JP4742331B2 - Liquefaction countermeasure structure - Google Patents

Liquefaction countermeasure structure Download PDF

Info

Publication number
JP4742331B2
JP4742331B2 JP2010160138A JP2010160138A JP4742331B2 JP 4742331 B2 JP4742331 B2 JP 4742331B2 JP 2010160138 A JP2010160138 A JP 2010160138A JP 2010160138 A JP2010160138 A JP 2010160138A JP 4742331 B2 JP4742331 B2 JP 4742331B2
Authority
JP
Japan
Prior art keywords
ground improvement
improvement body
liquefaction
layer
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010160138A
Other languages
Japanese (ja)
Other versions
JP2011127417A (en
Inventor
英紀 高橋
嘉之 森川
廣貴 川崎
毅芳 福武
吉田  誠
辰男 長津
正一 津國
友紀 菅野
剛 笹井
正規 太田
亘 鈴木
滋 久保
久 深田
信吾 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE
Toa Corp
Toray Engineering Co Ltd
Penta Ocean Construction Co Ltd
Takenaka Civil Engineering and Construction Co Ltd
Shimizu Corp
Fudo Tetra Corp
Original Assignee
INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE
Toa Corp
Penta Ocean Construction Co Ltd
Takenaka Civil Engineering and Construction Co Ltd
Toyo Construction Co Ltd
Shimizu Corp
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE, Toa Corp, Penta Ocean Construction Co Ltd, Takenaka Civil Engineering and Construction Co Ltd, Toyo Construction Co Ltd, Shimizu Corp, Fudo Tetra Corp filed Critical INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE
Priority to JP2010160138A priority Critical patent/JP4742331B2/en
Publication of JP2011127417A publication Critical patent/JP2011127417A/en
Application granted granted Critical
Publication of JP4742331B2 publication Critical patent/JP4742331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Foundations (AREA)
  • Revetment (AREA)

Description

本発明は、非液状化層の上に液状化層が堆積した地盤の液状化の抑制または液状化による地盤変形を抑制する液状化対策構造に関する。   The present invention relates to a liquefaction countermeasure structure that suppresses liquefaction of a ground in which a liquefied layer is deposited on a non-liquefied layer or suppresses ground deformation due to liquefaction.

液状化層に繰り返しせん断応力が作用すると、液状化層が液状となり、地盤としての支持機能を失うことになる。このような事態を回避すべく、図1に示すように、全体着底型の地盤改良体103を液状化層102に構築した液状化対策構造が知られている。この全体着底型の地盤改良体103は、非液状化層101に着底または根入れするとともに、液状化層102の垂直方向全体にわたり構築される(例えば、特許文献1参照)。しかしながら、液状化層102が厚い場合には多大な費用がかかることになる。   When shear stress is repeatedly applied to the liquefied layer, the liquefied layer becomes liquid and loses the support function as the ground. In order to avoid such a situation, as shown in FIG. 1, a liquefaction countermeasure structure is known in which an entirely grounded ground improvement body 103 is constructed in a liquefied layer 102. The entire bottom-type ground improvement body 103 is bottomed or embedded in the non-liquefied layer 101 and is constructed over the entire vertical direction of the liquefied layer 102 (see, for example, Patent Document 1). However, when the liquefied layer 102 is thick, a large cost is required.

一方、費用を節減すべく、図2に示すように、液状化層202に浮くように地盤改良体203を構築した液状化対策構造が提案されている。この液状化対策構造は、地盤改良体203下部の未改良部が液状化することを前提に構造物の沈下量が許容値以下となるように、地盤改良体203の厚みを設定するので、地盤改良体203を非液状化層201に着底または根入れする必要もなければ、液状化層202の垂直方向全体にわたり構築する必要もない。このため、液状化層202が厚くても費用を節減できることになる(例えば、特許文献2参照)。   On the other hand, as shown in FIG. 2, a liquefaction countermeasure structure in which the ground improvement body 203 is constructed so as to float on the liquefaction layer 202 has been proposed in order to reduce costs. This liquefaction countermeasure structure sets the thickness of the ground improvement body 203 so that the subsidence amount of the structure is less than an allowable value on the premise that the unimproved portion below the ground improvement body 203 is liquefied. There is no need for the improvement body 203 to be grounded or embedded in the non-liquefied layer 201, nor is it required to be constructed over the entire vertical direction of the liquefied layer 202. For this reason, even if the liquefied layer 202 is thick, the cost can be reduced (see, for example, Patent Document 2).

特公平4−54004号公報Japanese Examined Patent Publication No. 4-54004 特開2005−83174号公報JP 2005-83174 A

しかしながら、特許文献2に記載された液状化対策構造において、地震が発生すると、液状化対策領域外の液状化層202の影響を受け、構築した地盤改良体203が水平方向に変位する。すると、非液状化層201の水平方向の変位と地盤改良体203の水平方向の変位との変位差が大きくなる。そして、非液状化層201と地盤改良体203との間の液状化層202にせん断応力が作用し、加速度レベルによっては液状化することになる。   However, in the liquefaction countermeasure structure described in Patent Document 2, when an earthquake occurs, the constructed ground improvement body 203 is displaced in the horizontal direction due to the influence of the liquefaction layer 202 outside the liquefaction countermeasure area. Then, the displacement difference between the horizontal displacement of the non-liquefaction layer 201 and the horizontal displacement of the ground improvement body 203 becomes large. And a shear stress acts on the liquefied layer 202 between the non-liquefied layer 201 and the ground improvement body 203, and it liquefies depending on an acceleration level.

本発明は、上記に鑑みてなされたものであって、多大な費用をかけることなく、非液状化層の上に液状化層が堆積した地盤の液状化の抑制または液状化による地盤変形を抑制できる液状化対策構造を提供することを目的とする。   The present invention has been made in view of the above, and suppresses the liquefaction of the ground in which the liquefied layer is deposited on the non-liquefied layer or suppresses the ground deformation due to the liquefaction without incurring great expense. An object is to provide a liquefaction countermeasure structure that can be used.

上述した課題を解決し、目的を達成するために、本発明は、非液状化層の上に液状化層が堆積した地盤を適用対象とし、液状化層において非液状化層から離隔した位置に地盤改良体を構築した液状化対策構造において、非液状化層に着底または根入れされ、かつ前記地盤改良体が上下方向に相対変位可能となるように、前記地盤改良体の地震方向に対する側面に平面視で開放部を確保して当接し、非液状化層の振動を地盤改良体に伝達させて非液状化層と地盤改良体の水平方向の変位差を小さくさせる幅を有する構造体構築したことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention applies to the ground where the liquefied layer is deposited on the non-liquefied layer, and is located at a position separated from the non-liquefied layer in the liquefied layer. In the liquefaction countermeasure structure in which the ground improvement body is constructed, the side surface of the ground improvement body with respect to the earthquake direction so that the ground improvement body is settled or embedded in a non-liquefaction layer and the ground improvement body can be relatively displaced in the vertical direction. a contact to secure the opening in a plan view, a structure of the vibration of the non-liquefied layer has a width which reduces the displacement difference in the horizontal direction by transmitting the soil improvement material non liquefaction layer and ground improvement body characterized in that it was constructed.

また、本発明は、上記液状化対策構造において、前記構造体の幅を前記液状化層における構造体の高さの0.4倍以上に設定したことを特徴とする。 In the liquefaction countermeasure structure, the present invention is characterized in that the width of the structure is set to 0.4 times or more of the height of the structure in the liquefaction layer.

また、本発明は、上記液状化対策構造において、前記開放部は、地盤改良体の下方域に残置した残置液状化層の外周に設けられ、前記残置液状化層の想定地震時における挙動が前記地盤改良体の側方域に伝わる大きさを有することを特徴とする。 In the liquefaction countermeasure structure according to the present invention, the open portion is provided on the outer periphery of the remaining liquefied layer left in the lower region of the ground improvement body, and the behavior of the remaining liquefied layer during the assumed earthquake is It has the size transmitted to the side area of the ground improvement body.

また、本発明は、上記液状化対策構造において、前記開放部の大きさは、前記地盤改良体の外周の平面視総延長に対して1/4以上であることを特徴とする。 In the liquefaction countermeasure structure, the present invention is characterized in that the size of the open portion is ¼ or more of the total extension of the outer periphery of the ground improvement body in plan view.

本発明にかかる液状化対策構造は、非液状化層に着底または根入れされ、かつ、前記地盤改良体が上下方向に相対変位可能となるように、地盤改良体の地震方向に対する側面に平面視で開放部を確保して当接し、非液状化層の振動を地盤改良体に伝達させて非液状化層と地盤改良体の水平方向の変位差を小さくさせる幅を有する構造体構築したので、地震が発生した場合でも地盤改良体の水平方向の変位が抑制され、非液状化層と地盤改良体の水平方向の変位差が小さくてすむ。したがって、非液状化層と地盤改良体との間の液状化層のせん断ひずみが抑制され、多大な費用をかけることなく、地盤の液状化の抑制または液状化しても地盤変形を抑制できる。 The liquefaction countermeasure structure according to the present invention is flat on the side surface of the ground improvement body with respect to the earthquake direction so that the ground improvement body is bottomed or embedded in the non-liquefaction layer and the ground improvement body can be relatively displaced in the vertical direction. A structure that has a width that secures an open portion by visual contact and transmits the vibration of the non-liquefiable layer to the ground improvement body to reduce the horizontal displacement difference between the non-liquefaction layer and the ground improvement body was constructed . Therefore, even when an earthquake occurs, the horizontal displacement of the ground improvement body is suppressed, and the horizontal displacement difference between the non-liquefied layer and the ground improvement body can be small. Accordingly, the shear strain of the liquefied layer between the non-liquefied layer and the ground improvement body is suppressed, and the ground deformation can be suppressed even if the ground liquefaction is suppressed or liquefied without incurring a great expense.

図1は、特許文献1の液状化対策構造の概念を示す図である。FIG. 1 is a diagram showing the concept of the liquefaction countermeasure structure of Patent Document 1. In FIG. 図2は、特許文献2の液状化対策構造の概念を示す図である。FIG. 2 is a diagram showing the concept of the liquefaction countermeasure structure of Patent Document 2. 図3は、本発明の実施の形態1にかかる液状化対策構造を示す概念図である。FIG. 3 is a conceptual diagram showing the liquefaction countermeasure structure according to the first embodiment of the present invention. 図4は、格子壁体においてどのような格子が有効かつ経済的であるかを示す図である。FIG. 4 is a diagram showing what kind of lattice is effective and economical in the lattice wall body. 図5は、本発明の実施の形態1の変形例にかかる液状化対策構造を示す概念図である。FIG. 5 is a conceptual diagram showing a liquefaction countermeasure structure according to a modification of the first embodiment of the present invention. 図6は、本発明の実施の形態2にかかる液状化対策構造を示す概念図である。FIG. 6 is a conceptual diagram showing a liquefaction countermeasure structure according to the second embodiment of the present invention. 図7は、本発明の実施の形態3にかかる液状化対策構造を示す概念図である。FIG. 7 is a conceptual diagram showing a liquefaction countermeasure structure according to Embodiment 3 of the present invention. 図8は、シナリオ波の時間と加速度との関係を示す図である。FIG. 8 is a diagram illustrating the relationship between the time of the scenario wave and the acceleration. 図9は、遠心模型実験の概要を示す図である。FIG. 9 is a diagram showing an outline of the centrifugal model experiment. 図10は、遠心模型実験の結果を示す図である。FIG. 10 is a diagram showing the results of a centrifugal model experiment. 図11は、段階加振による下方地盤の過剰間隙水圧比と最大加速度との関係を示す図である。FIG. 11 is a diagram showing the relationship between the excess pore water pressure ratio of the lower ground and the maximum acceleration due to the step excitation. 図12は、段階加振による表層地盤の沈下量と最大加速度との関係を示す図である。FIG. 12 is a diagram showing the relationship between the amount of subsidence of the surface ground due to stepwise excitation and the maximum acceleration. 図13は、実施の形態1にかかる液状化対策構造の地盤に地震波を作用させた場合に得られるFEM解析結果を示す図である。FIG. 13 is a diagram illustrating an FEM analysis result obtained when an earthquake wave is applied to the ground of the liquefaction countermeasure structure according to the first embodiment. 図14は、比較対照となる全体浮き型構造の地盤に地震波を作用させた場合に得られるFEM解析結果を示す図である。FIG. 14 is a diagram showing an FEM analysis result obtained when a seismic wave is applied to the ground having a whole floating structure as a comparative control. 図15は、段階加振による最終加振後の地盤改良体天端部中央における沈下量と液状化層の厚みに対する地盤改良体の厚みの比との関係を示す図である。FIG. 15 is a diagram showing the relationship between the amount of subsidence at the center of the top of the ground improvement body after final excitation by stepwise excitation and the ratio of the thickness of the ground improvement body to the thickness of the liquefied layer. 図16は、地盤改良体と着底構造体との当接部を係合構造とする等、他の実施例を示す平面図である。FIG. 16 is a plan view showing another embodiment in which the contact portion between the ground improvement body and the bottom structure is an engagement structure. 図17は、FEM解析を実施する解析モデルを示す概念図である。FIG. 17 is a conceptual diagram showing an analysis model for performing FEM analysis. 図18は、図17に示した解析モデルに地震波を作用させてから20秒後の解析結果を示す図である。FIG. 18 is a diagram illustrating an analysis result 20 seconds after the seismic wave is applied to the analysis model illustrated in FIG. 図19は、図18のFEM解析の結果から得られた着底構造体の寸法比と地盤改良体の挙動との関係を示す図である。FIG. 19 is a diagram showing the relationship between the dimensional ratio of the bottomed structure obtained from the result of the FEM analysis of FIG. 18 and the behavior of the ground improvement body. 図20は、図18のFEM解析の結果から得られた過剰間隙水圧比を示すコンター図である。FIG. 20 is a contour diagram showing the excess pore water pressure ratio obtained from the result of the FEM analysis of FIG. 図21は、図12における各最大加速度での液状化層の沈下量を示す図である。FIG. 21 is a diagram showing the amount of settlement of the liquefied layer at each maximum acceleration in FIG. 図22は、図12における各最大加速度での液状化層の体積ひずみを示す図である。FIG. 22 is a diagram showing the volume strain of the liquefied layer at each maximum acceleration in FIG.

以下に、本発明にかかる液状化防止構造の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, embodiments of a liquefaction prevention structure according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図3に基づいて、本発明の実施の形態1である液状化対策構造について説明する。図3は、本発明の実施の形態1にかかる液状化対策構造を示す概念図である。実施の形態1にかかる液状化対策構造は、非液状化層1の上に液状化層2が堆積した地盤を適用対象とする。非液状化層1は、液状化することのない、例えば、堅い層であり、液状化層2はゆるい砂質地盤のように、液状化により、支持機能を失う可能性がある層である。
(Embodiment 1)
Based on FIG. 3, the liquefaction countermeasure structure which is Embodiment 1 of this invention is demonstrated. FIG. 3 is a conceptual diagram showing the liquefaction countermeasure structure according to the first embodiment of the present invention. The liquefaction countermeasure structure according to the first embodiment is applied to the ground where the liquefied layer 2 is deposited on the non-liquefied layer 1. The non-liquefiable layer 1 is a hard layer that does not liquefy, for example, and the liquefied layer 2 is a layer that may lose its support function due to liquefaction, like a loose sandy ground.

液状化とは、地盤としての支持機能を失うことをいい、液状化層2(例えば、地下水で飽和された砂地盤)が地震などの繰り返しせん断応力を受けると液状化することになる。なお、液状化の指標として過剰間隙水圧比ruが用いられる。過剰間隙水圧比ruは、過剰間隙水圧Δuと有効土被り圧σv'との比であり、過剰間隙水圧比ruが理論上1.0の場合に液状化状態にあるとされる。   Liquefaction means losing the support function as the ground. When the liquefied layer 2 (for example, sand ground saturated with groundwater) is repeatedly subjected to shear stress such as earthquakes, it is liquefied. Note that the excess pore water pressure ratio ru is used as an indicator of liquefaction. The excess pore water pressure ratio ru is a ratio between the excess pore water pressure Δu and the effective earth covering pressure σv ′, and is in a liquefied state when the excess pore water pressure ratio ru is theoretically 1.0.

図3に示すように、実施の形態1である液状化対策構造は、片端着底浮き型と称すべき構造であって、地盤改良体3の側面の一部としての一側面に当接するように変位抑制構造体としての着底構造体4が構築されている。   As shown in FIG. 3, the liquefaction countermeasure structure according to the first embodiment is a structure that should be referred to as a one-end bottom floating type, and is in contact with one side surface as a part of the side surface of the ground improvement body 3. A bottoming structure 4 as a displacement suppressing structure is constructed.

地盤改良体3は、液状化層2において非液状化層1から上方に離隔した位置に構築されている。図3に示す例では、液状化層2に浮くように地盤改良体3が構築されている。地盤改良体3は、外形が平面視矩形であって、地震方向(加振方向)(図3において左右方向)と地盤改良体3の長手方向とが一致し、地震方向と交差する方向と地盤改良体3の短手方向とが一致するように構築されている。また、地盤改良体3は、平面視格子状の格子壁体であって、上方が開口するとともに下方も開口している。なお、図3では地盤改良体3を平面視格子状の格子壁体にして経済的な地盤改良体としているが、全面改良型の地盤改良体であってもよい。   The ground improvement body 3 is constructed in a position separated upward from the non-liquefied layer 1 in the liquefied layer 2. In the example shown in FIG. 3, the ground improvement body 3 is constructed so as to float on the liquefied layer 2. The ground improvement body 3 has a rectangular outer shape in plan view, and the direction in which the earthquake direction (vibration direction) (left and right direction in FIG. 3) coincides with the longitudinal direction of the ground improvement body 3 and intersects the earthquake direction. It is constructed so that the short direction of the improved body 3 matches. Further, the ground improvement body 3 is a lattice wall body having a lattice shape in plan view, and an upper portion is opened and a lower portion is also opened. In FIG. 3, the ground improvement body 3 is an economical ground improvement body with a lattice wall body having a lattice shape in plan view, but a ground improvement body of a whole surface improvement type may be used.

変位抑制構造体としての着底構造体4は、非液状化層1に着底または根入れされ、かつ、地盤改良体3が一側面4aに当接することにより、地盤改良体3の水平方向の変位を抑制するようになっている。図3に示す例では、地盤改良体3に隣接するとともに液状化層2の垂直方向全体にわたって構築され、下端が非液状化層1に着底している。着底構造体4は、外形が平面視矩形であって、長手方向の一つの外側面が地盤改良体3の短手方向の一つの外側面に沿って当接するようになっている。また、着底構造体4は、平面視格子状の格子壁体であって、上方が開口するとともに、下方が非液状化層1に着底することにより塞がれている。なお、図3に示す例では、着底構造体4の長手方向の長さが地盤改良体3の短手方向の長さと一致するように、着底構造体4を構築しているが、着底構造体4の長手方向の長さは地盤改良体3の短手方向の長さと一致する必要はない。すなわち、着底構造体4の長手方向の長さが地盤改良体3の短手方向の長さよりも短くてもよいし、地盤改良体3の短手方向の長さよりも長くてもよい。また、地盤改良体3と同様に着底構造体4も平面視格子状の格子壁体に限定されるものではない。   The bottoming structure 4 as a displacement suppressing structure is bottomed or embedded in the non-liquefaction layer 1 and the ground improvement body 3 abuts against the one side surface 4a. The displacement is suppressed. In the example shown in FIG. 3, it is adjacent to the ground improvement body 3 and is constructed over the entire vertical direction of the liquefied layer 2, and the lower end is attached to the non-liquefied layer 1. The bottomed structure 4 has a rectangular outer shape in plan view, and one outer surface in the longitudinal direction is in contact with one outer surface in the short direction of the ground improvement body 3. The bottoming structure 4 is a lattice wall having a lattice shape in plan view, and the upper side is opened and the lower side is closed by bottoming on the non-liquefied layer 1. In the example shown in FIG. 3, the bottoming structure 4 is constructed so that the length in the longitudinal direction of the bottoming structure 4 matches the length in the short direction of the ground improvement body 3. The length in the longitudinal direction of the bottom structure 4 need not match the length in the short direction of the ground improvement body 3. That is, the length in the longitudinal direction of the bottom structure 4 may be shorter than the length in the short direction of the ground improvement body 3 or may be longer than the length in the short direction of the ground improvement body 3. Similarly to the ground improvement body 3, the bottom structure 4 is not limited to a lattice wall body having a lattice shape in plan view.

上述した地盤改良体3と着底構造体4とを構成する平面視格子状の格子壁体において、どのような格子が有効かつ経済的であるか既存の文献(特許第2568115号公報)により明らかにされている。この文献によれば、図4に示すように、格子の内枠幅Lと液状化層の厚みHとの比(L/H)が0.8以下であることが必要であり、L/H=0.5〜0.8の範囲が設計的に適切であるとされている。   It is clear from existing literature (Japanese Patent No. 2568115) what kind of lattice is effective and economical in a lattice wall body in a plan view lattice that constitutes the ground improvement body 3 and the bottom structure 4 described above. Has been. According to this document, as shown in FIG. 4, the ratio (L / H) between the inner frame width L of the lattice and the thickness H of the liquefied layer is required to be 0.8 or less, and L / H A range of 0.5 to 0.8 is considered appropriate in design.

上述した地盤改良体3と着底構造体4とは、上下方向変位可能に接しており、地盤改良体3が沈下しても着底構造体4が沈下することはない。また、地盤改良体3と着底構造体4とは、上下方向に変位可能に接しているために、地盤改良体と着底構造体とが剛結である場合のように曲げにより地盤改良体3が実質的に損壊することはない。なお、上下方向に変位可能に当接することであるが、地盤改良体3と着底構造体4との間に緩衝層(後述)を介在させて当接させる場合もあるが、緩衝層を特に設けなくてもよい。例えば、地盤改良体3と着底構造体4との間が施工上の継目となっていて、地盤改良体3の着底構造体4側の当接面側に沿う部分が強度的に弱部になっている場合は、その弱部が実質的に緩衝層の役目を果たし、それが変形して上下方向に変位可能になることが考えられる。要は、実質的に上下方向に変位可能になっていればよい。   The ground improvement body 3 and the bottoming structure 4 described above are in contact with each other so as to be vertically displaceable, and the bottoming structure 4 does not sink even if the ground improvement body 3 sinks. Further, since the ground improvement body 3 and the bottom structure 4 are in contact with each other so as to be displaceable in the vertical direction, the ground improvement body is formed by bending as in the case where the ground improvement body and the bottom structure are rigidly connected. 3 is not substantially damaged. In addition, although it is contact | abutting so that a displacement is possible to an up-down direction, it may be made to contact | abut by interposing a buffer layer (after-mentioned) between the ground improvement body 3 and the bottoming structure body 4, but especially a buffer layer is used. It does not have to be provided. For example, between the ground improvement body 3 and the bottom structure 4 is a construction seam, and the portion along the contact surface side of the ground improvement body 3 on the bottom structure 4 side is weak in strength. In this case, it is conceivable that the weak part substantially serves as a buffer layer, which is deformed and can be displaced in the vertical direction. In short, it is only necessary that it can be displaced in the vertical direction.

上述した液状化対策構造において、着底構造体4がない場合を考えると、非液状化層1と地盤改良体3との間となる液状化層2A(以下、残置液状化層という)が液状化すると、地盤改良体3は沈下することになる。例えば、残置液状化層2Aが一様に液状化すれば、残置液状化層2Aの厚みHに比例して地盤改良体が沈下することになる。すなわち、地盤改良体3の沈下量は、液状化層2の厚みHから地盤改良体3の厚みtを除いた残置液状化層2Aの厚みH(=H−t)に比例することになる。 In the liquefaction countermeasure structure described above, considering the case where there is no bottom structure 4, the liquefied layer 2A (hereinafter referred to as the remaining liquefied layer) between the non-liquefied layer 1 and the ground improvement body 3 is liquid. If it becomes, the ground improvement body 3 will sink. For example, if uniformly liquefaction leaving the liquid layer 2A, soil improvement body will sink in proportion to the thickness H 1 of the leaving liquid layer 2A. That is, the amount of settlement of the ground improvement body 3 is proportional to the thickness H 1 (= H−t) of the remaining liquefied layer 2A obtained by subtracting the thickness t of the ground improvement body 3 from the thickness H of the liquefied layer 2. .

しかしながら、上述した液状化対策構造は、地盤改良体3の変位を抑制する着底構造体4が構築される。このため、地震が発生した場合でも地盤改良体3が着底構造体4に当接することにより、地盤改良体3の水平方向の変位が抑制され、非液状化層1と地盤改良体3の水平方向の変位差が小さくてすむ。したがって、残置液状化層2Aのせん断ひずみが抑制される。換言すると、多大な費用をかけることなく、地盤の液状化を抑制できる。   However, in the liquefaction countermeasure structure described above, the bottoming structure 4 that suppresses the displacement of the ground improvement body 3 is constructed. For this reason, even when an earthquake occurs, the ground improvement body 3 abuts against the bottomed structure body 4, thereby suppressing horizontal displacement of the ground improvement body 3, and the non-liquefaction layer 1 and the ground improvement body 3 are horizontal. The displacement difference in direction is small. Therefore, the shear strain of the remaining liquefied layer 2A is suppressed. In other words, the liquefaction of the ground can be suppressed without incurring significant costs.

上述した液状化対策構造を構築した地盤において、地盤改良体3の上には舗装構造、道路盛土、建物などの構造物を構築できる。   In the ground in which the liquefaction countermeasure structure described above is constructed, structures such as a pavement structure, road embankment, and building can be constructed on the ground improvement body 3.

上述した液状化対策構造を構築した地盤において、構造物を地盤改良体3の上に構築すれば、地盤改良体3の剛体盤効果により、不同沈下が生じることはない。なお、地盤改良体3が沈下することにより、地盤改良体3と着底構造体4との境界部分にギャップ(段差)が生じる可能性があるので、境界部分を跨いで構造物を構築する場合には考慮する必要がある。   If the structure is constructed on the ground improvement body 3 in the ground where the liquefaction countermeasure structure described above is constructed, the subsidence does not occur due to the rigid body effect of the ground improvement body 3. In addition, when the ground improvement body 3 sinks, there is a possibility that a gap (step) is generated at the boundary portion between the ground improvement body 3 and the landing structure 4. Therefore, when a structure is constructed across the boundary portion It is necessary to consider.

なお、上述した液状化対策構造において、地盤改良体3は、その上に平板状のコンクリート板、舗装構造、路床などの盤構造を含んだものとしてもよい。   In the liquefaction countermeasure structure described above, the ground improvement body 3 may include a plate structure such as a flat concrete plate, a pavement structure, and a road bed.

また、上述した液状化対策構造において、着底構造体4は、コンクリートを打設することにより構築してもよい。また、ケーソン護岸ブロックを所定の間隔で設置することにより、着底構造体4としてもよい。また、ケーソン護岸ブロックを連続して設置することにより、着底構造体4としてもよい。   In the liquefaction countermeasure structure described above, the bottom structure 4 may be constructed by placing concrete. Moreover, it is good also as the bottoming structure 4 by installing a caisson revetment block at predetermined intervals. Moreover, it is good also as the bottoming structure 4 by installing a caisson revetment block continuously.

さらに、既設のケーソン護岸でケーソン護岸自体の液状化対策が必要な場合には、既設のケーソン護岸ブロックを着底構造体とみなして、既設のケーソン護岸ブロックの側面(水域とは反対側の側面つまり背面)に当接するように地盤改良体3を構築してもよい。このようにすることで結果として着底構造体(ケーソン護岸)自体の変位が抑制できる。   Furthermore, when the existing caisson revetment needs to be liquefied, the existing caisson revetment block is regarded as a bottomed structure, and the side of the existing caisson revetment block (the side opposite to the water area) That is, the ground improvement body 3 may be constructed so as to be in contact with the back surface. As a result, the displacement of the bottom structure (caisson revetment) itself can be suppressed.

上述した液状化対策構造において、地盤改良体3と着底構造体4との間に緩衝層5を設けてもよい。緩衝層5は、地盤改良体3が水平方向に変位した場合に地盤改良体3と着底構造体4との間の上下方向の相対変位を許容するもので、原地盤(液状化層2)を残すことにより緩衝層5としてもよいし、砂、ベントナイトなどで構築してもよい。また、緩衝層5の厚みは液状化しない程度の厚み、例えば、30cm程度が考えられる。   In the liquefaction countermeasure structure described above, a buffer layer 5 may be provided between the ground improvement body 3 and the bottom structure 4. The buffer layer 5 allows relative displacement in the vertical direction between the ground improvement body 3 and the bottom structure 4 when the ground improvement body 3 is displaced in the horizontal direction, and the original ground (liquefaction layer 2). May be used as the buffer layer 5 or may be constructed of sand, bentonite, or the like. In addition, the buffer layer 5 may have a thickness that does not liquefy, for example, about 30 cm.

図5に示すように、上述した液状化対策構造において、地盤改良体3と着底構造体4との間に地盤改良体3と着底構造体4との双方に対して上下方向の相対変位が可能なようにアプローチ構造体6(沈下緩衝帯)を設けてもよい。アプローチ構造体6は、地盤改良体3の沈下によって地盤改良体3と着底構造体4とに生じるギャップ(段差)を緩和するためのものである。アプローチ構造体6は、液状化層2に浮いた構造体の厚みと構造体の沈下量とに相関があることを利用したものであり、その下端部が地盤改良体3よりも深くかつ非液状化層1から上方に離隔している。このアプローチ構造体6は、地盤改良体3よりも沈下が少ないので、着底構造体4と地盤改良体3との間にアプローチ構造体6がない場合に比べ、一度に生じるギャップ(段差)が緩和される。なお、このアプローチ構造体6は、地盤改良体3や着底構造体4のいずれの構造であってもかまわない。   As shown in FIG. 5, in the above-described liquefaction countermeasure structure, relative displacement in the vertical direction between the ground improvement body 3 and the bottom structure 4 with respect to both the ground improvement body 3 and the bottom structure 4. The approach structure 6 (sink buffer zone) may be provided so that The approach structure 6 is for relaxing a gap (step) generated between the ground improvement body 3 and the bottom structure 4 due to the settlement of the ground improvement body 3. The approach structure 6 utilizes the fact that there is a correlation between the thickness of the structure floating on the liquefied layer 2 and the amount of settlement of the structure, and the lower end of the approach structure 6 is deeper than the ground improvement body 3 and is non-liquid. It is separated upward from the chemical layer 1. Since this approach structure 6 has less subsidence than the ground improvement body 3, there is a gap (step) generated at a time as compared with the case where there is no approach structure 6 between the bottoming structure 4 and the ground improvement body 3. Alleviated. The approach structure 6 may be either the ground improvement body 3 or the bottom structure 4.

(実施の形態2)
図6に基づいて、本発明の実施の形態2である液状化対策構造について説明する。図6は、本発明の実施の形態2にかかる液状化対策構造を示す概念図である。
(Embodiment 2)
Based on FIG. 6, the liquefaction countermeasure structure which is Embodiment 2 of this invention is demonstrated. FIG. 6 is a conceptual diagram showing a liquefaction countermeasure structure according to the second embodiment of the present invention.

図6に示すように、実施の形態2にかかる液状化対策構造は、両端着底浮き型と称すべき構造であって、地盤改良体3の側面の一部としての両外側面がそれぞれ当接するように一対の着底構造体4が構築されている。具体的には、地盤改良体3の外形が平面視矩形である場合に、一側面3aが当接する着底構造体4と、一側面に平行な他側面3bが当接する着底構造体4とが構築される。なお、地盤改良体3、着底構造体4は、上述した実施の形態1で説明したものと異なるところはないので、説明を省略する。   As shown in FIG. 6, the liquefaction countermeasure structure according to the second embodiment is a structure that should be referred to as a both-ends bottom floating type, and both outer side surfaces as a part of the side surface of the ground improvement body 3 abut each other. Thus, a pair of bottoming structures 4 is constructed. Specifically, when the outer shape of the ground improvement body 3 is rectangular in plan view, the bottoming structure 4 with which the one side surface 3a abuts, and the bottoming structure body 4 with which the other side surface 3b parallel to one side surface abuts Is built. Since the ground improvement body 3 and the bottom structure 4 are not different from those described in the first embodiment, description thereof is omitted.

実施の形態2である液状化対策構造は、地盤改良体3の両外側面が当接するように一対の着底構造体4が構築されているので、地盤改良体3の地震方向(加振方向)の変位がさらに抑制され、非液状化層1と地盤改良体3の水平方向の変位差がさらに小さくてすむ。したがって、地盤改良体3の沈下量も少なくてすむ。   In the liquefaction countermeasure structure according to the second embodiment, since the pair of bottoming structures 4 are constructed so that both outer surfaces of the ground improvement body 3 are in contact with each other, the earthquake direction (excitation direction of the ground improvement body 3) ) Is further suppressed, and the horizontal displacement difference between the non-liquefaction layer 1 and the ground improvement body 3 can be further reduced. Therefore, the subsidence amount of the ground improvement body 3 can be reduced.

(実施の形態3)
図7に基づいて、本発明の実施の形態3である液状化対策構造について説明する。図7は、本発明の実施の形態にかかる液状化対策構造を示す概念図である。
(Embodiment 3)
Based on FIG. 7, the liquefaction countermeasure structure which is Embodiment 3 of this invention is demonstrated. FIG. 7 is a conceptual diagram showing a liquefaction countermeasure structure according to an embodiment of the present invention.

図7に示すように、実施の形態3である液状化対策構造は、中央着底浮き型と称すべき構造であって、着底構造体4の両外側面が一対の地盤改良体のそれぞれの側面の一部としての一外側面に当接するように構築されている。具体的には、着底構造体4の外形が平面視矩形である場合に、一側面4aが当接する地盤改良体3と、一側面に平行な他側面4bが当接する地盤改良体3とが構築される。なお、地盤改良体、着底構造体は、上述した実施の形態1で説明したものと異なるところはないので、説明を省略する。   As shown in FIG. 7, the liquefaction countermeasure structure according to the third embodiment is a structure that should be referred to as a center bottom floating type, and both outer side surfaces of the bottom bottom structure 4 are each of a pair of ground improvement bodies. It is constructed so as to abut one outer surface as a part of the side surface. Specifically, when the outer shape of the bottomed structure 4 is rectangular in plan view, the ground improvement body 3 with which one side surface 4a abuts and the ground improvement body 3 with which the other side surface 4b parallel to one side surface abuts. Built. Since the ground improvement body and the bottom structure are not different from those described in the first embodiment, description thereof will be omitted.

実施の形態3である液状化対策構造は、着底構造体4の両外側面が当接するように一対の地盤改良体が構築されているので、一対の地盤改良体に対して一つの着底構造体を構築すればよい。したがって、多大な費用をかけなくても広い面積の液状化対策ができる。   In the liquefaction countermeasure structure according to the third embodiment, since the pair of ground improvement bodies are constructed so that both outer side surfaces of the bottoming structure body 4 are in contact with each other, there is one bottoming for the pair of ground improvement bodies. What is necessary is just to build a structure. Therefore, it is possible to take measures against liquefaction over a wide area without spending a great deal of cost.

上述した液状化対策構造の効果を把握するため、相似則から実大規模の対応が取れる遠心模型実験を行った。実験対象となるのは、実施の形態1にかかる液状化対策構造の地盤(以下、片端着底浮き型の地盤という)、実施の形態2にかかる液状化対策構造の地盤(以下、両端着底浮き型の地盤という)のほか、無対策の地盤、特許文献1に示された液状化対策構造の地盤(以下、全体着底型の地盤という)である。   In order to grasp the effect of the above-described liquefaction countermeasure structure, a centrifugal model experiment was conducted that can take a full-scale response from the similarity law. The object of the experiment is the ground of the liquefaction countermeasure structure according to the first embodiment (hereinafter referred to as a single-end floating ground), and the ground of the liquefaction countermeasure structure according to the second embodiment (hereinafter referred to as both-end landing). In addition to the floating-type ground), there are non-measured grounds, and grounds with a liquefaction countermeasure structure shown in Patent Document 1 (hereinafter referred to as an entire grounded-type ground).

地震波は図8に示すシナリオ波(横浜想定波)を使用し、振幅を0.1倍(最大加速度約50gal)、0.3倍(最大加速度約150gal)、0.5倍(最大加速度約260gal)、0.7倍(最大加速度約360gal)、0.7倍(最大加速度約360gal)、0.7倍(最大加速度約360gal)と変化させた加振6回、加速度4レベルの段階加振で実施した。   As the seismic wave, the scenario wave (Yokohama assumed wave) shown in FIG. 8 is used, and the amplitude is 0.1 times (maximum acceleration about 50 gal), 0.3 times (maximum acceleration about 150 gal), 0.5 times (maximum acceleration about 260 gal). ), 0.7 times (maximum acceleration about 360 gal), 0.7 times (maximum acceleration about 360 gal), 0.7 times (maximum acceleration about 360 gal) It carried out in.

図9は、遠心模型実験を示す図である。この実験は、遠心加速度50Gで行っており、模型寸法の50倍の実物大寸法での地盤の挙動を再現できるものとなっている。そして、図示はしていないが着底型格子改良体と浮き型格子改良体との当接部間には、これらの間での上下方向の相対変位が可能なように緩衝材として珪砂を厚さ5ミリ程度介在させている。図10は、遠心模型実験結果を示す図である。また、図11は、段階加振による下方地盤、具体的には地表面から12cm(実物大で6mに相当)の深さでの中央部における過剰間隙水圧比と最大加速度との関係を示す図であり、図12は、段階加振による表層地盤、具体的には地表面から2cm(実物大では1m)の深さでの中央部における沈下量と最大加速度との関係を示す図である。なお、図11において全体着底型と両端着底浮き型t/H=0.75の過剰間隙水圧比ruは、格子内のものを示している。   FIG. 9 is a diagram showing a centrifugal model experiment. This experiment is performed at a centrifugal acceleration of 50G, and can reproduce the behavior of the ground with a real size 50 times larger than the model size. Although not shown in the drawing, between the contact portions of the bottomed lattice improvement body and the floating lattice improvement body, thick silica sand is used as a cushioning material so as to allow relative displacement in the vertical direction between them. About 5 mm is interposed. FIG. 10 is a diagram showing the results of a centrifugal model experiment. FIG. 11 is a diagram showing the relationship between the excess pore water pressure ratio and the maximum acceleration in the lower ground due to stepwise excitation, specifically at the center at a depth of 12 cm (actual size corresponding to 6 m) from the ground surface. FIG. 12 is a diagram showing the relationship between the subsidence amount and the maximum acceleration at the surface layer ground by stepwise excitation, specifically, at the center at a depth of 2 cm (1 m in actual size) from the ground surface. In FIG. 11, the excess pore water pressure ratio ru of the whole bottom type and the both-ends bottom type t / H = 0.75 indicates that in the lattice.

図11と図12とにおいて、無対策のものと着底構造体を備えた液状化対策済みのものとを比べると、無対策のものは、150galで過剰間隙水圧比1.0に近づいた後、段階加振の進行により過剰間隙水圧比がある程度小さくなる傾向は見られるものの、過剰間隙水圧比は依然として1.0付近であり、また地盤改良体天端部の沈下量δも増加する一方である。しかし、液状化対策済みのものは、150galで過剰間隙水圧比が1.0付近になるが、その後に段階加振が進行しても、過剰間隙水圧比ruは大きくならずに逆に急激に減少する傾向となる。そして、この過剰間隙水圧比ruの減少にともなって、地盤改良体天端の沈下量の増加量も極めて小さくなる傾向となり、また沈下量自体も無対策のものにくらべて非常に小さいものとなっている。   In FIG. 11 and FIG. 12, comparing the non-measured one with the liquefaction-prevented one with the bottomed structure, the non-measured one is 150 gal after the excess pore water pressure ratio approaches 1.0. Although there is a tendency that the excess pore water pressure ratio tends to decrease to some extent due to the progress of the step excitation, the excess pore water pressure ratio is still around 1.0, while the subsidence amount δ at the top of the ground improvement body increases. is there. However, the liquefaction countermeasures are 150 gal and the excess pore water pressure ratio is close to 1.0. However, even if the stepwise excitation thereafter proceeds, the excess pore water pressure ratio ru does not increase and conversely abruptly increases. It tends to decrease. As the excess pore water pressure ratio ru decreases, the amount of subsidence at the top of the ground improvement body also tends to be extremely small, and the amount of subsidence itself is much smaller than that without countermeasures. ing.

この結果から、着底構造体により、下部の非液状化層地盤と上方の地盤改良体との相対水平変位を抑制すれば、地盤改良体下方の液状化層の過剰間隙水圧比が一時的に大きくなっても、そのことは沈下量の大きさにあまり影響しない、つまり実質的に液状化による沈下量を抑制する効果を奏するようになることが分かる。また、液状化対策済みのものの液状化層の過剰間隙水圧比が、段階加振の進行により急激に減少する傾向が見られるのは、地盤が緩い状態であっても、着底構造体があることによって地盤の相対水平変位の抑制に大きく貢献し、そのことで過剰間隙水圧比が減少すると考えられる。   From this result, if the relative horizontal displacement between the lower non-liquefied layer ground and the upper ground improvement body is suppressed by the bottoming structure, the excess pore water pressure ratio of the liquefied layer below the ground improvement body is temporarily increased. It can be seen that even if it increases, this does not significantly affect the size of the settlement, that is, it has the effect of substantially suppressing the settlement due to liquefaction. In addition, the excess pore water pressure ratio of the liquefied layer of the liquefied layer that has already been liquefied has a tendency to rapidly decrease with the progress of the step excitation, even if the ground is loose, there is a bottoming structure This contributes greatly to the suppression of the relative horizontal displacement of the ground, which is thought to reduce the excess pore water pressure ratio.

なお、図12を数値で表したものが図21の各最大加速度での液状化層の沈下量(沈下量計測箇所は表層地盤であるが、地盤改良体がある場合は、地盤改良体自体の沈下はないものとし、その下の残置液状化層の沈下量とした。)を示す図であり、その沈下量をひずみに換算したものが図22の各最大加速度での液状化層の体積ひずみを示す図である。図22において、最大加速度150Galは、水平震度kH=0.15に相当し、一般の地震時検討に使用されるものである。この150Galに着目すると、ここでは無対策だと液状化層の体積ひずみは3%以上であるが、着底構造体を設けたものは、地盤改良体下方の残置液状化層の体積ひずみが1%台となっている。これからも着底構造体は液状化抑制に効果があることがわかる。   The numerical value of FIG. 12 indicates the amount of subsidence of the liquefied layer at each maximum acceleration in FIG. 21 (the subsidence measurement location is the surface ground, but if there is a ground improvement body, the ground improvement body itself It is assumed that there is no subsidence, and is the subsidence amount of the remaining liquefied layer below.), And the subsidence amount converted into strain is the volume strain of the liquefied layer at each maximum acceleration in FIG. FIG. In FIG. 22, a maximum acceleration of 150 Gal corresponds to a horizontal seismic intensity kH = 0.15, and is used for general earthquake studies. Focusing on this 150 Gal, the volume strain of the liquefied layer is 3% or more if no countermeasure is taken here, but the volume strain of the remaining liquefied layer below the ground improvement body is 1 for the one provided with the bottom structure. %. It can be seen that the bottomed structure is effective in suppressing liquefaction.

図13は、実施の形態1にかかる液状化対策構造の地盤に地震波(sin波:周波数0.5Hz,最大加速度131gal)を作用させた場合に得られるFEM解析結果を示す図である。図13に示すように、地震発生から25秒が経過しても残置液状化層2Aの過剰間隙水圧比ruが1.0に増大することはない。したがって、残置液状化層2Aが液状化することもない。このことは上述した実験結果とも整合するものであり、実施の形態1である液状化対策構造の効果がFEM解析(有限要素法解析)の結果から検証できたことになる。   FIG. 13 is a diagram illustrating an FEM analysis result obtained when an earthquake wave (sin wave: frequency 0.5 Hz, maximum acceleration 131 gal) is applied to the ground of the liquefaction countermeasure structure according to the first embodiment. As shown in FIG. 13, the excess pore water pressure ratio ru of the remaining liquefied layer 2A does not increase to 1.0 even after 25 seconds have passed since the occurrence of the earthquake. Therefore, the remaining liquefied layer 2A is not liquefied. This is consistent with the experimental results described above, and the effect of the liquefaction countermeasure structure according to the first embodiment can be verified from the results of FEM analysis (finite element method analysis).

一方、図14は、図13における着底構造体4をなくし、地盤改良体3を着底構造体位置まで広げて全体浮き型とした場合において、図13と同様の地震波を作用させたFEM解析結果である。時間の経過により、地盤改良体3下方の液状化層2の過剰間隙水圧比が増大し、6秒後には過剰間隙水圧が1.0付近になっていることが分かる。この過剰間隙水圧比は、その後の時間の経過によってもそう小さくならなかったことが分かっている。また、地盤改良体天端の沈下量では、全体浮き型の方は過剰間隙水圧の増大が直接沈下量に影響するため、全体浮き型のほうが図11の片端着底浮き型より大きいことが予想される。   On the other hand, FIG. 14 shows an FEM analysis in which the same seismic wave as in FIG. 13 is applied when the bottoming structure 4 in FIG. 13 is eliminated and the ground improvement body 3 is extended to the bottoming structure position to form the whole floating type. It is a result. It can be seen that the excess pore water pressure ratio of the liquefied layer 2 below the ground improvement body 3 increases with the passage of time, and the excess pore water pressure becomes around 1.0 after 6 seconds. It has been found that this excess pore water pressure ratio did not become so small over time. In addition, in the sinking amount at the top of the ground improvement body, it is expected that the entire floating type is larger than the one-end landing floating type in FIG. 11 because the increase in excess pore water pressure directly affects the sinking amount. Is done.

図17は、FEM解析を実施する解析モデルを示す概念図である。図18は、図17に示した解析モデルに地震波を作用させてから20秒後の解析結果を示す図である。図19は、FEM解析の結果から得られた着底構造体の寸法比と地盤改良体の挙動との関係を示す図である。図20は、FEM解析の結果から得られた過剰間隙水圧比を示すコンター図である。   FIG. 17 is a conceptual diagram showing an analysis model for performing FEM analysis. FIG. 18 is a diagram illustrating an analysis result 20 seconds after the seismic wave is applied to the analysis model illustrated in FIG. FIG. 19 is a diagram showing the relationship between the dimensional ratio of the bottom structure obtained from the result of the FEM analysis and the behavior of the ground improvement body. FIG. 20 is a contour diagram showing the excess pore water pressure ratio obtained from the result of FEM analysis.

図17に示すように、FEM解析を実施する解析モデルは、実施の形態1である液状化対策構造と同様に、片端着底浮き型と称すべき構造であって、地盤改良体3の側面の一部としての一側面に当接するように着底構造体4が構築されている。この解析モデルは、非液状化層1の上に12.5mの液状化層2が堆積した地盤を適用対象としており(液状化層厚H=12.5m)、地盤改良体3は、液状化層2において非液状化層1から上方に離隔した位置、より詳細には、液状化層2に浮くように構築されている。地盤改良体3の厚みは液状化層の厚みの3/4以下、具体的には7mである。着底構造体4は、根入れされ、かつ、液状化層2の垂直方向全体にわたり構築されている。着底構造体の全高は14mであり、1.5mが根入れされ、着底構造体4の液状化層2における高さhは、液状化層の厚みHと同じ12.5mである。   As shown in FIG. 17, the analysis model for performing the FEM analysis is a structure that should be called a one-end-floating floating type, like the liquefaction countermeasure structure according to the first embodiment. The bottom structure 4 is constructed so as to abut on one side as a part. This analysis model is applied to the ground where the liquefied layer 2 of 12.5 m is deposited on the non-liquefied layer 1 (liquefied layer thickness H = 12.5 m), and the ground improvement body 3 is liquefied. The layer 2 is constructed so as to float upward from the non-liquefied layer 1, more specifically, to float on the liquefied layer 2. The thickness of the ground improvement body 3 is not more than 3/4 of the thickness of the liquefied layer, specifically 7 m. The bottoming structure 4 is embedded and constructed over the entire vertical direction of the liquefied layer 2. The total height of the bottoming structure is 14 m, 1.5 m is embedded, and the height h of the bottoming structure 4 in the liquefied layer 2 is 12.5 m, which is the same as the thickness H of the liquefied layer.

また、図17において左右方向で示される着底構造体4の加振方向の幅bは、15m、10m、8m、6m、4m、0m(全体浮き型)の6通りについて解析を実施する。また、地盤改良体3と着底構造体4との間には、厚み5cmの緩衝層5を設ける。また、この液状化対策構造の地盤に作用させる地震波は、図13に示したFEM解析と同様の地震波(sin波:周波数0.5Hz,最大加速度131gal)である。   In addition, the width b in the excitation direction of the bottomed structure 4 shown in the left-right direction in FIG. 17 is analyzed for six patterns of 15 m, 10 m, 8 m, 6 m, 4 m, and 0 m (overall floating type). A buffer layer 5 having a thickness of 5 cm is provided between the ground improvement body 3 and the bottom structure 4. Further, the seismic wave applied to the ground of this liquefaction countermeasure structure is the same seismic wave (sin wave: frequency 0.5 Hz, maximum acceleration 131 gal) as in the FEM analysis shown in FIG.

図18に示すように、ここでは、着底構造体4の液状化層2における高さhに対する着底構造体4の幅bの比率(以下、「幅・高さ比(b/h)」という)、残置液状化層2Aの高さ方向中央における過剰間隙水圧比、地盤改良体の水平変位比、鉛直変位比に着目した。地盤改良体の水平変位比とは、着底構造体4の加振方向の幅bが4mの場合における地盤改良体3の水平方向の変位量に対する着底構造体4の加振方向の幅bを変更した場合における地盤改良体3の水平方向の変位量の比率である。地盤改良体の鉛直変位比とは、着底構造体4の加振方向の幅bが4mの場合における地盤改良体の鉛直方向の変位量(沈下量)に対する着底構造体4の加振方向の幅bを変更した場合における鉛直方向の変位量(沈下量)の比率である。   As shown in FIG. 18, here, the ratio of the width b of the bottoming structure 4 to the height h in the liquefied layer 2 of the bottoming structure 4 (hereinafter referred to as “width / height ratio (b / h)”). Focused on the excess pore water pressure ratio at the center in the height direction of the remaining liquefied layer 2A, the horizontal displacement ratio of the ground improvement body, and the vertical displacement ratio. The horizontal displacement ratio of the ground improvement body is the width b in the excitation direction of the bottom structure 4 with respect to the horizontal displacement of the ground improvement body 3 when the width b in the vibration direction of the bottom structure 4 is 4 m. It is a ratio of the amount of horizontal displacement of the ground improvement body 3 when changing. The vertical displacement ratio of the ground improvement body is the vibration direction of the bottom structure 4 with respect to the vertical displacement (sinking amount) of the ground improvement body 4 when the width b in the vibration direction of the bottom structure 4 is 4 m. It is the ratio of the amount of displacement (sinking amount) in the vertical direction when the width b of is changed.

図19に示すように、着底構造体4の加振方向の幅bが大きくなれば、地盤改良体3の水平方向の変位量は小さくなる。また、液状化層2の液状化は、過剰間隙水圧比ru=0.8が目安になることから、過剰間隙水圧比ruが0.8以下となる着底構造体の幅・高さ比(b/h)であれば液状化層2の液状化が抑制される。図19を参照すると、過剰間隙水圧比が0.8以下となる着底構造体の幅・高さ比(b/h)は、0.4以上であればよいことになる。   As shown in FIG. 19, when the width b of the bottoming structure 4 in the vibration direction increases, the horizontal displacement of the ground improvement body 3 decreases. Further, the liquefaction of the liquefied layer 2 is based on the excess pore water pressure ratio ru = 0.8, and therefore the width / height ratio of the bottomed structure body where the excess pore water pressure ratio ru is 0.8 or less ( If b / h), liquefaction of the liquefied layer 2 is suppressed. Referring to FIG. 19, the width / height ratio (b / h) of the bottomed structure where the excess pore water pressure ratio is 0.8 or less may be 0.4 or more.

さらに、詳細に考察すると、水平方向の変位量や鉛直方向の変位量においても、幅・高さ比(b/h)=0.5〜0.8の範囲において、大きく変動する。このことから、幅・高さ比(b/h)は、より好ましくは0.5以上であり、経済性を考慮すると、0.8以下で大きくても1.0以下であることが好ましい。   Further, considering in detail, the horizontal displacement amount and the vertical displacement amount also vary greatly in the range of width-height ratio (b / h) = 0.5 to 0.8. From this, the width / height ratio (b / h) is more preferably 0.5 or more, and considering the economy, it is preferably 0.8 or less and at most 1.0 or less.

なお、上述した着底構造体4の加振方向の幅bは、非液状化層1と液状化層2との境界部分における幅であり、着底構造体4の上部において加振方向の幅がbよりも狭くてもよい。また、現実の地震動の方向は予測できないので、平面視で地盤改良体の側面に着底構造体が当接する当接方向にほぼ直交する方向での着底構造体の厚みを幅bとする。   Note that the width b in the excitation direction of the bottomed structure 4 described above is the width at the boundary between the non-liquefied layer 1 and the liquefied layer 2, and the width in the excitation direction at the top of the bottomed structure 4. May be narrower than b. In addition, since the actual direction of seismic motion cannot be predicted, the width of the bottoming structure in a direction substantially perpendicular to the contact direction in which the bottoming structure abuts against the side surface of the ground improvement body in plan view is defined as width b.

また、上述した解析モデルにおける着底構造体4は地盤改良体3の一側面に当接するように構築してあるが、例えば、地盤改良体3の両側面がそれぞれ当接するように一対の着底構造体を構築した場合に、一方の着底構造体の幅をb1、他方の着底構造体の幅をb2とし、これらを加算して上述した解析モデルにおける着底構造体4の幅bとすればよい。   In addition, the bottoming structure 4 in the analysis model described above is constructed so as to abut against one side surface of the ground improvement body 3. For example, a pair of bottoming structures 4 so that both side surfaces of the ground improvement body 3 abut each other. When a structure is constructed, the width of one bottoming structure is b1, the width of the other bottoming structure is b2, and these are added to determine the width b of the bottoming structure 4 in the above-described analysis model. do it.

さらに、上述した解析モデルでは、図17の紙面奥方に着底構造体が連続しているが、紙面奥方に間隔をあけて着底構造体を複数配置してもよい。これは、複数の着底構造体を間隔をあけて配置しても、地盤改良体の水平方向の変位が抑制されることによるものである。   Furthermore, in the analysis model described above, the bottoming structures are continuous in the back of the sheet of FIG. 17, but a plurality of bottoming structures may be arranged at intervals in the back of the sheet. This is because the horizontal displacement of the ground improvement body is suppressed even if a plurality of bottoming structures are arranged at intervals.

図15は、段階加振による最終加振後の地盤改良体天端部中央における沈下量と液状化層の厚みに対する地盤改良体の厚みの比との関係を示す図である。図15に示すように、全体浮き型の場合、従来の一様に液状化するという考え方によれば、液状化層2に浮くように構築された地盤改良体3の沈下量は、残置液状化層2Aの厚みH(=H−t)に比例することになる。このため、図12において、無対策の地盤(t/H=0)の沈下量と、全体着底型の地盤(t/H=1)の沈下量とを結ぶ線は、液状化層2に浮くように構築された地盤改良体3の沈下量を示す想定線となる。 FIG. 15 is a diagram showing the relationship between the amount of subsidence at the center of the top of the ground improvement body after final excitation by stepwise excitation and the ratio of the thickness of the ground improvement body to the thickness of the liquefied layer. As shown in FIG. 15, in the case of the whole floating type, according to the conventional idea of liquefying uniformly, the subsidence amount of the ground improvement body 3 constructed so as to float on the liquefied layer 2 is the residual liquefaction. This is proportional to the thickness H 1 (= H−t) of the layer 2A. For this reason, in FIG. 12, the line connecting the settlement amount of the non-measured ground (t / H = 0) and the settlement amount of the entire bottomed ground (t / H = 1) is in the liquefied layer 2. This is an assumed line indicating the amount of settlement of the ground improvement body 3 constructed so as to float.

一方、上述した実施の形態1に示した液状化対策構造(片端着底浮き型)の地盤の沈下量と、実施の形態2に示した液状化対策構造(両端着底浮き型)の地盤の沈下量とは、地盤改良体3のみを構築した液状化対策構造よりもはるかに沈下量δを抑制する。また、地盤改良体3の厚みを液状化層2の厚みの4分の1程度としても従来の液状化対策構造(全体着底構型)の地盤と同程度の沈下量とすることができる。このため、多大な費用をかけることなく、非液状化層1の上に液状化層2が堆積した地盤の液状化を抑制できる。   On the other hand, the amount of ground subsidence of the liquefaction countermeasure structure (one-end landing floating type) shown in the first embodiment and the ground of the liquefaction countermeasure structure (both-end landing floating type) shown in the second embodiment are described. The subsidence amount suppresses the subsidence amount δ much more than the liquefaction countermeasure structure in which only the ground improvement body 3 is constructed. Moreover, even if the thickness of the ground improvement body 3 is set to about one-fourth of the thickness of the liquefied layer 2, the amount of subsidence can be made the same as that of the ground of the conventional liquefaction countermeasure structure (entire bottom structure). For this reason, the liquefaction of the ground in which the liquefied layer 2 is deposited on the non-liquefied layer 1 can be suppressed without incurring significant costs.

また、図15に示すように、液状化層2の厚みに対する地盤改良体3の厚みの比率(t/H)は、4分の1(0.25)で沈下量δを抑制する。沈下量δは、液状化層2の厚みに対する地盤改良体の厚みの比率(t/H)が4分の1(0.25)〜2分の1(0.5)〜4分の3(0.75)において抑制され、より好ましくは、4分の1(0.25)〜2分の1(0.5)において明確に抑制される。なお、沈下量δは、液状化層2の厚みに対する地盤改良体の厚みの比率(t/H)が4分の1(0.25)以下でも抑制される。ただし、その小さくできる程度は、最低でも地盤改良体3が上方からの荷重を受けても盤状体としてその機能を維持できる厚みを有することを条件とする。   Further, as shown in FIG. 15, the ratio (t / H) of the thickness of the ground improvement body 3 to the thickness of the liquefied layer 2 is ¼ (0.25) to suppress the settlement amount δ. As for the amount of settlement δ, the ratio (t / H) of the thickness of the ground improvement body to the thickness of the liquefied layer 2 is ¼ (0.25) to ½ (0.5) to ¾ ( 0.75), and more preferably, it is clearly suppressed in a quarter (0.25) to a half (0.5). The subsidence amount δ is suppressed even when the ratio (t / H) of the thickness of the ground improvement body to the thickness of the liquefied layer 2 is ¼ (0.25) or less. However, the extent to which it can be made smaller is that the ground improvement body 3 has a thickness that can maintain its function as a board-like body even if it receives a load from above.

上述した実施の形態1〜3に示した液状化対策構造は、着底構造体4が非液状化層1に着底または根入れされ、かつ、地盤改良体3が側面に当接することにより、地盤改良体3の水平方向の変位を抑制するので、地震が発生した場合でも地盤改良体3の水平方向の変位が抑制され、非液状化層1と地盤改良体3の水平方向の変位差が少なくてすむ。したがって、非液状化層1と地盤改良体3との間の残置液状化層2Aのせん断ひずみが抑制され、多大な費用をかけることなく、地盤の液状化を抑制できる。   In the liquefaction countermeasure structure shown in the first to third embodiments, the bottom structure 4 is bottomed or embedded in the non-liquefaction layer 1 and the ground improvement body 3 is in contact with the side surface. Since the horizontal displacement of the ground improvement body 3 is suppressed, even when an earthquake occurs, the horizontal displacement of the ground improvement body 3 is suppressed, and the horizontal displacement difference between the non-liquefaction layer 1 and the ground improvement body 3 is reduced. Less. Therefore, the shear strain of the remaining liquefied layer 2A between the non-liquefied layer 1 and the ground improvement body 3 is suppressed, and the liquefaction of the ground can be suppressed without incurring a great expense.

上述した実施の形態1〜3に示した液状化対策構造は、図10に示すように、内枠幅Lと地盤改良体の厚みtとの比(L/t)が2であっても液状化対策の効果を奏する。すなわち、上述した既存の文献(特許第2568115号公報)により明らかにされた制限事項L/t=0.5〜0.8を満たさなくても効果を奏することになる。したがって、経済的で合理的な液状化対策構造の地盤を提供できる。 The liquefaction countermeasure structure shown in the first to third embodiments described above is liquid even if the ratio (L / t) between the inner frame width L and the ground improvement body thickness t is 2, as shown in FIG. There is an effect of the countermeasures. That is, the even not satisfy the existing literature (Patent No. 2568115 discloses) revealed limited by what L / t = 0.5 to 0.8 as described above is an effect. Therefore, an economical and rational ground for liquefaction countermeasure structure can be provided.

上述した実施の形態1〜3に示した液状化対策構造を例えば空港に適用する場合には、滑走路を地盤改良体3で構築し、その側部の着陸帯を着底構造体4で構築すればよい。また、この液状化対策構造を高速道路などの盛土構造に適用する場合には、盛土下を地盤改良体3で構築し、その両側ののり尻部を千鳥状に着底構造体4で構築すればよい。このように液状化対策構造を適用すれば、多大な費用をかけることなく地盤の液状化を抑制できる。   When the liquefaction countermeasure structure described in the first to third embodiments is applied to an airport, for example, the runway is constructed with the ground improvement body 3 and the landing zone on the side is constructed with the landing structure 4. do it. When this liquefaction countermeasure structure is applied to an embankment structure such as an expressway, the embankment should be constructed with the ground improvement body 3 and the glue bottoms on both sides thereof should be constructed with the bottom structure 4 in a staggered manner. That's fine. If the liquefaction countermeasure structure is applied in this way, the liquefaction of the ground can be suppressed without incurring a great expense.

また、橋台や高層ビルなどのように、沈下制限が厳格な構造物に対しては、地盤改良体3を構成する格子壁体の格子枠内に基礎杭を打設すればよい。基礎杭を打設すれば、基礎杭の周辺地盤は液状化しないものとして設計できる。また、地盤改良体3は、着底構造体4により水平方向の変位が抑制されるので、基礎杭の曲げ耐力を小さなものにできる。   Moreover, what is necessary is just to drive a foundation pile in the lattice frame of the lattice wall body which comprises the ground improvement body 3 with respect to structures with strict subsidence restrictions, such as an abutment and a high-rise building. If a foundation pile is laid, the ground around the foundation pile can be designed so as not to liquefy. In addition, since the ground improvement body 3 is restrained from being displaced in the horizontal direction by the bottom structure 4, the bending strength of the foundation pile can be reduced.

さらに、上述した実施の形態1〜3において、地盤改良体3と着底構造体4との上下方向に相対変位可能な当接部を、図16に示すように、地盤改良体3の側面の一部に着底構造体4を当接させるようにしてもよい。図16の左側図は地盤改良体3の外側面に係合部3cを設けて係合構造にしたものである。図16の中央図は地盤改良体3内部の内側面に嵌合する係合部3cを設けて係合構造にしたものである(図では地盤改良体3内部の着底構造体4が1箇所であるが、複数箇所に設けるようにしてもよい)。このようにすれば2方向の水平変位に対応できる。なお、この平面視凹凸による係合は、どちらが凹であっても、どちらが凸であってもかまわないし、間隔をおいて複数設けるようにしてもよい。また右側図のように着底構造体4の平面視短手方向側面を上下方向に相対変位可能に当接させるいわゆるバットレス形式にしてもよいし、着底構造体が地盤改良体の側面に沿って連続している図3のようにせずに、上側図や右側図のように地盤改良体の側面に沿って間隔をおいて着底構造体4を複数設けてもよい。ちなみに上述の全ての実施例において、緩衝層の有無を含めてそれぞれを適宜組合せて用いることは可能であり、また地盤改良体3や着底構造体4の平面視形状も矩形以外の多角形、円形等、種々の形状が適用できる。いずれにしても実際の地震の振動方向は予測できないので、地盤改良体3が平面視で一方向に長いものであれば、その長手方向にほぼ直角に交差する方向の振動に対応できるように着底構造体4を少なくとも配置し、地盤改良体3が平面視で長短がなく方向性があまり認められない形状であれば、平面視ほぼ直角に交差する2方向の振動に対応できるように着底構造体4を配置するのが望ましい。さらに、図12から分かるように、着底構造体を地盤改良体の両側に対向させて配置したほうがより片側配置よりも効果が認められる。 Further, in the first to third embodiments described above, the contact portion that can be relatively displaced in the vertical direction between the ground improvement body 3 and the bottom structure 4 is formed on the side surface of the ground improvement body 3 as shown in FIG. The bottom structure 4 may be brought into contact with a part. The left side view of FIG. 16 is an engagement structure in which an engagement portion 3 c is provided on the outer surface of the ground improvement body 3. The central view of FIG. 16 is an engagement structure provided with an engaging portion 3c that fits to the inner surface of the ground improvement body 3 (in the figure, one bottoming structure 4 inside the ground improvement body 3 is provided). However, it may be provided at a plurality of locations). In this way, it is possible to cope with horizontal displacement in two directions. It should be noted that the engagement by the unevenness in plan view may be either concave or convex, or a plurality of engagements may be provided at intervals. Further, as shown in the right side view, the bottom structure 4 may have a so-called buttress type in which the lateral surface in the short side view in a plan view is abutted so as to be relatively displaceable in the vertical direction, and the bottom structure is formed along the side surface of the ground improvement body. Instead of the continuous structure shown in FIG. 3, a plurality of bottoming structures 4 may be provided at intervals along the side surface of the ground improvement body as shown in the upper and right views. Incidentally, in all the above-mentioned embodiments, it is possible to use each in combination appropriately including the presence or absence of a buffer layer, and the planar view shape of the ground improvement body 3 or the bottom structure 4 is also a polygon other than a rectangle, Various shapes such as a circle can be applied. In any case, since the vibration direction of the actual earthquake cannot be predicted, if the ground improvement body 3 is long in one direction in a plan view, it will be able to cope with the vibration in a direction substantially perpendicular to the longitudinal direction. If the structure 4 is disposed at least, and the ground improvement body 3 has a shape that is not long or short in a plan view and has little directivity, a bottoming structure that can cope with vibrations in two directions intersecting substantially perpendicular to the plan view. It is desirable to arrange the body 4. Furthermore, as can be seen from FIG. 12, it is more effective to arrange the bottom structure facing the both sides of the ground improvement body than to arrange it on one side.

なお、上述した実施の形態1〜3において、側面とは、外側面、内側面を含み、側面の片側は、地盤改良体3の平面視形状が矩形・円形にかかわらず、地盤改良体3の平面視における周部分の長さを適宜の位置で半分に分けたときに、そのうちのどちらか一方に属する周部分の一部または全部を指す。また、片側に対向する部分を含めて両側とする。   In the first to third embodiments described above, the side surfaces include the outer side surface and the inner side surface, and one side of the side surface is the ground improvement body 3 regardless of whether the ground improvement body 3 is rectangular or circular in plan view. When the length of the peripheral portion in plan view is divided in half at an appropriate position, it indicates a part or all of the peripheral portion belonging to one of them. Moreover, it is set as both sides including the part which opposes one side.

ところで、地盤改良体3の外周を着底構造体4で完全に囲繞することにより、着底構造体4の内側に位置する液状化層(残置液状化層2A)と、着底構造体の外側に位置する液状化層2とを遮断するとともに、着底構造体4の内側に位置する液状化層(残置液状化層2A)を拘束する液状化対策構造が知られている。この液状化対策構造は、着底構造体4が地盤改良体3の外周を完全に囲繞しなくても、地盤改良体3とともに着底構造体4の内側に位置する液状化層(残置液状化層2A)が拘束状態であれば、液状化を抑制するとされている。すなわち、複数の着底構造体4を間隔を空けて配置しても、地盤改良体3とともに着底構造体4の内側に位置する液状化層(残置液状化層2A)が拘束状態であれば、液状化を抑制するとされている。したがって、この液状化対策構造では、複数の着底構造体4において、着底構造体4と着底構造体4との間の隙間は、着底構造体4の内側に位置する液状化層(残置液状化層2A)を拘束する大きさに制限されるのである。   By the way, by completely surrounding the outer periphery of the ground improvement body 3 with the bottom structure 4, the liquefied layer (residual liquefied layer 2A) located inside the bottom structure 4 and the outside of the bottom structure There is known a liquefaction countermeasure structure that blocks the liquefaction layer 2 located at the bottom and restrains the liquefaction layer (residual liquefaction layer 2A) located inside the bottomed structure 4. This liquefaction countermeasure structure allows the liquefied layer (residual liquefaction layer) located inside the bottoming structure 4 together with the ground improvement body 3 even if the bottoming structure 4 does not completely surround the outer periphery of the ground improvement body 3. If the layer 2A) is in a restrained state, it is said that liquefaction is suppressed. That is, even if a plurality of bottoming structures 4 are arranged at intervals, if the liquefied layer (residual liquefied layer 2A) located inside the bottoming structure 4 together with the ground improvement body 3 is constrained It is said that liquefaction is suppressed. Therefore, in this liquefaction countermeasure structure, in the plurality of bottoming structures 4, the gap between the bottoming structure 4 and the bottoming structure 4 is a liquefied layer (inside the bottoming structure 4 ( The size of the residual liquefied layer 2A) is limited.

これに対して、本発明の実施の形態である液状化対策構造は、図3、図5、図6、図7、図13、図16に示すように、残置液状化層2Aを拘束しなくても、着底構造体4が地盤改良体3の水平方向の変位を抑制する(地盤改良体3と非液状化層1との相対的な水平変位を抑制する)ので、残置液状化層2Aの液状化を抑制できることに特徴がある。   On the other hand, the liquefaction countermeasure structure according to the embodiment of the present invention does not restrain the remaining liquefied layer 2A as shown in FIG. 3, FIG. 5, FIG. 6, FIG. However, since the bottom structure 4 suppresses the horizontal displacement of the ground improvement body 3 (suppresses the relative horizontal displacement between the ground improvement body 3 and the non-liquefaction layer 1), the remaining liquefied layer 2A It is characterized in that liquefaction can be suppressed.

ここで「残置液状化層2Aを拘束しなくても」とは、上記各図のように平面視における地盤改良体3の下方に位置する残置液状化層2Aの想定地震(例えば一般の地震時検討に用いられる水平震度kH=0.15程度の地震)時における液状化時の挙動が地盤改良体3外側の液状化層2に実質的に伝わる大きさ(平面視における長さである)の開放部(図16(a)の矢視位置における図16(b)側面図で示されるように、上方の地盤改良体と下方の非液状化層との間で着底構造体4が配置されていない部分)が地盤改良体3の外周部の外側面に沿って少なくともその一部に設けられていることである。   Here, “without restraining the remaining liquefied layer 2A” means that an assumed earthquake of the remaining liquefied layer 2A located below the ground improvement body 3 in plan view (for example, during a general earthquake) The size (the length in plan view) that the behavior during liquefaction during the horizontal seismic intensity kH = 0.15 used in the study) is substantially transmitted to the liquefied layer 2 outside the ground improvement body 3 As shown in the side view of FIG. 16 (b) at the open position (see FIG. 16 (a)), the bottoming structure 4 is arranged between the upper ground improvement body and the lower non-liquefaction layer. (Not part) is provided along at least a part of the outer surface of the outer periphery of the ground improvement body 3.

上記開放部としては、例えば、図3、図5、図6、図7、図13、図16(a)に示すようなものであり、具体的には、着底構造体間の一つの開放部の大きさは、1m程度、2mや3mもあれば地震時における残置液状化層の挙動は外側の液状化層に伝わる。この各開放部の大きさを累計すると、平面視における地盤改良体の外周部の総長さに対して1/2以上の大きさとなっている。また、図16(a)における着底構造体4が地盤改良体3の内側面に嵌合する形態であれば、地盤改良体3の外周部総長さに対して開放部は100%となる。このような開放部を有していれば、その開放部においては、残置液状化層2Aの想定地震時における挙動を着底構造体が実質的に拘束しない(残置液状化層2Aの液状化時の挙動が地盤改良体3外側の液状化層2に伝わる)といえる。もちろん、外部制約等の関係で図16(c)の平面図のように図面下側の開放部の大きさが地盤改良体の外周部総長さに対して1/2より小さくなる場合もあるが、地盤改良体の側面の一部(1辺)の開放部は残置液状化層の想定地震時の挙動を着底構造体が拘束しない程度の大きさになっているので、開放部の大きさが地盤改良体外周部の総長さに対して1/2以上に限定されるわけではない。ただし、例えば、平面視正方形の地盤改良体を想定すると、そのうちの一辺を開放部とした場合でも効果があるので、平面視での開放部の累計の大きさを地盤改良体外周部の総延長に対して1/4以上とすることでもよい。   Examples of the opening portion include those shown in FIGS. 3, 5, 6, 7, 13, and 16 (a), and specifically, one opening between the bottoming structures. If the size of the part is about 1 m, 2 m or 3 m, the behavior of the remaining liquefied layer at the time of earthquake is transmitted to the outer liquefied layer. When the sizes of the respective open portions are accumulated, the size is ½ or more of the total length of the outer peripheral portion of the ground improvement body in plan view. Further, if the bottomed structure 4 in FIG. 16A is fitted to the inner surface of the ground improvement body 3, the open portion is 100% with respect to the total outer peripheral length of the ground improvement body 3. If such an open portion is provided, the bottomed structure does not substantially restrain the behavior of the residual liquefied layer 2A during the assumed earthquake in the open portion (when the residual liquefied layer 2A is liquefied) Is transmitted to the liquefied layer 2 outside the ground improvement body 3). Of course, there are cases where the size of the open portion on the lower side of the drawing is smaller than ½ of the total length of the outer peripheral portion of the ground improvement body as shown in the plan view of FIG. The open part of the side (one side) of the ground improvement body is so large that the landing structure does not restrain the behavior of the remaining liquefied layer during the assumed earthquake. However, it is not limited to 1/2 or more with respect to the total length of the outer periphery of the ground improvement body. However, for example, assuming a ground improvement body with a square in plan view, there is an effect even when one side of the ground improvement body is an open part, so the total size of the open part in plan view is the total extension of the outer periphery of the ground improvement body. However, it may be set to 1/4 or more.

そして本発明では、地盤改良体と着底構造体とは上下方向に相対変位可能に当接していることで、これら相互間の上下方向の応力伝達を遮断している。   In the present invention, the ground improvement body and the bottom structure are in contact with each other so as to be relatively displaceable in the vertical direction, thereby blocking the vertical stress transmission therebetween.

本発明の上記知見を基にさらに発展させた知見を以下に述べる。
図17〜図20に示したFEM解析から、着底構造体の高さと幅との関係において好ましい比率が存在するのが分かる。このことは、例えば、ある比較的薄い浮き型の地盤改良体3を設定するとともに着底構造体の幅を種々異ならせたケースを想定し、その複数ケースでの想定地震における上記解析や上記模型実験を行い、地盤改良体3の沈下や水平変位、過剰間隙水圧比を算出・計測すれば、その結果から、好適な着底構造体の幅が見出せる。つまり、着底構造体と上下方向に相対変位可能に当接している地盤改良体については、その上部の載荷物等の種別毎に想定地震に対しての許容沈下量が設定されるが、想定地震に対して、この地盤改良体が設定沈下量以下に収まるように着底構造体の幅を設定することが可能となる。このようにして着底構造体の幅が設定された液状化対策構造とすることは、上記知見があって初めて可能となり、この構造は、上記の全ての実施の形態に適用できる。なお、上記全ての実施の形態においての地盤改良体3であるが、地盤改良体であることが経済的であるが、例えばコンクリート版であってもよい。要は、その上に構造物等の載荷物があってもその荷重を受けて下方の残置液状化層に伝えられるよう全体として盤状体になっていればよいのである。上記実施の形態の格子状地盤改良体も全体としてみれば盤状体であり、例えばサンドコンパクションパイルのように離散的に打設されるものでも、その周囲地盤を改質するので、全体としては盤状の地盤改良体であるといえる。
The knowledge further developed based on the above knowledge of the present invention will be described below.
From the FEM analysis shown in FIGS. 17 to 20, it can be seen that there is a preferable ratio in the relationship between the height and the width of the bottom structure. This assumes, for example, a case where a relatively thin floating type ground improvement body 3 is set and the width of the bottoming structure is varied, and the analysis and model in the assumed earthquake in the multiple cases If an experiment is performed and the settlement, horizontal displacement, and excess pore water pressure ratio of the ground improvement body 3 are calculated and measured, a suitable width of the bottomed structure can be found from the results. In other words, for the ground improvement body that is in contact with the bottom structure so as to be relatively displaceable in the vertical direction, the allowable settlement for an assumed earthquake is set for each type of load, etc. With respect to an earthquake, it is possible to set the width of the bottomed structure so that the ground improvement body falls within the set settlement amount. Thus, it is possible to obtain a liquefaction countermeasure structure in which the width of the bottoming structure is set as described above, and this structure can be applied to all the embodiments described above. In addition, although it is the ground improvement body 3 in all the said embodiment, although it is economical that it is a ground improvement body, for example, a concrete plate may be sufficient. In short, even if there is a load such as a structure on it, it is sufficient if it is a disk-like body as a whole so that it receives the load and is transmitted to the remaining liquefied layer below. The grid-like ground improvement body of the above embodiment is also a board-like body as a whole, for example, even though it is placed discretely like a sand compaction pile, the surrounding ground is modified, so as a whole It can be said that it is a board-like ground improvement body.

1 非液状化層
2 液状化層
2A 残置液状化層(液状化層)
3 地盤改良体
4 着底構造体
5 緩衝層
6 アプローチ構造体
ru 過剰間隙水圧比
Δu 過剰間隙水圧
σv’ 有効土被り圧
δ 沈下量
1 Non-liquefied layer 2 Liquefied layer 2A Remaining liquefied layer (liquefied layer)
3 Ground improvement body 4 Bottoming structure 5 Buffer layer 6 Approach structure ru Excess pore water pressure ratio Δu Excess pore water pressure σv 'Effective soil cover pressure δ Settling amount

Claims (4)

非液状化層の上に液状化層が堆積した地盤を適用対象とし、液状化層において非液状化層から離隔した位置に地盤改良体を構築した液状化対策構造において、
非液状化層に着底または根入れされ、かつ前記地盤改良体が上下方向に相対変位可能となるように、前記地盤改良体の地震方向に対する側面に平面視で開放部を確保して当接し、非液状化層の振動を地盤改良体に伝達させて非液状化層と地盤改良体の水平方向の変位差を小さくさせる幅を有する構造体構築したことを特徴とする液状化対策構造。
In the liquefaction countermeasure structure in which the ground where the liquefied layer is deposited on the non-liquefied layer is applied, and the ground improvement body is constructed at a position separated from the non-liquefied layer in the liquefied layer,
In order to allow the ground improvement body to be grounded or embedded in a non-liquefaction layer and to be relatively displaceable in the vertical direction , an open portion is secured in contact with the side of the ground improvement body in the earthquake direction in plan view. liquefaction countermeasure structure, characterized in that the vibration of the non-liquefied layer were constructed a structure having a width which reduces the displacement difference in the horizontal direction by transmitting the soil improvement material non liquefaction layer and ground improvement body.
前記構造体の幅を前記液状化層における構造体の高さの0.4倍以上に設定したことを特徴とする請求項1に記載の液状化対策構造。The liquefaction countermeasure structure according to claim 1, wherein the width of the structure is set to 0.4 times or more of the height of the structure in the liquefaction layer. 前記開放部は、The opening part is
地盤改良体の下方域に残置した残置液状化層の外周に設けられ、前記残置液状化層の想定地震時における挙動が前記地盤改良体の側方域に伝わる大きさを有することを特徴とする請求項1または2に記載の液状化対策構造。It is provided on the outer periphery of the remaining liquefied layer left in the lower region of the ground improvement body, and the behavior of the residual liquefied layer at the time of the assumed earthquake has a size that is transmitted to the side region of the ground improvement body. The liquefaction countermeasure structure according to claim 1 or 2.
前記開放部の大きさは、前記地盤改良体の外周の平面視総延長に対して1/4以上であることを特徴とする請求項1〜3のいずれか一つに記載の液状化対策構造。The liquefaction countermeasure structure according to any one of claims 1 to 3, wherein the size of the open portion is ¼ or more of the total extension of the outer periphery of the ground improvement body in plan view. .
JP2010160138A 2009-11-17 2010-07-14 Liquefaction countermeasure structure Active JP4742331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010160138A JP4742331B2 (en) 2009-11-17 2010-07-14 Liquefaction countermeasure structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009261989 2009-11-17
JP2009261989 2009-11-17
JP2010160138A JP4742331B2 (en) 2009-11-17 2010-07-14 Liquefaction countermeasure structure

Publications (2)

Publication Number Publication Date
JP2011127417A JP2011127417A (en) 2011-06-30
JP4742331B2 true JP4742331B2 (en) 2011-08-10

Family

ID=44290291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010160138A Active JP4742331B2 (en) 2009-11-17 2010-07-14 Liquefaction countermeasure structure

Country Status (1)

Country Link
JP (1) JP4742331B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5788717B2 (en) 2010-11-16 2015-10-07 矢崎総業株式会社 Illumination structure of meter device
JP5877482B2 (en) * 2012-01-31 2016-03-08 清水建設株式会社 Structure for reducing liquefaction damage of structures
JP5997093B2 (en) * 2013-04-26 2016-09-28 大成建設株式会社 Structure to prevent liquefaction of ground due to structural load
CN108824410B (en) * 2018-06-29 2020-09-22 长江岩土工程总公司(武汉) Deep liquefaction shallow treatment method applied to liquefiable sandy soil foundation
JP7474686B2 (en) 2020-11-27 2024-04-25 株式会社リアス Soft ground improvement body and construction method of soft ground improvement body

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323413A (en) * 1991-04-23 1992-11-12 Shimizu Corp Liquefaction preventive construction method for sand ground
JPH1018308A (en) * 1996-07-02 1998-01-20 Taisei Corp Liquefaction prevention structure for building ground
JP3921677B2 (en) * 1997-12-17 2007-05-30 株式会社大林組 Seismic isolation structure in soft ground
JP4744731B2 (en) * 2001-07-04 2011-08-10 清水建設株式会社 Ground-isolated structure using soft ground
JP2005083174A (en) * 2003-09-11 2005-03-31 Shimizu Corp Countermeasure structure against liquefaction of foundation for construction
JP2005105602A (en) * 2003-09-29 2005-04-21 Shimizu Corp Counter measure structure for liquefaction
JP2009235783A (en) * 2008-03-27 2009-10-15 Taisei Corp Liquefaction countermeasure structure

Also Published As

Publication number Publication date
JP2011127417A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP4742331B2 (en) Liquefaction countermeasure structure
US20200048858A1 (en) Seismic Defence Structures
JP5071930B2 (en) Ground liquefaction prevention method and liquefaction resistant ground and building base structure
JP5913701B1 (en) Temporary dual-use main soil structure and its construction method
US7243466B2 (en) Anti-seismic system
KR101415522B1 (en) Precast concrete expansion joint with extended slab bridges extension
Sawamura et al. Experimental study on damage morphology and critical state of three-hinge precast arch culvert through shaking table tests
CA2436257A1 (en) Foundation construction system with anti-earthquake plates
KR101630931B1 (en) Road decking panel having concrete crack protection and manufacture convenience
JP5421191B2 (en) Design method for embankment reinforcement structure
Miyazaki et al. Dynamic behavior of three-hinge type precast arch culverts installed in embankment with asymmetrical overburden in culvert longitudinal direction
JP6474753B2 (en) Construction method of ground vibration prevention structure
JP6372604B1 (en) Lightweight embankment structure
JP5729754B2 (en) Seismic reinforcement structure for embankment and design method of underground wall used for it
JP3196470U (en) Seismic isolation structure
TWI727831B (en) Lightweight fill structure
KR20070052926A (en) Breakwater using wave dissipating block
JP2004150032A (en) Foundation structure for building, and its design method
JP2019094731A (en) Lightweight banking structure
JP2009235783A (en) Liquefaction countermeasure structure
Miyazaki et al. Dynamic behaviour of three-hinge-type precast arch culverts with various patterns of overburden in culvert longitudinal direction
JP2673212B2 (en) Ground inner wall
RU2779036C1 (en) Earthquake-resistant foundation
JP5975892B2 (en) Ground liquefaction countermeasure structure by structure load and seismic isolation device
RU2769153C1 (en) Foundation

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4742331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250