JP4742727B2 - Indicator electrode used for redox potential measurement - Google Patents

Indicator electrode used for redox potential measurement Download PDF

Info

Publication number
JP4742727B2
JP4742727B2 JP2005219583A JP2005219583A JP4742727B2 JP 4742727 B2 JP4742727 B2 JP 4742727B2 JP 2005219583 A JP2005219583 A JP 2005219583A JP 2005219583 A JP2005219583 A JP 2005219583A JP 4742727 B2 JP4742727 B2 JP 4742727B2
Authority
JP
Japan
Prior art keywords
indicator electrode
solution
tip
indicator
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005219583A
Other languages
Japanese (ja)
Other versions
JP2006098390A6 (en
JP2006098390A (en
Inventor
慶孝 大友
Original Assignee
大友 照夫
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大友 照夫 filed Critical 大友 照夫
Priority to JP2005219583A priority Critical patent/JP4742727B2/en
Publication of JP2006098390A publication Critical patent/JP2006098390A/en
Publication of JP2006098390A6 publication Critical patent/JP2006098390A6/en
Application granted granted Critical
Publication of JP4742727B2 publication Critical patent/JP4742727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は酸化還元電位測定装置の指示電極など液体の電気化学的測定、特に酸化還元電位測定に用いる指示電極に関する。The present invention relates to an indicator electrode used for electrochemical measurement of a liquid, such as an indicator electrode of an oxidation-reduction potential measuring device, particularly for measurement of an oxidation-reduction potential.

導電性物質を指示電極とし、指示電極と溶液との界面に生ずる電位、電流を測定する電気化学的な測定装置に、例えば、酸化還元電位測定装置がある。酸化還元電位測定装置は、金属などの導電性物質の指示電極と参照電極とを備え、指示電極に溶液を接触させ、溶液中の電解質の濃度や酸化体・還元体のイオン濃度比などを測定する。すなわち酸化体と還元体を含む溶液に対して、この溶液に侵されない白金などの電極を浸すとその電極は溶液に対して電位を持って平衡に達する。この電位を酸化還元電位という。
酸化体をOx,還元体をRedとすると酸化還元反応は

Figure 0004742727
であり、酸化還元電位Eは次のネルンストの式で示される。
E=Eo+nF−RT 1n [Red] [Ox]
ここに、Eo:標準酸化還元電位([Ox]=[Red])のときのEで、系に固有の値)
R:ガス定数 T:絶対温度 F:ファラデー定数
n:反応に関与する電子数
[]:濃度(活量)An electrochemical reduction device that measures the potential and current generated at the interface between the indicator electrode and the solution using a conductive substance as an indicator electrode is, for example, an oxidation-reduction potential measurement device. The oxidation-reduction potential measuring device is equipped with an indicator electrode and a reference electrode of a conductive substance such as metal, and the solution is brought into contact with the indicator electrode to measure the concentration of the electrolyte in the solution and the ion concentration ratio of the oxidant / reductant. To do. That is, when an electrode such as platinum that is not affected by this solution is immersed in a solution containing an oxidant and a reductant, the electrode reaches an equilibrium with a potential with respect to the solution. This potential is called a redox potential.
If the oxidant is Ox and the reductant is Red, the redox reaction is
Figure 0004742727
The oxidation-reduction potential E is expressed by the following Nernst equation.
E = Eo + nF-RT 1n [Red] [Ox]
Here, Eo: E when standard oxidation-reduction potential ([Ox] = [Red]), a value specific to the system)
R: Gas constant T: Absolute temperature F: Faraday constant n: Number of electrons involved in the reaction []: Concentration (activity)

しかし従来の指示電極ではその測定値に大きな差が生じることがある。例えば、溶液中の酸化還元系物質濃度が低い場合、あるいは溶液の性質が純粋すぎるような場合、酸化還元電位Eが不定となり、電位測定の安定性が低下した。つまり、同じ溶液を同じ条件下でほぼ同じ時間に複数回測定したときの測定値が一定しないだけでなくその差も大きい。水質検査のためのプラント水、工業用水など種々の液体が測定対象となっているが、溶液の種類によっては測定の安定性と正確性にかけるという問題があった。
特開平11−118756
However, the conventional indicator electrode may have a large difference in measured values. For example, when the concentration of the redox substance in the solution is low, or when the properties of the solution are too pure, the redox potential E becomes indefinite, and the stability of the potential measurement is lowered. That is, the measured value when the same solution is measured a plurality of times under substantially the same time under the same conditions is not only constant but also the difference is large. Various liquids such as plant water and industrial water for water quality inspection are the objects of measurement. However, depending on the type of solution, there is a problem that the measurement is stable and accurate.
JP-A-11-118756

本発明が解決しようとする課題は、このような欠点を克服し、溶液の種類を問わず、正確で安定した電位の測定を可能とする酸化還元電位測定装置など、酸還元電位測定に用いる指示電極に関する。特に酸化還元系物質濃度の高い溶液のみならず、酸化還元系物質濃度の低い溶液や、溶液の性質が純粋なものについても正確で安定した電位の測定が可能な指示電極を提供する。An object of the present invention is to solve is to overcome this drawback, regardless of the type of solution, such as oxidation-reduction potential measuring device capable of accurate measurement of a stable potential, used in oxidation-reduction potential measurement The present invention relates to an indicator electrode. In particular, the present invention provides an indicator electrode capable of measuring an accurate and stable potential not only for a solution having a high concentration of redox material but also for a solution having a low concentration of redox material or a pure solution.

本発明は上記のような課題を解決するため次のような手段をとる。すなわち、液体との界面に生ずる酸化還元電位測定に用いる金属導電性物質の指示電極において、指示電極は、先端部を含む外周面に研摩処理を施し、表面粗さ特性をJIS B0601−1994による中心線算術平均粗さRa(μm)で0.50以下とし、先端部と繋ぎ目なく一体に形成して全体として丸みを帯びた先端部を含む丸棒状の外周面が生体液などの低緩衝力の液体と接触可能に露出し、中ぐりの中空部が長手方向に形成されている。The present invention takes the following means to solve the above problems. That is, in the indicator electrode made of a metal conductive material used for measuring the oxidation-reduction potential generated at the interface with the liquid, the indicator electrode is subjected to polishing treatment on the outer peripheral surface including the tip portion, and the surface roughness characteristics are the center according to JIS B0601-1994. The linear arithmetic average roughness Ra (μm) is 0.50 or less, and the outer peripheral surface of the round bar including the rounded tip as a whole is integrated with the tip and has low buffering force such as biological fluid. It is exposed so as to be able to come into contact with the liquid, and a hollow hollow portion is formed in the longitudinal direction.

また液体との界面に生ずる酸化還元電位測定に用いる金属導電性物質の指示電極において、指示電極は、先端部を含む外周面に研摩処理を施し、表面粗さ特性をJIS B0601−1994による最大高さRy(μm)で1.70以下とし、先端部と繋ぎ目なく一体に形成して全体として丸みを帯びた先端部を含む丸棒状の外周面が生体液などの低緩衝力の液体と接触可能に露出し、中ぐりの中空部が長手方向に形成されている。In addition, in the indicator electrode of the metal conductive material used for measuring the oxidation-reduction potential generated at the interface with the liquid, the indicator electrode is subjected to polishing treatment on the outer peripheral surface including the tip portion, and the surface roughness characteristics are set to the maximum height according to JIS B0601-1994. Ry (μm) is 1.70 or less, and a round bar-shaped outer peripheral surface including a rounded tip formed integrally with the tip is in contact with a liquid with a low buffering force such as a biological fluid. It is exposed as possible, and a hollow hollow part is formed in the longitudinal direction.

また液体との界面に生ずる酸化還元電位測定に用いる金属導電性物質の指示電極において、指示電極は、先端部を含む外周面に研摩処理を施し、表面粗さ特性をJIS B0601−1994による十点平均粗さRz(μm)で1.00以下とし、先端部と繋ぎ目なく一体に形成して全体として丸みを帯びた先端部を含む丸棒状の外周面が生体液などの低緩衝力の液体と接触可能に露出し、中ぐりの中空部が長手方向に形成されている。In addition, in the indicator electrode of the metal conductive material used for measuring the oxidation-reduction potential generated at the interface with the liquid, the indicator electrode is subjected to polishing treatment on the outer peripheral surface including the tip portion, and the surface roughness characteristics are ten points according to JIS B0601-1994. An average roughness Rz (μm) of 1.00 or less, and a round bar-shaped outer peripheral surface including a rounded tip formed integrally with the tip is seamless, and has a low buffering force such as biological fluid. Are exposed so as to be in contact with each other, and a hollow portion is formed in the longitudinal direction.

表面粗さを基準以下にした本発明の指示電極によれば、酸化還元系物質濃度が高い溶液、のみならず、酸化還元系物質濃度が低い溶液あるいは性質が純粋すぎる溶液についても安定した電位の測定が可能である。そこで排水のように酸化還元系物質濃度が高く緩衝能力の高い溶液はもとより、唾液などの生体液や純水のように緩衝能力の低い溶液についても正確で安定した電位の測定が可能となる。According to the indicator electrode of the present invention whose surface roughness is below the standard, not only a solution having a high redox substance concentration but also a solution having a low redox substance concentration or a solution whose properties are too pure has a stable potential. Measurement is possible. Therefore, it is possible to measure an accurate and stable potential not only for a solution having a high concentration of redox substances such as drainage but a high buffering capacity, but also for a biological fluid such as saliva or a solution having a low buffering capacity such as pure water.

本発明にかかる指示電極につき発明を実施するための最良の形態を説明する。導電性物質を指示電極とし、指示電極と溶液との界面に生ずる電位、電流を測定する電気化学的な測定装置の1つに、溶液の酸化還元電位を測定する酸化還元電位測定装置がある。以下、酸化還元電位測定装置を例に説明をする。図1の構成概念図に示されるように、酸化還元電位測定装置1は指示電極2と参照電極3を備え、指示電極2と参照電極3を溶液5に浸して指示電極2の表面に溶液5を接触させ、指示電極2と溶液5との界面に生ずる電酸化還元電位を計測する。指示電極2は溶液に侵されない金属などの導電性物質からなる。白金、金などの不活性金属を用いることが多いがこれに限定されない。参照電極3は銀−塩化銀電極等の金属などから形成される。このような構成の酸化還元電位測定装置は公知である。The best mode for carrying out the invention of the indicator electrode according to the present invention will be described. One electrochemical measuring device that uses a conductive substance as an indicator electrode and measures the potential and current generated at the interface between the indicator electrode and the solution is a redox potential measuring device that measures the redox potential of the solution. Hereinafter, the oxidation-reduction potential measuring device will be described as an example. As shown in the conceptual diagram of FIG. 1, the oxidation-reduction potential measuring device 1 includes an indicator electrode 2 and a reference electrode 3. The indicator electrode 2 and the reference electrode 3 are immersed in a solution 5, and a solution 5 is placed on the surface of the indicator electrode 2. Then, the electro-oxidation reduction potential generated at the interface between the indicator electrode 2 and the solution 5 is measured. The indicator electrode 2 is made of a conductive material such as a metal that is not affected by the solution. Inert metals such as platinum and gold are often used, but are not limited thereto. The reference electrode 3 is made of a metal such as a silver-silver chloride electrode. An oxidation-reduction potential measuring apparatus having such a configuration is known.

従来の指示電極を仔細に観察すると、指示電極の表面に無数の小さな凹凸など存在していることがわかる。加工前の素材がもつ小さな凹凸や、加工などの製造過程で生じたキズなど多種多様な凹凸などである。これら凹凸には肉眼で目視できる程度のものから目視しにくいもの、さらには目視できないものがある。本発明者は種々の実験と研究を重ねた結果、指示電極のミクロレベルの表面粗さ特性が電位測定の安定性と正確性に関係していることを突き止めた。とくに溶液の酸化還元系物質濃度が低い場合や溶液の性質が純粋すぎる場合、指示電極の表面の粗さ特性が電位測定の安定性に影響を与えることを確認した。すなわち指示電極表面に接触する溶液は、凹凸などによる表面の粗さが一定の基準を超え過大となるとその測定値が一定しない、つまり電位の測定が不安定となる。しかし指示電極の表面の粗さを一定の基準以下とし表面粗さが過大でないとき電位の測定が安定する。その理由の1つとして指示電極表面の過大な粗さが局部電池を発生させ、これにより安定した電位測定が阻害されるものとおもわれる。When a conventional indicator electrode is observed closely, it can be seen that there are innumerable small irregularities on the surface of the indicator electrode. There are various irregularities such as small irregularities of the material before processing and scratches generated during the manufacturing process. These irregularities include those that can be seen with the naked eye, those that are difficult to see, and those that are not visible. As a result of various experiments and researches, the present inventor has found that the micro-level surface roughness characteristics of the indicator electrode are related to the stability and accuracy of the potential measurement. In particular, when the concentration of the redox material in the solution is low or the properties of the solution are too pure, it has been confirmed that the surface roughness characteristics of the indicator electrode affect the stability of the potential measurement. That is, when the surface roughness of the solution that contacts the indicator electrode surface exceeds a certain standard and becomes excessive, the measured value is not constant, that is, the potential measurement becomes unstable. However, when the roughness of the surface of the indicator electrode is below a certain standard and the surface roughness is not excessive, the potential measurement is stable. One reason is that excessive roughness on the surface of the indicator electrode generates a local battery, which inhibits stable potential measurement.

本発明にかかる指示電極では指示電極の表面の粗さ特定を調整する。すなわち指示電極の表面粗さを一定の基準以下とし、表面の粗さ特性を規制する。指示電極の表面粗さはJIS B0601−1994の中心線算術平均粗さRa、最大高さRy、十点平均粗さRzによる。表面粗さの基準となるのは、中心線算術平均粗さRa(μm)が0.50、最大高さRy(μm)が1.70、十点平均粗さRz(μm)が1.00である。表面粗さはそのうちの1つが基準以下であればよい。指示電極の表面粗さをこの基準以下とすることにより電位の測定が安定する。さらに好ましい表面粗さの基準は、中心線算術平均粗さRa(μm)が0.40、最大高さRy(μm)が1.50、十点平均粗さRz(μm)が0.90である。同様に指示電極の表面粗さの1つが基準以下であればよい。指示電極の表面粗さをこの基準以下とすることにより電位の測定がさらに安定する。酸化還元系物質濃度の高く、従って緩衝能力が高い溶液はもちろんのこと、緩衝能力の低い溶液についても正確で安定した電位の測定が可能である。In the indicator electrode according to the present invention, the roughness of the surface of the indicator electrode is adjusted. That is, the surface roughness of the indicator electrode is set to a certain standard or less, and the surface roughness characteristics are regulated. The surface roughness of the indicator electrode is based on the centerline arithmetic average roughness Ra, the maximum height Ry, and the ten-point average roughness Rz of JIS B0601-1994. The standard of the surface roughness is that the center line arithmetic average roughness Ra (μm) is 0.50, the maximum height Ry (μm) is 1.70, and the ten-point average roughness Rz (μm) is 1.00. It is. One of the surface roughnesses may be less than the standard. By making the surface roughness of the indicator electrode below this reference, the potential measurement is stabilized. Further preferable criteria for the surface roughness are a center line arithmetic average roughness Ra (μm) of 0.40, a maximum height Ry (μm) of 1.50, and a ten-point average roughness Rz (μm) of 0.90. is there. Similarly, it is only necessary that one of the surface roughnesses of the indicator electrode is below the reference. By making the surface roughness of the indicator electrode below this reference, the potential measurement is further stabilized. Accurate and stable potential measurement is possible not only for solutions having a high concentration of redox substances and therefore having a high buffer capacity, but also for solutions having a low buffer capacity.

表面粗さの中心線算術平均粗さRa、最大高さRy、十点平均粗さRz(JIS B0601−1994)の定義は次のとおりである。中心線算術平均粗さRaは、粗さ曲線からその平均線の方向に基準長さだけ抜き取り、その抜き取り部分の平均線から測定曲線までの偏差の絶対値を合計し平均した値である。最大高さRyは、粗さ曲線からその平均線の方向に基準長さだけ抜き取り、その抜き取り部分の平均線から最も高い山頂までの高さと、最も低い谷底までの深さとの和である。十点平均粗さRzは、粗さ曲線からその平均線の方向に基準長さだけ抜き取り、その抜き取り部分の平均線から最も高い山頂より5番目までの山頂の標高の絶対値の平均値と、最も低い谷底より5番目までの谷底の標高の絶対値の平均値との和である。The definitions of the center line arithmetic average roughness Ra, the maximum height Ry, and the ten-point average roughness Rz (JIS B0601-1994) of the surface roughness are as follows. The centerline arithmetic average roughness Ra is a value obtained by extracting a reference length from the roughness curve in the direction of the average line, and summing and averaging the absolute values of deviations from the average line of the extracted portion to the measurement curve. The maximum height Ry is the sum of the height from the average line of the extracted portion to the highest peak and the depth to the lowest valley bottom from the roughness curve in the direction of the average line. The ten-point average roughness Rz is extracted from the roughness curve by the reference length in the direction of the average line, and the average value of the absolute values of the altitudes of the peaks from the average line of the extracted part to the fifth highest peak, It is the sum of the absolute values of the altitudes of the bottoms of the valleys from the lowest bottom to the fifth.

精密な研摩処理により白金、金などの指示電極の表面粗さを調整する。機械的な精密研磨により指示電極を前記基準以下の表面粗さにするには、ラッピング加工やポリシング加工など公知の研磨加工法が選択できるが、研磨方法、装置に限定はない。例えば、1μmから数10μmの遊離砥粒を潤滑材に混ぜて粉粒材とし、この粉粒剤を回転定盤に供給するとともに指示電極(金属片)を押し付け、これら三者の相対運動によるラッピング加工をする。さらに1μm以下の微細研摩材などを用いて研磨すると所定の研磨が容易である。研摩布などで仕上げの研磨をすることもできる。The surface roughness of the indicator electrode such as platinum or gold is adjusted by precise polishing. In order to make the indicator electrode have a surface roughness equal to or less than the above-mentioned standard by mechanical precision polishing, a known polishing method such as lapping or polishing can be selected, but the polishing method and apparatus are not limited. For example, loose abrasive particles of 1 μm to several tens of μm are mixed with a lubricant to form a powder material, and this powder agent is supplied to a rotating surface plate and an indicator electrode (metal piece) is pressed to wrap by relative movement of these three members Processing. Further, if polishing is performed using a fine abrasive of 1 μm or less, predetermined polishing is easy. It can also be polished with a polishing cloth.

指示電極は平板状、角型棒状など(図示せず)その形状は任意である。 図14、15に示される指示電極2は、丸みを帯びた先端部10と繋ぎ目がなく一体に形成された丸棒状であり、先端部10を含む外周面に研摩処理が施こされる。指示電極の基端部11の研磨は任意である。指示電極2は先端部10と繋ぎ目なく一体に形成され、かつ丸棒状であり外周面は全体が湾曲面であるから、外周面を均一で精密に研磨することができる。また図15に示される指示電極2は、中ぐりの中空部12が長手方向に形成されている。中空部12により白金や金など高価な素材のコストを軽減することができる。指示電極2、つまり研摩された指示電極2の外周面に溶液が接触する。しかし中空部12には溶液が接触しないから、中空部12の内周面を研磨する必要はない。The indicator electrode may have any shape such as a flat plate shape, a square rod shape (not shown). The indicator electrode 2 shown in FIGS. 14 and 15 has a round bar shape integrally formed without a joint with the rounded tip portion 10, and the outer peripheral surface including the tip portion 10 is polished. Polishing of the base end portion 11 of the indicator electrode is optional. Since the indicator electrode 2 is formed integrally with the distal end portion 10 without a joint, and is round bar-like and the entire outer peripheral surface is a curved surface, the outer peripheral surface can be uniformly and precisely polished. Further, the indicator electrode 2 shown in FIG. 15 has a hollow portion 12 formed in the longitudinal direction. The hollow portion 12 can reduce the cost of expensive materials such as platinum and gold. The solution contacts the indicator electrode 2, that is, the outer peripheral surface of the polished indicator electrode 2. However, since the solution does not contact the hollow portion 12, it is not necessary to polish the inner peripheral surface of the hollow portion 12.

ここで先行技術(日本国特許公開公報−特開平11−118756)が開示する指示電極の研摩につき説明する。確かに同公報には指示電極の表面を研摩することが示されているが、それは、電位測定を繰り返すなど溶液との接触回数が増えると指示電極表面に酸化膜などの皮膜が生じることがあるため、このような皮膜を除去して指示電極の表面を元の状態に戻すための研磨にすぎない。そこには指示電極の本来的な表面の粗さ特性の調整や精密な研磨は意識されていない。本発明は精密研磨により指示電極の表面粗さをミクロレベルで調整し、表面粗さを一定の基準以下に設定するものである。これによりはじめて安定した電位測定が可能となるのであり、同じく研摩であっても先行技術とはその技術的意義が異なる。Here, the polishing of the indicator electrode disclosed by the prior art (Japanese Patent Publication No. 11-118756) will be described. Sure, it is shown that the surface of the indicator electrode is polished in the publication, but it may cause a film such as an oxide film on the indicator electrode surface when the number of times of contact with the solution increases, such as repeated potential measurement. Therefore, it is only polishing for removing such a film and returning the surface of the indicator electrode to its original state. There is no awareness of the adjustment of the surface roughness characteristic of the indicator electrode and precise polishing. In the present invention, the surface roughness of the indicator electrode is adjusted at a micro level by precision polishing, and the surface roughness is set below a certain standard. As a result, stable potential measurement is possible for the first time, and the technical significance is different from that of the prior art even in the case of polishing.

溶液の電位測定後、指示電極の表面にその溶液が残留すると、次におこなう溶液の電位測定の安定性を阻害することがある。残留した溶液が次の溶液を汚染するおそれがあるからである。残留した溶液の緩衝能力が高いとき、あるいは次に測定する溶液の緩衝能力が低いとき、特にその汚染が生じやすい。そこで測定後には指示電極を洗浄し、付着した残留溶液を十分に除去してから次の溶液の電位測定をするのが好ましい。本発明では、指示電極の表面粗さが一定の基準以下であり表面粗さは過大でないから、指示電極の表面に付着する残留溶液は洗浄により確実に除去される。よって表面の残留溶液を原因とする電位測定の不安定性は生じない。また残留溶液の除去には精製水(純水)で十分であり、特に洗浄用の薬剤を用いる必要もない。なお排水のように緩衝能力の高い溶液の電位測定をする場合は、残留した先の溶液による汚染の影響は相対的に小さいから、通常その電位測定が不安定になることはない。If the solution remains on the surface of the indicator electrode after measuring the potential of the solution, the stability of the subsequent potential measurement of the solution may be hindered. This is because the remaining solution may contaminate the next solution. When the buffer capacity of the remaining solution is high, or when the buffer capacity of the solution to be measured next is low, the contamination is particularly likely to occur. Therefore, it is preferable to measure the potential of the next solution after the measurement by washing the indicator electrode and sufficiently removing the attached residual solution. In the present invention, since the surface roughness of the indicator electrode is below a certain standard and the surface roughness is not excessive, the residual solution adhering to the indicator electrode surface is reliably removed by washing. Therefore, the potential measurement instability due to the residual solution on the surface does not occur. Further, purified water (pure water) is sufficient for removing the residual solution, and it is not necessary to use a cleaning chemical. When measuring the potential of a solution having a high buffering capacity such as drainage, the potential measurement is usually not unstable because the influence of contamination by the remaining solution is relatively small.

表面粗さを前記基準以下に設定した指示電極を用い、酸化還元電位測定装置をはじめとする各種測定装置により溶液の電気化学的測定を安定しておこなうことができる。緩衝能力の高い溶液のみならず、緩衝能力の低い溶液に対しても安定した電位の測定が可能である。緩衝能力の低い溶液には唾液、血液、尿を含む生体液、飲料水、精製水(純水)などが含まれる。Electrochemical measurement of a solution can be stably performed by various measuring devices such as an oxidation-reduction potential measuring device using an indicator electrode whose surface roughness is set to the standard or less. Stable potential measurement is possible not only for a solution having a high buffer capacity but also for a solution having a low buffer capacity. Solutions with low buffering capacity include saliva, blood, biological fluids including urine, drinking water, purified water (pure water) and the like.

以下本発明にかかる実施例を比較例とともに説明する。実施例および比較例において指示電極はいずれも白金製の先端部が丸みを帯びた丸棒状である。内部に中空部はない(図14参照)。長さ40mm、直径2mmである。指示電極(4)乃至(9)は表面にラッピング加工による精密な研磨処理を施した。すなわち1μm乃至数10μm程度の遊離砥粒を潤滑材に混ぜた粉粒材を使用してラッピング加工をし、さらにμm以下の微細研磨材によりラッピング加工をした。ラッピング加工には市販の研磨機を使用した。なお表面粗さの特に小さい一部の指示電極には研摩布による仕上げをした。仕上げ用の研磨布には「真珠てりクロス」(真珠科学研究所製)を使用した。指示電極(1)乃至(9)の表面粗さはそれぞれ異なり、その表面粗さを中心線算術平均粗さRa(μm)、最大高さRy(μm)、十点平均粗さRz(μm)(いずれもJIS B0601−1994)により測定した。本発明の対象外である比較例(指示電極(1)乃至(3))のうち、指示電極(1)は未研磨であり、指示電極(2)(3)は研磨が十分でない。なお参照電極は銀−塩化銀電極である。Examples according to the present invention will be described below together with comparative examples. In the examples and comparative examples, the indicator electrode is in the shape of a round bar with a platinum tip rounded. There is no hollow part inside (see FIG. 14). It is 40 mm long and 2 mm in diameter. The indicator electrodes (4) to (9) were subjected to precise polishing treatment by lapping on the surface. That is, lapping was performed using a powder material in which free abrasive grains of about 1 μm to several tens of μm were mixed with a lubricant, and further lapping was performed with a fine abrasive of μm or less. A commercially available polishing machine was used for lapping. Note that some indicator electrodes with particularly small surface roughness were finished with an abrasive cloth. As the polishing cloth for finishing, “Pearl Cloth” (manufactured by Pearl Research Institute) was used. The surface roughness of the indicator electrodes (1) to (9) is different, and the surface roughness is determined based on the center line arithmetic average roughness Ra (μm), the maximum height Ry (μm), and the ten-point average roughness Rz (μm). (Both measured according to JIS B0601-1994). Of the comparative examples (indicating electrodes (1) to (3)) that are not the subject of the present invention, the indicating electrode (1) is unpolished and the indicating electrodes (2) and (3) are not sufficiently polished. The reference electrode is a silver-silver chloride electrode.

試料溶液は、(A)ヒトの唾液、(B)精製水(純水)、(C)KCl(1mol)、(D)Fe(CN) コ−/Fe(CN) 4−系標準液の4種類である。試料溶液(A)(B)は緩衝能力が低い溶液、試料溶液(C)(D)は緩衝能力が高い溶液である。その試料溶液を指示電極(1)乃至指示電極(9)の表面に接触させ、酸化還元電位(単位はmV)の測定をした。同一の試料溶液につき3回の測定をおこなった。現在多くのメーカーにより酸化還元電位測定装置が製造販売されているが、市販の酸化還元測定装置に指示電極(1)乃至(9)を差し替え、試料溶液の酸化還元電位を測定した。The sample solution was (A) human saliva, (B) purified water (pure water), (C) KCl (1 mol), (D) Fe (CN) 6 co- / Fe (CN) 6 4- system standard solution There are four types. Sample solutions (A) and (B) are solutions with low buffer capacity, and sample solutions (C) and (D) are solutions with high buffer capacity. The sample solution was brought into contact with the surfaces of the indicator electrode (1) to indicator electrode (9), and the oxidation-reduction potential (unit: mV) was measured. Three measurements were taken for the same sample solution. Currently, many manufacturers manufacture and sell oxidation-reduction potential measuring devices. The indicator electrodes (1) to (9) were replaced with commercially available oxidation-reduction measuring devices, and the oxidation-reduction potential of the sample solution was measured.

Figure 0004742727
Figure 0004742727

表1及び図2乃至図13のグラフによれば、緩緩衝能力が高い試料溶液(C)(D)についてみると、本発明の対象である実施例の指示電極(4)乃至(9)による測定値と、本発明対象外である比較例の指示電極(1)乃至(3)による測定値がほぼ同じであり、両者は基本的に一致している。すなわち緩衝能力が高い溶液の場合は、指示電極の表面粗さ、つまり研磨処理の有無、研磨の程度に関係なく、安定した電位の測定が可能であることを示す。緩衝能力が低い試料溶液(A)(B)についてみると、本発明対象外の指示電極(1)乃至(3)による測定値にかなりのばらつきがある。しかもその測定値の差がかなり大きく、安定した電位の測定が困難である。これは従来の指示電極の欠点として指摘したところと一致する。According to Table 1 and the graphs of FIGS. 2 to 13, when the sample solution (C) (D) having a high buffer capacity is observed, it is determined by the indicator electrodes (4) to (9) of the example that is the object of the present invention. The measured values and the measured values by the indicator electrodes (1) to (3) of the comparative example which is not the subject of the present invention are almost the same, and both are basically the same. That is, in the case of a solution having a high buffering capacity, it is shown that stable potential measurement is possible regardless of the surface roughness of the indicator electrode, that is, the presence or absence of polishing treatment and the degree of polishing. Looking at the sample solutions (A) and (B) having a low buffering capacity, there are considerable variations in the measured values of the indicator electrodes (1) to (3) that are not the subject of the present invention. Moreover, the difference between the measured values is quite large, and it is difficult to measure a stable potential. This is consistent with the pointed out as a drawback of the conventional indicator electrode.

実施例の指示電極(4)乃至(9)はすべての試料溶液に対する電位の測定が安定している。すなわち中心線算術平均粗さRa(μm)0.50、最大高さRy(μm)1.70、十点平均粗さRz(μm)1.00を基準とし、Ra、Ry、Rzのいずれか1つが基準以下の指示電極(4)乃至(9)は電位の測定がすべて安定している。さらに好ましくは、中心線算術平均粗さRa(μm)0.40、最大高さRy(μm)1.50、十点平均粗さRz(μm)0.90を基準とし、Ra、Ry、Rzのいずれか1つがこの基準以下の指示電極(5)乃至(9)は、さらに電位の測定が安定している。これに対して参考例の指示電極(1)乃至(3)は緩衝能力が低い試料溶液に対する電位の測定が不安定である。このように本発明の指示電極による電位の測定は緩衝能力が低い溶液に対しても有効であり、また正確で安定した電位の測定が可能であることを示す。In the indicator electrodes (4) to (9) of the embodiment, the measurement of the potential with respect to all the sample solutions is stable. That is, any one of Ra, Ry, and Rz is based on the center line arithmetic average roughness Ra (μm) 0.50, the maximum height Ry (μm) 1.70, and the ten-point average roughness Rz (μm) 1.00. The indicator electrodes (4) to (9), one of which is below the reference, all have stable potential measurements. More preferably, the center line arithmetic average roughness Ra (μm) is 0.40, the maximum height Ry (μm) is 1.50, and the ten-point average roughness Rz (μm) is 0.90, and Ra, Ry, Rz Any one of the indicator electrodes (5) to (9) below this reference is more stable in potential measurement. In contrast, the indicator electrodes (1) to (3) of the reference example are unstable in measuring the potential with respect to the sample solution having a low buffer capacity. Thus, the measurement of the potential by the indicator electrode of the present invention is effective even for a solution having a low buffer capacity, and it is possible to measure the potential accurately and stably.

図2乃至図5のグラフは中心線算術平均粗さRaの異なる指示電極による試料溶液(A)(B)(C)(D)の電位の測定結果を表わす(縦軸の電位の単位はmV、横軸の表面粗さの単位はμm)。それによると中心線算術平均粗さRa(μm)を0.50以下に研磨した指示電極は4種類の試料溶液に対する電位の測定が安定している。またRa(μm)が0.40以下の指示電極はさらに電位の測定が安定している。一方、中心線算術平均粗さRa(μm)が0.50を超える研磨不十分な指示電極は、試料溶液(C)(D)に対する電位の測定は安定しているが、試料溶液(A)(B)に対する電位の測定が不安定である。なお図2乃至図13のグラフにおいて、小さい白丸(○)は本発明の対象となる指示電極による測定値、小さい黒丸(●)は本発明の対象外の研磨不十分な指示電極による測定値、小さい2重丸(◎)は従来の指示電極(市販の指示電極)による測定値を表す。The graphs of FIGS. 2 to 5 show the measurement results of the potentials of the sample solutions (A), (B), (C), and (D) using indicator electrodes having different center line arithmetic average roughness Ra (the unit of potential on the vertical axis is mV). The unit of surface roughness on the horizontal axis is μm). According to this, the indicator electrode polished with the center line arithmetic average roughness Ra (μm) of 0.50 or less has stable potential measurements for four types of sample solutions. Further, the indicator electrode having Ra (μm) of 0.40 or less has a more stable potential measurement. On the other hand, the poorly polished indicator electrode having a center line arithmetic average roughness Ra (μm) exceeding 0.50 is stable in measuring the potential with respect to the sample solution (C) (D), but the sample solution (A) The potential measurement for (B) is unstable. In the graphs of FIGS. 2 to 13, small white circles (◯) are measured values by the indicator electrode that is the object of the present invention, small black circles (●) are measured values by the indicator electrode that is not the subject of the present invention, and are poorly polished. A small double circle (◎) represents a value measured by a conventional indicator electrode (commercial indicator electrode).

図6乃至図9のグラフは最大高さRyの異なる指示電極による試料溶液(A)(B)(C)(D)の電位の測定結果を表わす。それによると、最大高さRy(μm)を1.70以下に研磨した指示電極は4種類の試料溶液に対する電位の測定が安定している。またRy(μm)が1.50以下の指示電極はさらに電位の測定が安定している。一方、最大高さRy(μm)が1.70を超える研磨不十分な指示電極は試料溶液(C)(D)に対する電位の測定は安定しているが、試料溶液(A)(B)に対する電位の測定が不安定である。The graphs of FIGS. 6 to 9 show the measurement results of the potentials of the sample solutions (A), (B), (C), and (D) using the indicator electrodes having different maximum heights Ry. According to this, the measurement of the potential with respect to four types of sample solutions is stable for the indicator electrode whose maximum height Ry (μm) is polished to 1.70 or less. The indicator electrode having Ry (μm) of 1.50 or less is further stable in potential measurement. On the other hand, an insufficiently polished indicator electrode having a maximum height Ry (μm) exceeding 1.70 is stable in measuring the potential with respect to the sample solutions (C) and (D), but with respect to the sample solutions (A) and (B). Potential measurement is unstable.

図10乃至図13のグラフは十点平均粗さRzの異なる指示電極による試料溶液(A)(B)(C)(D)の電位の測定結果を表したものである。それによると、十点平均粗さRz(μm)を1.00以下に研磨した指示電極は4種類の試料溶液に対する電位の測定が安定している。また十点平均粗Rz(μm)が0.90以下の指示電極はさらに電位の測定が安定 している。一方、十点平均粗さRz(μm)が1.00を超える研磨不十分な指示電極は試料溶液(C)(D)に対する電位の測定は安定しているが、試料溶液(A)(B)に対する電位の測定が不安定である。The graphs of FIGS. 10 to 13 show the measurement results of the potentials of the sample solutions (A), (B), (C), and (D) using indicator electrodes having different ten-point average roughness Rz. According to this, the measurement of the potential with respect to the four types of sample solutions is stable for the indicator electrode whose 10-point average roughness Rz (μm) is polished to 1.00 or less. In addition, the indicator electrode having a 10-point average roughness Rz (μm) of 0.90 or less has a more stable potential measurement. On the other hand, an insufficiently polished indicator electrode having a ten-point average roughness Rz (μm) exceeding 1.00 is stable in measuring the potential with respect to the sample solution (C) (D), but the sample solution (A) (B ) Is unstable.

従来の酸化還元電位測定装置においては、例えば、測定範囲が−1500mV乃至+1500mV、−1999mV乃至+1999mVの場合、再現の測定精度について 0.2乃至0.5%の許容範囲が設定されている。従ってこの場合、前者では最小60mVから最大150mVまでの範囲、また後者では最小79mVから最大199mVまでの範囲での測定誤差が許容されることになる。本発明にかかる指示電極の場合、前記表1、グラフに示されるように、緩衝能力の低い唾液においても再現の測定精度が最大で15mV以下を達成した。さらに好ましくは再現の測定精度が最大で5mV以下であった。なお中空部12を有する指示電極(図15参照)についても同様な結果が得られた。In the conventional oxidation-reduction potential measuring device, for example, when the measurement range is −1500 mV to +1500 mV, −1999 mV to +1999 mV, an allowable range of 0.2 to 0.5% is set for the measurement accuracy of reproduction. Accordingly, in this case, measurement errors in the range from a minimum of 60 mV to a maximum of 150 mV are allowed in the former, and in the range from a minimum of 79 mV to a maximum of 199 mV in the latter. In the case of the indicator electrode according to the present invention, as shown in Table 1 and graph, the maximum measurement accuracy of reproduction was 15 mV or less even in saliva having a low buffering capacity. More preferably, the reproducible measurement accuracy is 5 mV or less at maximum. Similar results were obtained for the indicator electrode having the hollow portion 12 (see FIG. 15).

このように本発明にかかる指示電極は、緩衝能力の低い溶液についても測定の精度が向上し、正確で安定した電位の測定が可能である。そこで、たとえば、生体の唾液を測定することにより体内の酸化体と還元体の状況を確認し、健康管理保持に資することができるなど、広く産業上に利用が可能である。As described above, the indicator electrode according to the present invention improves the measurement accuracy even for a solution having a low buffer capacity, and enables accurate and stable potential measurement. Therefore, for example, by measuring the saliva of the living body, the state of the oxidant and the reductant in the body can be confirmed, which can contribute to maintenance of health management and can be widely used in industry.

従来の酸化還元電位測定装置の概念構成図である。It is a conceptual block diagram of the conventional oxidation-reduction potential measuring device. 中心線算術平均粗さRaにおいて表面粗さの異なる指示電極による測定結果を示すグラフである。試料溶液はヒトの唾液である。It is a graph which shows the measurement result by the indicator electrode from which surface roughness differs in centerline arithmetic mean roughness Ra. The sample solution is human saliva. 中心線算術平均粗さRaにおいて表面粗さの異なる指示電極による測定結果を示すグラフである。試料溶液は精製水である。It is a graph which shows the measurement result by the indicator electrode from which surface roughness differs in centerline arithmetic mean roughness Ra. The sample solution is purified water. 中心線算術平均粗さRaにおいて表面粗さの異なる指示電極による測定結果を示すグラフである。試料溶液はKCl(1mol)である。It is a graph which shows the measurement result by the indicator electrode from which surface roughness differs in centerline arithmetic mean roughness Ra. The sample solution is KCl (1 mol). 中心線算術平均粗さRaにおいて表面祖さの異なる指示電極による測定結果を示すグラフである。試料溶液はFe(CN) 3−/Fe(CN) 4−系標準液である。It is a graph which shows the measurement result by the indicator electrode from which surface ancestry differs in centerline arithmetic mean roughness Ra. The sample solution is Fe (CN) 6 3− / Fe (CN) 6 4 -based standard solution. 最大高さRyにおいて表面粗さの異なる指示電極による測定結果を示すグラフである。試料溶液はヒトの唾液である。It is a graph which shows the measurement result by the indicator electrode from which surface roughness differs in maximum height Ry. The sample solution is human saliva. 最大高さRyにおいて表面粗さの異なる指示電極による測定結果を示すグラフである。試料溶液は精製水である。It is a graph which shows the measurement result by the indicator electrode from which surface roughness differs in maximum height Ry. The sample solution is purified water. 最大高さRyにおいて表面粗さの異なる指示電極による測定結果を示すグラフである。試料溶液はKCl(1mol)である。It is a graph which shows the measurement result by the indicator electrode from which surface roughness differs in maximum height Ry. The sample solution is KCl (1 mol). 最大高さRyにおいて表面粗さの異なる指示電極による測定結果を示すグラフである。試料溶液はFe(CN) 3−/Fe(CN) 4−系標準液である。It is a graph which shows the measurement result by the indicator electrode from which surface roughness differs in maximum height Ry. The sample solution is Fe (CN) 6 3− / Fe (CN) 6 4 -based standard solution. 十点平均粗さRzにおいて表面粗さの異なる指示電極による測定結果を示すグラフである。試料溶液はヒトの唾液である。It is a graph which shows the measurement result by the indicator electrode from which surface roughness differs in ten-point average roughness Rz. The sample solution is human saliva. 十点平均粗さRzにおいて表面粗さの異なる指示電極による測定結果を示すグラフである。試料溶液は精製水である。It is a graph which shows the measurement result by the indicator electrode from which surface roughness differs in ten-point average roughness Rz. The sample solution is purified water. 十点平均粗さRzにおいて表面粗さの異なる指示電極による測定結果を示すグラフである。試料溶液はKCl(1mol)である。It is a graph which shows the measurement result by the indicator electrode from which surface roughness differs in ten-point average roughness Rz. The sample solution is KCl (1 mol). 十点平均粗さRzにおいて表面粗さの異なる指示電極による測定結果を示すグラフである。試料溶液はEe(CN) 3−/Fe(CN) 4−系標準液である。It is a graph which shows the measurement result by the indicator electrode from which surface roughness differs in ten-point average roughness Rz. The sample solution is an Ee (CN) 6 3− / Fe (CN) 6 4 system standard solution. 指示電極の拡大正面図である。It is an enlarged front view of an indicator electrode. 他の指示電極の拡大断面図である。It is an expanded sectional view of another indicator electrode.

符号の説明Explanation of symbols

1 酸化還元電位測定装置
2 指示電極
3 参照電極
5 試料溶液
6 電位計
7 指示電極側リード線
9 参照電極側リード線
10 指示電極の先端部
11 指示電極の基端部
12 中空部
DESCRIPTION OF SYMBOLS 1 Oxidation reduction potential measuring apparatus 2 Indicator electrode 3 Reference electrode 5 Sample solution 6 Electrometer 7 Indicator electrode side lead wire 9 Reference electrode side lead wire 10 Tip end portion of indicator electrode 11 Base end portion 12 of indicator electrode Hollow portion

Claims (4)

液体との界面に生ずる酸化還元電位測定に用いる金属導電性物質の指示電極において、先端部を含む外周面に研摩処理を施し、表面粗さ特性をJIS B0601−1994による中心線算術平均粗さRa(μm)で0.50以下とし、先端部と繋ぎ目なく一体に形成して全体として丸みを帯びた先端部を含む丸棒状の外周面が生体液などの低緩衝力の液体と接触可能に露出し、中ぐりの中空部が長手方向に形成されている指示電極。In the indicator electrode of the metal conductive material used for measuring the oxidation-reduction potential generated at the interface with the liquid, the outer peripheral surface including the tip is subjected to polishing treatment, and the surface roughness characteristics are calculated as the centerline arithmetic average roughness Ra according to JIS B0601-1994. (Μm) is 0.50 or less, and the outer peripheral surface of the round bar that includes the rounded tip as a whole is seamlessly connected to the tip so that it can come into contact with a liquid with low buffering force such as biological fluid. An indicator electrode that is exposed and has a hollow portion formed in the longitudinal direction. 液体との界面に生ずる酸化還元電位測定に用いる金属導電性物質の指示電極において、先端部を含む外周面に研摩処理を施し、表面粗さ特性をJIS B0601−1994による最大高さRy(μm)で1.70以下とし、先端部と繋ぎ目なく一体に形成して全体として丸みを帯びた先端部を含む丸棒状の外周面が生体液などの低緩衝力の液体と接触可能に露出し、中ぐりの中空部が長手方向に形成されている指示電極。In the indicator electrode of the metal conductive material used for measuring the oxidation-reduction potential generated at the interface with the liquid, the outer peripheral surface including the tip is subjected to polishing treatment, and the surface roughness characteristics are the maximum height Ry (μm) according to JIS B0601-1994. 1.It is 1.70 or less, and the outer peripheral surface of the round bar shape including the tip portion rounded as a whole formed seamlessly with the tip portion is exposed so as to be in contact with a low buffering force liquid such as a biological fluid, An indicator electrode in which a hollow portion of the bore is formed in the longitudinal direction. 液体との界面に生ずる酸化還元電位測定に用いる金属導電性物質の指示電極において、先端部を含む外周面に研摩処理を施し、表面粗さ特性をJIS B0601−1994による十点平均粗さRz(μm)で1.00以下とし、先端部と繋ぎ目なく一体に形成して全体として丸みを帯びた先端部を含む丸棒状の外周面が生体液などの低緩衝力の液体と接触可能に露出し、中ぐりの中空部が長手方向に形成されている指示電極。In the indicator electrode of the metal conductive material used for measurement of the oxidation-reduction potential generated at the interface with the liquid, the outer peripheral surface including the tip is subjected to polishing treatment, and the surface roughness characteristics are expressed in ten-point average roughness Rz (according to JIS B0601-1994) μm) is 1.00 or less, and the outer peripheral surface of the round bar that includes the rounded tip as a whole is seamlessly connected to the tip, and is exposed so that it can come into contact with a liquid with low buffering force such as biological fluid. An indicator electrode in which a hollow portion of the bore is formed in the longitudinal direction. 指示電極に中ぐりの中空部が長手方向に形成されていることを特徴とする請求項1、2又は3に記載の指示電極。The indicator electrode according to claim 1, 2 or 3, wherein a hollow portion of the bore is formed in the indicator electrode in the longitudinal direction.
JP2005219583A 2004-09-01 2005-06-29 Indicator electrode used for redox potential measurement Expired - Fee Related JP4742727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005219583A JP4742727B2 (en) 2004-09-01 2005-06-29 Indicator electrode used for redox potential measurement

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004288628 2004-09-01
JP2004288628 2004-09-01
JP2005219583A JP4742727B2 (en) 2004-09-01 2005-06-29 Indicator electrode used for redox potential measurement

Publications (3)

Publication Number Publication Date
JP2006098390A JP2006098390A (en) 2006-04-13
JP2006098390A6 JP2006098390A6 (en) 2008-12-18
JP4742727B2 true JP4742727B2 (en) 2011-08-10

Family

ID=36238331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005219583A Expired - Fee Related JP4742727B2 (en) 2004-09-01 2005-06-29 Indicator electrode used for redox potential measurement

Country Status (1)

Country Link
JP (1) JP4742727B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4974089B2 (en) * 2008-11-11 2012-07-11 慶孝 大友 Indicator electrode used for electrochemical measuring equipment
JP6337459B2 (en) * 2013-12-16 2018-06-06 東亜ディーケーケー株式会社 Redox current measuring device
JP7336166B1 (en) 2023-05-16 2023-08-31 慶孝 大友 ORP measuring device using pure gold as working electrode

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225643A (en) * 1985-03-30 1986-10-07 Toshiba Corp Measurement of concentration of strong acid or strong base in solution with water
JPH07198669A (en) * 1993-12-28 1995-08-01 Taiyo Yuden Co Ltd Electrode for chemical sensor, manufacture thereof and chemical sensor plate
JPH08334489A (en) * 1995-06-07 1996-12-17 Kdk Corp Enzyme electrode, its manufacture, and method of use
JPH09327443A (en) * 1996-04-09 1997-12-22 Endo Process:Kk Health managing meter with embedded oxidation reduction potential measuring function
JPH119566A (en) * 1997-06-25 1999-01-19 Hikari Berukomu:Kk Oxidation/reduction potential measuring apparatus for living organism
JPH1183788A (en) * 1997-09-02 1999-03-26 Matsushita Electric Ind Co Ltd Acidity measuring apparatus
JPH11118756A (en) * 1997-10-09 1999-04-30 Hikari Berukomu:Kk Oxidation reduction potential-measuring device
JPH11248670A (en) * 1998-03-06 1999-09-17 Tokuyama Corp Negative electrode for oxygen electrode
JP2002189012A (en) * 2000-12-20 2002-07-05 Sankyo Co Ltd Platinum electrode for enzyme electrode and its manufacturing method
JP2002535666A (en) * 1999-01-28 2002-10-22 アボット・ラボラトリーズ Diagnostic tests for the determination of analytes in biological fluids

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225643A (en) * 1985-03-30 1986-10-07 Toshiba Corp Measurement of concentration of strong acid or strong base in solution with water
JPH07198669A (en) * 1993-12-28 1995-08-01 Taiyo Yuden Co Ltd Electrode for chemical sensor, manufacture thereof and chemical sensor plate
JPH08334489A (en) * 1995-06-07 1996-12-17 Kdk Corp Enzyme electrode, its manufacture, and method of use
JPH09327443A (en) * 1996-04-09 1997-12-22 Endo Process:Kk Health managing meter with embedded oxidation reduction potential measuring function
JPH119566A (en) * 1997-06-25 1999-01-19 Hikari Berukomu:Kk Oxidation/reduction potential measuring apparatus for living organism
JPH1183788A (en) * 1997-09-02 1999-03-26 Matsushita Electric Ind Co Ltd Acidity measuring apparatus
JPH11118756A (en) * 1997-10-09 1999-04-30 Hikari Berukomu:Kk Oxidation reduction potential-measuring device
JPH11248670A (en) * 1998-03-06 1999-09-17 Tokuyama Corp Negative electrode for oxygen electrode
JP2002535666A (en) * 1999-01-28 2002-10-22 アボット・ラボラトリーズ Diagnostic tests for the determination of analytes in biological fluids
JP2002189012A (en) * 2000-12-20 2002-07-05 Sankyo Co Ltd Platinum electrode for enzyme electrode and its manufacturing method

Also Published As

Publication number Publication date
JP2006098390A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
KR100968354B1 (en) Determination of sample volume adequacy in biosensor devices
AU720289B2 (en) Electrode for the electrochemical detection of nitric oxide
Lee et al. Mechanical polishing as an improved surface treatment for platinum screen-printed electrodes
JP4742727B2 (en) Indicator electrode used for redox potential measurement
JP2006098390A6 (en) Indicator electrode for electrochemical measurement of liquids
Cardwell et al. Preparation of microelectrodes: comparison of polishing procedures by statistical analysis of voltammetric data
Reeder et al. Electrochemical characterization of a microfabricated thick-film carbon sensor for trace determination of lead
Billon et al. Gold and Silver Micro‐Wire Electrodes for Trace Analysis of Metals
Ławrywianiec et al. Application of a glassy carbon electrode modified with carbon black nanoparticles for highly sensitive voltammetric determination of quetiapine
Abalos et al. Influence of topographical features on the fluoride corrosion of Ni–Ti orthodontic archwires
JPH0783881A (en) Use of electrode system containing measuring electrode, reference electrode and counter electrode in measurement of hydrogen peroxide concentration
JP4974089B2 (en) Indicator electrode used for electrochemical measuring equipment
Souto et al. Progress in scanning electrochemical microscopy by coupling potentiometric and amperometric measurement modes
Ojani et al. A novel and simple electrochemical sensor for some dopaminergic drugs such as selegiline and pramipexole based on a nickel nanoparticle modified carbon paste electrode
Ziino et al. Investigation to minimize electrochemical impedance spectroscopy drift
JP3504939B2 (en) Simultaneous analysis of peracetic acid and hydrogen peroxide
CN101726531B (en) Electrochemical detection method of dopamine in body fluid
JP4869849B2 (en) Solution analysis method
JP7127339B2 (en) ELECTROCHEMICAL SENSOR ELECTRODE CHIP AND MANUFACTURING METHOD THEREOF
Bier Introduction to oxidation reduction potential measurement
US20060042945A1 (en) Indicator electrode used for electrochemical measurement of liquid
JP7336166B1 (en) ORP measuring device using pure gold as working electrode
Castro et al. Scanning electrochemical microscopy as a tool for the characterization of dental erosion
Phonklam et al. The Stability of Gold Nanoparticles-Prussian Blue Based Sensors for Biosensor Applications in Clinical Diagnosis
WO2018220423A1 (en) Fouling-resistant pencil graphite electrode

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100302

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4742727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees