応を行うに際しては、該微生物を培地中で培養して得られる培養物をそのままか、又は該培養物から遠心分離などの集菌操作によって得られる培養上清、菌体、若しくは菌体処理物の存在下で一般式(I)に示されるラセミ体カルボン酸エステルを不斉加水分解することにより光学活性カルボン酸及びその対掌体エステル加水分解物及びその未反応対掌体を製造することもできる。菌体処理物としては、アセトン、トルエン等で処理した菌体、菌体の破砕物、菌体を破砕した無細胞抽出物などが挙げられる。また、これらを通常の方法で固定化したものも含まれる。
【0017】
さらに、微生物菌体、菌体培養液および菌体処理物のみならず、これら微生物により生産される酵素を用いることができる。
本発明において使用できる酵素は、一般式(I)に示されるラセミ体カルボン酸エステルを不斉加水分解して光学活性カルボン酸及びその対掌体エステルを製造する能力を有するアシネトバクター(Acinetobacter)属微生物から分離されたものであれば種類及び製造源は問わない。その中でも一般にリパーゼ類、エステラーゼ類、プロテアーゼ類およびアミダーゼ類と称される酵素が特に有効であり、粗酵素又は精製酵素を使用することができる。
【0018】
上記不斉加水分解酵素を反応に供するに際しては、該酵素が活性を示す限りその使用形態は特に限定されず、酵素を適当な担体に固定化して使用することもできる。酵素を固定化して用いることにより、反応終了後の光学活性カルボン酸及びその対掌体エステル加水分解物及びその未反応対掌体並びに酵素の分離・回収が容易になるとともに、酵素の再利用も可能となる。
本発明においては、これら酵素、酵素固定化物、微生物、菌体培養液、または菌体処理物を通常1種類用いるが、同様な能力を有する2種以上のそれを混合して用いることも可能である。
【0019】
本発明において、一般式(I)で示されるカルボン酸エステルの光学選択的加水分解は、以下の方法で行うことができる。
反応溶媒に基質である一般式(I)で示されるカルボン酸エステルを溶解もしくは懸濁する。また、基質を反応溶媒に添加する前に又は添加した後に触媒となる上記不斉加水分解する能力を有する酵素、酵素固定化物、微生物、菌体培養液、または菌体処理物を添加する。そして、反応温度、必要により反応液のpHを制御しながら、一般式(I)で示されるカルボン酸エステルの半量程度が加水分解されるまで反応を行う。場合によっては反応の初期段階で反応を中断したり、又は過剰に反応させることもある。
反応液の基質濃度は、0.1〜80質量%の間で特に制限はないが、生産性等を考慮すると1〜50質量%の濃度で実施するのが好ましい。
反応液の酵素濃度は、通常、0.01〜10質量%であり、好ましくは 0.05〜5重量%である。
反応液のpHは用いる酵素の至適pHに依存するが、一般的にはpH4〜11の範囲である。化学的加水分解反応による光学純度の低下及び収率の低下を抑えることができるという点でpH5〜9で行うのが好ましい。また、エステル結合部分が不斉加水分解される場合は反応が進行するに従いpHが低下してくるが、この場合は適当な中和剤、例えば、水酸化ナトリウム、水酸化カリウム水溶液等を添加して最適pHに調整することが望ましい。
反応温度は5〜70℃が好ましく、10〜50℃がより好ましい。
【0020】
反応溶媒は、通常イオン交換水、緩衝液等の水性媒体を使用するが、有機溶媒を含んだ系でも反応を行うことができる。有機溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、t-ブチルアルコール、t-アミルアルコール等のアルコール系溶媒、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、塩化メチレン、クロロホルム、四塩化炭素、ジクロロエタン等のハロゲン化炭化水素系溶媒、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、その他アセトニトリル、N,N-ジメチルホルムアミド等を適宜使用できる。また、これらの有機溶媒を水への溶解度以上に加えて2層系で反応を行うことも可能である。有機溶媒を反応系に共存させることで、選択率、変換率、収率などが向上する場合もある。反応時間は、通常、1時間〜1週間、好ましくは1〜72時間であり、そのような時間で反応が終了する反応条件を選択することが好ましい。
【0021】
尚、以上のような基質濃度、酵素濃度、pH、温度、溶媒、反応時間及びその他の反応条件はその条件における反応収率、光学収率等を考慮して目的とする光学活性化合物が最も多く採取できる条件を適宜選択することが望ましい。
【0022】
かくして、上記の反応により、一般式(I)で示されるカルボン酸エステルが不斉加水分解されて、光学活性カルボン酸及びその対掌体エステル加水分解物が生成する。
生成した光学活性カルボン酸及びその対掌体エステル加水分解物および未反応対掌体の反応混合液からの単離は抽出、蒸留、カラム分離など通常の公知の単離法で行うことができる。
生成した光学活性カルボン酸及びその未反応対掌体エステルの分離は、例えば、pHを中性付近に調整後、ジエチルエーテル、ジイソプロピルエーテル等のエーテル類;酢酸エチル等のエステル類;ヘキサン、オクタン、ベンゼン、トルエン等の炭化水素類;塩化メチレン等のハロゲン化炭化水素等一般的な溶媒により未反応対掌体を抽出分離することができる。
一方、生成した光学活性カルボン酸は抽出後の水層のpHを下げた後、前述の有機溶媒を適宜選択し、抽出すれば回収できる。
【0023】
さらに、未反応対掌体エステルは、光学活性を維持したまま公知の方法で加水分解することにができ、また、反対に光学活性カルボン酸は光学活性を維持したまま通常の方法でエステル化することができる。従って、目的に応じて任意の立体配置を持ったエステルあるいはカルボン酸を取得することができる。
さらに、前述の方法で再びエステル化された光学活性カルボン酸は、同酵素の基質として反応を複数回繰り返すことで、より光学純度の高い目的化合物を得ることが可能である。また、同様に光学選択性の異なる(逆の)酵素を任意に組み合わせて反応を繰り返すことで光学純度が高い目的化合物を得ることも可能である。
【0024】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
【0025】
〔実施例1〕
LB培地(ペプトン10g、酵母エキス 5g、食塩 5g、 蒸留水1L )100mlでAcinetobacter calcoaceticus F46(AKU 724)株を30℃、48時間培養した。遠心分離で集菌、洗浄後、50mMリン酸バッファー(pH7.0)5mlに懸濁し、菌体濃縮液とした。
90mlの50mMリン酸バッファー(pH7.0)にラセミ体メチルコハク酸ジメチル 5gを懸濁し、上記菌体濃縮液を加え、室温で約20時間反応した。反応終了液を酢酸エチルで抽出、濃縮し、未反応のエステルを回収した。
