JP5997093B2 - Structure to prevent liquefaction of ground due to structural load - Google Patents

Structure to prevent liquefaction of ground due to structural load Download PDF

Info

Publication number
JP5997093B2
JP5997093B2 JP2013093219A JP2013093219A JP5997093B2 JP 5997093 B2 JP5997093 B2 JP 5997093B2 JP 2013093219 A JP2013093219 A JP 2013093219A JP 2013093219 A JP2013093219 A JP 2013093219A JP 5997093 B2 JP5997093 B2 JP 5997093B2
Authority
JP
Japan
Prior art keywords
ground
underground wall
liquefaction
wall
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013093219A
Other languages
Japanese (ja)
Other versions
JP2014214509A (en
Inventor
景太 柴田
景太 柴田
俊昌 長尾
俊昌 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2013093219A priority Critical patent/JP5997093B2/en
Publication of JP2014214509A publication Critical patent/JP2014214509A/en
Application granted granted Critical
Publication of JP5997093B2 publication Critical patent/JP5997093B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Foundations (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)
  • Soil Sciences (AREA)
  • Agronomy & Crop Science (AREA)

Description

本発明は、地盤の上に構築された構造物の荷重による地盤の液状化を防止するための液状化対策構造に関する。   The present invention relates to a liquefaction countermeasure structure for preventing liquefaction of a ground due to a load of a structure constructed on the ground.

従来、液状化対策の一つに、図11に示されるように、地盤103に格子状地中壁102を設けることにより、この格子状地中壁102に囲まれた地盤103の変形を抑止するとともに、周辺地盤104からの地下水の流動を遮断して、液状化を防止する液状化対策技術が知られている(特許文献1)。   Conventionally, as one of the countermeasures for liquefaction, as shown in FIG. 11, by providing a grid-like underground wall 102 on the ground 103, deformation of the ground 103 surrounded by the grid-like underground wall 102 is suppressed. At the same time, a liquefaction countermeasure technique for blocking liquefaction by blocking the flow of groundwater from the surrounding ground 104 is known (Patent Document 1).

地盤の液状化を抑制するためには、ある程度狭い格子間隔で地中壁を造成する必要があり、地中壁造成のコストが高くなったり工期が長くなったりする場合がある。
また、既存構造物に対して液状化対策しようとした場合、構造物直下の地盤に地中壁を造成することが困難であり、地中壁の造成に多額の費用が掛かったり、地中壁を造成できなかったりする。構造物直下に地中壁を造成できない場合、この液状化対策技術は採用できなくなる。
In order to suppress the liquefaction of the ground, it is necessary to create the underground wall with a somewhat narrow lattice interval, which may increase the cost of creating the underground wall and increase the construction period.
In addition, when trying to prevent liquefaction of an existing structure, it is difficult to create an underground wall on the ground directly under the structure, and it can be expensive to create the underground wall. Cannot be created. If the underground wall cannot be created directly under the structure, this liquefaction countermeasure technology cannot be adopted.

そこで、地中壁の構造物直下への造成を不要とした、図12に示されるような、平面視で構造物111を所定の幅厚をもって囲繞する地盤改良体からなる地中壁112が、鉛直方向に少なくとも構造物111の基礎下端面から非液状化層114まで形成された、液状化する可能性のある液状化層113上に構築される構造物の基礎地盤である第一の液状化対策構造110が提案されている(特許文献2)。
しかし、この液状化対策構造は、構造物周囲にのみ地盤改良体からなる地中壁を配置しているため、構造物の平面が大きい場合に、対向する地中壁の間隔が広くなり液状化自体を防止することができない。
Therefore, as shown in FIG. 12, the underground wall 112 made of a ground improvement body surrounding the structure 111 with a predetermined width and thickness in a plan view, which does not require the formation of the underground wall directly under the structure, The first liquefaction that is the foundation ground of the structure that is formed on the liquefied layer 113 that is formed in the vertical direction from at least the bottom lower end surface of the structure 111 to the non-liquefied layer 114 and that may be liquefied. A countermeasure structure 110 has been proposed (Patent Document 2).
However, this liquefaction countermeasure structure has an underground wall made of ground improvement material only around the structure, so that when the structure is large, the gap between the opposing underground walls becomes wide and liquefaction occurs. It cannot prevent itself.

また、地震時に構造物慣性力による水平力が、図13(a)に模式的に示すように構造物111から液状化する可能性のある液状化層113の地盤へ伝わり、液状化抑制に対してむしろマイナスとなることが想定されるが、それに対して有効な対策が採られていない。
さらに、同図(b)に示されるように、地震時に構造物がロッキング振動することによって、構造物から地盤への外力が生じるが、それを抑制する手段が考えられていない。
In addition, the horizontal force due to the inertia of the structure during an earthquake is transmitted from the structure 111 to the ground of the liquefied layer 113 that may be liquefied as schematically shown in FIG. However, effective measures are not taken against it.
Furthermore, as shown in FIG. 5B, external force from the structure to the ground is generated by rocking vibration of the structure during an earthquake, but no means for suppressing it is considered.

これら問題を解決するため、図14に示されるように、地盤125を囲む地中壁122と、地盤上に配置され、地盤よりも高い剛性を有し、前記地中壁の内側を覆う剛性板123と、前記地中壁122の内面と前記剛性板123との間の隙間を塞ぐための、透水性を有する袋体に詰められた粒状体からなる目地部材124と、を有する第二の液状化対策構造120が提案されるに至った(特許文献3)。   In order to solve these problems, as shown in FIG. 14, an underground wall 122 surrounding the ground 125, and a rigid plate disposed on the ground and having higher rigidity than the ground and covering the inside of the underground wall. 123 and a joint member 124 made of a granular material packed in a water-permeable bag for closing the gap between the inner surface of the underground wall 122 and the rigid plate 123. A countermeasure structure 120 has been proposed (Patent Document 3).

この液状化対策構造120は、地震時には建物慣性力による水平力を剛性板123から目地部材124を介して地中壁122へ伝達させることで、地中壁に囲まれた地盤124のせん断変形を抑制し、液状化を防止することができる。
また、目地部材が建物をロックすることで建物両端の上下動を抑制することができる。
This liquefaction countermeasure structure 120 transmits shear force of the ground 124 surrounded by the underground wall by transmitting a horizontal force due to the building inertia force from the rigid plate 123 to the underground wall 122 via the joint member 124 in the event of an earthquake. It can be suppressed and liquefaction can be prevented.
Moreover, the joint member can suppress the vertical movement of both ends of the building by locking the building.

しかしながら、この第二の液状化対策構造は、図15に模式的に示すように、根入れが浅い場合など剛性板123の厚さが厚くない場合では、地中壁122へ力を伝達する面積が小さくなるため、地中壁上部に力が集中し、地中壁の応力が厳しくなることが想定される。   However, this second liquefaction countermeasure structure has an area for transmitting force to the underground wall 122 when the thickness of the rigid plate 123 is not thick, as shown in FIG. Therefore, it is assumed that the force concentrates on the upper part of the underground wall and the stress on the underground wall becomes severe.

さらに、目地部材124として、袋体に詰められた粒状体(土嚢袋に詰められた砂・礫等)を想定しているが、上下動の抑制をせん断変形に伴う粒状体の体積膨張で拘束するとしており、粒状体の充填状態や袋体の埋設状況によって、確実にその効果が得られるかについて不安がある。
さらにまた、地中壁122の剛性によっては、地中壁に囲まれた地盤125のせん断変形を抑制し、液状化を防止する効果が十分に得られない可能性を否定できない。
Furthermore, the joint member 124 is assumed to be a granular material packed in a bag (sand, gravel, etc. packed in a sandbag), but restrains the vertical movement by volume expansion of the granular material accompanying shear deformation. However, there is anxiety as to whether or not the effect can be surely obtained depending on the filling state of the granular material and the embedding condition of the bag.
Furthermore, depending on the rigidity of the underground wall 122, it cannot be denied that the effect of suppressing the shear deformation of the ground 125 surrounded by the underground wall and preventing liquefaction cannot be sufficiently obtained.

特公平04−054004号公報Japanese Examined Patent Publication No. 04-054004 特開2005−105602号公報JP 2005-105602 A 特開2010−216107号公報JP 2010-216107 A

本発明は、構造物外周に地中壁を配置した液状化対策において、対向する地中壁間隔が広い場合でも液状化防止効果を得られるようにすることを課題とし、構造物外周に配置した地中壁と構造物に接続した地中壁を組み合わせて、地震時に発生した構造物慣性力は、構造物に接続した地中壁を介して構造物外周に配置した地中壁へと伝え、構造物の鉛直荷重は構造物直下地盤へと伝達するようにするとともに、構造物のロッキング振動を防止して、構造物外周に配置した地中壁の間隔が大きくても十分な液状化防止効果を得られるようにした軟弱地盤の液状化対策構造を提供することを目的としている。   An object of the present invention is to provide a liquefaction prevention effect even when a gap between opposing underground walls is wide in a liquefaction countermeasure in which an underground wall is arranged on the outer periphery of a structure, and is arranged on the outer periphery of a structure. By combining the underground wall and the underground wall connected to the structure, the structure inertia force generated during the earthquake is transmitted to the underground wall arranged around the structure through the underground wall connected to the structure, The vertical load of the structure is transmitted to the structure directly under the ground, and the rocking vibration of the structure is prevented, so that sufficient liquefaction prevention effect can be achieved even if the space between the underground walls arranged around the structure is large The purpose is to provide a liquefaction countermeasure structure for soft ground that can be obtained.

請求項1に係る発明は、地盤上面に構造物の鉛直荷重が作用する形式の基礎に支承された構造物と、該構造物外周から僅かに外方へ離間して構造物直下地盤を囲んで非液状化地盤まで延伸された外側地中壁と、前記構造物の下端縁近傍に接続された内側地中壁とを備えた地盤の液状化対策構造であって、前記内側地中壁と前記外側地中壁とは上下方向の縁が切られていて、地震による水平方向の構造物慣性力は、前記内側地中壁を介して前記外側地中壁へと伝達され、前記構造物直下地盤へ作用する構造物慣性力による外力を減少させ、地盤のせん断応力を低減するとともに、地震による構造物のロッキング振動は、前記内側地中壁と地盤の間の摩擦によって抑制され、構造物の鉛直荷重全体を前記構造物直下地盤に作用させ、地盤の有効応力を増大する地盤の液状化対策構造とした。   The invention according to claim 1 encloses a structure supported on a foundation of a type in which a vertical load of the structure acts on the upper surface of the ground, and is slightly spaced outward from the outer periphery of the structure and surrounds the structure's direct foundation board. A ground liquefaction countermeasure structure comprising an outer underground wall extending to a non-liquefied ground and an inner underground wall connected in the vicinity of a lower edge of the structure, the inner underground wall and the The vertical ground edge is cut from the outer underground wall, and the structure inertia force in the horizontal direction due to the earthquake is transmitted to the outer underground wall via the inner underground wall, and In addition to reducing the external force due to the inertial force acting on the structure and reducing the shear stress of the ground, the rocking vibration of the structure due to the earthquake is suppressed by the friction between the inner underground wall and the ground, The entire load is applied to the foundation base plate of the structure, so that the effective response of the ground It was liquefaction countermeasure structure of the ground to increase.

請求項2に係る発明は、セメント系の地盤改良体からなる前記外側地中壁の外面上部の少なくとも一部は、セメント系の地盤改良体によって補強されていることを特徴としている。   The invention according to claim 2 is characterized in that at least a part of the outer surface upper portion of the outer ground wall made of a cement-based ground improvement body is reinforced by the cement-based ground improvement body.

請求項3に係る発明は、前記内側地中壁は、平面視連続して、あるいは、断続して地盤を囲むように設けられていることを特徴としている。   The invention according to claim 3 is characterized in that the inner underground wall is provided so as to surround the ground continuously or intermittently in plan view.

請求項1に係る発明によれば、地盤上面に構造物の鉛直荷重が作用する形式の基礎に支承された構造物と、構造物外周から僅かに外方へ離間して構造物直下地盤を囲んで非液状化地盤まで延伸された外側地中壁と、前記構造物の下端縁近傍に接続された内側地中壁とを組み合わせたので、地震時に発生した構造物慣性力は、内側地中壁を介して外側地中壁へと伝えることができ、内側地中壁間の地盤へ作用する構造物慣性力による外力が減少し、地盤のせん断応力が低減することで液状化抑制効果が得られる。   According to the first aspect of the present invention, the structure supported by the foundation of the type in which the vertical load of the structure acts on the upper surface of the ground, and the structure directly grounded board is separated slightly outward from the outer periphery of the structure. Because the outer underground wall extended to the non-liquefied ground at the inside and the inner underground wall connected to the vicinity of the lower edge of the structure are combined, the structure inertia force generated at the time of the earthquake is the inner underground wall. Can be transmitted to the outer underground wall, reducing the external force due to the inertial force of the structure acting on the ground between the inner underground walls and reducing the shear stress of the ground, resulting in a liquefaction suppression effect .

なお、内側地中壁と外側地中壁の間にわずかに地盤を挟んでいるが、挟まれた地盤の厚さが非常に薄いため、両地中壁間の構造物慣性力の伝達に悪影響を及ぼすことなく無視できる程度である。   In addition, although the ground is slightly sandwiched between the inner and outer underground walls, the thickness of the sandwiched ground is very thin, which adversely affects the transmission of structural inertial force between both underground walls. Is negligible without affecting

一方、構造物に接続した内側地中壁と外側地中壁の上下方向の縁が切られているため、構造物の鉛直荷重は、外側地中壁に極力伝達させず、構造物直下地盤へと伝えることができる。
これによって、外側地中壁によるせん断変形抑止と、構造物の鉛直荷重による有効応力増大と、内側地中壁による構造物直下地盤への外力の低減の効果が得られ、従来の外側地中壁のみの地盤の液状化対策構造に比べて優れた液状化抑制効果を発揮することができる。
その結果、従来よりも地中壁間隔が広い場合においても、液状化を防止することが可能となる。
On the other hand, because the vertical edges of the inner and outer underground walls connected to the structure are cut off, the vertical load of the structure is not transmitted to the outer underground wall as much as possible, but to the structure directly under the ground. I can tell you.
As a result, the effect of suppressing shear deformation by the outer underground wall, increasing the effective stress due to the vertical load of the structure, and reducing the external force to the structure directly under the ground by the inner underground wall are obtained. Compared with the liquefaction countermeasure structure of only the ground, it can exhibit an excellent liquefaction suppression effect.
As a result, it is possible to prevent liquefaction even when the space between the underground walls is wider than before.

また、本発明では、内側地中壁の見付け面積分の範囲で、外側地中壁と力のやり取りをするので、構造物の根入れ部だけで力のやり取りをする場合よりも広い面積で力のやり取りをすることになり、地中壁上部の応力集中を防ぐことができる。よって、構造物慣性力を地中壁へ伝達させたことによる地中壁の損傷の可能性を軽減することができる。   Further, in the present invention, since the force is exchanged with the outer underground wall within the range of the found area of the inner underground wall, the force is larger in the area than when the force is exchanged only with the root portion of the structure. Therefore, stress concentration at the upper part of the underground wall can be prevented. Therefore, the possibility of damage to the underground wall due to the transmission of the structure inertia force to the underground wall can be reduced.

さらに、地震時に生じる構造物のロッキング振動に対しても、内側地中壁と地盤の間の摩擦によって振動を抑制することが可能である。   Furthermore, even with respect to rocking vibration of the structure that occurs during an earthquake, it is possible to suppress the vibration by friction between the inner underground wall and the ground.

請求項2に係る発明によれば、セメント系の地盤改良体からなる前記外側地中壁の外面上部の少なくとも一部をセメント系の地盤改良体によって補強して、地中壁の地震耐力を増強してあるので、地震による水平方向の構造物慣性力による地中壁の破損を防止することかできる。   According to the second aspect of the present invention, at least a part of the outer surface upper portion of the outer underground wall made of a cement-based ground improvement body is reinforced by the cement-based ground improvement body to enhance the earthquake resistance of the underground wall. Therefore, it is possible to prevent the underground wall from being damaged by the horizontal structure inertia force due to the earthquake.

請求項3の内側地中壁が平面視連続して地盤を囲むように設けられた発明によれば、異なる方向に構築した内側地中壁が一体となって抵抗するので、内側地中壁の剛性が得られやすくなり、構造物慣性力を外側地中壁へと伝達させやすくできる。
一方、請求項3の内側地中壁が平面視断続して地盤を囲むように設けられた発明によれば、工事量を縮減してコストダウンを図ることや、埋設配管等の位置を避けて内側地中壁を構築することができる。
According to the invention in which the inner underground wall according to claim 3 is provided so as to surround the ground continuously in plan view, the inner underground wall constructed in different directions integrally resists. Rigidity can be easily obtained, and the structure inertia force can be easily transmitted to the outer underground wall.
On the other hand, according to the invention in which the inner underground wall according to claim 3 is provided so as to surround the ground by interrupting the plan view, the construction amount can be reduced to reduce the cost, and the position of the buried piping etc. can be avoided. An inner underground wall can be constructed.

本発明の実施例1の地盤の液状化対策構造の縦断面図である。It is a longitudinal cross-sectional view of the ground liquefaction countermeasure structure of Example 1 of this invention. 本発明の内側地中壁が構造物慣性力を広い面積で外側地中壁に伝達して応力集中を緩和するメカニズムを示す図である。It is a figure which shows the mechanism in which the inner underground wall of this invention transmits structure inertia force to an outer underground wall in a wide area, and relieve | moderates stress concentration. 本発明の内側地中壁が地盤の摩擦により構造物のロッキング振動を抑制するメカニズムを示す図である。It is a figure which shows the mechanism in which the inner underground wall of this invention suppresses the rocking vibration of a structure by the friction of a ground. 地震時における過剰間隙水圧の上昇・消散をシミュレートした有効応力解析結果を示す図である。It is a figure which shows the effective stress analysis result which simulated the rise and dissipation of the excess pore water pressure at the time of an earthquake. 構造物直下地盤深度2.5mにおける過剰間隙水圧比の時刻歴を示す図である。It is a figure which shows the time history of the excess pore water pressure ratio in the structure base foundation board depth of 2.5 m. 本発明の実施例1の地盤の液状化対策構造の平面図である。It is a top view of the ground liquefaction countermeasure structure of Example 1 of the present invention. 実施例1の変形例の地盤の液状化対策構造の平面図である。It is a top view of the ground liquefaction countermeasure structure of the modification of Example 1. 本発明の実施例2の地盤の液状化対策構造の縦断面図である。It is a longitudinal cross-sectional view of the ground liquefaction countermeasure structure of Example 2 of the present invention. 実施例2の地盤の液状化対策構造の平面図である。It is a top view of the ground liquefaction countermeasure structure of Example 2. 実施例2の変形例の地盤の液状化対策構造の平面図である。It is a top view of the ground liquefaction countermeasure structure of the modification of Example 2. 特許文献1に記載された第一の液状化対策構造を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the 1st liquefaction countermeasure structure described in patent document 1. FIG. 特許文献2に記載された第一の液状化対策構造を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the 1st liquefaction countermeasure structure described in patent document 2. FIG. (a)は、構造物慣性力が構造物直下地盤へ伝達されるメカニズムを模式的に示す図であり、(b)は、ロッキング振動による地盤に作用する外力が、地盤の液状化抑制に対してマイナスの作用をすることを模式的に示す図である。(A) is a figure which shows typically the mechanism in which a structure inertia force is transmitted to a structure direct foundation | ground board, (b) is the external force which acts on the ground by rocking vibration with respect to the liquefaction suppression of a ground. It is a figure which shows typically having a negative effect | action. 特許文献3に記載された第二の液状化対策構造を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the 2nd liquefaction countermeasure structure described in patent document 3. FIG. 第二の液状化対策構造が、構造物慣性力を外側地中壁に伝達する面積が小さいため、応力集中するメカニズムを模式的に示す縦断面図である。The second liquefaction countermeasure structure is a longitudinal sectional view schematically showing a mechanism of stress concentration because the area for transmitting the structure inertia force to the outer underground wall is small.

液状化を防止する方法の一つとして、地盤の有効応力を増大させる方法がある。
直接基礎で支持した構造物がある場合、その直下では有効応力が増大しているので、液状化が起こりにくくなることが考えられる。しかし、何の対策も施していない地盤に構造物を支持させた場合、地震時に周辺地盤が液状化すると、構造物直下の地盤が側方へ孕み出して過度な沈下が生じる。
One method for preventing liquefaction is to increase the effective stress of the ground.
When there is a structure directly supported by a foundation, the effective stress increases immediately below the structure, so liquefaction is unlikely to occur. However, if the structure is supported on the ground where no countermeasures are taken, if the surrounding ground liquefies during an earthquake, the ground directly under the structure swells sideways and excessive subsidence occurs.

そこで、地盤の側方への孕み出しを防止するために、図12に示すように、構造物直下の地盤を囲むように地中壁を設けることによって、構造物の沈下を防ぐとともに、地中壁によるせん断変形抑止と構造物の鉛直荷重による有効応力増大の二つの液状化抑制効果を得ることができるようになる。   Therefore, in order to prevent the ground from squeezing out to the side, as shown in FIG. 12, by providing an underground wall so as to surround the ground directly under the structure, the structure can be prevented from sinking, It is possible to obtain two liquefaction suppression effects, namely, shear deformation suppression by walls and increase of effective stress due to vertical load on the structure.

ところが、地盤に構造物の鉛直荷重を掛けると、有効応力が増大する一方で、地震時に発生する構造物慣性力による水平力が地盤へと伝わってしまう。
これによって、地中壁で囲まれた地盤のせん断応力が増大し、液状化抑制効果が十分に得られない可能性が生じる。
However, when a vertical load of the structure is applied to the ground, the effective stress increases, but a horizontal force due to the inertial force of the structure generated during the earthquake is transmitted to the ground.
As a result, the shear stress of the ground surrounded by the underground wall increases, and there is a possibility that the effect of suppressing liquefaction cannot be obtained sufficiently.

よって、構造物慣性力を何らかの方法で地盤に伝えないようにする工夫が必要となる。そこで、構造物慣性力を根入れ部を介して地中壁側へ伝達させることが考えられるが、根入れが浅い場合など、構造物と地中壁が接する面積が小さい場合には、地中壁に作用する力が地中壁上部に集中し、地中壁が損傷する可能性がある(図15参照)。   Therefore, it is necessary to devise a way to prevent the inertia of the structure from being transmitted to the ground in some way. Therefore, it is conceivable to transmit the inertial force of the structure to the underground wall side through the pierced part.However, if the area where the structure is in contact with the underground wall is small, such as when the piercing is shallow, The force acting on the wall is concentrated on the upper part of the underground wall, and the underground wall may be damaged (see FIG. 15).

本発明の地盤の液状化対策構造は、地中壁上部への応力集中を抑制する機能をも有するものである。
そこで、本発明による液状化対策構造の実施例について、詳しく説明する。
The ground liquefaction countermeasure structure of the present invention also has a function of suppressing stress concentration on the upper part of the underground wall.
An embodiment of the liquefaction countermeasure structure according to the present invention will be described in detail.

先ず、実施例1について、図1乃至図3を参照して詳しく説明する。
前提として、構造物2が載荷され構造物の鉛直荷重が作用する形式の基礎5は、地盤の下方から非液状化地盤4とその上に積層された液状化の恐れがある地盤3とから構成されている。
そして、この構造物2はこの液状化の恐れがある地盤3に直接支持されるのであり、外側地中壁6と構造物2が存在しない条件下で地震による水平荷重を受けたときに、地盤に液状化現象が発生するものである。
First, the first embodiment will be described in detail with reference to FIGS. 1 to 3.
As a premise, the foundation 5 of the type on which the structure 2 is loaded and the vertical load of the structure acts is composed of a non-liquefied ground 4 from below the ground and a ground 3 that may be liquefied stacked on the foundation. Has been.
The structure 2 is directly supported by the ground 3 which may be liquefied. When the structure 2 receives a horizontal load due to an earthquake under the condition that the outer underground wall 6 and the structure 2 do not exist, Liquefaction phenomenon occurs.

この実施例の液状化対策構造1は、液状化の恐れがある地盤3に構造物の鉛直荷重が作用する形式の基礎5に支承された構造物2と構造物直下地盤31を囲む外側地中壁6とを備えている。   The liquefaction countermeasure structure 1 of this embodiment is an outer ground that surrounds the structure 2 supported by the foundation 5 and the structure direct ground board 31 in which the vertical load of the structure acts on the ground 3 that may be liquefied. And a wall 6.

本発明は、構造物2と、外側地中壁6と、構造物2に接続した内側地中壁7を組み合わせたことを特徴とした液状化対策構造である。外側地中壁6は、構造物2から平面的にやや距離を置いて配置されており、通常難透水性の連続壁であり、地中壁6の下端部は、液状化の恐れがある地盤3よりも下側の非液状化層4に根入れされている。   The present invention is a liquefaction countermeasure structure characterized by combining a structure 2, an outer underground wall 6, and an inner underground wall 7 connected to the structure 2. The outer underground wall 6 is disposed at a slight distance from the structure 2 in a plan view, and is usually a continuous wall having poor permeability, and the lower end of the underground wall 6 is a ground that may be liquefied. 3 is embedded in the non-liquefied layer 4 below 3.

外側地中壁6は、セメント系の地盤改良体、鉄筋コンクリート連壁、鋼矢板、土とセメントスラリーを原位置で混合・攪拌して造成した壁体と鋼材の合成構造であるSMW等で形成することができる。   The outer underground wall 6 is formed of cement-based ground improvement body, reinforced concrete connection wall, steel sheet pile, SMW which is a composite structure of a wall body and steel material formed by mixing and stirring soil and cement slurry in situ. be able to.

内側地中壁7は、構造物2の外周壁下端部あるいは外周壁近傍の基礎下面に取付けられて構造物2と一体化され、外側地中壁6とは適宜間隔をもって配置されている。
この内側地中壁7は、鉄筋コンクリート連壁・鋼矢板・H鋼などで連続して形成することができる。
The inner underground wall 7 is attached to the lower end of the outer peripheral wall of the structure 2 or the lower surface of the foundation in the vicinity of the outer peripheral wall, and is integrated with the structure 2.
The inner underground wall 7 can be continuously formed of a reinforced concrete continuous wall, a steel sheet pile, H steel, or the like.

また、内側地中壁7は非液状化地盤4まで到達させる必要はなく、構造物からの水平荷重が構造物直下地盤31を囲む外側地中壁6へ十分に伝わる程度の深さ方向長さを有していれば良い。   Further, the inner underground wall 7 does not need to reach the non-liquefied ground 4, and the length in the depth direction is such that a horizontal load from the structure is sufficiently transmitted to the outer underground wall 6 surrounding the structure direct foundation 31. As long as it has.

内側地中壁7と外側地中壁6との間隔は、地震時に発生した構造物慣性力が、構造物2に一体化された内側地中壁7を介して外側地中壁6へと伝えることができる程度の距離に設定されている。このため、地中壁6、7間には地盤が挟まれているものの、厚さが適切な範囲に設定されているので、構造物慣性力の伝達に悪影響を及ぼすことはなく、その影響は無視できる程度である。   The distance between the inner underground wall 7 and the outer underground wall 6 is such that the structure inertia force generated during the earthquake is transmitted to the outer underground wall 6 through the inner underground wall 7 integrated with the structure 2. It is set to a distance that can be. For this reason, although the ground is sandwiched between the underground walls 6 and 7, since the thickness is set to an appropriate range, the transmission of the structure inertia force is not adversely affected, It can be ignored.

地震時に発生する構造物慣性力による水平力は、内側地中壁7を介して外側地中壁6へと伝えることができるので、構造物2直下の地盤31自体へ作用する構造物慣性力による水平外力が減少する。
これによって、地盤3のせん断応力が低減することによって液状化抑制効果が得られるものである
Since the horizontal force due to the structure inertia force generated at the time of the earthquake can be transmitted to the outer underground wall 6 via the inner underground wall 7, it is caused by the structure inertia force acting on the ground 31 itself directly under the structure 2. Horizontal external force decreases.
Thereby, the liquefaction suppression effect is obtained by reducing the shear stress of the ground 3.

一方、構造物2に接続した内側地中壁7と構造物直下地盤を囲む外側地中壁6の上下方向の縁が切られているため、構造物2は下方への移動を許容され、構造物の鉛直荷重は、外側地中壁6へ流れることなく構造物の鉛直荷重全体が上記した構造物直下地盤31に作用して、地盤の有効応力を確実に増大する。   On the other hand, since the upper and lower edges of the inner underground wall 7 connected to the structure 2 and the outer underground wall 6 surrounding the structure direct ground board are cut, the structure 2 is allowed to move downward, and the structure The vertical load of the object does not flow to the outer underground wall 6, but the entire vertical load of the structure acts on the above-described direct foundation base 31 of the structure, thereby reliably increasing the effective stress of the ground.

これによって、構造物直下地盤31を囲む外側地中壁6によるせん断変形抑止と、構造物の鉛直荷重による有効応力増大と、構造物に接続した内側地中壁7による地盤への外力の低減の効果が得られ、図12に示される従来の地中壁112のみの液状化対策構造よりも優れた液状化抑制効果を発揮することができる。
その結果、従来よりも対向する地中壁間隔が広い場合においても、液状化を防止することが可能となる。
As a result, the shear deformation is suppressed by the outer underground wall 6 that surrounds the structure direct foundation board 31, the effective stress is increased by the vertical load of the structure, and the external force to the ground is reduced by the inner underground wall 7 connected to the structure. An effect is acquired and the liquefaction suppression effect superior to the conventional liquefaction countermeasure structure of only the underground wall 112 shown in FIG. 12 can be exhibited.
As a result, liquefaction can be prevented even when the distance between the underground walls facing each other is wider than in the past.

また、本実施例では、図2に示されるように、構造物2に一体化して接続した内側地中壁7の見付け面積分の範囲で、構造物直下地盤を囲む外側地中壁6と力のやり取りをする。
したがって、図12に示されるような、構造物2の根入れ部だけで力のやり取りをする液状化対策構造よりも広い面積で力のやり取りをすることになり、外側地中壁6への応力集中を防ぐことができる。
よって、構造物慣性力を内側地中壁7を介して外側地中壁6へ伝達させたことによる地中壁6の損傷の可能性を大きく軽減することができる。
Further, in this embodiment, as shown in FIG. 2, the outer underground wall 6 and the force that surround the structure base ground board are within the range of the found area of the inner underground wall 7 integrated and connected to the structure 2. Exchange.
Accordingly, as shown in FIG. 12, the force is exchanged over a larger area than the liquefaction countermeasure structure that exchanges force only at the root portion of the structure 2, and the stress on the outer underground wall 6 is changed. Concentration can be prevented.
Therefore, the possibility of damage to the underground wall 6 caused by transmitting the structure inertia force to the outer underground wall 6 via the inner underground wall 7 can be greatly reduced.

さらに、本実施例は図3に示されるように、地震時に生じる構造物2のロッキング振動に対しても、構造物2に接続した内側地中壁7と地盤の間の摩擦によって振動を抑制することが可能である。   Further, as shown in FIG. 3, the present embodiment suppresses the vibration caused by the friction between the inner underground wall 7 connected to the structure 2 and the ground even with respect to the rocking vibration of the structure 2 generated during an earthquake. It is possible.

地盤に構造物の鉛直荷重が作用する構造物の基礎形式としては、本実施例ではべた基礎(直接基礎)を採用している。
そして、内側地中壁7は、平面視して必ずしも地盤を囲むように連続している必要はない。それ故、この実施例の変形例として、図7に示されるような平面視して断続して地盤を囲むように設けられている形態、すなわち、平面的に見て分割された形態とすることも可能である。
In this embodiment, a solid foundation (direct foundation) is adopted as the basic form of the structure in which the vertical load of the structure acts on the ground.
The inner underground wall 7 does not necessarily have to be continuous so as to surround the ground in plan view. Therefore, as a modification of this embodiment, as shown in FIG. 7, it is provided in a form that is provided so as to surround the ground intermittently in plan view, that is, in a form divided in plan view. Is also possible.

以上の本発明の作用効果を実証するため、地震時における過剰間隙水圧の上昇・消散をシミュレートできる有効応力解析を実施して、格子状地中壁と構造物の鉛直荷重による液状化抑制効果を検討した。
この解析モデルは、外側地中壁6が地表から10mの深さまで構築され、壁厚0.8m、対向する壁の間隔15mとしてある。
In order to demonstrate the effects of the present invention described above, effective stress analysis that can simulate the increase / dissipation of excess pore water pressure during an earthquake was conducted, and the effect of suppressing liquefaction caused by the vertical load on the grid underground wall and structure It was investigated.
In this analysis model, the outer underground wall 6 is constructed to a depth of 10 m from the ground surface, the wall thickness is 0.8 m, and the distance between the opposing walls is 15 m.

解析ケースは、構造物の鉛直荷重なしで地中壁のみで対策した場合、構造物の鉛直荷重60kN/m2を作用させた場合、構造物の鉛直荷重60kN/m2を作用させるのに加えて構造物に接続した内側地中壁7を設けた場合の3ケースである。 In the analysis case, when the countermeasure is applied only with the underground wall without the vertical load of the structure, when the vertical load of the structure is 60 kN / m 2 , the vertical load of the structure is 60 kN / m 2. 3 cases in which the inner underground wall 7 connected to the structure is provided.

図4に過剰間隙水圧比のコンターを、図5に深度2.5mにおける過剰間隙水圧比の時刻歴を示す。構造物の鉛直荷重が作用しない場合(A)よりも構造物の鉛直荷重が作用する場合(B)の方が、過剰間隙水圧比の上昇量が小さくなっていることが判る。
これは、構造物の鉛直荷重が外側地中壁6で囲まれた地盤に作用することで、地盤の有効応力が増加し、地盤の液状化強度が増加したためと考えられる。
FIG. 4 shows a contour of excess pore water pressure ratio, and FIG. 5 shows a time history of excess pore water pressure ratio at a depth of 2.5 m. It can be seen that the amount of increase in the excess pore water pressure ratio is smaller when the vertical load of the structure is applied (B) than when the vertical load of the structure is not applied (A).
This is thought to be because the vertical load of the structure acts on the ground surrounded by the outer underground wall 6 to increase the effective stress of the ground and increase the liquefaction strength of the ground.

さらに、構造物に接続した内側地中壁7を設けた場合(C)では、過剰間隙水圧比の上昇量がより小さくなっており、液状化抑制効果が高まっていることが確認できる。構造物2に接続した内側地中壁7がない場合では、地震動によって発生した構造物の慣性力が外側地中壁6で囲まれた地盤31に外力として作用して、液状化を助長していたが、構造物に接続した壁を設けた場合では、構造物の慣性力が構造物に接続した内側地中壁7を介して外側地中壁6へと流れるため、外側地中壁6に囲まれた地盤の外力が減少し、液状化抑制効果が高まったことが認められる。   Furthermore, in the case where the inner underground wall 7 connected to the structure is provided (C), it can be confirmed that the amount of increase in the excess pore water pressure ratio is smaller and the effect of suppressing liquefaction is increased. When there is no inner underground wall 7 connected to the structure 2, the inertial force of the structure generated by the earthquake motion acts as an external force on the ground 31 surrounded by the outer underground wall 6 to promote liquefaction. However, when a wall connected to the structure is provided, the inertial force of the structure flows to the outer underground wall 6 via the inner underground wall 7 connected to the structure. It can be seen that the external force of the enclosed ground decreased and the liquefaction suppression effect increased.

図5の深度2.5mにおける地中壁で囲まれた地盤の過剰間隙水圧比の時刻歴について検討する。
これによると、構造物の鉛直荷重を作用させない場合(A)は、地震発生後略15秒後に略液状化し、120秒経過しても液状化現象は消散しない。
構造物の鉛直荷重を作用させた場合(B)は、略20秒後に液状化するものの略40秒経過すると液状化現象の消散が始まり、略120秒後に液状化現象が略完全に消散する。
The time history of the excess pore water pressure ratio of the ground surrounded by the underground wall at a depth of 2.5 m in FIG. 5 will be examined.
According to this, when the vertical load of the structure is not applied (A), the liquid is substantially liquefied approximately 15 seconds after the occurrence of the earthquake, and the liquefaction phenomenon is not dissipated even after 120 seconds.
When the vertical load of the structure is applied (B), liquefaction begins to dissipate after approximately 40 seconds although liquefaction occurs approximately 20 seconds later, and the liquefaction phenomenon dissipates substantially completely after approximately 120 seconds.

これに対して、構造物の鉛直荷重を作用させることに加えて構造物に接続した内側地中壁7を設けた場合(C)では、過剰間隙水圧比の上昇量がより有意に小さくなっており、液状化が発生することなく、地盤の過剰間隙水圧比は略120秒経過後に地震動を受ける前の状態に復することからみて、液状化抑制効果が高まっていることが確認できる。   On the other hand, when the inner underground wall 7 connected to the structure is provided in addition to applying the vertical load of the structure (C), the increase amount of the excess pore water pressure ratio becomes significantly smaller. Thus, it can be confirmed that the excessive liquefaction pressure ratio of the ground is restored to the state before the earthquake motion after about 120 seconds without liquefaction, and the effect of suppressing liquefaction is increased.

構造物に接続した内側地中壁7がない場合(B)では、地震動によって発生した構造物の慣性力が地中壁で囲まれた地盤に外力として作用して、液状化を助長していたが、構造物に接続した内側地中壁7を設けた場合(C)では、構造物の慣性力が構造物に接続した内側地中壁7を介して外側地中壁6へと流れるため、外側地中壁6に囲まれた地盤31の外力が減少し、液状化抑制効果が高まったことが裏付けられる。   In the case where there is no inner underground wall 7 connected to the structure (B), the inertial force of the structure generated by the earthquake motion acts as an external force on the ground surrounded by the underground wall to promote liquefaction. However, in the case where the inner underground wall 7 connected to the structure is provided (C), the inertia force of the structure flows to the outer underground wall 6 through the inner underground wall 7 connected to the structure. It is supported that the external force of the ground 31 surrounded by the outer underground wall 6 is reduced and the effect of suppressing liquefaction is increased.

実施例2について、図8乃至図10を参照して説明する。
この液状化対策構造1は、図8、図9に示されるように、セメント系の地盤改良体からなる外側地中壁6の外面上部の全部が、セメント系の地盤改良体からなる補強杭61によって補強されている。
A second embodiment will be described with reference to FIGS.
As shown in FIGS. 8 and 9, the liquefaction countermeasure structure 1 includes a reinforcing pile 61 in which the entire upper surface of the outer ground wall 6 made of a cement-based ground improvement body is made of a cement-based ground improvement body. It is reinforced by.

外側地中壁6の上部は、地震時において内側地中壁7から水平方向の構造物慣性力を受けるから、内側地中壁7の打設深さが浅くなればなるほど損傷する可能性が高くなる。   Since the upper part of the outer underground wall 6 receives horizontal structure inertia force from the inner underground wall 7 in the event of an earthquake, the possibility of damage increases as the depth of the inner underground wall 7 is reduced. Become.

そしてこの実施例では、内側地中壁7と略同じ深さの補強杭61が構築されている。
これにより、外側地中壁6の剛性が高まるので、構造物慣性力を内側地中壁7から外側地中壁6へより伝達し易くなるとともに、外側地中壁6の応力をさらに緩和することができて、外側地中壁6の耐震性が高まることから、地震による水平振動に耐えることができる。
And in this Example, the reinforcement pile 61 of the substantially same depth as the inner underground wall 7 is constructed | assembled.
Thereby, since the rigidity of the outer underground wall 6 increases, it becomes easier to transmit the structure inertia force from the inner underground wall 7 to the outer underground wall 6 and further relieve the stress of the outer underground wall 6. Since the seismic resistance of the outer underground wall 6 is improved, it can withstand horizontal vibration caused by an earthquake.

上記した実施例2は、補強杭61を一重に配設しているが、これを二重・三重にしてさらに厚くすることもできる。
図10に示されたものは、実施例2の変形例であり、セメント系の地盤改良体からなる外側地中壁6の外面上部が、断続して、すなわち、水平方向に間隔を置いてセメント系の地盤改良体からなる補強杭61によって、部分的に補強されている。
In the second embodiment described above, the reinforcing piles 61 are arranged in a single layer. However, the reinforcing piles 61 can be made thicker by double or triple.
What is shown in FIG. 10 is a modification of the second embodiment, in which the upper outer surface of the outer underground wall 6 made of a cement-based ground improvement body is intermittent, that is, spaced horizontally. A reinforcement pile 61 made of a ground improvement body of the system is partially reinforced.

1 液状化対策構造
2 構造物
3 液状化の恐れがある地盤
31 構造物直下の地盤
4 非液状化地盤
5 基礎
6 外側地中壁
61 補強杭
7 内側地中壁
DESCRIPTION OF SYMBOLS 1 Liquefaction countermeasure structure 2 Structure 3 Ground which may be liquefied 31 Ground directly under structure 4 Non-liquefaction ground 5 Foundation 6 Outer underground wall 61 Reinforcement pile 7 Inner underground wall

Claims (3)

地盤上面に構造物の鉛直荷重が作用する形式の基礎に支承された構造物と、該構造物外周から僅かに外方へ離間して構造物直下地盤を囲んで非液状化地盤まで延伸された外側地中壁と、前記構造物の下端縁近傍に接続された内側地中壁とを備えた地盤の液状化対策構造であって、
前記内側地中壁と前記外側地中壁とは上下方向の縁が切られていて、
地震による水平方向の構造物慣性力は、前記内側地中壁を介して前記外側地中壁へと伝達され、前記構造物直下地盤へ作用する構造物慣性力による外力を減少させ、地盤のせん断応力を低減するとともに、地震による構造物のロッキング振動は、前記内側地中壁と地盤の間の摩擦によって抑制され、
構造物の鉛直荷重全体を前記構造物直下地盤に作用させ、地盤の有効応力を増大する、
ことを特徴とする地盤の液状化対策構造。
A structure supported by a foundation of a type in which a vertical load of the structure acts on the upper surface of the ground, and slightly extended outward from the outer periphery of the structure to extend directly to the non-liquefied ground surrounding the foundation ground A ground liquefaction countermeasure structure comprising an outer underground wall and an inner underground wall connected in the vicinity of the lower edge of the structure,
The inner underground wall and the outer underground wall have a vertical edge cut,
The horizontal structure inertia force due to the earthquake is transmitted to the outer underground wall through the inner underground wall, reducing the external force due to the structure inertia force acting on the structure directly under the ground, and reducing the shear of the ground. While reducing the stress, rocking vibration of the structure due to the earthquake is suppressed by the friction between the inner underground wall and the ground,
The entire vertical load of the structure is applied to the foundation ground board, increasing the effective stress of the ground.
Ground liquefaction countermeasure structure characterized by that.
セメント系の地盤改良体からなる前記外側地中壁の外面上部の少なくとも一部は、セメント系の地盤改良体によって補強されていることを特徴とする請求項1に記載された地盤の液状化対策構造。   The ground liquefaction countermeasure according to claim 1, wherein at least a part of an outer surface upper portion of the outer ground wall made of a cement-based ground improvement body is reinforced by a cement-based ground improvement body. Construction. 前記内側地中壁は、平面視連続して、あるいは、断続して地盤を囲むように設けられていることを特徴とする請求項1乃至請求項2のいずれかに記載された液状化対策構造。   The liquefaction countermeasure structure according to any one of claims 1 to 2, wherein the inner underground wall is provided so as to surround the ground continuously or intermittently in plan view. .
JP2013093219A 2013-04-26 2013-04-26 Structure to prevent liquefaction of ground due to structural load Expired - Fee Related JP5997093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013093219A JP5997093B2 (en) 2013-04-26 2013-04-26 Structure to prevent liquefaction of ground due to structural load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013093219A JP5997093B2 (en) 2013-04-26 2013-04-26 Structure to prevent liquefaction of ground due to structural load

Publications (2)

Publication Number Publication Date
JP2014214509A JP2014214509A (en) 2014-11-17
JP5997093B2 true JP5997093B2 (en) 2016-09-28

Family

ID=51940545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013093219A Expired - Fee Related JP5997093B2 (en) 2013-04-26 2013-04-26 Structure to prevent liquefaction of ground due to structural load

Country Status (1)

Country Link
JP (1) JP5997093B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6590767B2 (en) * 2016-07-21 2019-10-16 大日本土木株式会社 Liquefaction countermeasure method
GB201617808D0 (en) * 2016-10-21 2016-12-07 Imperial Innovations Limited And Ecole Centrale De Marseille And Universite D'aix Marseille And Cent Seismic defence structures

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543268B2 (en) * 2000-08-01 2010-09-15 独立行政法人建築研究所 Liquefaction prevention structure
JP2005105602A (en) * 2003-09-29 2005-04-21 Shimizu Corp Counter measure structure for liquefaction
JP5071930B2 (en) * 2007-06-29 2012-11-14 株式会社竹中工務店 Ground liquefaction prevention method and liquefaction resistant ground and building base structure
JP5364403B2 (en) * 2009-03-13 2013-12-11 株式会社竹中工務店 Ground improvement structure
JP5697854B2 (en) * 2009-05-26 2015-04-08 大成建設株式会社 Liquefaction countermeasure structure
JP2011047208A (en) * 2009-08-27 2011-03-10 Ohbayashi Corp Base isolation structure
JP4742331B2 (en) * 2009-11-17 2011-08-10 独立行政法人港湾空港技術研究所 Liquefaction countermeasure structure
JP5124697B1 (en) * 2012-06-05 2013-01-23 株式会社竹中土木 Liquefaction prevention structure and liquefaction prevention method

Also Published As

Publication number Publication date
JP2014214509A (en) 2014-11-17

Similar Documents

Publication Publication Date Title
JP5157710B2 (en) Embankment reinforcement structure
JP5124697B1 (en) Liquefaction prevention structure and liquefaction prevention method
JP5364403B2 (en) Ground improvement structure
JP2012132169A (en) Reinforcing structure of banking
JP5782734B2 (en) Wall sheet with liquefaction measures and steel sheet pile with liquefaction suppression function
JP5997093B2 (en) Structure to prevent liquefaction of ground due to structural load
JP5382900B2 (en) How to prevent underground structures from floating due to liquefaction
JP2009249999A (en) Construction method for suppressing deformation of filling
JP6060855B2 (en) Embankment
JP6007092B2 (en) Ground liquefaction countermeasure structure using structural load
JP6548455B2 (en) Water stop structure of continuous wall
JP6529317B2 (en) Liquefaction countermeasure structure
JP2016023451A (en) Foundation structure of structure
JP6881916B2 (en) How to install the structure
JP5421191B2 (en) Design method for embankment reinforcement structure
JP6287358B2 (en) Embankment reinforcement structure
JP5975892B2 (en) Ground liquefaction countermeasure structure by structure load and seismic isolation device
JP6292028B2 (en) Embankment reinforcement structure
JP6017302B2 (en) Construction and its construction method
JP6347120B2 (en) Embankment reinforcement structure
JP2725516B2 (en) Liquefaction countermeasures for buried structures
JPH0645943B2 (en) Liquefaction countermeasure construction method for buried structures
JP5835110B2 (en) Quay-quake-proof structure and quake-quake-proof reinforcement method
JP2014224355A (en) Embankment reinforcement structure
KR101597648B1 (en) Confined pressurizing reinforcement grid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151110

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160825

R150 Certificate of patent or registration of utility model

Ref document number: 5997093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees