JPS61225643A - Measurement of concentration of strong acid or strong base in solution with water - Google Patents

Measurement of concentration of strong acid or strong base in solution with water

Info

Publication number
JPS61225643A
JPS61225643A JP60065037A JP6503785A JPS61225643A JP S61225643 A JPS61225643 A JP S61225643A JP 60065037 A JP60065037 A JP 60065037A JP 6503785 A JP6503785 A JP 6503785A JP S61225643 A JPS61225643 A JP S61225643A
Authority
JP
Japan
Prior art keywords
solution
concentration
electrode
sample solution
strong
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60065037A
Other languages
Japanese (ja)
Inventor
Junichi Takabayashi
純一 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60065037A priority Critical patent/JPS61225643A/en
Publication of JPS61225643A publication Critical patent/JPS61225643A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To enable automatically continuous measurement, by arranging a metal terminal connected electrically to an electrochemical system extending outside a container as main component while a film electrode adapted to generate a fixed internal potential difference solely depending on the temperature is used between the metal terminal and a film phase. CONSTITUTION:An indicator electrode 2 as film electrode, a reference electrode 3 and a terminal 4 for measuring liquid temperature are immersed into a measuring tank 1, a sample solution is introduced into the tank 1 through an liquid feed tube 5 and drained outside the tank 1 through a drain tube 6. While the sample solution with the unknown concentration is running through the tank 1, the terminal voltages between the electrodes 2 and 3 is passed through an impedance converter 7 and a signal involving the liquid temperature detected with a terminal 4 is converted into a voltage with a signal converter 8. Both are inputted into a concentration computing unit 9. With the computing unit 9, the output signal voltages of the converters 7 and 8 obtained from the sample solution are compared with the reference data separately to measure the concentration corresponding to the sample solution, which is outputted. This enables automatically continuous measurement of the concentration of the sample solution.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、水との溶液中の強酸もしくは強+1!!基の
濃度を測定する方法に関し、更に詳しくは、電位差測定
により、とくに高濃度の強酸もしくは強塩基の濃度を連
続自動的に精度よく測定しうる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to the use of strong acids or strong +1! ! The present invention relates to a method for measuring the concentration of a group, and more specifically, to a method capable of continuously and automatically measuring the concentration of a particularly high concentration of a strong acid or strong base with high precision by potentiometric measurement.

[発明の技術的背景とその問題点] 電解工業、めっき工業、金属製品の酸洗い、使用済み原
子燃料の再処理、金属湿式精練、あるいは、湿式分析の
ための金属試料溶解処理などの分野においては、水に高
濃度に溶解した塩酸、硫酸、硝酸などの強酸、もしくは
、水酸化ナトリウム、水酸化カリウム、水酸化カルシウ
ムなどの強塩基の濃度測定が必要な要素技術である。そ
して、これらの工業分野においては、自動制御による無
人操業化が進められており、そのため、かかる濃度測定
を連続自動的に実施する方法が強く求められている。
[Technical background of the invention and its problems] In the fields of electrolysis industry, plating industry, pickling of metal products, reprocessing of spent nuclear fuel, metal wet smelting, or metal sample dissolution treatment for wet analysis. is an elemental technology that requires the measurement of the concentration of strong acids such as hydrochloric acid, sulfuric acid, and nitric acid, or strong bases such as sodium hydroxide, potassium hydroxide, and calcium hydroxide, dissolved in water at high concentrations. In these industrial fields, unmanned operation through automatic control is progressing, and therefore there is a strong demand for a method for continuously and automatically carrying out such concentration measurements.

このような濃度測定方法としては、従来、 (1)電気
伝導度より求める方法、 (2)v、度より求める方法
および(3)吸光度より求める方法が知られている。し
かしながら、これらの方法は、測定の対象となる強酸も
しくは強塩基の種類により測定上の制約を受けたり、試
料溶液中の気泡の存在により測定値が変動するなど測定
の連続自動化を阻む要因を内包していたりするため、い
ずれも満足な測定方法とは言えない。
Conventionally known methods for measuring concentration include (1) a method of determining from electrical conductivity, (2) a method of determining from v, degrees, and (3) a method of determining from absorbance. However, these methods are subject to measurement limitations due to the type of strong acid or strong base being measured, and the presence of air bubbles in the sample solution may cause measurement values to fluctuate, which hinder continuous automation of measurements. Therefore, neither method can be said to be satisfactory.

一方1強酸もしくは強塩基が低濃度に溶解している水溶
液であれば、酸もしくは墳墓の種類によらず、ガラス電
極を用いたpHJ)l定装置により測定したpHと、予
め測定しておいたP)Iと濃度との関係とから求めるこ
とができる。この方法は、電位差測定によるものである
から、試料溶液中の気泡の゛ 発生に影響されることな
く連続自動的な測定ができる。しかしながらガラス電極
を用いて長時間の連)j!測測定可能であるようなp)
lの範囲は2〜!2の範囲である0強酸もしくは強kJ
1基の高濃度に溶解しているこのpHの範囲外では、一
つには、ガラス電極とともに使用される照合?l!極の
液路部において該照合?11極の電極液と測定対象液と
の間に発生する液間電位のために、正確な測定が不可能
となる。また、たとえ、かかる液間電位を別途測定でき
たとしても1強酸性溶液中では、ガラスTrL8iiの
電位測定値が試料溶液への浸漬中に経時変化を生じ一定
の収束値が得難く、シがも、この経時変化自体も再現性
に乏しいという問題があり、一方、強塩基性溶液中では
、ガラス電極の電位測定値はpHだけでなく試料溶液中
のカチオン濃度にも影響を受けるほか、電極の応答性も
徐々に低下するという問題がある0以上の問題点は、ア
ール番ジー・ベイツ著「PHの決定−理論と実際」 (
ジョン・ウィリー争アンドφサンズ社刊、 1964年
)【RoG、  Bates、   7Determi
natian  of  pH:  τheory  
andPractice” (JobIllWile7
 and 5ons、 1964月第315〜322頁
に詳述されているとおりである。
On the other hand, if it is an aqueous solution in which a strong acid or a strong base is dissolved at a low concentration, the pH should be measured in advance with a pHJ) measuring device using a glass electrode, regardless of the type of acid or burial mound. P) It can be determined from the relationship between I and concentration. Since this method is based on potentiometric measurement, continuous and automatic measurements can be performed without being affected by the generation of bubbles in the sample solution. However, long-term continuous use using glass electrodes)j! p) such that it is measurable
The range of l is 2~! 0 strong acid or strong kJ in the range of 2
One is dissolved in high concentrations outside of this pH range, one is collated to be used with glass electrodes? l! Verification in the liquid path at the pole? Accurate measurement is impossible due to the liquid potential generated between the electrode liquid of the 11 electrodes and the liquid to be measured. Furthermore, even if such a liquid junction potential could be measured separately, in a strongly acidic solution, the measured potential of the glass TrL8ii would change over time during immersion in the sample solution, making it difficult to obtain a constant convergence value. However, this change over time itself has the problem of poor reproducibility.On the other hand, in strongly basic solutions, the potential measurement value of the glass electrode is affected not only by the pH but also by the cation concentration in the sample solution. The problem with 0 and above, which has the problem that the responsiveness of
John Willie and φ Sons, 1964) [RoG, Bates, 7Determi
natian of pH: τheory
andPractice” (JobIllWile7
and 5ons, April 1964, pages 315-322.

[発1月の目的] 本発明は、従来のかかる問題を解消し1強酸もしくは強
塩基の種類によらず、かつ、試料溶液中の気泡の発生に
影響されることなく連続自動的な測定を実施しうる電位
差測定法を適用し、しかも高濃度まで測定することが可
能な水との溶液中の強酸もしくは強塩基の濃度測定方法
の提供を目的とする。
[Purpose of issue in January] The present invention solves the conventional problems and enables continuous automatic measurement regardless of the type of strong acid or strong base and without being affected by the generation of bubbles in the sample solution. The object of the present invention is to provide a method for measuring the concentration of a strong acid or strong base in a solution with water, which applies a practical potentiometric measurement method and is capable of measuring high concentrations.

【発明のI!要] 本発明者は、上記目的を達成すべく鋭意研究を重ねる過
程で、電位差測定において、指示電極として特開昭56
−77751号およびニードラッチ。
[I of invention! [Summary] In the course of intensive research to achieve the above object, the present inventor discovered the use of Japanese Patent Laid-Open Publication No. 56
-77751 and Needlatch.

ジャーナル番オブ・エレクトロケミカル・ソサエティ 
、第 127@、第2122−2130頁(1880年
)()fiedrach、  J、  Electro
chem、  Sac、、  127  、 2122
−2130(1980)]にそれぞれ記載されている水
素イオンセンナと同様の膜電極を用いることとなせば、
強酸もしくは強塩基が溶解した水溶液に対し、出該指示
電極の電位は上述したようにPHのみによって決定され
るものではないが、しかし、理論的には強酸もしくは強
塩基自身の濃度に依存したものとなるはずであるとの着
想を得た。
Journal Number of Electrochemical Society
, No. 127@, pp. 2122-2130 (1880) ()fiedrach, J. Electro
chem, Sac,, 127, 2122
-2130 (1980)], if a membrane electrode similar to the hydrogen ion senna described in
For an aqueous solution in which a strong acid or strong base is dissolved, the potential of the indicator electrode is not determined only by the pH as described above, but theoretically it depends on the concentration of the strong acid or strong base itself. I got the idea that it should be.

本発明者は、この着想に基づいて種々検討を重ねた結果
、上記の膜電極を使用した場合、従来。
As a result of various studies based on this idea, the inventor of the present invention found that when the above membrane electrode is used,

該膜電極による測定例がなかった2モル/見を超える強
酸もしくは 1モル/文を超える強塩基の水との溶液の
濃度測定においても、優れた電位応答性を示すというこ
とを新たに見出し一連の実験により本発明を完成するに
到った。
We have newly discovered that this membrane electrode exhibits excellent potential responsiveness even when measuring the concentration of a solution of a strong acid exceeding 2 mol/cm or a strong base exceeding 1 mol/cm in water, which has not been measured using this membrane electrode. The present invention was completed through these experiments.

すなわち1本発明の水との溶液中の強酸もしくは強a!
基の濃度測定方法は1強酸もしくは強塩基の木との溶液
よりなる試料溶液に、指示電極ならびに照合電極を浸漬
し、該指示電極と該照合電極との間に生じる端子間電圧
から該試料溶液中の強酸もしくは強塩基の濃度を測定す
る方法であって、該指示電極が、酸素イオン電導性セラ
ミックスよりなる流体不透過性膜で構成された容器と、
該容器内面の少なくとも一部に接触している電気化学系
と、該電気化学系に電気的にvc続され該容器の外部に
延在する金属端子よりなり、かつ、該金属端子と該膜相
との間に温度のみに依存する一定の内部電位差を発生す
る18ITtL極であることを特徴とする。
That is, 1. A strong acid or a strong a! in solution with water according to the present invention.
The method for measuring the concentration of the group is to immerse an indicator electrode and a reference electrode in a sample solution consisting of a solution containing a strong acid or a strong base, and calculate the sample solution from the voltage generated between the terminals of the indicator electrode and the reference electrode. A method for measuring the concentration of a strong acid or strong base in a container, the indicator electrode comprising a fluid-impermeable membrane made of oxygen ion conductive ceramic;
an electrochemical system in contact with at least a portion of the inner surface of the container; and a metal terminal electrically connected to the electrochemical system and extending to the outside of the container; It is characterized by an 18ITtL pole that generates a constant internal potential difference that depends only on temperature between the two.

本発明の測定方法において、まず、対象となる試料溶液
は1強酸もしくは強塩基が溶解している水との溶液であ
り、とくに、種類が明らかな強酸もしくは強塩基が単独
で存在するか、あるいは共存物質が存在したとしても、
゛それらが試料溶液中の水素イオンおよび水の活量に及
ぼす影響を無視しうるちのである。更に1強酸もしくは
強塩基の濃度の増加に伴い、水素イオンの活量もしくは
強酸の平均活量、または、水素イオンの活量もしくは強
塩基の平均活量が単調増加し、かつ、水の活量が単y4
減少する濃度範囲の溶液である。
In the measurement method of the present invention, first, the target sample solution is a solution with water in which one strong acid or strong base is dissolved. Even if coexisting substances exist,
``Their effects on the activities of hydrogen ions and water in the sample solution can be ignored. Furthermore, as the concentration of a strong acid or strong base increases, the activity of hydrogen ions or the average activity of strong acids, or the activity of hydrogen ions or the average activity of strong bases increases monotonically, and the activity of water increases. is simple y4
solutions of decreasing concentration ranges.

ついで2本発明方法で使用する指示電極である膜電極に
ついて述べる。内面の少なくとも電気化学系を接触させ
る容器は、酸素イオン電導性セラミックスよりなる流体
不透過性膜で構成される。
Next, a membrane electrode, which is an indicator electrode used in the method of the present invention, will be described. The inner surface of the container, which contacts at least the electrochemical system, is composed of a fluid-impermeable membrane made of oxygen ion conductive ceramics.

この酸素イオン電導性セラミックスとしては、試料溶液
中の強酸もしくは強塩基の種類、および。
The oxygen ion conductive ceramics include the type of strong acid or strong base in the sample solution;

これらのとりうる濃度範囲に応じて種々のものを使用す
ることができるが、中でも酸素イオンの輪車が高((1
,0に近く)、かつ、試ネ4溶液との間で溶解、新和の
生成あるいは他の特定の化学反応が進行しにくいもので
あることが好ましい。
Various types of these can be used depending on the concentration range, but among them, oxygen ion wheel wheels with high ((1
, close to 0), and it is preferable that dissolution, formation of shinwa, or other specific chemical reactions with the test solution are difficult to proceed.

そのような酸素イオン電導性セラミックスとしては、試
料溶液が強酸の溶液である場合は安定化酸化ジルコニウ
ム(Zr02)が、また、強塩基の溶液である場合は上
記安定化酸化ジルコニウムのほか、他種の酸化物をドー
プすることにより酸素イオン電導性を付与された酸化ト
リウム(T1102)、酢化セリウム(Ce02)、酸
化ビスマス(Bi203) 、 酸化ランタン(C型L
n203)などがあげられる、これらは単独で使用して
も、2種以上の間の固溶体を使用してもよい。
As such oxygen ion conductive ceramics, stabilized zirconium oxide (Zr02) is used when the sample solution is a strong acid solution, and stabilized zirconium oxide (Zr02) is used when the sample solution is a strong base solution, in addition to the above stabilized zirconium oxide. Thorium oxide (T1102), cerium acetate (Ce02), bismuth oxide (Bi203), lanthanum oxide (C-type L), which has been given oxygen ion conductivity by doping with oxides of
n203), etc. These may be used alone, or a solid solution of two or more types may be used.

一方、上記の指示電極において、上記した酸素イオン電
導性セラミックスよりなる流体不透過性膜で構成された
容器の内面に接触している電気化学系としては、とくに
限定されるものではないが、以下に述べる2つのタイプ
のものを好適なものとしてあげることができる。すなわ
ち、■PH一定の電解質水溶液と、該電解質水溶液中に
浸漬された水溶液用照合電極もしくは該電解質水溶液を
電極液として水溶液用照合電極を構成する該水溶液用照
合電極の電極本体との組み合せ:これには1通常知られ
ている第二枝電極。
On the other hand, in the above-mentioned indicator electrode, the electrochemical system in contact with the inner surface of the container made of the fluid-impermeable membrane made of the above-mentioned oxygen ion conductive ceramics is not particularly limited, but is as follows: The two types described in can be cited as suitable. That is, (1) a combination of an electrolyte aqueous solution with a constant pH and an aqueous solution reference electrode immersed in the electrolyte aqueous solution or the electrode body of the aqueous solution reference electrode that constitutes the aqueous solution reference electrode using the electrolyte aqueous solution as an electrode liquid: 1 usually known as the second branch electrode.

すなわち、飽和カロメル電極あるいは銀−ハロゲン化電
極などを使用することができる。
That is, a saturated calomel electrode or a silver-halogenated electrode can be used.

■機素イオン電導性セラミックスとともに耐大電極を構
成させる方法として、金属と該金属の酸化物との混合物
もしくは単一金属の金属原子価の異なる2種類の酸化物
どうしの混合物を使用しこれに電子電導性の導電リード
を組合わせる:好適な金属と該金属の酸化物との混合物
としては、銅−−m化銅または水銀−醸化水銀の各混合
物があげられ、また同一金属の金属原子価の異なる2種
類の酸化物どうしの混合物としては、例えば、醜化第−
鉄一マグネタイトまたはマグネタイト−ヘマタイト(磁
鉄鉱−赤鉄K)の各混合物をあげることができる。
■As a method of constructing a large-capacity electrode together with elemental ion conductive ceramics, a mixture of a metal and an oxide of the metal or a mixture of two types of oxides of a single metal with different valences is used. Combining electronically conductive conductive leads: Suitable mixtures of metals and oxides of the metals include copper--copper meride or mercury-mercury mixtures, and metal atoms of the same metal. As a mixture of two types of oxides with different values, for example,
Examples include mixtures of iron-magnetite and magnetite-hematite (magnetite-hematite K).

このように1Ml気化学系として酸素イオン電導性セラ
ミックスとともに耐大電極を構成する場合は、前述の酸
素イオン導電性セラミックスよりなる容器内に上記金属
と該金属の酸化物との混合物もしくは同一金属の金属原
子価の異なる2種類の酸化物どうしの混合物を充填して
該容器内壁面とJfi M サセルとともに、かかる混
合物内に該混合物と前述の金属端子とを電気的に接続す
る導電リードを例えば埋設することにより両者を接触さ
せた構造とすることが好ましい、導電リードには白金線
、炭素棒等の不活性電子電導性の線、棒が好ましい、更
に、この場合に、容器である膜の相と導電リードとの間
の電位差は、容器内の酸素分圧に依存するため、該容器
内面と該混合物と該導電リードとを外気から遮断するた
めのシール部材を設けることが望ましい。
In this way, when constructing a large electrode with oxygen ion conductive ceramic as a 1Ml gas chemical system, a mixture of the above metal and an oxide of the metal or a mixture of the same metal is placed in a container made of the oxygen ion conductive ceramic described above. A mixture of two types of oxides having different metal valences is filled, and a conductive lead for electrically connecting the mixture and the above-mentioned metal terminal is buried in the mixture together with the inner wall surface of the container and the Jfi M sacell. It is preferable to have a structure in which the two are in contact with each other.The conductive lead is preferably an inert electronically conductive wire or rod such as a platinum wire or a carbon rod.Furthermore, in this case, the phase of the membrane that is the container Since the potential difference between the mixture and the conductive lead depends on the oxygen partial pressure within the container, it is desirable to provide a sealing member to isolate the inner surface of the container, the mixture, and the conductive lead from the outside air.

上記の指示電極は上述した基本4I成を有するものであ
れば、その詳細な形状、構造などは何ら限定されるもの
ではなく、たとえば、該電気化学系は、該容器内面の少
なくとも一部に接触させさえすれば、該容器の外部まで
延在するものであってもよい。
The detailed shape and structure of the indicator electrode are not limited in any way as long as it has the basic 4I configuration described above; for example, the electrochemical system is in contact with at least a part of the inner surface of the container. It may extend to the outside of the container as long as it is allowed to do so.

本発明方法で使用する指示電極である膜電極において、
試料溶液と接触する膜電極の表面では次式(1)で示さ
れる化学平衡が成立するものと考えられる。
In the membrane electrode that is the indicator electrode used in the method of the present invention,
It is considered that a chemical equilibrium expressed by the following equation (1) is established on the surface of the membrane electrode that comes into contact with the sample solution.

02−(酸素イオン電導性セラミックス膜中) + 2
)130°(試料溶液中):  3H20(試料溶液中
)    (I)ここで、 成分iの化学ポテンシャル
’j: %i  。
02- (in oxygen ion conductive ceramic membrane) + 2
) 130° (in sample solution): 3H20 (in sample solution) (I) where: Chemical potential 'j of component i: %i.

電気化学ポテンシャルを7Lisイオン価数をzi。Electrochemical potential is 7Lis ion valence is zi.

成分iを含む相の内部電位をφi、また、ファラデ一定
数をFとすると、 月ツμi + ZiFφ、    (II)であり1式
(I)から 7Lo2− + 27LH30−= ”)120 (m
)である故。
If the internal potential of the phase containing component i is φi, and the Faraday constant is F, then μi + ZiFφ, (II), and from equation (I), 7Lo2− + 27LH30−= ”)120 (m
).

JLO2−−2FφQ2−+2CkH30+ +FφH
20)” 3IL)+20 (ff)となる。
JLO2--2FφQ2-+2CkH30+ +FφH
20)” 3IL)+20 (ff).

一方、試料溶液と接する膜電極の表面における界面電位
差をΔΦとすると。
On the other hand, if the interfacial potential difference at the surface of the membrane electrode in contact with the sample solution is ΔΦ.

Δφ−φ。2−−φH2o(v) ゆえ。Δφ−φ. 2--φH2o(v) Therefore.

Δφ” (IL02− ” ”)130”−鉢H2(1
)/2F  (■)となる、成分iの活量をILi と
して示すと。
Δφ” (IL02- “”) 130”- Pot H2 (1
)/2F (■), and the activity of component i is expressed as ILi.

PH” −loglo a u3o+     (■)
ゆえ、標準状態を肩つきの0で示し、気体定数をR1絶
対温度をTとすれば pi m ar +RT log、 ai、 (Vl)
より Δφ−(gO2−” 2 PH30+−3μ、H2O)
/2F−且や走、、H−4、o、、 au2o  (■
)が成立する。
PH” −loglo a u3o+ (■)
Therefore, if the standard state is indicated by a shouldered 0, and the gas constant is R1 and the absolute temperature is T, then pi mar + RT log, ai, (Vl)
From Δφ−(gO2−” 2 PH30+−3μ, H2O)
/2F-Katsuya Run,,H-4,o,,au2o (■
) holds true.

ここで、試料溶液は、上述したように1強酸もしくは強
塩基が単独で高濃度に溶解しているか。
Here, in the sample solution, does one strong acid or strong base dissolve alone at a high concentration as described above?

あるいは共存物質が存在したとしても、それらが試料溶
液中の水素イオンおよび水の活量への影響を無視しうる
ような水との溶液であるから、当該試料溶液と当該膜電
極の膜内部との間の内部電位差Δφは式(IX)より温
度Tが決まれば、試料溶液のpHと水の活量’ R20
とに依存して決定される。
Alternatively, even if there are coexisting substances, the sample solution and the inside of the membrane of the membrane electrode may be different from each other because they are in a solution with water such that their influence on the activity of hydrogen ions and water in the sample solution can be ignored. The internal potential difference Δφ between the pH of the sample solution and the activity of water' R20
Determined depending on.

ところで、希薄溶液では、溶質の濃度が低いほど理想溶
液に近づくことが知られている。したがって、試料溶液
中の強酸もしくは強塩基の濃度が低い場合、溶媒である
水の活量a )+20はほぼ−定で1強酸もしくは強塩
基の濃度が低ければ低いほどl(モル分率尺度で表示)
に近づく、−例をあげると、25℃の硫酸では、llj
%化学便覧」第2版(電気化学協会編、丸善−刊、 1
974年)第125頁によると、0.1モル/kg(f
c重量モル濃度表示以下のモル/kgも同様)のとfi
 & H20−〇、99B4 、0.01モル/kgの
ときa H20−0,1313960。
By the way, it is known that in a dilute solution, the lower the solute concentration, the closer the solution becomes to the ideal solution. Therefore, when the concentration of the strong acid or strong base in the sample solution is low, the activity of the solvent water a ) +20 is approximately - constant; display)
- For example, in sulfuric acid at 25°C, llj
% Chemical Handbook” 2nd edition (edited by the Electrochemical Society, published by Maruzen, 1)
974), page 125, 0.1 mol/kg (f
The same applies to moles/kg below the molar concentration display) and fi
& H20-0, 99B4, at 0.01 mol/kg a H20-0, 1313960.

o、ooosモル/kgのと!t a H20= 0.
99998である。
o,ooos moles/kg! t a H20=0.
It is 99998.

このとき1式(IX)において、Δφは実質的にp)l
のみに依存することがわかる。すなわち、本発す1方法
において使用する膜電極は1強酸もしくは強塩基の低濃
度水溶液中では、上述の特開昭56−77751号に記
載された水素イオンセンサと同様のm能を有する。
At this time, in equation 1 (IX), Δφ is substantially p)l
It can be seen that it depends only on That is, the membrane electrode used in one method of the present invention has m-ability similar to that of the hydrogen ion sensor described in JP-A-56-77751 mentioned above in a low concentration aqueous solution of a strong acid or strong base.

しかしながら、前述の「電気化学便覧j p、125〜
12Bによると、25℃のとき、硫酸および水最化ナト
リウムの重量モル濃度表示の濃度(前記[vt気化学便
覧j p、130の水溶液の密度のデータを用いて算出
した容積モル濃度表示の濃度も併記する)に対する& 
H20は、硫酸では、3.730モル/kg(3,25
モル/交)のとき0.80. 9.304モル/kg(
6,36モル/文)のとき0o40、水酸化ナトリウム
では、 4.7118モル/ k、 (4,72モル/
交)のとき0.80. 11.54モル/ kg (1
0,8モル/文)のとき0.40のごとく、強酸もしく
は強塩基の濃度の増加に伴って水の活li & H20
が次第に減少していくため、上記膜電極は水素イオンセ
ンサとしての機能を呈さなくなる。このような高濃度領
域では式(IX)においてΔφの値は強酸もしくは強塩
基の種類に依存する。なぜならば、H20のモル分率を
11H□、モル分率尺度の活量係数をrH20、)!3
0+の容積6モル濃度をCH304,容積モル濃度尺度
の活量係数をlH3O+とすると式(IX、 )は。
However, the above-mentioned "Electrochemistry Handbook jp, 125~
According to 12B, at 25°C, the concentration in terms of molarity of sulfuric acid and sodium hydroxide (concentration in terms of volumetric molarity calculated using the density data of aqueous solutions in [vt Gas Chemistry Handbook, p. 130)] (also listed) &
H20 is 3.730 mol/kg (3,25
mole/cross) 0.80. 9.304 mol/kg (
6,36 mol/k), 0o40, sodium hydroxide, 4.7118 mol/k, (4,72 mol/k)
0.80 when 11.54 mol/kg (1
As the concentration of strong acids or bases increases, the activity of water increases, such as 0.40 at 0.8 mol/liter)
gradually decreases, so that the membrane electrode no longer functions as a hydrogen ion sensor. In such a high concentration region, the value of Δφ in formula (IX) depends on the type of strong acid or strong base. This is because the mole fraction of H20 is 11H□, and the activity coefficient on the mole fraction scale is rH20)! 3
If the volumetric molar concentration of 0+ is CH304, and the activity coefficient on the volumetric molar concentration scale is lH3O+, the formula (IX, ) is.

ΔφW(μo2−+ 2JL n30+ −3P H2
0) /2F十RT(log、 CH3o+ ) /F
−3R丁(loge M12o)/2F+R丁<rog
e  Yu30”)/’−3RT(lollefH2(
1)/2F         (X)とi!き直すこと
ができ、希薄溶液の溶質の場合とは異なって活量係数r
n2o、 lH3O+は溶液成分の種類に依存するから
である。
ΔφW(μo2−+ 2JL n30+ −3P H2
0) /2F10RT (log, CH3o+) /F
-3R (loge M12o)/2F + R<rog
e Yu30")/'-3RT(lollefH2(
1)/2F (X) and i! The activity coefficient r is different from that for solutes in dilute solutions.
This is because n2o and lH3O+ depend on the types of solution components.

式(X)により、試料溶液が強酸の水溶液である場合は
1強酸の濃度の増加とともに&H3o+は増加し、かつ
l’ H20は減少するのでΔφは単調増加することが
わかる。
From equation (X), it can be seen that when the sample solution is an aqueous solution of a strong acid, &H3o+ increases and l' H20 decreases as the concentration of the strong acid increases, so that Δφ increases monotonically.

一方、試料溶液が強塩基の水どの溶液である場合、試料
溶液中では、H20の電離反応:2H20*  R30
”+  OH−(XI)が生じているので、この反応と
式CI)の反応を組み合わせた 02−(酸素イオン電導性セラミックス膜中) + 8
20 (試料溶液中):: 20H−(試料溶液中> 
        (Xlr)の反応が生じている0式(
XI[)の反応について、式(I)の反応と同様に扱う
ことにより。
On the other hand, when the sample solution is a strong base solution such as water, the ionization reaction of H20 in the sample solution: 2H20* R30
"+ OH-(XI) is generated, so this reaction and the reaction of formula CI) are combined 02- (in oxygen ion conductive ceramic membrane) + 8
20 (in sample solution):: 20H- (in sample solution>
Formula 0 (where the reaction of (Xlr) is occurring (
By treating the reaction of XI[) in the same manner as the reaction of formula (I).

Δφ=φメーーφH2O −(J’ 02−+J’ H,,0−2J” □H−)
 /2F−RT(log、 aoH−)/T十RT(l
ogl、ILH20)/2F   (XI)となり、式
<yx>により1強塩基濃度の増加とともにa −は増
加し、a  は減少するので、OH)120 このときΔφは単調減少することがわかる。
Δφ=φH2O −(J'02−+J' H,,0−2J” □H−)
/2F-RT(log, aoH-)/T0RT(l
ogl, ILH20)/2F (XI), and according to the formula <yx>, as the concentration of one strong base increases, a - increases and a decreases, so OH)120 At this time, it can be seen that Δφ decreases monotonically.

以上のことをまとめると1強酸もしくは強塩基が単独で
高濃度に溶解している水との溶液では、一定温度のもと
で1本発明方法で使用する膜電極のΔφは、 PHでは
なく1強酸もしくは強f!!基の種類と濃度に依存し、
しかもその偵は強酸濃度の増加とともに単調増加し、一
方1強塩基濃度の増加とともに単調減少する。
To summarize the above, in a solution with water in which a strong acid or strong base is dissolved alone at a high concentration, Δφ of the membrane electrode used in the method of the present invention at a constant temperature is 1, not PH. Strong acid or strong f! ! Depends on the type and concentration of the group,
Furthermore, its value increases monotonically as the concentration of a strong acid increases, and decreases monotonically as the concentration of a strong base increases.

この発明に係わる11M電極において、最素イオン電導
性セラミックスよりなる流体不透過性膜でで  。
The 11M electrode according to the present invention includes a fluid-impermeable membrane made of the most ionically conductive ceramic.

きた容器の内側に電気化学系が設けられ、さらにその電
気化学系に電気的接続をした端子が前記容器の外部゛に
配置されているが、前記端子と前記膜内部との間に温度
のみに依存する一定の内部電位差が発生する作用につい
ては、特開昭58−77751号公報およびニードラッ
チ、インダストリアル−エンジニアリング・ケミカル・
プロダクツ−リサーチ・アンド・デベロップメント、第
22号0m594−593頁、 1983年[Nfed
rach、 Ind、 Eng、 Chem−Prod
、 Res、 Dev、、 22 、594−599(
103月および5taddardの論文「ジルコニアR
1pHセンサ:ZirconiaMe+5brane 
pH’3ensors Jに詳述されている。
An electrochemical system is provided inside the container, and a terminal electrically connected to the electrochemical system is placed outside the container, but there is no temperature difference between the terminal and the inside of the membrane. Regarding the effect of generating a certain internal potential difference depending on the
Products Research and Development, No. 22, pp. 594-593, 1983 [Nfed
rach, Ind, Eng, Chem-Prod
, Res, Dev, 22, 594-599 (
10 March and 5taddard paper “Zirconia R
1 pH sensor: ZirconiaMe+5brane
pH'3 sensors J.

また、木J?#]方法において、試料溶液と照合電極の
18j液との間の液路部に発生する液間電位は、一定温
度のもとで1両液に含まれるイオンの種類と濃度のみに
依存する。そのため、一定温度のもとでは、液間電位と
膜m極の電位とを含む膜fttJ4i−照合電極間の端
子間電圧は強酸もしくは強!!!基の濃度に依存する。
Also, tree J? #] In the method, the liquid-to-liquid potential generated in the liquid path between the sample solution and the reference electrode liquid 18j depends only on the type and concentration of ions contained in both liquids at a constant temperature. Therefore, at a constant temperature, the terminal voltage between the membrane fttJ4i and the reference electrode, which includes the liquid junction potential and the potential of the membrane m pole, is a strong acid or a strong! ! ! Depends on the concentration of the group.

したがって、当該強酸もしくは強塩基の濃度の増加に対
して前記端子間電圧が単調に増加もしくは減少する領域
を利用すれば、この端子間電圧を測定することにより1
強酸もしくは強塩基の濃度を求めることができるのであ
る。
Therefore, if the region in which the voltage between the terminals monotonically increases or decreases with respect to an increase in the concentration of the strong acid or strong base is used, then by measuring the voltage between the terminals,
The concentration of strong acids or bases can be determined.

なお、かかる端子+1jl電圧に対する強酸もしくは強
塩基の濃度依存性は、照合電極の電極液と試料溶液との
間の液路部の構成を選択することにより付えることがで
きる。すなわち、前記構成の選択により、強酸もしくは
強jカ基の濃度に対して前記端子間電圧が単調に増加も
しくは減少する領域が所要の濃度範囲を含むように選ぶ
ことができる。
Note that the concentration dependence of the strong acid or strong base on the terminal +1jl voltage can be made by selecting the configuration of the liquid path between the electrode liquid of the reference electrode and the sample solution. That is, by selecting the configuration, it is possible to select a region in which the voltage between the terminals monotonically increases or decreases with respect to the concentration of the strong acid or the strong j group so as to include a desired concentration range.

前記構成において液路部には、試料溶液とu’+を極液
とを直接液路する直接型のほかに、試料溶液と該電極液
との間に任意の水溶液を中間液として貯溜せる1つ以上
の中間室を設け、試料#液1巾nJ1液1中間液雪・・
・・・・・・・璽照合電極電極液のように直列に配こす
る間接型がある。高濃度の酸もしくはa!基の測定を長
時間に亘って行なう場合は、照合電極の電極液への試料
溶液混入により照合電極のi!極本体が悲影響を受ける
のを避けるため前記間接型とすることが好ましい、この
場合に、中間液は照合電極と同一の種類・濃度のもので
あってもよく、また、異なっていてもよい、液路部の構
成如何にかかわらず、前述の濃度依存性を決定するのは
、試料溶液の8類と濃度範囲および試料溶液に隣接する
溶液の種類と組成である。
In the above configuration, in the liquid path part, in addition to a direct type in which the sample solution and u'+ are directly connected to the electrode liquid, there is also a type in which an arbitrary aqueous solution can be stored as an intermediate liquid between the sample solution and the electrode liquid. Three or more intermediate chambers are provided, sample #liquid 1 width nJ1 liquid 1 intermediate liquid snow...
There is an indirect type in which the electrodes are arranged in series like the electrode solution. High concentration of acid or a! When measuring the reference electrode over a long period of time, the i! In order to avoid negative effects on the electrode body, it is preferable to use the indirect type. In this case, the intermediate liquid may be of the same type and concentration as the reference electrode, or may be different. Regardless of the configuration of the liquid path, the concentration dependence described above is determined by the type 8 and concentration range of the sample solution and the type and composition of the solution adjacent to the sample solution.

なお、発明者が後述の[発明の実施例]の項に示すよう
に、試料溶液に隣接する溶液として、塩橋に通常使用さ
れる高濃度の塩化カリウム水溶液で、当該強酸もしくは
当該強塩基の広範囲にわたって、十分良好な前記濃度依
存性を得られる場合もあるが、前記端子間電圧に対する
前記濃度依存性を単yJ関数となるように前記構成を選
ぶ一つの方法として、次のものもある。すなわち、試l
溶液に隣接する溶液の組成を以下のように選択する方法
があげられる。すなわち、試料溶液に隣接する溶液とし
て、・試料溶液と同一の強酸もしくは強塩基のみを一定
濃度で溶解した溶液を使用する。いま、試料溶液に隣接
する溶液に対する試料溶液との液間電位をΔφ交とする
。試料溶液が強酸H□Aの木との溶液である場合、#記
端子間電圧のうち、試料溶液(この相を園で示す)中の
H8^の濃度に依存するのは、前述したように試料溶液
と接する膜TrL極の表面における界面電位差ΔΦと、
試料溶液に隣接する同じく強酸H!Aの溶液(この相を
nで示す)に対する試料溶液の液間電位Δφ文とである
。ここで、を分iの輪車をTi。
In addition, as shown in the [Examples of the Invention] section below, the inventor used a highly concentrated potassium chloride aqueous solution that is commonly used for salt bridges as a solution adjacent to the sample solution. In some cases, the concentration dependence can be obtained sufficiently well over a wide range, but the following method is also available as one method for selecting the configuration so that the concentration dependence with respect to the terminal voltage becomes a single yJ function. In other words, try
The composition of the solution adjacent to the solution may be selected as follows. That is, as a solution adjacent to the sample solution, a solution in which only the same strong acid or strong base as the sample solution is dissolved at a constant concentration is used. Now, assume that the liquid junction potential between the sample solution and the solution adjacent to the sample solution is Δφ crossing. When the sample solution is a solution with a strong acid H The interfacial potential difference ΔΦ on the surface of the membrane TrL electrode in contact with the sample solution,
The same strong acid H! adjacent to the sample solution! The liquid junction potential Δφ of the sample solution with respect to the solution A (this phase is indicated by n). Here, the wheel wheel of minute i is Ti.

成分iの相jにおける活量な、7とすると。Let the activity of component i in phase j be 7.

ここで’ T)130゜+TA、−−1ゆえ。Here 'T) 130° + TA, -1 therefore.

H8Aの平均活量&U^、を用いると。Using the average activity &U^ of H8A.

ゆえ式(胃)は ところで、 H,A十冨H20,−1830+ A  
であるから、!   O Δφ= 2F ” 02−” ” H2O” −”’0
20)”¥ ”oge”)!30”−1toH@&:4
2o)  (X■)式(x v’+)および(X■)よ
り Δφ+Δφl =−PAc”’02−十” ”’。=3
JLy、p)RT   n  3  層 +丁10jce ao3o−210ge aH2゜式(
X■)において、試料溶液中の■8Aの濃度が増加する
とa貴、0は減少し。
By the way, the expression (stomach) is H, A ten tomi H20, -1830+ A
Because it is! O Δφ= 2F "02-""H2O"-"'0
20)"¥"oge")!30"-1toH@&:4
2o) (X■) From equations (x v'+) and (X■), Δφ+Δφl =-PAc"'02-10"''.=3
JLy, p) RT n 3 layer + 10jce ao3o-210ge aH2° formula (
In X■), when the concentration of ■8A in the sample solution increases, a and 0 decrease.

Δφ+ΔΦ又も増加する。同様にして、試料溶液が強塩
基の水との溶液である場合についても、当該強塩基の濃
度の増加に伴いΔφ+Δφ文が減少することが示せる。
Δφ+ΔΦ also increases. Similarly, when the sample solution is a solution of a strong base in water, it can be shown that the Δφ+Δφ statement decreases as the concentration of the strong base increases.

したがって、試料溶液が強酸と水との溶液、もしくは強
塩基と水との溶液である場合、それぞれ、試料溶液に隣
接する溶液に、試料溶液と同一の強酸のみ、もしくは強
塩基のみを一定濃度に溶解する溶液を用いるならば、試
料溶液における当該強酸もしくは当該強塩基の濃度に対
して膜電極拳照合電極間の端子a■電圧は?Ji調に増
加もしくは減少するので、このとき、前記端子間電圧を
測定することにより、試料溶液中の当該強酸もしくは当
該強塩基の濃度を求めることができる。
Therefore, if the sample solution is a solution of a strong acid and water or a solution of a strong base and water, the same strong acid or only the strong base as the sample solution is added to the solution adjacent to the sample solution at a constant concentration. If a dissolving solution is used, what is the terminal a voltage between the membrane electrode and reference electrode for the concentration of the strong acid or strong base in the sample solution? At this time, by measuring the voltage between the terminals, the concentration of the strong acid or strong base in the sample solution can be determined.

なお、前に述べたとおりこの発明を用いることができる
試料溶液は、溶解している強酸もしくは強塩基の一度増
Jnに対し、水素イオンの活量または強酸の平均活量、
もしくは水酸イオンの活量または強塩基の平均活量が単
g!!増加し、かつ水の活量が単調減少する強酸もしく
は強塩基の濃度範囲の溶液であることが必要条件であっ
た。この必要条件を満たさない強酸もしくは強塩基と水
との溶液も存在し、たとえば、Mとして1oo96に近
い硫酸や硝酸が挙げられる。しかし、このような場合で
あっても、前記条件を満たす最高濃度まで希釈し得る一
定倍率で水により希釈を行なうという前翅理を試料溶液
に施すだけで、この発明方法を適用することができるよ
うになる。この場合、同様にして一定倍率で水で希釈す
ることによりガラス電極によりpHから前記濃度を測定
することも可能だが、この発IJJ方法を用いる場合よ
りも数倍〜100倍の程度の量の水を要し、しかも希釈
に伴う誤差もより大きいという難点がある。
As mentioned above, the sample solution to which this invention can be used has a hydrogen ion activity or an average activity of a strong acid,
Or the average activity of hydroxyl ion or strong base is single g! ! A necessary condition was that the solution had a concentration range of strong acids or strong bases in which the activity of water increases and the activity of water decreases monotonically. There are solutions of strong acids or strong bases and water that do not meet this requirement, such as sulfuric acid or nitric acid where M is close to 1096. However, even in such a case, the method of the present invention can be applied by simply diluting the sample solution with water at a constant ratio that allows dilution to the maximum concentration that satisfies the above conditions. become. In this case, it is also possible to measure the concentration from the pH with a glass electrode by diluting it with water at a fixed ratio in the same way, but the amount of water is several to 100 times larger than when using this IJJ method. However, there are disadvantages in that the error associated with dilution is also larger.

活量や平均活量に関し前述のような制限を満たせば、こ
の発明を用いることができる試料溶液は1強酸もしくは
強塩基が単独だけではなく、共存物質が存在しても試料
溶液の水素イオンおよび水の活量への影響を無視し得る
程度に不純物としてしか含まない水との溶液でも良いわ
けである。
As long as the above-mentioned restrictions regarding activity and average activity are satisfied, the sample solution to which this invention can be used will contain not only one strong acid or strong base alone, but also hydrogen ions and A solution with water that contains only impurities to such an extent that the effect on water activity can be ignored may be sufficient.

当該濃度測定の必要精度にも依存するが、このような共
存物質として6任意の塩を前述の活量への影響の制限の
もとに含ませることが可能である。
Although it depends on the required accuracy of the concentration measurement, it is possible to include any 6 arbitrary salts as such coexisting substances, subject to the above-mentioned restrictions on the influence on the activity.

この点は、溶液中に存在するすべてのイオンによる電気
伝導を測定する。従来の電気伝導度から当該濃度を求め
る方法よりも適用範囲が広い。
This point measures the electrical conduction by all ions present in the solution. This method has a wider range of applicability than the conventional method of determining the concentration from electrical conductivity.

以上に述べた本発明方法の作用等によれば、本発明の方
法は1強酸もしくは強塩基の種類によらず電位差測定法
を適用し高濃度まで測定が可能である。また、たとえ試
料溶液中に気泡が発生しても、このような気泡は強酸も
しくは強塩基の濃度を変化させることがないため1本発
明方法の実施を阻害することはなく、電位差測定法によ
るものであるからJ!!続自動的に測定を実施しうるち
のである。
According to the above-described effects of the method of the present invention, the method of the present invention can measure up to high concentrations by applying potentiometric measurement regardless of the type of strong acid or strong base. Furthermore, even if air bubbles occur in the sample solution, such air bubbles do not change the concentration of the strong acid or strong base, so they do not interfere with the implementation of the method of the present invention, and the method of the present invention cannot be performed using the potentiometric method. So J! ! This means that the measurements can be carried out automatically.

[発明の実施例] 本発明方法の一実施例を第1図にもとづいて具体的に説
明する。t51図は本発明方法を適用する際に使用する
測定装置の基本構成の一例を示す。
[Embodiment of the Invention] An embodiment of the method of the present invention will be specifically described based on FIG. Figure t51 shows an example of the basic configuration of a measuring device used when applying the method of the present invention.

図において、I14定letは大さく分けて測定槽lと
それ以外の電気的処理部分からなる。I!4定槽1には
、上記した膜電極である指示電極2.照合電極3および
液温測定用端子へか浸漬され、さらに。
In the figure, I14 constant let is roughly divided into a measurement tank 1 and other electrical processing parts. I! 4. In the fixed tank 1, an indicator electrode 2. It is immersed into the reference electrode 3 and the terminal for measuring liquid temperature, and further.

入液管5および出液管Sが配設されている。これらの構
成要素はいずれも試料溶液に対して十分な耐食性を有す
る材料で形成されている。測定槽lにおいて試料溶液は
入液管5より槽内に導入され、出液管6により槽外に排
出される。一方、測定槽!以外の電気的処理部分では、
指示電極2および照合電極3はそれぞれリード線を介し
て両電極間の端子間電圧検出用のインピーダンス変換器
7に接続され、液温測定用端子4はリード線を介して信
号変換器8に接続されている。更に、インピーダンス変
換器7および信号変換器8はそれぞれリード線を介して
マイクロコンピュータ内蔵の濃度演算器9に接続されて
いる。そして、濃度演算器eは、前記端子間電圧と信号
変換!I8の出力電圧を、予めプログラムしておいた基
準データと比較することにより、試料溶液中の強酸もし
くは強塩基の濃度を演算し出力する。なお、測定槽1並
びに指示電極2.照合電極3および液温測定用端子鴫の
それぞれ測定槽1の外に出ている部分。
A liquid inlet pipe 5 and a liquid outlet pipe S are provided. All of these components are made of materials that have sufficient corrosion resistance against the sample solution. In the measuring tank 1, a sample solution is introduced into the tank through an inlet pipe 5 and discharged to the outside of the tank through an outlet pipe 6. On the other hand, the measurement tank! In electrical processing parts other than
The indicator electrode 2 and reference electrode 3 are each connected via a lead wire to an impedance converter 7 for detecting the voltage between the two electrodes, and the liquid temperature measurement terminal 4 is connected to a signal converter 8 via a lead wire. has been done. Furthermore, the impedance converter 7 and the signal converter 8 are each connected via lead wires to a concentration calculator 9 built in a microcomputer. Then, the concentration calculator e converts the voltage between the terminals and the signal! By comparing the output voltage of I8 with pre-programmed reference data, the concentration of strong acid or strong base in the sample solution is calculated and output. Note that the measurement tank 1 and the indicator electrode 2. Portions of the reference electrode 3 and the liquid temperature measuring terminal protruding from the measuring tank 1.

および、指示電極2と照合電極3をインピーダンス変換
!17に接続するリード線はいずれも静1を誘導を防止
するためのシールドを施し、かつ、当該シールドを接地
することが好ましい、さらには。
And impedance conversion between indicator electrode 2 and reference electrode 3! It is preferable that all the lead wires connected to the terminal 17 be shielded to prevent induction of static electricity 1, and that the shield be grounded.

必要に応じて、入液管5と出液管6.並びに液温測定用
端子4に接続されたリード線の測定槽1近傍部分にも静
を誘導を防止するためのシールドを施す、また、測定槽
1の内部の温度を均一にするために、測定槽lを保温材
で覆うことが望まししX 。
If necessary, the liquid inlet pipe 5 and the liquid outlet pipe 6. In addition, the part of the lead wire connected to the liquid temperature measurement terminal 4 near the measurement tank 1 is also shielded to prevent static induction. It is desirable to cover the tank with heat insulating material.

かかる測定装置を用いて、試料溶液の濃度を測定するた
めには、まず、濃度演算器3の代わりに、多点式電圧記
R装置を配設し、インピーダンス変換器7および信号変
換器8の各出力電圧を前記記録装置に入力でさるように
しておく、ついで、1:i度が既知である強酸もしくは
強塩基の水との溶液を温度を一定に保持しつつ入液管5
から測定槽!に導入し、かつ出液管6から排出せしめる
ことにより貫流させ、このときのインピーダンス変換器
7と信号変換!!8との各出力電圧値の組み合わせを測
定する。このようにして1種々の温度および濃度の強酸
もしくは強塩基の木との溶液について同様の測定を行な
う0次に1.s1々の温度・濃度についての前記のイン
ピーダンス変換器7と信号変換器8どの各出力電圧定常
値の組合わせを基準データとしたプログラムを、濃度演
算器3に入力しておく、さらに、前記基準データに対し
て、濃度演算器9が、試ネ4溶液におけるインピーダン
ス変換器7ど信号変換器8との出力電圧の組合わせを比
較し、前記基準データと一致するときの濃度を選出し、
出力する演算を行なうようにプログラムを入力しておく
、シかるのち、記a*atを取り外し、再び濃度演算器
3を設置する。
In order to measure the concentration of a sample solution using such a measuring device, first, a multi-point voltmeter R device is installed in place of the concentration calculator 3, and the impedance converter 7 and signal converter 8 are Each output voltage is inputted to the recording device, and then a solution of a strong acid or strong base with water with a known 1:i degree is added to the liquid input tube 5 while keeping the temperature constant.
Measuring tank! The liquid is introduced into the tube and discharged from the drain pipe 6 to allow the liquid to flow through the impedance converter 7 and signal conversion! ! Measure the combination of each output voltage value with 8. In this way, similar measurements are made on solutions of wood with strong acids or strong bases at different temperatures and concentrations. A program in which the combination of the steady output voltage values of the impedance converter 7 and the signal converter 8 for each temperature and concentration of s1 is input as reference data is input into the concentration calculator 3; With respect to the data, a concentration calculator 9 compares the combination of output voltages of the impedance converter 7 and the signal converter 8 in the sample 4 solution, and selects the concentration when it matches the reference data,
After inputting a program to perform the calculation to be output, remove a*at and install the concentration calculator 3 again.

ついで、未知濃度の試料溶液を上述の濃度既知の溶液と
同様に貫流させる。この状態で、指示電極2と照合電W
3との間の端子電圧はインピーダンス変換器7を経て、
一方、液温測定用端子4で検出された液温に係る信号は
信号変換器8で電圧に変換されて、いずれも濃度演算器
9に入力される。[発明の概要]の項で述べたように、
一定温度のもとでは、M電極よりなる指示電極2と照合
電極3との間の端子間電圧は、試料溶液中の強酸もしく
は強塩基の濃度に依存する。したがって。
Then, a sample solution of unknown concentration is allowed to flow through the sample solution in the same manner as the above-mentioned solution of known concentration. In this state, the indicator electrode 2 and reference electrode W
The terminal voltage between 3 and 3 passes through an impedance converter 7,
On the other hand, a signal related to the liquid temperature detected by the liquid temperature measuring terminal 4 is converted into a voltage by a signal converter 8, and both are input to a concentration calculator 9. As stated in the [Summary of the invention] section,
At a constant temperature, the voltage between the indicator electrode 2, which is an M electrode, and the reference electrode 3 depends on the concentration of the strong acid or strong base in the sample solution. therefore.

濃度演算器3におい°C1上記により得られた基準デー
タと、試料溶液から得られたインピーダンス変換器7と
信号変換g!8の各出力信号電圧とが比較され、当該試
料溶液に対応する濃度が選出され出力される。このよう
にして1以上の?c置により、試享橿溶液の濃度を連続
自動的に測定することができる。
The concentration calculator 3 uses the reference data obtained above at °C1, the impedance converter 7 obtained from the sample solution, and the signal conversion g! 8 output signal voltages are compared, and the concentration corresponding to the sample solution is selected and output. More than 1 in this way? The concentration of the sample solution can be continuously and automatically measured by setting the sample temperature.

この発明方法の有効性を確認するための後述の実験I〜
■を、第2図に示した測定装置を使用して実施した。第
2図に示す装置は基本的には第1図に示したものと同じ
である(第1図と同一の構成要素は同一の符合を付して
示した)が、濃度演算2!9に代えて、2ペンXY電圧
記録計lOを配置し、更に、2種類の既知濃度の試料溶
液を貯留する2つの貯液槽11,12.流路切換弁13
.14およびポンプ!5を新たに設置した。このような
構成において、一方の貯液槽11(12)の試料溶液を
、貯液槽11(12)、流路切換弁13(14)、ポン
プ15.測定槽lおよび元の貯液槽11(12)の順で
循環させることとし、流路切換弁13.14による流路
切換により、他方の貯液4612(11)の試料溶液の
同様な循還に可逆的に変更が可能となるようにした。
Experiment I to confirm the effectiveness of this invention method
(2) was carried out using the measuring device shown in FIG. The apparatus shown in FIG. 2 is basically the same as that shown in FIG. 1 (the same components as in FIG. Instead, a 2-pen XY voltmeter lO is arranged, and two liquid storage tanks 11, 12. Flow path switching valve 13
.. 14 and pump! 5 was newly installed. In such a configuration, the sample solution in one liquid storage tank 11 (12) is transferred to the liquid storage tank 11 (12), the flow path switching valve 13 (14), the pump 15. The measurement tank 1 and the original storage tank 11 (12) are circulated in this order, and the sample solution in the other storage tank 4612 (11) is circulated in the same way by switching the flow path using the flow path switching valve 13.14. It is now possible to make reversible changes.

かかる測定装置において、指示電極2としては、 6モ
ル%Y2O3安定化ZrO2よりなる外形30.0ms
+。
In such a measuring device, the indicator electrode 2 has an outer diameter of 30.0 ms and is made of 6 mol% Y2O3 stabilized ZrO2.
+.

肉厚0.711.長さ220禦履のタンマン管形焼成管
内に、電気化学系として市販の塩化カリウム飽和銀塩化
銀電極とJIS K8474に規定されるフタル酸塩標
準ml衝液とを配設してなる膜電極を、また、照合電極
3としては、電極液への試料溶液の混入を防ぐためダブ
ルジャンクシ、ン型の市販塩化カリウム飽和銀塩化銀電
極(中間室には塩化カリウム結晶と飽和塩化カリウム水
溶液を入れた)をそれぞれ用いた。また、液温測定用端
子礁には市販のSO5304製シース管入りpt測温抵
抗体のシース管I:pt光沢メッキしたものを用い、流
路+JJ換弁13゜目とポンプ15は接液部分がポリテ
トラフルオロエチレン樹脂で構成されたものを使用した
。さらに、測定槽!と入液管5および出液管8とその他
の配管はポリテトラフルオ′ロエチレン樹脂テ製作した
Wall thickness 0.711. A membrane electrode formed by disposing a commercially available potassium chloride saturated silver chloride electrode and a phthalate standard ml liquid solution specified in JIS K8474 as an electrochemical system was placed in a Tamman tubular firing tube with a length of 220 mm. In addition, as the reference electrode 3, a double-junction type commercially available potassium chloride saturated silver silver chloride electrode (the intermediate chamber contained potassium chloride crystals and a saturated potassium chloride aqueous solution) was used to prevent the sample solution from mixing with the electrode solution. ) were used respectively. In addition, for the terminal reef for liquid temperature measurement, a commercially available SO5304 sheathed PT resistance thermometer sheathed tube I: PT gloss plated was used, and the flow path + JJ switching valve 13° and the pump 15 are the wetted parts. A material made of polytetrafluoroethylene resin was used. Furthermore, a measurement tank! The liquid inlet pipe 5, liquid outlet pipe 8, and other piping were made of polytetrafluoroethylene resin.

そして、測定槽l内に指示電極2をそのセラミックス膜
部分が長さ200肩諺にわたって露出するように取付け
た。また、この指示電極2の安定化ZrO2焼成管に生
ずる温度分布にもとづく熱起電力の影響を考慮し、上述
の指示電極2の取付位置および出該電極内部の溶液量を
厳密に管理した。一方、測定棒の容積は5001文とし
、試料溶液の循還速度は917sinとした。更に、測
定温度は25℃に保持し、インピーダンス変換器は入力
抵抗がlO縛Ωのものを用いた。
Then, the indicator electrode 2 was installed in the measuring tank 1 so that the ceramic film portion thereof was exposed over a length of 200 mm. In addition, considering the influence of thermoelectromotive force based on the temperature distribution generated in the stabilized ZrO2 firing tube of the indicator electrode 2, the mounting position of the indicator electrode 2 and the amount of solution inside the electrode were strictly controlled. On the other hand, the volume of the measuring rod was 5001 cm, and the circulation rate of the sample solution was 917 sin. Further, the measurement temperature was maintained at 25° C., and the impedance converter used had an input resistance of 10 Ω.

実験I 試ネ4溶液として濃度4モル/l (容積モル濃度表示
、以下のモル/見も同様)の塩酸および4モル/交の水
醇化ナトリウムを使用し、測定槽lに試料溶液を注入後
、直ちに指示電極−照合電極間の端子間電圧の経時変化
を測定し結果を第3図(塩酸)および@4図(水酸化ナ
トリウム)にそれぞれ実線で示した。
Experiment I Use hydrochloric acid with a concentration of 4 mol/l (volume molarity display, the following mol/value is the same) and sodium aqueous solution with a concentration of 4 mol/l as the test solution, and after pouring the sample solution into the measurement tank 1. Immediately, the change over time in the terminal voltage between the indicator electrode and the reference electrode was measured, and the results are shown as solid lines in Figure 3 (hydrochloric acid) and Figure 4 (sodium hydroxide), respectively.

なお、比較のために、指示電極2として、市販のガラス
電極を使用したほかは上記と全く同様の実験を行ない、
結果をtJSa図および第4図にそれぞれ破線で示した
For comparison, an experiment was conducted in exactly the same manner as above, except that a commercially available glass electrode was used as the indicator electrode 2.
The results are shown by broken lines in the tJSa diagram and FIG. 4, respectively.

これかられかるように、ガラス電極では、この発明に係
わる膜電極を用いた場合と比べ、遅い応答を示し、特に
塩酸では著しい、しかし、この発明に係わる膜電極では
前記端・子間電圧に応答の遅れは認められず、ガラス電
極よりも良好な応答を示すこ2:がわかる。
As will be seen, the glass electrode exhibits a slower response than the membrane electrode according to the present invention, and is particularly noticeable in hydrochloric acid. However, the membrane electrode according to the present invention does not respond to the terminal-terminal voltage It can be seen that no delay was observed, and the response was better than that of the glass electrode.

実験■ 試料溶液として、濃度が異なる塩酸および水酸化ナトリ
ウム水溶液を用いて、端子間電圧の濃度変動に対する応
答性の再現性を調べた。すなわち、それぞれ5モル/1
(A)および10モル/1(B)の液を貯゛液槽11お
よび12に入れ、流路切換弁+3.I(を24時間ごと
に切換えることにより、その電圧変化を調べた。結果を
@5図(塩酸)および!86図(水酸化ナトリウム)に
示した。
Experiment ■ Using hydrochloric acid and sodium hydroxide aqueous solutions with different concentrations as sample solutions, we investigated the reproducibility of the response of the terminal voltage to concentration fluctuations. That is, 5 mol/1 each
(A) and 10 mol/1 (B) are put into the liquid storage tanks 11 and 12, and the flow path switching valve +3. The voltage change was investigated by switching I every 24 hours. The results are shown in Figure @5 (hydrochloric acid) and Figure !86 (sodium hydroxide).

おのおの流路切換−弁切換えから実際の電位変化開始ま
での時間のずれは除去して図に示した。いずれも端子間
電圧に過渡的変化が見られるが、これは測定槽1内の液
の入れ替えに時間を要するために現われたものと考えら
れる。高濃度の強酸もしくは強塩基の溶液にガラス電極
を用いた場合。
The time lag between each channel switching-valve switching and the start of actual potential change has been removed from the diagram. In both cases, a transient change is seen in the voltage between the terminals, but this is thought to be caused by the time it takes to replace the liquid in the measurement tank 1. When a glass electrode is used in a highly concentrated strong acid or strong base solution.

その電位の応答性の再現性は悪いか、悪くなっていくこ
とが知られているが、これらの結果から。
Based on these results, it is known that the reproducibility of the potential response is poor or is getting worse.

この発明に係わる膜電極を用いた場合、前記端子間電圧
は、濃度変動に対しても再現性よく応答することがわか
る。
It can be seen that when the membrane electrode according to the present invention is used, the voltage between the terminals responds to concentration fluctuations with good reproducibility.

実験■ 試14 In液として、塩酸、過塩素酸、水酸化ナトリ
ウムおよび水酸化カリウムの各水溶液を用い、  ゛こ
れらの試料溶液の濃度と端子間電圧との関係を調べた。
Experiment ■ Trial 14 Using each aqueous solution of hydrochloric acid, perchloric acid, sodium hydroxide, and potassium hydroxide as the In solution, the relationship between the concentration of these sample solutions and the voltage between the terminals was investigated.

得られた結果を第7図(塩酸二〇、過塩素酸:φ)およ
び第8図(水酸化ナトリウム二〇、水醜化カリウム:*
)に示した。さらに、第7図、第8図には、上記の膜電
極が水素イオンセンサとして機能する場合の指示値の#
Iきを示す実線を前述の式(IX)にaH20”1を代
入することにより求め併記した。
The obtained results are shown in Figure 7 (hydrochloric acid 20, perchloric acid: φ) and Figure 8 (sodium hydroxide 20, water-uglying potassium: *
)It was shown to. Furthermore, FIGS. 7 and 8 show the indicated value # when the above membrane electrode functions as a hydrogen ion sensor.
A solid line indicating I was obtained by substituting aH20''1 into the above-mentioned formula (IX) and is also shown.

これから、強酸や強塩基が高濃度に水に溶解した溶液に
、この発明に係わる膜電極を用いた場合、水素イオンセ
ンナとしては機能させることはでさなく、また、前記端
子間電圧は強酸および強塩基の種類にも依存するが、こ
の発明の方法によリ1強強酸よび強塩基の濃度が測定で
きることがわかる。
From now on, when the membrane electrode according to the present invention is used in a solution in which a strong acid or a strong base is dissolved in water at a high concentration, it will not function as a hydrogen ion senna, and the voltage between the terminals will be lower than that of the strong acid or strong base. Although it depends on the type of strong base, it can be seen that the concentration of strong acids and strong bases can be measured by the method of the present invention.

[発明の効果1 以上の説明から明らかなように、本発明の水との溶液中
の強酸もしくは強塩基の濃度測定方法は次のようなすぐ
れた効果を奏する。
[Effects of the Invention 1] As is clear from the above description, the method for measuring the concentration of a strong acid or strong base in a solution with water according to the present invention has the following excellent effects.

(イ)測定対象の強酸もしくは強塩基の種類にかかわら
ず測定できる。
(a) Measurement is possible regardless of the type of strong acid or strong base being measured.

指示電極と照合電極との間の端子間電圧が、試料溶液中
に含まれる強酸もしくは強塩基の濃度にそれぞれ単調増
加もしくは単調減少するようにすることができるからで
ある。
This is because the voltage between the terminals of the indicator electrode and the reference electrode can be made to monotonically increase or monotonically decrease depending on the concentration of the strong acid or strong base contained in the sample solution.

(ロ)ガラス笥、極による濃度測定よりも高濃度まで測
定できる。
(b) Can measure higher concentrations than concentration measurements using glass bowls and poles.

高濃度の強酸もしくは強塩基の溶液の場合でもガラス電
極のように端子間電圧の応答性や応答性の再現性の低下
を生じないからである。
This is because even in the case of a highly concentrated strong acid or strong base solution, unlike glass electrodes, the responsiveness of the voltage between terminals and the reproducibility of the responsiveness do not deteriorate.

(ハ)試料溶液中の気泡の発生に影響を受けない。(c) Not affected by the generation of bubbles in the sample solution.

5、泡は強酸および強塩基の濃度を変化させず、また、
膜電極の電位や、試ネ4溶液と照合電極の電極液との間
の液間電位は一定温度のもとで当該濃度のみに依存する
からである。
5. Bubbles do not change the concentration of strong acids and strong bases, and
This is because the potential of the membrane electrode and the liquid potential between the sample 4 solution and the electrode solution of the reference electrode depend only on the concentration at a constant temperature.

本発明方法は1M1位差測定による方法であるから、連
続自動的な測定を実施することができ、しかも以上述べ
たすぐれた効果をもつ方法であるので、その工業的価値
はきわめて大きい。
Since the method of the present invention is based on 1M 1-position difference measurement, continuous and automatic measurements can be carried out, and the method has the excellent effects described above, so its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための装置の基本構成の
一例を示す図、第2図は本発明の一実施例を説明するた
めの構成図、第3図および第4図は端子間電圧の応答性
を示す図、第5図および第6図は端子間電圧の応答性の
再現性を示す図。 tPJ7図および第8図は濃度と端子間電圧との関係を
示す図である。 !・・・測定(6,2・・・指示電極。 3・・・照合電極、    4・・・液温測定用端子。 5・・・入液管、     6・・・出液管。 7・・・インピーダンス変換器。 8・・・信号変換器、   3・・・濃度演算器、11
.12・・・貯液槽、・ 第1図 第2図 3  に  4 OIo     20    30 埼7’−’l (h) 時閉(min) 第7図 濃L (mo7/jり 4更 (moj!/Jl)
FIG. 1 is a diagram showing an example of the basic configuration of an apparatus for carrying out the method of the present invention, FIG. 2 is a configuration diagram for explaining an embodiment of the present invention, and FIGS. 3 and 4 are diagrams showing terminals. FIGS. 5 and 6 are diagrams showing the responsivity of voltage; FIGS. 5 and 6 are diagrams showing the reproducibility of the responsivity of the voltage between terminals; FIG. tPJ7 and FIG. 8 are diagrams showing the relationship between concentration and terminal voltage. ! ...Measurement (6, 2... Indicator electrode. 3... Reference electrode, 4... Terminal for measuring liquid temperature. 5... Liquid inlet pipe, 6... Liquid outlet pipe. 7... - Impedance converter. 8... Signal converter, 3... Concentration calculator, 11
.. 12...Liquid storage tank, Figure 1 Figure 2 Figure 3 4 OIo 20 30 Sai7'-'l (h) Closed (min) Figure 7 Dark L (mo7/jri 4th change (moj! /Jl)

Claims (1)

【特許請求の範囲】 1、強酸もしくは強塩基の水との溶液よりなる試料溶液
に、指示電極ならびに照合電極を浸漬し、該指示電極と
該照合電極との間に生じる端子間電圧から該試料溶液中
の強酸もしくは強塩基の濃度を測定する方法であって、 該指示電極が、酸素イオン電導性セラミックスよりなる
流体不透過性膜で構成された容器と、該容器内面の少な
くとも一部に接触している電気化学系と、該電気化学系
に電気的に接続され該容器の外部に延在する金属端子よ
りなり、かつ、該金属端子と該膜相との間に温度のみに
依存する一定の内部電位差を発生する膜電極であること
を特徴とする水との溶液中の強酸もしくは強塩基の濃度
測定方法。 2、該照合電極は、該照合電極の電極液が少なくとも1
つの中間室を介して試料溶液と液路する構造であって、
試料溶液に隣接する中間室内の溶液が試料溶液と同一の
種類かつ一定濃度の強酸もしくは強塩基のみを溶解する
水との溶液である特許請求の範囲第1項記載の方法。 3、該電気化学系が、該容器内面の少なくとも一部に連
接しているpH一定の電解質水溶液と、該電解質水溶液
に少なくとも一部分が浸漬された水溶液用照合電極もし
くは該電解質水溶液を電極液として水溶液用照合電極を
構成する該水溶液用照合電極本体とよりなる特許請求の
範囲第1項または第2項記載の方法。 4、該電気化学系が、該容器内面の少なくとも一部に接
触している金属と該金属の酸化物との混合物と、該混合
物と該金属端子とを電気的に接続する電子電導性の導電
リードと、該容器内面と該混合物と該導電リードとを外
気から遮断するシール部材とよりなる特許請求の範囲第
1項または第2項記載の方法。 5、該電気化学系が、該容器内面の少なくとも一部に接
触している同一金属の金属原子価の異なる2種類の酸化
物同士の混合物と、該混合物と該金属端子とを電気的に
接続する電子電導性の導電リードと、該容器内面と該混
合物と導電リードとを外気から遮断するシール部材とよ
りなる特許請求の範囲第1項または第2項記載の方法。 6、該酸素イオン電導性セラミックスが、安定化酸化ジ
ルコニウム、他種酸化物をドープした酸化トリウム、他
種酸化物をドープした酸化セリウム、他種酸化物をドー
プした酸化ビスマスおよび他種酸化物をドープした酸化
ランタンよりなる群から選択されるものまたは前記群よ
り選択される少なくとも2種どうしの固溶体である特許
請求の範囲第1項乃至第5項のいずれかに記載の方法。 7、該酸化イオン電導性セラミックスが安定化酸化ジル
コニウムである特許請求の範囲第1項乃至第5項のいず
れかに記載の方法。
[Claims] 1. An indicator electrode and a reference electrode are immersed in a sample solution consisting of a solution of a strong acid or a strong base in water, and the sample is determined from the voltage between the terminals generated between the indicator electrode and the reference electrode. A method for measuring the concentration of a strong acid or strong base in a solution, the indicator electrode being in contact with a container made of a fluid-impermeable membrane made of oxygen ion conductive ceramics and at least a part of the inner surface of the container. a metal terminal electrically connected to the electrochemical system and extending outside the container, and a constant temperature dependent only on temperature between the metal terminal and the membrane phase. A method for measuring the concentration of a strong acid or strong base in a solution with water, characterized by using a membrane electrode that generates an internal potential difference of . 2. The reference electrode has an electrode liquid of at least 1
It has a structure in which the sample solution and the liquid flow through two intermediate chambers,
2. The method according to claim 1, wherein the solution in the intermediate chamber adjacent to the sample solution is a solution with water that dissolves only a strong acid or strong base of the same type and concentration as the sample solution. 3. The electrochemical system includes an electrolyte aqueous solution with a constant pH connected to at least a portion of the inner surface of the container, and an aqueous solution reference electrode that is at least partially immersed in the electrolyte aqueous solution, or an aqueous solution using the electrolyte aqueous solution as an electrode liquid. The method according to claim 1 or 2, comprising the aqueous solution reference electrode body constituting the aqueous solution reference electrode. 4. The electrochemical system electrically connects a mixture of a metal and an oxide of the metal that is in contact with at least a portion of the inner surface of the container, and an electronic conductor that electrically connects the mixture and the metal terminal. 3. The method according to claim 1, comprising a lead, and a sealing member that isolates the inner surface of the container, the mixture, and the conductive lead from outside air. 5. The electrochemical system electrically connects a mixture of two types of oxides of the same metal with different metal valences that are in contact with at least a portion of the inner surface of the container, and the mixture and the metal terminal. 3. The method according to claim 1, further comprising: a conductive lead having electronic conductivity; and a sealing member that isolates the inner surface of the container, the mixture, and the conductive lead from outside air. 6. The oxygen ion conductive ceramic contains stabilized zirconium oxide, thorium oxide doped with other oxides, cerium oxide doped with other oxides, bismuth oxide doped with other oxides, and other oxides. 6. The method according to claim 1, wherein the lanthanum oxide is selected from the group consisting of doped lanthanum oxide or a solid solution of at least two species selected from said group. 7. The method according to any one of claims 1 to 5, wherein the oxide ion conductive ceramic is stabilized zirconium oxide.
JP60065037A 1985-03-30 1985-03-30 Measurement of concentration of strong acid or strong base in solution with water Pending JPS61225643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60065037A JPS61225643A (en) 1985-03-30 1985-03-30 Measurement of concentration of strong acid or strong base in solution with water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60065037A JPS61225643A (en) 1985-03-30 1985-03-30 Measurement of concentration of strong acid or strong base in solution with water

Publications (1)

Publication Number Publication Date
JPS61225643A true JPS61225643A (en) 1986-10-07

Family

ID=13275364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60065037A Pending JPS61225643A (en) 1985-03-30 1985-03-30 Measurement of concentration of strong acid or strong base in solution with water

Country Status (1)

Country Link
JP (1) JPS61225643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127154A (en) * 1986-11-17 1988-05-31 Toshiba Corp Method for detecting concentration of acid or base in solution with water
JP2006098390A (en) * 2004-09-01 2006-04-13 Otomo Teruo Indicator electrode used for electrochemical measurement of liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127154A (en) * 1986-11-17 1988-05-31 Toshiba Corp Method for detecting concentration of acid or base in solution with water
JP2006098390A (en) * 2004-09-01 2006-04-13 Otomo Teruo Indicator electrode used for electrochemical measurement of liquid
JP4742727B2 (en) * 2004-09-01 2011-08-10 大友 照夫 Indicator electrode used for redox potential measurement

Similar Documents

Publication Publication Date Title
JPH0262954A (en) Method of amperometric titration
Niedrach Use of a High Temperature pH Sensor as a “Pseudo‐Reference Electrode” in the Monitoring of Corrosion and Redox Potentials at 285° C
EP3472608B1 (en) Chlorine, oxidation - reduction potential (orp), and ph measurement
Ding et al. In-situ measurement of dissolved H2 in aqueous fluid at elevated temperatures and pressures
DE102011113941B4 (en) Electrochemical electrode
JPS61225643A (en) Measurement of concentration of strong acid or strong base in solution with water
EP0993607A1 (en) Apparatus and method for measuring the composition of gases using ionically conducting electrolytes
US3830709A (en) Method and cell for sensing nitrogen oxides
Cummings et al. Chemical analysis: electrochemical techniques
JP2680697B2 (en) Environmental crack monitoring method and apparatus and corrosion environment control method and apparatus
Purdy et al. Sensitivity of Bromine-Bromide Potentiometric End Point
Marple et al. Potentiometry: pH and Ion-Selective Electrodes
Redepenning et al. Influence of supporting electrolyte activity on formal potentials measured for dissolved internal standards in acetonitrile
JPH0452407B2 (en)
Mari et al. Electrochemical gas sensors
Galbacs et al. Automatic gas-measuring device
RU2032897C1 (en) Method of determination of equilibrium potential in electrolyte and comparison electrode for its implementation
RU2094796C1 (en) Method and device for controlling acidity of nitric acid esters
JPH06138079A (en) Electrode for measuring quality of water in gap
JPS63127154A (en) Method for detecting concentration of acid or base in solution with water
Schwabe et al. Electrochemical instrumentation
JPS63127153A (en) Method for detecting concentration of acid or base in solution with water
WO2009084675A1 (en) Method for measurement of content of water or organic acid in polar organic solvent, and apparatus for the method
EP1038172A1 (en) Sensor devices and analytical method
JP5339754B2 (en) Oxygen gas concentration measurement method