未反応メチルコハク酸ジメチルの光学純度を測定したところ、S体50%eeであった。なお、光学純度分析はダイセル化学株式会社製キラルセルODカラム(移動層ヘキサン/イソプロパノール/トリフロロ酢酸=90/10/0.1)にて分析した。
【0026】
〔実施例2〕
実施例1同様にAcinetobacter calcoaceticus F46 (AKU 724)菌体濃縮液を調製し、原料をβ-ヒドロキシイソ酪酸メチルに代え、酵素反応を行った。反応終了液を酢酸エチルで抽出し、未反応のエステルを回収した。抽出液を濃縮後、未反応β-ヒドロキシイソ酪酸メチルの比旋光度を測定したところ、[α]25 D=+10.2(C=2、メタノール)であった。
【0027】
〔実施例3〕
実施例1同様にAcinetobacter calcoaceticus F46(AKU 724)菌体濃縮液を調製し、原料をα−メチルグルタル酸ジメチルに代え、酵素反応を行った。反応終了液を酢酸エチルで抽出し、未反応のエステルを回収した。抽出液を濃縮後、未反応α−メチルグルタル酸ジメチルの光学純度を測定したところ、S体60%eeであった。なお光学純度分析は特開平08-000285号記載の方法に従い分析した。
【0028】
〔実施例4〕
実施例1同様にAcinetobacter calcoaceticus F46 (AKU 724)菌体濃縮液を調製し、原料をβ−シアノイソ酪酸メチルに代え、酵素反応を行った。反応終了液を酢酸エチルで抽出し、未反応のエステルを回収した。抽出液を濃縮後、未反応β−シアノイソ酪酸メチルの光学純度を測定したところ、S体53%eeであった。なお光学純度分析はダイセル化学株式会社製キラルセルODカラム(移動層ヘキサン/イソプロパノール/トリフロロ酢酸=90/10/0.1)にて分析した。
【0029】
〔実施例5〕
実施例1同様にAcinetobacter calcoaceticus F46 (AKU 724)菌体濃縮液を調製し、原料を3−アセチルアミノイソ酪酸メチルに代え、酵素反応を行った。反応終了液を酢酸エチルで抽出し、未反応のエステルを回収した。抽出液を濃縮後、未反応3−アセチルアミノイソ酪酸メチルの比旋光度を測定したところ、d(+)体73%e.e.であった。なお光学純度分析は特開平10-033191号記載の方法に従い分析した。
【0030】
〔参考例1〕
ペプトン0.5%、酵母エキス0.5%、K2PO4 0.1%、フルオレン 0.01%を含む培地5LでAcinetobacter calcoaceticus F46(AKU 724)株を28℃、3日間培養した。遠心分離で集菌後、10mMリン酸バッファー(pH7.0)110mlに懸濁させ、超音波破砕した。破砕液を遠心分離で不溶物を除去し、無細胞抽出液とした。この無細胞抽出液から硫酸アンモニウム40〜80%飽和画分を遠心分離にて回収した。沈殿を35mlの同バッファーに溶解させ透析後、DEAE-Sephacelカラム(1.7×26cm)に供し、NaClの0→0.6Mのリニアーグラジェントで溶出させた。活性画分をまとめて、NaClを4Mになるよう加えて、Phenyl-SuperoseHR10/10カラムに供した。 NaClの4→0Mのリニアーグラジェントで溶出させた。活性画分をまとめて限外ろ過により濃縮し、さらにゲルろ過(Superdex200HR10/30カラム)による精製を実施し、精製酵素溶液とした。
なお、酵素活性は50mMリン酸バッファー(pH7.0)20mlにβ−アセチルチオイソ酪酸メチル50mM相当量を加え、酵素溶液を適当量を添加し、30℃で反応させた。
反応中、0.05N苛性ソーダで滴定し、初期10分間の加水分解速度より算出した。
【0031】
〔実施例7〜10〕
9.5mlの100mMリン酸バッファー(pH7.0)に表1に示すラセミ体原料0.5gを懸濁し、参考例により得られた精製酵素溶液0.2mlを加え、室温で約10時間反応した。反応終了液を酢酸エチルで抽出、濃縮し、未反応のエステルを回収した。各化合物は実施例1〜5と同様に処理し、光学純度を測定した。その結果を表1に示した。
【表1】
Figure 0004658315
【0032】
〔参考例2〕
参考例1で取得した精製酵素を公知の方法でN末端およびC末端のアミノ酸配列を解析した。その結果より、図1に示すディジェネレートプライマー(配列番号1及び2)を設計し、 Acinetobacter calcoaceticus F46 (AKU 724)株より調製した染色体DNAを鋳型としたPCR(宝酒造;Ex Tap)にて目的遺伝子を増幅させた。
配列番号1:gtigayatht tytayaarga ytgg
配列番号2:arrtcyttrt tnatigtytc igcytg
得られた部分断片をプローブとしてXbaIにて処理した染色体DNAにサザンハイブリダイゼーションを行った。アガロース電気泳動にてシグナルの得られたDNA断片を回収し、プラスミドベクターpBluescript SK+にライゲーションした。これをエセリキア・コリ(Escherichia coli)DH5αに形質転換し、コロニーハイブリダイゼーションによりポジティブクローンのスクリーニングを行った。得られたポジティブクローンよりプラスミドを回収し、デリューションミュータントを作成した後、シーケンス解析により、目的遺伝子の全長を含む5.7kbのDNA断片を取得した。このDNA断片をプラスミドpKK223-3のtacプロモーターの下流につなぎ、発現用プラスミドpDCH21を作成した。これを大腸菌JM109株に形質転換した。
【0033】
〔実施例11〜14〕
1mM IPTG(イソプロピル-β-D-チオガラクトピラノシド)を含むLB培地 100mlで参考例2で作成した組換え大腸菌を37℃、18時間培養した。遠心分離で集菌、洗浄後、50mMリン酸バッファー(pH7.0)5mlに懸濁し、菌体濃縮液とした。
90mlの50mMリン酸バッファー(pH7.0)に表2に示すラセミ体原料 5gを懸濁し、上記菌体濃縮液を加え、室温で約20時間反応した。この間、反応液のpHは、10%NaOH水溶液を用いて7.0に調整した。反応終了液を酢酸エチルで抽出、濃縮し、未反応のエステルを回収した。各化合物は実施例2〜5と同様に処理し、光学純度を測定した。その結果を表2に示す。
【0034】
【表2】
Figure 0004658315
【0035】
〔実施例15〕
実施例14と同様にラセミ体メチルコハク酸ジメチルを反応した。反応終了液を酢酸エチルで抽出、濃縮し、未反応のエステルを回収した。未反応メチルコハク酸ジメチルの光学純度を測定したところ、S体99%eeであった。次いで水層のpHを希硫酸で2.0に下げた後、水相中のカルボン酸分を酢酸エチルで抽出した。溶媒を蒸発除去し、光学活性α−メチルコハク酸−4−モノエステルを得た。これをメタノール/硫酸でエステル化し、光学分割カラム(キラルセルOD、ダイセル化学工業(株)社製)を用いて光学純度を測定したところ、(R)体で95%eeであった。また、1H−NMRより、得られたモノエステルは4−エステルのみで、1−エステルの混在は認められなかった。
【0036】
【発明の効果】
本発明によれば、医薬、農薬等の原料又は合成中間体として有用な光学活性カルボン酸及びその対掌体エステル類を酵素反応により効率よく製造することが可能である。
【0037】
【配列表】
Figure 0004658315
Figure 0004658315
【0038】
【配列表フリーテキスト】
配列番号1:合成 DNA
配列番号2:合成 DNA[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an optically active carboxylic acid useful as a raw material or intermediate for pharmaceuticals and the like.
[0002]
[Prior art]
Formula (II)
[Chemical 3]
Figure 0004658315
Examples of the method for producing the optically active carboxylic acid represented by the formula: JP 07-32769 A, JP 08-000285 A, JP 08-259500 A, JP 10-033191 A and JP 11-11 A. As described in Japanese Patent No. 080113, a method of synthesizing using cells or enzymes derived from several microorganisms has been reported. However, the types of biocatalysts used in these methods are limited, and it is difficult to say that they are general methods.
[0003]
Meanwhile, J. Chem. Soc., Chem. Commun., 1080, (1987) reported that Eryka Guibe-Jampel et al. Used porcine pancreatic lipase to obtain α-methylsuccinic acid-1-monoester. However, although the monoester obtained by this method has high optical purity and regioselectivity, it is difficult to say that it is an industrially advantageous method because an expensive animal-derived enzyme is used.
[0004]
Japanese Patent Application Laid-Open No. 2-195890 describes a method of obtaining α-methylsuccinic acid-4-monoester by hydrolyzing α-methylsuccinic acid diester using an enzyme derived from a microorganism. In this method, although 4-monoester has high regioselectivity of 95 to 98%, stereoselective hydrolysis is hardly achieved. When racemic diester is used as a raw material, the optical purity of the product is 16 There is a problem that it is only about% ee.
In Chem. Pharm. Bull. 41 (6), 1149 (1993), T. Morimoto et al. Asymmetrically reduced itaconic acid or dimethyl itaconate to produce optically active α-methyl succinic acid or optically active α-methyl succinic acid dimethyl. However, since an expensive asymmetric catalyst must be used, it is difficult to say that this is an industrially advantageous method.
[0005]
Furthermore, as a method for producing an optically active β-hydroxycarboxylic acid, as a chemical or microbial method, an asymmetric reduction method of β-keto acid ester, an optical resolution method, an oxidation method of 1,3-diol, a β- Hydroxylation method, direct fermentation method, etc. have been reported.
Among these, production of various optically active β-hydroxycarboxylic acids utilizing the metabolic pathway of microorganisms has been carried out on an industrial scale (Japanese Patent Publication Nos. 59-21599, 59-21600, and Shoko). No. 60-16235, Japanese Patent Publication No. 61-12676, etc.). The method using metabolic pathways of these microorganisms uses various fatty acids and alcohols as raw materials, and is considered to be common with β-oxidase system which is the main metabolic pathway of fatty acids and related branched amino acid metabolic pathways. Is to be used.
[0006]
In J. Am. Chem. Soc., 111, 6354 (1989), an acylase effective for optical resolution of 2-acylamino acids cannot be applied to optical resolution of 3-acylaminoisobutyric acid. It has been reported. As a method for producing optically active 3-aminoisobutyric acid, a method using optically active 3-hydroxyisobutyric acid as a starting material described in JP-A-59-67252 is known, but it is difficult to say that it is an industrially advantageous method. .
[0007]
As described above, the production or production of optically active compounds represented by the general formulas (I) and (II) is limited, and it is reported that they are produced by the cells or enzymes of microorganisms derived from the genus Acinetobacter. There is no. Therefore, development of an effective and general synthesis method has been desired.
[0008]
Means to be Solved by the Invention
An object of the present invention is to provide a general and industrially advantageous production method of an optically active carboxylic acid and its enantiomer ester useful as an optically active pharmaceutical and agrochemical synthesis intermediate.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have newly found a microorganism having an activity of hydrolyzing a racemic carboxylic acid ester optically and completed the present invention.
That is, the present invention relates to the general formula (I)
[Formula 4]
Figure 0004658315
[Wherein R 1 represents a substituted or unsubstituted alkyl group, alkenyl group, aralkyl group, acyl group, amino group, aminoacyl group, hydroxyl group, nitrile group, nitro group, alkoxyl group, hydrogen atom, —COOR ′ 3 , ( R ′ 3 represents a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms), R 2 represents a substituted or unsubstituted alkyl group having 1 to 3 carbon atoms, and R 3 represents substituted or non-substituted. Represents a substituted alkyl group having 1 to 6 carbon atoms and represents an integer of n = 1 to 3], and belongs to the genus Acinetobacter, and the ester bond is asymmetric. The following general formula (II), characterized in that a microbial cell having an ability to hydrolyze, a microbial cell culture solution, a microbial cell processed product, or an enzyme produced by these microorganisms is allowed to act;
[Chemical formula 5]
Figure 0004658315
(In the formula, R 1 , R 2 and n are as defined above, and * represents an asymmetric carbon)
Is a method for producing an optically active carboxylic acid represented by the formula (1) and an unreacted enantiomer ester thereof. The present invention also provides an optically active carboxylic acid represented by the general formula (II) and an unreacted pair thereof, wherein a genetically modified microorganism into which an asymmetric hydrolase gene derived from the genus Acinetobacter is introduced. It is a manufacturing method of an enantiomer.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
Examples of the compound that can be used as a reaction substrate in the present invention include compounds represented by the general formula (I).
[0011]
In the general formula (I), R 1 is a substituted or unsubstituted alkyl group, alkenyl group, aralkyl group, acyl group, amino group, aminoacyl group, hydroxyl group, nitrile group, nitro group, alkoxyl group, hydrogen atom, —COOR ′ 3 (wherein R ′ 3 represents a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms), specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an alkyl group having 1 to 6 carbon atoms such as n-hexyl group; an alkenyl group having 2 to 6 carbon atoms such as ethene group, propene group, isopropene group, butene group, isobutene group, n-hexene group; benzyl group, etc. An aralkyl group; an acyl group such as an acetyl group or a propionyl group; an alkoxyl group such as a methoxy group or an ethoxy group;
[0012]
In the general formula (I), when R 1 is represented by —COOR ′ 3 , R ′ 3 represents a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, specifically a methyl group, ethyl Group, propyl group, isopropyl group, butyl group, isobutyl group, n-hexyl group and the like.
Further, in the general formula (I), R 2 represents a substituted or unsubstituted alkyl group, and specific examples include a methyl group, an ethyl group, a propyl group, and the like. Further, R3 represents a substituted or unsubstituted alkyl group include a methyl group R 2, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, n- hexyl group. In the substituents represented by R 2 and R 3 , the hydrogen atom bonded to the carbon atom may be substituted with a substituent such as halogen.
[0013]
Any microorganism can be used as long as it belongs to the genus Acinetobacter and has the ability to asymmetrically hydrolyze the ester bond of the racemic carboxylic acid ester represented by the general formula (I). Although it is possible and there is no particular limitation, a typical example is the Acinetobacter calcoaceticus F46 (AKU 724) strain. This strain is known and can be obtained from microorganism preservation institutions such as the Kyoto University Faculty of Agriculture (AKU).
[0014]
It is also possible to use genetically engineered microorganisms in which enzyme genes isolated from these microorganisms are introduced into various known host vector systems by conventional methods. There are no particular restrictions on these genetically engineered microorganisms, as long as they express an enzyme gene derived from the genus Acinetobacter and capable of asymmetric hydrolysis of the ester bond of the racemic carboxylic acid ester represented by the general formula (I) Various host vector systems may be used.
[0015]
In the present invention, any medium can be used as a medium for culturing these microorganisms as long as these microorganisms can usually grow. As the carbon source, for example, sugars such as glucose, sucrose and maltose, organic acids such as acetic acid, citric acid and fumaric acid or salts thereof, alcohols such as ethanol and glycerol can be used. As the nitrogen source, for example, various inorganic and organic acid ammonium salts can be used in addition to general natural nitrogen sources such as peptone, meat extract, yeast extract and amino acids. In addition, inorganic salts, trace metal salts, vitamins and the like are appropriately added as necessary. In order to obtain high enzyme activity, it is also effective to add a carboxylic acid ester represented by the general formula (I), a compound having an ester bond or an amide bond to the medium as an enzyme production inducer.
The culture may be carried out according to a conventional method. For example, the culture is aerobically cultured for 6 to 96 hours at a pH of 4 to 10 and a temperature of 15 to 40 ° C.
[0016]
When performing the asymmetric hydrolysis reaction, the culture obtained by culturing the microorganism in a medium is used as it is, or a culture supernatant, cell, or cell obtained from the culture by a collection operation such as centrifugation. An optically active carboxylic acid and its enantiomer ester hydrolyzate and its unreacted enantiomer are obtained by asymmetric hydrolysis of the racemic carboxylic acid ester represented by the general formula (I) in the presence of a treated microbial cell. It can also be manufactured. Examples of the treated microbial cells include microbial cells treated with acetone, toluene, etc., crushed microbial cells, cell-free extracts crushed microbial cells, and the like. Moreover, what fixed these by the normal method is also contained.
[0017]
Furthermore, not only microbial cells, microbial cell culture solutions and treated cells, but also enzymes produced by these microorganisms can be used.
The enzyme that can be used in the present invention is a microorganism belonging to the genus Acinetobacter having the ability to produce an optically active carboxylic acid and its enantiomer by asymmetric hydrolysis of the racemic carboxylic acid ester represented by the general formula (I) The type and the production source are not limited as long as they are separated from each other. Among them, enzymes generally called lipases, esterases, proteases and amidases are particularly effective, and crude enzymes or purified enzymes can be used.
[0018]
When the above asymmetric hydrolase is used for the reaction, the form of its use is not particularly limited as long as the enzyme exhibits activity, and the enzyme can be used by being immobilized on a suitable carrier. By immobilizing the enzyme, separation and recovery of the optically active carboxylic acid and its enantiomer ester hydrolyzate and unreacted enantiomer and enzyme after the reaction are facilitated, and the enzyme can be reused. It becomes possible.
In the present invention, one kind of these enzymes, enzyme-immobilized products, microorganisms, cell culture broth, or cell-treated products is usually used, but it is also possible to use a mixture of two or more types having the same ability. is there.
[0019]
In the present invention, the optically selective hydrolysis of the carboxylic acid ester represented by the general formula (I) can be carried out by the following method.
The carboxylic acid ester represented by the general formula (I) as a substrate is dissolved or suspended in the reaction solvent. In addition, the enzyme, enzyme-immobilized product, microorganism, cell culture solution, or cell-treated product having the ability to perform asymmetric hydrolysis as a catalyst is added before or after the substrate is added to the reaction solvent. Then, while controlling the reaction temperature and, if necessary, the pH of the reaction solution, the reaction is carried out until about half of the carboxylic acid ester represented by the general formula (I) is hydrolyzed. In some cases, the reaction may be interrupted or excessively reacted at an early stage of the reaction.
The substrate concentration of the reaction solution is not particularly limited between 0.1 and 80% by mass, but it is preferably carried out at a concentration of 1 to 50% by mass considering productivity and the like.
The enzyme concentration of the reaction solution is usually 0.01 to 10% by mass, preferably 0.05 to 5% by weight.
The pH of the reaction solution depends on the optimum pH of the enzyme used, but is generally in the range of pH 4-11. It is preferable to carry out at pH 5-9 in the point that the optical purity fall and the yield fall by a chemical hydrolysis reaction can be suppressed. If the ester bond is asymmetrically hydrolyzed, the pH decreases as the reaction proceeds. In this case, an appropriate neutralizing agent such as sodium hydroxide or aqueous potassium hydroxide is added. It is desirable to adjust to the optimum pH.
The reaction temperature is preferably 5 to 70 ° C, more preferably 10 to 50 ° C.
[0020]
As the reaction solvent, an aqueous medium such as ion-exchanged water or a buffer solution is usually used, but the reaction can also be performed in a system containing an organic solvent. Examples of the organic solvent include alcohol solvents such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butyl alcohol, and t-amyl alcohol, and aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and octane. , Aromatic hydrocarbon solvents such as benzene, toluene and xylene, halogenated hydrocarbon solvents such as methylene chloride, chloroform, carbon tetrachloride and dichloroethane, ether solvents such as diethyl ether, diisopropyl ether, tetrahydrofuran and dioxane, acetic acid Ester solvents such as ethyl, propyl acetate and butyl acetate, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, acetonitrile, N, N-dimethylformamide and the like can be used as appropriate. It is also possible to carry out the reaction in a two-layer system by adding these organic solvents beyond the solubility in water. The coexistence of an organic solvent in the reaction system may improve the selectivity, conversion rate, yield, and the like. The reaction time is usually 1 hour to 1 week, preferably 1 to 72 hours, and it is preferable to select reaction conditions for completing the reaction in such a time.
[0021]
The substrate concentration, enzyme concentration, pH, temperature, solvent, reaction time, and other reaction conditions as described above are the most targeted optically active compounds in consideration of the reaction yield, optical yield, etc. under the conditions. It is desirable to appropriately select the conditions for collection.
[0022]
Thus, by the above reaction, the carboxylic acid ester represented by the general formula (I) is asymmetrically hydrolyzed to produce an optically active carboxylic acid and an enantiomer ester hydrolyzate thereof.
Isolation of the produced optically active carboxylic acid, its enantiomer ester hydrolyzate and unreacted enantiomer from the reaction mixture can be carried out by conventional known isolation methods such as extraction, distillation, column separation and the like.
Separation of the produced optically active carboxylic acid and its unreacted enantiomer ester is carried out, for example, after adjusting the pH to around neutral, ethers such as diethyl ether and diisopropyl ether; esters such as ethyl acetate; hexane, octane, Unreacted enantiomers can be extracted and separated by a general solvent such as hydrocarbons such as benzene and toluene; halogenated hydrocarbons such as methylene chloride.
On the other hand, the generated optically active carboxylic acid can be recovered by lowering the pH of the aqueous layer after extraction and then selecting and extracting the aforementioned organic solvent as appropriate.
[0023]
Further, the unreacted enantiomer ester can be hydrolyzed by a known method while maintaining optical activity, and the optically active carboxylic acid is esterified by a conventional method while maintaining optical activity. be able to. Therefore, an ester or carboxylic acid having an arbitrary configuration can be obtained according to the purpose.
Furthermore, the optically active carboxylic acid esterified again by the above-described method can be used as a substrate for the enzyme, and the target compound with higher optical purity can be obtained by repeating the reaction multiple times. Similarly, it is also possible to obtain a target compound with high optical purity by repeating the reaction by arbitrarily combining (opposite) enzymes having different optical selectivity.
[0024]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the scope of the present invention is not limited to these examples.
[0025]
[Example 1]
The Acinetobacter calcoaceticus F46 (AKU 724) strain was cultured at 30 ° C. for 48 hours in 100 ml of LB medium (10 g of peptone, 5 g of yeast extract, 5 g of sodium chloride, 1 L of distilled water). The cells were collected by centrifugation and washed, and then suspended in 5 ml of 50 mM phosphate buffer (pH 7.0) to obtain a bacterial cell concentrate.
Racemic methyl succinate (5 g) was suspended in 90 ml of 50 mM phosphate buffer (pH 7.0), and the bacterial cell concentrate was added thereto, followed by reaction at room temperature for about 20 hours. The reaction completed solution was extracted with ethyl acetate and concentrated to recover unreacted ester.
The optical purity of unreacted dimethyl succinate was measured and found to be S-form 50% ee. The optical purity analysis was performed with a Chiralcel OD column (moving bed hexane / isopropanol / trifluoroacetic acid = 90/10 / 0.1) manufactured by Daicel Chemical Industries, Ltd.
[0026]
[Example 2]
Similarly to Example 1, Acinetobacter calcoaceticus F46 (AKU 724) bacterial cell concentrate was prepared, and the enzyme reaction was carried out by replacing the raw material with methyl β-hydroxyisobutyrate. The reaction completed solution was extracted with ethyl acetate to recover unreacted ester. After concentration of the extract, the specific rotation of unreacted methyl β-hydroxyisobutyrate was measured and found to be [α] 25 D = + 10.2 (C = 2, methanol).
[0027]
Example 3
Acinetobacter calcoaceticus F46 (AKU 724) cell concentrate was prepared in the same manner as in Example 1, and the enzyme reaction was carried out by replacing the raw material with dimethyl α-methylglutarate. The reaction completed solution was extracted with ethyl acetate to recover unreacted ester. After concentration of the extract, the optical purity of the unreacted α-methylglutarate dimethyl was measured and found to be S-form 60% ee. The optical purity analysis was performed according to the method described in JP-A-08-000285.
[0028]
Example 4
Acinetobacter calcoaceticus F46 (AKU 724) cell concentrate was prepared in the same manner as in Example 1, and the enzyme reaction was carried out by replacing the raw material with methyl β-cyanoisobutyrate. The reaction completed solution was extracted with ethyl acetate to recover unreacted ester. After concentration of the extract, the optical purity of unreacted methyl β-cyanoisobutyrate was measured and found to be 53% ee in S form. The optical purity analysis was performed using a Chiralcel OD column (moving bed hexane / isopropanol / trifluoroacetic acid = 90/10 / 0.1) manufactured by Daicel Chemical Industries, Ltd.
[0029]
Example 5
Acinetobacter calcoaceticus F46 (AKU 724) cell concentrate was prepared in the same manner as in Example 1, and the enzyme reaction was carried out by replacing the raw material with methyl 3-acetylaminoisobutyrate. The reaction completed solution was extracted with ethyl acetate to recover unreacted ester. After concentration of the extract, the specific rotation of unreacted methyl 3-acetylaminoisobutyrate was measured and found to be 73% ee in d (+) form. The optical purity analysis was performed according to the method described in JP-A-10-033191.
[0030]
[Reference Example 1]
The Acinetobacter calcoaceticus F46 (AKU 724) strain was cultured at 5 ° C. for 3 days in 5 L of a medium containing 0.5% peptone, 0.5% yeast extract, 0.1% K2PO4, and 0.01% fluorene. The cells were collected by centrifugation, suspended in 110 ml of 10 mM phosphate buffer (pH 7.0), and sonicated. The crushed liquid was centrifuged to remove insoluble matters, and a cell-free extract was obtained. From this cell-free extract, ammonium sulfate 40-80% saturated fraction was collected by centrifugation. The precipitate was dissolved in 35 ml of the same buffer, dialyzed, applied to a DEAE-Sephacel column (1.7 × 26 cm), and eluted with a linear gradient of NaCl from 0 to 0.6M. The active fractions were combined, NaCl was added to 4M and applied to a Phenyl-Superose HR10 / 10 column. Elution was carried out with a 4 → 0M linear gradient of NaCl. The active fractions were combined, concentrated by ultrafiltration, and further purified by gel filtration (Superdex 200HR10 / 30 column) to obtain a purified enzyme solution.
The enzyme activity was obtained by adding 50 mM of β-acetylthioisobutyrate equivalent to 20 mM of 50 mM phosphate buffer (pH 7.0), adding an appropriate amount of enzyme solution, and reacting at 30 ° C.
During the reaction, the solution was titrated with 0.05N sodium hydroxide and calculated from the hydrolysis rate during the initial 10 minutes.
[0031]
[Examples 7 to 10]
0.5 g of the racemic raw material shown in Table 1 was suspended in 9.5 ml of 100 mM phosphate buffer (pH 7.0), 0.2 ml of the purified enzyme solution obtained in Reference Example was added, and the mixture was reacted at room temperature for about 10 hours. The reaction completed solution was extracted with ethyl acetate and concentrated to recover unreacted ester. Each compound was processed in the same manner as in Examples 1 to 5, and the optical purity was measured. The results are shown in Table 1.
[Table 1]
Figure 0004658315
[0032]
[Reference Example 2]
The N-terminal and C-terminal amino acid sequences of the purified enzyme obtained in Reference Example 1 were analyzed by a known method. Based on the results, the degenerate primer (SEQ ID NOs: 1 and 2) shown in FIG. The gene was amplified.
Sequence number 1: gtigayatht tytayaarga ytgg
Sequence number 2: arrtcyttrt tnatigtytc igcytg
Southern hybridization was performed on the chromosomal DNA treated with XbaI using the obtained partial fragment as a probe. The DNA fragment from which the signal was obtained by agarose electrophoresis was recovered and ligated to the plasmid vector pBluescript SK +. This was transformed into Escherichia coli DH5α, and positive clones were screened by colony hybridization. A plasmid was recovered from the obtained positive clone to prepare a dilution mutant, and then a 5.7 kb DNA fragment containing the full length of the target gene was obtained by sequence analysis. This DNA fragment was ligated downstream of the tac promoter of plasmid pKK223-3 to prepare expression plasmid pDCH21. This was transformed into E. coli strain JM109.
[0033]
(Examples 11 to 14)
The recombinant Escherichia coli prepared in Reference Example 2 was cultured at 37 ° C. for 18 hours in 100 ml of LB medium containing 1 mM IPTG (isopropyl-β-D-thiogalactopyranoside). The cells were collected by centrifugation and washed, and then suspended in 5 ml of 50 mM phosphate buffer (pH 7.0) to obtain a bacterial cell concentrate.
5 g of the racemic raw material shown in Table 2 was suspended in 90 ml of 50 mM phosphate buffer (pH 7.0), the above bacterial cell concentrate was added, and the mixture was reacted at room temperature for about 20 hours. During this time, the pH of the reaction solution was adjusted to 7.0 using a 10% NaOH aqueous solution. The reaction completed solution was extracted with ethyl acetate and concentrated to recover unreacted ester. Each compound was treated in the same manner as in Examples 2 to 5, and the optical purity was measured. The results are shown in Table 2.
[0034]
[Table 2]
Figure 0004658315
[0035]
Example 15
In the same manner as in Example 14, racemic dimethyl succinate was reacted. The reaction completed solution was extracted with ethyl acetate and concentrated to recover unreacted ester. The optical purity of the unreacted dimethyl succinate was measured and found to be 99% ee in the S form. Next, the pH of the aqueous layer was lowered to 2.0 with dilute sulfuric acid, and then the carboxylic acid content in the aqueous phase was extracted with ethyl acetate. The solvent was removed by evaporation to obtain optically active α-methylsuccinic acid-4-monoester. This was esterified with methanol / sulfuric acid, and the optical purity was measured using an optical resolution column (Chiral Cell OD, manufactured by Daicel Chemical Industries, Ltd.). The (R) form was 95% ee. Further, from 1 H-NMR, the resulting monoester was only 4-ester, and no 1-ester was present.
[0036]
【The invention's effect】
According to the present invention, it is possible to efficiently produce optically active carboxylic acids and enantiomers thereof useful as raw materials or synthetic intermediates for pharmaceuticals, agricultural chemicals and the like by enzymatic reaction.
[0037]
[Sequence Listing]
Figure 0004658315
Figure 0004658315
[0038]
[Sequence Listing Free Text]
SEQ ID NO: 1: synthetic DNA
Sequence number 2: Synthetic DNA

Claims (6)

一般式(I)
Figure 0004658315
[式中、R1はアルキル基、アルケニル基、アラルキル基、アシル基、アミノ基、アミノアシル基、水酸基、ニトリル基、ニトロ基、アルコキシル基、水素原子、-COOR'3、(R'3は炭素原子数1〜6のアルキル基を示す)を示し、R2は置換又は非置換の炭素原子数1〜3のアルキル基を示し、R3は炭素原子数1〜6のアルキル基を示し、n=1〜3の整数を示す]で表されるラセミ体カルボン酸エステルに、アシネトバクター(Acinetobacter)属に属し、且つ該エステル結合を不斉加水分解能を有する微生物菌体、菌体培養液、菌体処理物又は該微生物により生産される酵素を作用させることを特徴とする下記一般式(II);
Figure 0004658315
(式中、R1、R2およびnは前記と同義であり、*は不斉炭素を示す)
で示される光学活性カルボン酸及びその未反応対掌体エステルの製造方法。
Formula (I)
Figure 0004658315
[Wherein R 1 represents an alkyl group, an alkenyl group, an aralkyl group, an acyl group, an amino group, an aminoacyl group, a hydroxyl group, a nitrile group, a nitro group, an alkoxyl group, a hydrogen atom, —COOR ′ 3 , (R ′ 3 represents carbon R 2 represents a substituted or unsubstituted alkyl group having 1 to 3 carbon atoms, R 3 represents an alkyl group having 1 to 6 carbon atoms, and n = 1 to 3 represents an integer of 1 to 3, a microbial cell body that belongs to the genus Acinetobacter and has an asymmetric hydrolytic resolution, a cell culture solution, and a cell body The following general formula (II), characterized in that the treated product or an enzyme produced by the microorganism is allowed to act;
Figure 0004658315
(In the formula, R 1 , R 2 and n are as defined above, and * represents an asymmetric carbon)
And a method for producing an unreacted enantiomer of the same.
不斉加水分解能を有する微生物が、アシネトバクター(Acinetobacter)属由来の不斉加水分解酵素遺伝子を導入した遺伝子組換え体微生物である請求項1記載の光学活性カルボン酸及びその未反応対掌体エステルの製造方法。  2. The optically active carboxylic acid and its unreacted enantiomer ester according to claim 1, wherein the microorganism having asymmetric hydrolytic ability is a recombinant microorganism into which an asymmetric hydrolase gene derived from the genus Acinetobacter is introduced. Production method. 一般式(I)及び(II)に示すR1が-COOR'3である請求項1又は2記載の光学活性カルボン酸及びその未反応対掌体エステルの製造方法。The method for producing an optically active carboxylic acid and an unreacted enantiomer thereof according to claim 1 or 2, wherein R 1 represented by the general formulas (I) and (II) is -COOR ' 3 . 一般式(I)及び(II)に示すR1が水酸基である請求項1又は2記載の光学活性カルボン酸及びその未反応対掌体エステルの製造方法。The method for producing an optically active carboxylic acid and an unreacted enantiomer thereof according to claim 1 or 2, wherein R 1 represented by the general formulas (I) and (II) is a hydroxyl group. 一般式(I)及び(II)に示すR1がアミノアシル基である請求項1又は2記載の光学活性カルボン酸及びその未反応対掌体エステルの製造方法。The method for producing an optically active carboxylic acid and an unreacted enantiomer thereof according to claim 1 or 2, wherein R 1 represented by the general formulas (I) and (II) is an aminoacyl group. 一般式(I)及び(II)に示すR1がニトリル基である請求項1又は2記載の光学活性カルボン酸及びその未反応対掌体エステルの製造方法。The method for producing an optically active carboxylic acid and an unreacted enantiomer thereof according to claim 1 or 2, wherein R 1 represented by the general formulas (I) and (II) is a nitrile group.
JP2000398589A 2000-12-27 2000-12-27 Process for producing optically active carboxylic acid and its enantiomer ester Expired - Fee Related JP4658315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000398589A JP4658315B2 (en) 2000-12-27 2000-12-27 Process for producing optically active carboxylic acid and its enantiomer ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000398589A JP4658315B2 (en) 2000-12-27 2000-12-27 Process for producing optically active carboxylic acid and its enantiomer ester

Publications (2)

Publication Number Publication Date
JP2002191393A JP2002191393A (en) 2002-07-09
JP4658315B2 true JP4658315B2 (en) 2011-03-23

Family

ID=18863520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000398589A Expired - Fee Related JP4658315B2 (en) 2000-12-27 2000-12-27 Process for producing optically active carboxylic acid and its enantiomer ester

Country Status (1)

Country Link
JP (1) JP4658315B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2763213B2 (en) * 1991-05-15 1998-06-11 三菱レイヨン株式会社 Process for producing optically active carboxylic acid and its enantiomer ester
JPH07327962A (en) * 1994-06-06 1995-12-19 Sekisui Chem Co Ltd Figure measuring instrument

Also Published As

Publication number Publication date
JP2002191393A (en) 2002-07-09

Similar Documents

Publication Publication Date Title
JPS61239899A (en) Biotechnological production of optically active alpha-arylalkanoic acid
WO2007026860A1 (en) METHOD FOR PRODUCTION OF OPTICALLY ACTIVE α-HYDROXYCARBOXYLIC ACID
US5457051A (en) Enantioselective hydrolysis of ketoprofen esters by beauveria bassiana and enzymes derived therefrom
JP4658315B2 (en) Process for producing optically active carboxylic acid and its enantiomer ester
WO2008140127A1 (en) Process for producing optically active 2-alkyl-1,1,3-trialkoxycarbonylpropane
WO1998020152A1 (en) Process for producing optically active 3-quinuclidinol derivatives
JP5506658B2 (en) Method for producing optically active carboxylic acid using esterase derived from thermophilic archaea
KR100463966B1 (en) Preparation Of Dicarboxylic Acid Monoesters From Cyanocarboxylic Acid Esters
WO2013094499A1 (en) METHOD FOR PRODUCING OPTICALLY-ACTIVE α-SUBSTITUTED-β-AMINO ACID
JP2639651B2 (en) Process for producing optically active carboxylic acid and its enantiomer ester
JP2003299495A (en) Method for producing optically active monoester of 3- methylglutaric acid
JP3866357B2 (en) Thermostable, solvent-resistant esterase
JPH0147159B2 (en)
JP4746019B2 (en) Optically active β-cyanoisobutyric acid and process for producing the same
JP4711367B2 (en) Method for producing optically active amino alcohol derivative
WO1999004028A1 (en) PROCESS FOR PREPARING OPTICALLY ACTIVE α-TRIFLUOROMETHYLLACTIC ACID AND ANTIPODE ESTERS THEREOF AND METHOD OF PURIFICATION THEREOF
JP4270910B2 (en) Process for producing optically active 2-hydroxy-2-trifluoroacetic acids
JP4565672B2 (en) Optically active β-cyanoisobutyric acid and process for producing the same
JP3960667B2 (en) β-carbamoylisobutyric acid and process for producing the same
JPS63293A (en) Production of optically active 4-hydroxy-2-cyclopentenone
JP3970898B2 (en) Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester
JP2010505417A (en) (3) Specific hydrolysis of N-unprotected (R) -esters of (3) -amino-3-arylpropionic acid esters
JPH0576390A (en) Production of optically active carboxylic acid
JPS6363396A (en) Production of d-2-(6-methoxy-2-naphthyl)propionic acid
JPS6366143A (en) Production of optically active cyclopenetenone alcohols

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees