JP5729754B2 - Seismic reinforcement structure for embankment and design method of underground wall used for it - Google Patents
Seismic reinforcement structure for embankment and design method of underground wall used for it Download PDFInfo
- Publication number
- JP5729754B2 JP5729754B2 JP2011016974A JP2011016974A JP5729754B2 JP 5729754 B2 JP5729754 B2 JP 5729754B2 JP 2011016974 A JP2011016974 A JP 2011016974A JP 2011016974 A JP2011016974 A JP 2011016974A JP 5729754 B2 JP5729754 B2 JP 5729754B2
- Authority
- JP
- Japan
- Prior art keywords
- embankment
- ground
- reinforcement structure
- pair
- underground
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
- Foundations (AREA)
Description
本発明は、主として液状化地盤に構築された盛土の耐震補強構造及びその設計方法に関する。 The present invention mainly relates to a seismic reinforcement structure for embankments constructed on liquefied ground and a design method thereof.
地盤の液状化は、地震時水平力が地盤に作用したとき、該地盤のせん断変形によって砂粒子間の間隙水圧が上昇し、その間隙水圧上昇に伴って有効応力がゼロになる結果、砂粒子間での応力伝達ができなくなって流動性が高くなる現象であり、緩い飽和砂質地盤で起こりやすい(以下、液状化が発生しやすい地盤を液状化地盤と言う)。 The ground liquefaction is caused by the fact that when horizontal force is applied to the ground during an earthquake, the pore water pressure between the sand particles increases due to the shear deformation of the ground, and the effective stress becomes zero as the pore water pressure increases. This is a phenomenon in which fluid transmission becomes impossible due to the inability to transfer stress between the two, and is likely to occur in loose saturated sandy ground (hereinafter, liquefied ground is referred to as liquefied ground).
液状化が進行すると、地盤が鉛直支持力を失って建物の倒壊を招くほか、地盤の側方流動によって杭が損壊するなどの被害が生じ、我が国では、古くは新潟地震から液状化の被害が明確に認識されるようになった。 As liquefaction progresses, the ground loses its vertical bearing capacity, leading to collapse of the building, and damage to the piles due to lateral flow of the ground occurs. It has come to be clearly recognized.
このような液状化被害に対し、従来からさまざまな対策が研究開発されてきたが、液状化地盤上に盛土が構築されている場合においては、盛土の下方領域を挟み込むようにその両脇の法尻から鋼矢板(シートパイル)を鉛直下方に打ち込むとともに、その頭部同士をタイロッドなどの引張材で相互に連結する方法が知られている。 Various countermeasures have been researched and developed for such liquefaction damage. However, when embankment is constructed on liquefied ground, the method on both sides of the embankment is designed to sandwich the lower area of the embankment. A method is known in which steel sheet piles (sheet piles) are driven vertically downward from the bottom and their heads are connected to each other with a tensile material such as a tie rod.
かかる対策工によれば、盛土下方に拡がる地盤のせん断変形が鋼矢板によって抑制されるため、地震の際に地盤の液状化が生じにくくなる。 According to this countermeasure work, since the shear deformation of the ground spreading below the embankment is suppressed by the steel sheet pile, liquefaction of the ground is less likely to occur during an earthquake.
しかしながら、現状の設計で想定されている規模を大幅に上回る地震が起きた場合や盛土規模が非常に大きい場合、上述の対策工では必ずしも十分とは言えない場合が生じてくることが本出願人らの研究によって明らかになった。 However, if the earthquake significantly exceeds the scale assumed in the current design or the embankment scale is very large, the above countermeasure work may not always be sufficient. These studies revealed this.
すなわち、液状化が生じた場合、盛土の沈下とともに盛土の底面幅(法尻間の水平距離)が拡がり、さらに、それに伴って盛土の天端幅(法肩間の水平距離)も拡がる現象が起こり、盛土天端に引張応力が発生して、盛土堤体の材軸方向に沿った縦割れが生じる原因となる。 In other words, when liquefaction occurs, the bottom width of the embankment (horizontal distance between the buttocks) increases with the settlement of the embankment, and the top edge width (horizontal distance between the shoulders) of the embankment increases accordingly. It occurs, and tensile stress is generated at the top of the embankment, causing vertical cracks along the material axis direction of the embankment embankment.
かかる盛土天端での伸張は、盛土の上に鉄道用の軌道が敷設されている場合、盛土が崩壊しないまでも、盛土天端の縦割れによって軌道に強制変形が加わり、鉄道の走行安全性に支障が生じるという問題を生じていた。 The extension at the top of the embankment means that if a railroad track is laid on the embankment, even if the embankment does not collapse, forced deformation will be applied to the track due to vertical cracks at the top of the embankment, and railway running safety The problem of causing trouble was caused.
このような液状化における盛土天端の縦割れは、盛土の上に道路が敷設されている場合においても、舗装面に縦割れが生じて自動車を安全に走行させることができないという事態を招く。 Such vertical cracking at the top of the embankment in liquefaction leads to a situation in which even when a road is laid on the embankment, vertical cracking occurs on the pavement surface and the vehicle cannot be driven safely.
本発明は、上述した事情を考慮してなされたもので、盛土天端の伸張及びそれに伴う縦割れを合理的な手法で防止することが可能な盛土の耐震補強構造及びそれに用いる地中壁の設計方法を提供することを目的とする。 The present invention has been made in consideration of the above-described circumstances, and is a seismic reinforcement structure for embankments capable of preventing the extension of the embankment top and accompanying vertical cracks by a rational method, and the underground wall used therefor. The purpose is to provide a design method.
上記目的を達成するため、本発明に係る盛土の耐震補強構造は請求項1に記載したように、一対の地中壁を盛土の各法尻近傍から下方に向けてそれぞれ延びるようにかつ前記盛土の下方に拡がる地盤が挟み込まれるように該地盤に対向配置するとともに、前記一対の地中壁の上縁を引張材を介して相互に連結してなる盛土の耐震補強構造において、
前記一対の地中壁をそれらの下縁における相互の離間距離が上縁における相互の離間距離よりも小さくなるように鉛直面に対してそれぞれ傾斜配置してなり、該一対の地中壁は、前記引張材を介した水平成分の支持力によって、前記一対の地中壁に挟まれた領域又はその背面領域において前記地盤のせん断変形を水平方向に沿って拘束しつつ、鉛直上向き成分の支持力によって、前記盛土のうち、堤体中央部を挟む各堤体側方部の地盤の緩みによる鉛直荷重の増加分を支持するようになっているものである。
In order to achieve the above object, the earthquake-proof reinforcement structure for embankment according to the present invention has a structure in which a pair of underground walls extend downward from the vicinity of each bottom of the embankment, respectively. In the seismic reinforcement structure of the embankment formed by connecting the upper edges of the pair of underground walls with each other via a tensile material, so as to be opposed to the ground so as to sandwich the ground extending below the
The pair of underground walls are respectively inclined with respect to a vertical plane so that the mutual separation distance at the lower edge is smaller than the mutual separation distance at the upper edge , and the pair of underground walls are Supporting force of vertical upward component while restraining shear deformation of the ground along the horizontal direction in the region sandwiched between the pair of underground walls or the back region thereof by the supporting force of the horizontal component through the tensile material Thus, of the embankment, an increase in vertical load due to the looseness of the ground of each levee body sandwiching the central part of the dam body is supported .
また、本発明に係る盛土の耐震補強構造は、前記地盤を液状化地盤としたものである。 Moreover, the earthquake-proof reinforcement structure of the embankment which concerns on this invention uses the said ground as liquefied ground.
また、本発明に係る盛土の耐震補強構造は、鉛直面に対する前記地中壁の配置角を20゜以上50゜以下としたものである。 Further, the embankment seismic reinforcement structure according to the present invention has an arrangement angle of the underground wall with respect to a vertical plane of 20 ° to 50 °.
また、本発明に係る盛土の耐震補強構造は、前記地中壁の下縁を前記地盤の下方に位置する支持基盤に非貫入としたものである。 The embankment seismic reinforcement structure according to the present invention is such that the lower edge of the underground wall is not penetrated into a support base located below the ground.
また、本発明に係る盛土の耐震補強構造は、前記盛土を、天端に鉄道軌道又は道路が敷設されてなる盛土としたものである。 Moreover, the earthquake-proof reinforcement structure of the embankment which concerns on this invention makes the said embankment into the embankment formed by laying a railroad track or a road at the top.
また、本発明に係る盛土の耐震補強構造に用いる地中壁の設計方法は請求項6に記載したように、一対の地中壁を盛土の各法尻近傍から下方に向けてそれぞれ延びるようにかつ前記盛土の下方に拡がる地盤が挟み込まれるように該地盤に対向配置するとともに、前記一対の地中壁をそれらの下縁における相互の離間距離が上縁における相互の離間距離よりも小さくなるように鉛直面に対してそれぞれ傾斜配置し、前記一対の地中壁の上縁を引張材を介して相互に連結してなる盛土の耐震補強構造であって、該一対の地中壁が、前記引張材を介した水平成分の支持力によって、前記一対の地中壁に挟まれた領域又はその背面領域において前記地盤のせん断変形を水平方向に沿って拘束しつつ、鉛直上向き成分の支持力によって、前記盛土のうち、堤体中央部を挟む各堤体側方部の地盤の緩みによる鉛直荷重の増加分を支持するようになっている盛土の耐震補強構造の振動解析用2次元FEMモデルを作成し、
前記振動解析用2次元FEMモデルを用いて所定の入力地震波に対する前記盛土の変形を求めるとともに該盛土の変形からその天端における伸張量を求める演算を、鉛直面に対する前記地中壁の配置角をパラメータとして行い、
前記パラメータ解析の結果から前記盛土天端の伸張量が最小になる前記地中壁の配置角を求めるものである。
Moreover, the design method of the underground wall used for the earthquake-proof reinforcement structure of the embankment according to the present invention is such that the pair of underground walls extend downward from the vicinity of each method bottom of the embankment, respectively. In addition, the ground extending below the embankment is disposed so as to be sandwiched between the grounds, and the pair of underground walls are separated from each other at a lower edge thereof so that a distance between them is smaller than a distance between the upper edges. Each of the pair of underground walls is connected to each other via a tension member , and the pair of underground walls are By the supporting force of the vertical component while restraining the shear deformation of the ground along the horizontal direction in the region sandwiched between the pair of underground walls or the back region thereof by the supporting force of the horizontal component via the tensile material , Out of the embankment Create a 2-dimensional FEM model for vibration analysis of earthquake-proof reinforcement structure of embankment adapted to support the increase in vertical load due to soil loosening of the bank side side portion sandwiching the dam central portion,
Using the two-dimensional FEM model for vibration analysis, the calculation of the deformation of the embankment with respect to a predetermined input seismic wave and the calculation of the extension amount at the top of the embankment from the deformation of the embankment are performed. As a parameter,
The arrangement angle of the underground wall that minimizes the extension amount of the embankment top is obtained from the result of the parameter analysis.
鉄道軌道や道路が盛土上に敷設されている場合、鉄道や自動車といった車両の走行安全性の観点で、盛土全体の沈下抑制よりも、縦割れの発生原因となる盛土天端位置での伸張の抑制が重要になることがある。 When railway tracks and roads are laid on the embankment, from the viewpoint of running safety of vehicles such as railways and automobiles, the extension at the top of the embankment that causes vertical cracking is more effective than the settlement of the entire embankment. Suppression can be important.
しかしながら、現状の設計で想定されている地震や通常規模の盛土に対しては、鋼矢板を鉛直下方に向けて打ち込む従来の耐震補強構造で必要十分な対策工が可能になる反面、想定を上回る規模の地震が起きた場合や盛土規模が非常に大きい場合においては、液状化による盛土の沈下をある程度抑制することはできても、縦割れを引き起こす原因となる盛土天端位置での伸張を十分に防ぐことができない場合があることが本出願人らの解析で明らかになった。 However, for earthquakes and normal-scale embankments that are assumed in the current design, the conventional seismic reinforcement structure that drives steel sheet piles vertically downwards enables necessary and sufficient countermeasures, but exceeds the assumptions. When an earthquake of scale occurs or the embankment scale is very large, the embankment at the top of the embankment that causes vertical cracking is sufficiently stretched even though the settlement of the embankment due to liquefaction can be suppressed to some extent. The applicants' analysis revealed that there are cases where it cannot be prevented.
これは、地震規模や盛土規模が小さい場合であれば、従来の耐震補強構造であっても、一対の地中壁がそれらの上縁で互いに連結されているため、盛土底面幅(法尻間の水平距離)の伸張、さらにはそれに伴う盛土天端幅(法肩間の水平距離)の伸張もある程度抑えることができるものの、地震時においては、盛土の堤体中央部よりも法面が形成された堤体側方部でひずみが大きくなるため、地震規模や盛土規模が大きくなると、堤体側方部の直下の地盤に流れる鉛直荷重が大幅に増大する。 If the scale of the earthquake or the embankment is small, even if it is a conventional seismic reinforcement structure, the pair of underground walls are connected to each other at their upper edges. The horizontal slope of the embankment and the accompanying extension of the embankment top width (horizontal distance between the shoulders) can be suppressed to some extent, but in the event of an earthquake, the slope is formed more than the center of the embankment bank. Since the strain increases at the side of the levee body, the vertical load that flows on the ground directly below the side of the dam body increases significantly when the scale of the earthquake or embankment increases.
そのため、鉛直下方に打ち込まれた鋼矢板では、かかる鉛直荷重の増加分を支持することができずに、盛土の法尻近傍で堤体側方部が直下の地盤に沈み込み、これが盛土天端の縦割れを引き起こすと考えられる。 For this reason, the steel sheet pile driven vertically downward cannot support the increase in vertical load, and the side of the dam body sinks into the ground immediately below the embankment of the embankment. It is thought to cause vertical cracking.
換言すれば、従来の耐震補強構造では、地震によって生じる荷重伝達バランスの変化に対応できない場合があることがわかった。 In other words, it has been found that the conventional seismic reinforcement structure may not be able to cope with a change in load transmission balance caused by an earthquake.
本出願人らは、かかる知見を踏まえつつ、研究を重ねることによって上述した発明をなしたものであり、本発明に係る盛土の耐震補強構造においては、一対の地中壁を盛土の各法尻近傍から下方に向けてそれぞれ延びるようにかつ盛土の下方に拡がる地盤が挟み込まれるように該地盤に対向配置するとともに、一対の地中壁の上縁を引張材を介して相互に連結する際、一対の地中壁を、それらの下縁における相互の離間距離が上縁における相互の離間距離よりも小さくなるように、換言すれば逆ハの字状になるように鉛直面に対してそれぞれ傾斜配置する。 The present applicants have made the above-mentioned invention by repeating research based on such knowledge, and in the seismic reinforcement structure for embankment according to the present invention, a pair of underground walls are connected to each bottom of the embankment. When facing the ground so that the ground extending downward from the vicinity and extending below the embankment is sandwiched between the ground, and connecting the upper edges of the pair of underground walls to each other via a tensile material, A pair of underground walls are inclined with respect to the vertical plane so that the distance between them at the lower edge is smaller than the distance between them at the upper edge, in other words, a reverse C shape. Deploy.
このようにすると、各地中壁は、堤体側方部の地盤の緩みによる鉛直荷重の増加分を鉛直上向き成分の支持力で支持するとともに、地震によるせん断変形については、引張材を介した水平成分の支持力によってこれを拘束することとなり、かくして地中壁に挟まれた領域や地中壁の背面側に拡がる領域での地盤の液状化を防止しつつ、堤体側方部の地盤の緩みによる盛土天端位置での伸張、ひいては盛土天端での縦割れを確実に防止することが可能となる。 In this way, each middle wall supports the increase in vertical load due to the loosening of the ground on the side of the levee body with the support force of the vertical upward component, and for shear deformation due to earthquake, the horizontal component via the tensile material This will be restrained by the support force of the ground, thus preventing liquefaction of the ground in the area sandwiched by the underground wall and the area extending to the back side of the underground wall, and by the looseness of the ground on the side of the levee body It is possible to reliably prevent the extension at the top of the embankment and, consequently, the vertical crack at the top of the embankment.
地中壁は、盛土のうち、堤体中央部を挟む各堤体側方部の地盤の緩みによる鉛直荷重の増加分を面的に支持することができるものであれば、その材質や構造あるいは構築方法は任意であり、鋼矢板(シートパイル)、鋼管矢板、プレキャストコンクリート版をはじめ、現場打ちコンクリートやソイルセメントからなる柱列壁で構成することが可能である。 If the underground wall can support the increased vertical load due to the looseness of the ground on the side of each embankment across the center of the embankment, the material, structure or construction of the underground wall The method is arbitrary, and it can be constituted by a columnar wall made of cast-in-place concrete or soil cement, including steel sheet pile (sheet pile), steel pipe sheet pile, precast concrete plate.
盛土が構築された地盤としては、液状化地盤をはじめ、地震に対する支持力が十分でない地盤、例えば軟弱粘土地盤についても対象となり得る。 As the ground on which the embankment is constructed, it can be applied to liquefied ground and ground having insufficient support for earthquakes, for example, soft clay ground.
上述したように、傾斜配置された一対の地中壁は、それらに挟まれた領域やその背面領域において地盤のせん断変形を水平方向に沿って拘束しつつ、直上からの鉛直荷重を支持する必要があるため、鉛直面に対する配置角については、かかる2方向に沿った作用を考慮しながら適宜定めることになるが、例えば以下の演算手順で地中壁の最適な配置角を求めることができる。 As described above, the pair of ground walls arranged in an inclined manner must support the vertical load from directly above while restraining the shear deformation of the ground along the horizontal direction in the region sandwiched between them and the back region. Therefore, the arrangement angle with respect to the vertical plane is appropriately determined in consideration of the action along the two directions. For example, the optimum arrangement angle of the underground wall can be obtained by the following calculation procedure.
まず、上述した盛土の耐震補強構造に対応する振動解析用2次元FEMモデルを作成する。 First, a vibration analysis two-dimensional FEM model corresponding to the above-described embankment seismic reinforcement structure is created.
次に、振動解析用2次元FEMモデルを用いて、所定の入力地震波に対する盛土の変形を求めるとともに、該盛土の変形からその天端における伸張量を求める演算を、鉛直面に対する地中壁の配置角をパラメータとして行う。 Next, using the two-dimensional FEM model for vibration analysis, the deformation of the embankment for a predetermined input seismic wave is obtained, and the operation for obtaining the extension amount at the top edge from the deformation of the embankment is performed by the arrangement of the underground wall with respect to the vertical plane. The corner is used as a parameter.
次に、上述したパラメータ解析の結果から、盛土天端の伸張量が最小になる地中壁の配置角を求める。 Next, from the result of the parameter analysis described above, an arrangement angle of the underground wall that minimizes the extension amount of the embankment top is obtained.
ここで、本出願人らが行った解析により、液状化地盤については、地中壁の配置角を5゜〜85゜、望ましくは10゜〜60゜、さらに望ましくは20゜〜50゜とするのがよい。20゜未満だと、地震によって生じる荷重伝達バランスの変化に十分に対応できず、10゜未満だと荷重伝達バランスの変化に対応することが困難となり、5゜未満だとほぼ不可能となるからである。 Here, according to the analysis conducted by the present applicants, regarding the liquefied ground, the arrangement angle of the underground wall is set to 5 ° to 85 °, preferably 10 ° to 60 °, more preferably 20 ° to 50 °. It is good. If it is less than 20 °, it cannot sufficiently cope with the change in load transmission balance caused by an earthquake, and if it is less than 10 °, it becomes difficult to cope with the change in load transmission balance, and if it is less than 5 °, it becomes almost impossible. It is.
一方、50゜を上回ると、液状化防止に必要な水平方向のせん断変形拘束が不十分となり、60゜を上回ると、せん断変形拘束が困難となり、85゜を上回ると、ほぼ不可能となるからである。 On the other hand, if the angle exceeds 50 °, the horizontal shear constraint necessary to prevent liquefaction becomes insufficient, and if it exceeds 60 °, the shear deformation constraint becomes difficult, and if it exceeds 85 °, it becomes almost impossible. It is.
地中壁を設置するにあたり、その下端を支持基盤に貫入するかどうかは任意であるが、本発明においては、地中壁の下縁を支持基盤に非貫入とすることが可能である。 In installing the underground wall, whether or not the lower end of the underground wall penetrates into the support base is arbitrary, but in the present invention, the lower edge of the underground wall can be made non-penetrating into the support base.
このようにしたならば、支持基盤の深さや有無に関わらず、本発明を採用することが可能となり、適用可能な対象盛土が大幅に拡がるとともに、地中壁の設置深さが浅くて済むため、耐震補強工事の費用を大幅に軽減することも可能となる。 If it does in this way, it will become possible to adopt the present invention regardless of the depth and presence of the support base, and the applicable embankment will be greatly expanded and the installation depth of the underground wall will be shallow. It is also possible to greatly reduce the cost of seismic reinforcement work.
本発明において、盛土の用途は任意であり、河川堤防にも適用することができるが、天端に鉄道軌道又は道路が敷設されてなる盛土とした場合においては、盛土天端での縦割れが防止されるため、鉄道や自動車の走行安全性を十分に確保することが可能となる。 In the present invention, the use of the embankment is arbitrary and can be applied to a river embankment. However, when the embankment is constructed by laying a railroad track or a road at the top, vertical cracks at the top of the embankment occur. Therefore, it is possible to sufficiently ensure the running safety of railways and automobiles.
以下、本発明に係る盛土の耐震補強構造及びそれに用いる地中壁の設計方法の実施の形態について、添付図面を参照して説明する。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a seismic reinforcement structure for embankments according to the present invention and an underground wall design method used therefor will be described with reference to the accompanying drawings.
図1(a)は、本実施形態に係る盛土の耐震補強構造1を示した全体断面図である。同図でわかるように、本実施形態に係る盛土の耐震補強構造1は、鉄道軌道(図示せず)が敷設された盛土2に適用されたものであって、該盛土は、支持基盤4の上に積層された液状化地盤3の上に構築してある。 FIG. 1A is an overall cross-sectional view showing an embankment seismic reinforcement structure 1 according to the present embodiment. As can be seen in the figure, the seismic reinforcement structure 1 of the embankment according to the present embodiment is applied to the embankment 2 on which a railroad track (not shown) is laid. It is constructed on the liquefied ground 3 stacked on top.
液状化地盤3には、盛土2の各法尻近傍から下方に向けてそれぞれ延びるように、かつ液状化地盤3が挟み込まれるように一対の地中壁としての鋼矢板6,6を対向配置してあり、鋼矢板6,6は、それらの上縁において引張材としてのタイロッド5を介して相互に連結してある。 On the liquefied ground 3, steel sheet piles 6, 6 as a pair of underground walls are arranged oppositely so as to extend downward from the vicinity of each method bottom of the embankment 2 and sandwich the liquefied ground 3. The steel sheet piles 6 and 6 are connected to each other via a tie rod 5 as a tensile material at their upper edges.
ここで、鋼矢板6,6は、それらの下縁における相互の離間距離が、上縁における相互の離間距離よりも小さくなるように、換言すれば逆ハの字状になるように、鉛直面に対してそれぞれ配置角θだけ傾斜させてある。 Here, the steel sheet piles 6 and 6 are arranged in a vertical plane so that the mutual separation distance at the lower edge is smaller than the mutual separation distance at the upper edge. Are inclined by an arrangement angle θ.
タイロッド5を介して鋼矢板6,6を相互に連結するには、同図(b)に示すようにタイロッド5の端部を鋼矢板6の上縁に形成された挿通孔9に挿通するとともに、鋼矢板6との当接面が配置角θに対応したテーパ面に形成された座金7に挿通した上、ナット8を螺合して締め付けるようにすればよい。 In order to connect the steel sheet piles 6 and 6 to each other via the tie rod 5, the end of the tie rod 5 is inserted into an insertion hole 9 formed in the upper edge of the steel sheet pile 6 as shown in FIG. The contact surface with the steel sheet pile 6 may be inserted into a washer 7 formed in a tapered surface corresponding to the arrangement angle θ, and the nut 8 may be screwed and tightened.
本実施形態に係る盛土の耐震補強構造1を施工するに先立ち、鋼矢板6,6の配置角θを以下の手順で決定する。 Prior to constructing the seismic reinforcement structure 1 for embankment according to the present embodiment, the arrangement angle θ of the steel sheet piles 6 and 6 is determined by the following procedure.
まず、上述した盛土の耐震補強構造1に対応する振動解析用2次元FEMモデルを作成する。 First, a two-dimensional FEM model for vibration analysis corresponding to the above-described embankment seismic reinforcement structure 1 is created.
次に、振動解析用2次元FEMモデルを用いて、所定の入力地震波に対する盛土2の変形を求めるとともに、該盛土の変形から盛土2の天端における伸張量を求める演算を、鉛直面に対する鋼矢板6,6の配置角θをパラメータとして行う。 Next, using the two-dimensional FEM model for vibration analysis, the deformation of the embankment 2 with respect to a predetermined input seismic wave is obtained, and the operation for obtaining the extension amount at the top edge of the embankment 2 from the deformation of the embankment is performed on the steel sheet pile with respect to the vertical plane. 6 and 6 are used as parameters.
次に、上述したパラメータ解析の結果から、盛土2の天端における伸張量が最小になる鋼矢板6,6の配置角θを求める。 Next, the arrangement angle θ of the steel sheet piles 6 and 6 at which the extension amount at the top edge of the embankment 2 is minimized is obtained from the result of the parameter analysis described above.
配置角θは、盛土2の規模や入力地震動の性状によって異なるが、20゜〜50゜、特に30゜〜40゜とするのが望ましい。20゜未満だと、地震によって生じる荷重伝達バランスの変化に十分に対応できず、50゜を上回ると、液状化防止に必要な水平方向のせん断変形拘束が不十分となるからである。一方、30゜〜40゜の範囲であれば、盛土の規模、地層構造あるいは入力地震動が典型的な場合において、地震によって生じる荷重伝達バランスの変化に十分に対応し、かつ液状化防止に必要な水平方向のせん断変形を十分に拘束することができるからである。 The arrangement angle θ varies depending on the scale of the embankment 2 and the nature of the input ground motion, but is preferably 20 ° to 50 °, and more preferably 30 ° to 40 °. If the angle is less than 20 °, the change in the load transmission balance caused by the earthquake cannot be sufficiently dealt with, and if the angle exceeds 50 °, the horizontal shear deformation constraint necessary for preventing liquefaction becomes insufficient. On the other hand, if it is in the range of 30 ° to 40 °, it is sufficient to cope with changes in load transmission balance caused by earthquakes and to prevent liquefaction when the scale of the embankment, stratum structure or input seismic motion is typical. This is because the horizontal shear deformation can be sufficiently restrained.
本実施形態に係る盛土の耐震補強構造1を施工するには、まず、上述の手順で決定された配置角θで鋼矢板6,6を盛土2の法尻近傍から液状化地盤3にそれぞれ打込む。 In order to construct the embankment seismic reinforcement structure 1 according to the present embodiment, first, the steel sheet piles 6 and 6 are respectively applied to the liquefied ground 3 from the vicinity of the bottom of the embankment 2 at the arrangement angle θ determined by the above-described procedure. Include.
各鋼矢板6の打込み深さは、盛土2や液状化地盤3の土質性状、盛土2の規模、想定される地震動の性状などを考慮して適宜定めればよいが、図1(a)に示すように鋼矢板6の下縁を支持基盤4に貫入する必要はない。 The driving depth of each steel sheet pile 6 may be appropriately determined in consideration of the soil properties of the embankment 2 and the liquefied ground 3, the scale of the embankment 2, and the assumed seismic motion properties. As shown, the lower edge of the steel sheet pile 6 need not penetrate into the support base 4.
鋼矢板6,6が所定の深さまで打ち込まれたならば、次に、タイロッド5を介して鋼矢板6,6をそれらの上縁で互いに連結する。 Once the steel sheet piles 6 and 6 have been driven to a predetermined depth, the steel sheet piles 6 and 6 are then connected to each other at their upper edges via the tie rods 5.
このようにして施工された盛土の耐震補強構造1においては、鋼矢板6,6は図2(a)に示すように、堤体2のうち、堤体中央部21の両側に位置する三角形状断面の堤体側方部22,22の荷重増加分を鉛直上向き成分の支持力で支持する。 In the embankment seismic reinforcement structure 1 thus constructed, the steel sheet piles 6 and 6 have triangular shapes located on both sides of the central portion 21 of the levee body 2 as shown in FIG. The increased load of the dam body side portions 22 and 22 in the cross section is supported by the supporting force of the vertically upward component.
すなわち、盛土2の規模や地震の規模が大きい場合、地震時において、堤体側方部22,22でせん断ひずみが大きくなり、それらの直下の液状化地盤3に流れる鉛直荷重が大幅に増大する。 That is, when the scale of the embankment 2 and the scale of the earthquake are large, the shear strain increases at the side portions 22 and 22 of the dam body at the time of the earthquake, and the vertical load flowing to the liquefied ground 3 immediately below them greatly increases.
ここで、鋼矢板6,6が無い場合、あるいは鋼矢板6,6を鉛直に打ち込んでいる場合には、堤体側方部22,22からの鉛直荷重の増加分が支持されないため、堤体側方部22,22は、液状化地盤3に沈み込み、その結果、盛土2の天端に縦割れが起きる事態が想定されるが、本実施形態では、鋼矢板6,6を配置角θだけ傾斜させてある。 Here, when the steel sheet piles 6 and 6 are not provided, or when the steel sheet piles 6 and 6 are driven vertically, an increase in the vertical load from the side portions 22 and 22 of the levee body is not supported. The parts 22 and 22 sink into the liquefied ground 3, and as a result, it is assumed that a vertical crack occurs at the top edge of the embankment 2. In this embodiment, the steel sheet piles 6 and 6 are inclined by the arrangement angle θ. I'm allowed.
そのため、堤体側方部22,22からの鉛直荷重の増加分は、鋼矢板6,6の鉛直上向き成分の支持力で支持されることとなり、盛土2の天端に縦割れが生じるような伸張が該盛土の天端位置に発生することはない。 Therefore, the increase in the vertical load from the dam body side portions 22, 22 is supported by the supporting force of the vertical upward component of the steel sheet piles 6, 6, and the elongation that causes vertical cracks at the top edge of the embankment 2. Does not occur at the top edge of the embankment.
一方、地震による液状化地盤3のせん断変形については同図(b)に示すように、タイロッド5を介した鋼矢板6,6の水平成分の支持力によって確実に拘束される。 On the other hand, the shear deformation of the liquefied ground 3 due to the earthquake is reliably restrained by the supporting force of the horizontal component of the steel sheet piles 6 and 6 via the tie rod 5, as shown in FIG.
なお、鋼矢板を鉛直打設した場合、一対の鋼矢板は、せん断変形を拘束する反力として、それらの間に挟まれた地盤から下縁が外方に開くような力を受ける。 In addition, when a steel sheet pile is driven vertically, the pair of steel sheet piles receives a force that causes the lower edge to open outward from the ground sandwiched between them as a reaction force that restrains shear deformation.
そのため、鋼矢板を鉛直打設する場合には、その下縁を支持基盤に貫入する必要があるが、本実施形態の鋼矢板6,6は、深さ方向に狭くなるような傾斜配置になっているため、それらの下縁を支持基盤4に貫入せずとも、鉛直打設の場合のように、下縁が外方に開いてせん断変形拘束の作用が低下するのを懸念する必要はない。 Therefore, when the steel sheet pile is placed vertically, it is necessary to penetrate the lower edge of the steel sheet pile into the support base. However, the steel sheet piles 6 and 6 of the present embodiment are arranged so as to be narrowed in the depth direction. Therefore, even if the lower edge does not penetrate into the support base 4, it is not necessary to worry that the lower edge opens outwardly and the action of the shear deformation restraint is lowered as in the case of vertical driving. .
以上説明したように、本実施形態に係る盛土の耐震補強構造1によれば、一対の鋼矢板6,6を盛土2の各法尻近傍から下方に向けてそれぞれ延びるようにかつ液状化地盤3が挟み込まれるように該液状化地盤に対向配置し、鋼矢板6,6の上縁をタイロッド5を介して相互に連結するとともに、鋼矢板6,6を逆ハの字状になるように鉛直面に対して配置各θだけ傾斜させたので、鋼矢板6,6に挟まれた領域や該鋼矢板の背面側に拡がる領域での液状化地盤3のせん断変形を拘束して液状化を防止しつつ、堤体側方部22,22の地盤の緩みによる盛土2の天端位置での伸張、ひいては盛土2の天端での縦割れを確実に防止することが可能となる。 As explained above, according to the seismic reinforcement structure 1 of the embankment according to the present embodiment, the pair of steel sheet piles 6 and 6 extend downward from the vicinity of each method bottom of the embankment 2 and liquefied ground 3. The steel sheet piles 6 and 6 are connected to each other via the tie rods 5 so that the steel sheet piles 6 and 6 are vertically shaped so as to have a reverse C shape. Since it is inclined with respect to the surface by each arrangement θ, the shear deformation of the liquefied ground 3 in the region sandwiched between the steel sheet piles 6 and 6 and the region extending to the back side of the steel sheet pile is constrained to prevent liquefaction. However, it is possible to reliably prevent the embankment 2 from extending at the top end position of the embankment side portions 22 and 22 at the top end of the embankment, and consequently the vertical crack at the top end of the embankment 2.
また、本実施形態に係る盛土の耐震補強構造1によれば、一対の鋼矢板6,6を支持基盤4に非貫入としたので、支持基盤4が深い場合であっても、鋼矢板6,6を所定深さだけ液状化地盤3に打ち込めば足りるため、耐震補強工事の費用を大幅に軽減することも可能となる。 Moreover, according to the embankment seismic reinforcement structure 1 which concerns on this embodiment, since the pair of steel sheet piles 6 and 6 were made non-penetrating into the support base 4, even if the support base 4 is deep, the steel sheet pile 6 Since it is sufficient to drive 6 into the liquefied ground 3 by a predetermined depth, it is possible to significantly reduce the cost of the seismic reinforcement work.
本実施形態では、液状化地盤3に構築された盛土2を対象としたが、本発明に係る盛土の耐震補強構造は、液状化地盤に限定されるものではなく、地震に対する支持力が十分でない地盤、例えば軟弱粘土地盤にも適用することが可能である。 In the present embodiment, the embankment 2 constructed on the liquefied ground 3 is targeted. However, the seismic reinforcement structure of the embankment according to the present invention is not limited to the liquefied ground, and the supporting force against the earthquake is not sufficient. It can also be applied to the ground, for example, soft clay ground.
また、本実施形態では、鉛直面に対する鋼矢板6,6の配置角を20゜〜50゜としたが、これは地層構成や土質条件あるいは入力地震動が典型的な場合であって、法肩ストレッチを抑制することができる限り、上述の角度範囲に代えて、例えば10゜〜60゜、あるいは5゜〜85゜の範囲で任意に決定することができる。 Moreover, in this embodiment, the arrangement angle of the steel sheet piles 6 and 6 with respect to the vertical plane is set to 20 ° to 50 °. However, this is a case where the stratum structure, the soil condition, or the input ground motion is typical, and the shoulder stretch Can be arbitrarily determined in the range of, for example, 10 ° to 60 °, or 5 ° to 85 °, instead of the above angle range.
また、本実施形態では、本発明の地中壁を鋼矢板6で構成したが、これに代えて、鋼管矢板やプレキャストコンクリート版とし、あるいは現場打ちコンクリートやソイルセメントからなる柱列壁で構成することができる。 Moreover, in this embodiment, although the underground wall of this invention was comprised with the steel sheet pile 6, it replaced with this, and it comprises it as a steel pipe sheet pile, a precast-concrete plate, or it comprises the column row wall which consists of spot cast concrete or soil cement. be able to.
また、本実施形態では、鋼矢板6を支持基盤4に非貫入としたが、支持基盤が浅い場合においてまで、非貫入としてはならないという意味ではなく、支持基盤に鋼矢板の下縁を貫入することで、せん断変形をさらに確実に拘束するようにしてもかまわない。 Moreover, in this embodiment, although the steel sheet pile 6 was made non-penetrating to the support base 4, it does not mean that it should not be made non-penetrating until the support base is shallow, but the lower edge of the steel sheet pile is made to penetrate the support base. Thus, the shear deformation may be restrained more reliably.
また、本実施形態では、天端に鉄道軌道が敷設された盛土2を耐震補強することを前提としたが、これに代えて、道路が敷設されてなる盛土を対象としてもかまわないし、そもそも盛土天端の縦割れを防止する必要がある限り、他の用途、例えば河川堤防を用途とした盛土に適用してもかまわない。 Further, in this embodiment, it is assumed that the embankment 2 in which the railroad track is laid at the top end is seismically strengthened. As long as it is necessary to prevent the vertical crack at the top, it may be applied to banking for other purposes, for example, river embankments.
また、本実施形態では、最適な地中壁の配置角を解析によって求めるようにしたが、これに代えて、試験あるいは実験によって地中壁の配置角を定めることができることは言うまでもない。 In the present embodiment, the optimum underground wall arrangement angle is obtained by analysis. However, it goes without saying that the underground wall arrangement angle can be determined by a test or experiment instead.
図3は、本実施形態に係る盛土の耐震補強構造1を、鋼矢板の配置角がパラメータとして任意に設定できるように振動解析用二次元FEMモデルとしてモデル化し、該モデルにおいて、所定の入力地震動に対して生じたせん断ひずみを描いたものであり、同図(a)は、鋼矢板を鉛直下方に打ち込んだもの、同図(b)は、鋼矢板の配置角θを37゜としたもの、同図(c)は、鋼矢板の配置角θを58゜としたものである。 FIG. 3 shows the embankment seismic reinforcement structure 1 according to the present embodiment as a two-dimensional FEM model for vibration analysis so that the arrangement angle of the steel sheet pile can be arbitrarily set as a parameter. Figure (a) shows a steel sheet pile driven vertically downward, and (b) shows a steel sheet pile arrangement angle θ of 37 °. FIG. 4C shows the steel sheet pile having an arrangement angle θ of 58 °.
モデル化にあたっては、盛土を、法尻幅が28m、法肩幅が10m、高さが6m、土質が砂質土とし、液状化地盤を、厚さが10m、土質が砂質土、N値が8とし、支持基盤を、厚さが5m、土質が砂質土、N値が50以上とし、鋼矢板6,6を、高さが6m、埋設深さが5mとした。 In the modeling, the embankment is 28 m in width, 10 m in shoulder width, 6 m in height, and soil is sandy, the liquefied ground is 10 m in thickness, soil is sandy, N value is 8, the support base was 5 m thick, the soil was sandy soil, the N value was 50 or more, the steel sheet piles 6 and 6 were 6 m high, and the embedding depth was 5 m.
図3(a)と図3(b)を比較すると、鋼矢板を鉛直に打ち込んだ場合に見られる法尻近傍直下の液状化地盤のせん断ひずみは、配置角37゜で斜めに打ち込んだ場合には、ほとんどゼロになっており、鉛直打設の場合には、堤体側方部の緩みによる鉛直荷重の増加が、法尻直下の液状化地盤をせん断変形させるのに対し、配置角37゜での斜め打設の場合には、堤体側方部の緩みによる鉛直荷重の増加が鋼矢板で支持されるため、法尻直下の液状化地盤がほとんどせん断変形しないことがわかる。 Comparing Fig. 3 (a) and Fig. 3 (b), the shear strain of the liquefied ground just below the hind butt seen when the steel sheet pile is driven vertically is observed when it is driven diagonally at an arrangement angle of 37 °. Is almost zero, and in the case of vertical placement, the increase in vertical load due to the loosening of the side of the levee body causes shear deformation of the liquefied ground directly below the heel, whereas the placement angle is 37 °. In the case of slanting, the increase in the vertical load due to the looseness of the side of the levee body is supported by the steel sheet pile, so that it can be seen that the liquefied ground just below the heel is hardly sheared.
一方、鋼矢板の配置角を58゜とした場合には、鋼矢板の背面領域でせん断ひずみが大きくなっており、傾斜角が大き過ぎると、水平方向のせん断変形を抑制できないことがわかる。 On the other hand, when the arrangement angle of the steel sheet pile is set to 58 °, the shear strain is increased in the back region of the steel sheet pile, and it is understood that the horizontal shear deformation cannot be suppressed if the inclination angle is too large.
図4は、上述した解析結果を用いて算出されたものであり、同図(a)は、法尻間における水平距離の変化量(法尻ストレッチ)、同図(b)は天端沈下量、同図(c)は、法肩間における水平距離の変化量(法肩ストレッチ)である。 Fig. 4 is calculated using the above-mentioned analysis results. Fig. 4 (a) shows the amount of change in horizontal distance between the buttocks (leg butt stretch), and Fig. 4 (b) shows the amount of crest depression. FIG. 4C shows the amount of change in the horizontal distance between the shoulders (the shoulder stretching).
これらのグラフから、鋼矢板を打ち込まない場合には、天端沈下量、法尻ストレッチとも非常に大きく、盛土に過大な変形や縦割れが生じるであろうと予想される。 From these graphs, it is expected that when the steel sheet pile is not driven in, both the top sinking amount and the hoshiri stretch are very large, and excessive deformation and vertical cracking will occur in the embankment.
これに対し、鋼矢板を打ち込んだ場合、天端沈下量はいずれのケースも大幅に低減される一方、法肩ストレッチについては、鋼矢板の配置角によって差が生じ、配置角が0゜の場合には0.17m、21゜の場合には0.11m、37゜の場合には0.09m、58゜の場合には0.16mとなり、鋼矢板の配置角が37゜のときに法肩ストレッチが最小となった。 On the other hand, when steel sheet piles are driven in, the sinking amount of the top edge is greatly reduced in all cases, but for the shoulder stretch, there is a difference depending on the arrangement angle of the steel sheet pile, and the arrangement angle is 0 °. Is 0.11 m for 21 °, 0.11 m for 37 °, 0.09 m for 58 °, and 0.16 m for 58 °. Stretch was minimized.
1 盛土の耐震補強構造
2 盛土
3 液状化地盤(地盤)
4 支持基盤
5 タイロッド(引張材)
6 鋼矢板(地中壁)
1 Seismic reinforcement structure of embankment 2 Embankment 3 Liquefaction ground (ground)
4 Support base 5 Tie rod (tensile material)
6 Steel sheet pile (underground wall)
Claims (6)
前記一対の地中壁をそれらの下縁における相互の離間距離が上縁における相互の離間距離よりも小さくなるように鉛直面に対してそれぞれ傾斜配置してなり、該一対の地中壁は、前記引張材を介した水平成分の支持力によって、前記一対の地中壁に挟まれた領域又はその背面領域において前記地盤のせん断変形を水平方向に沿って拘束しつつ、鉛直上向き成分の支持力によって、前記盛土のうち、堤体中央部を挟む各堤体側方部の地盤の緩みによる鉛直荷重の増加分を支持するようになっていることを特徴とする盛土の耐震補強構造。 A pair of underground walls are arranged opposite to the ground so as to extend downward from the vicinity of each bottom of the embankment and sandwich the ground extending below the embankment, and above the pair of underground walls. In the seismic reinforcement structure of embankments, where the edges are connected to each other via a tensile material,
The pair of underground walls are respectively inclined with respect to a vertical plane so that the mutual separation distance at the lower edge is smaller than the mutual separation distance at the upper edge , and the pair of underground walls are Supporting force of vertical upward component while restraining shear deformation of the ground along the horizontal direction in the region sandwiched between the pair of underground walls or the back region thereof by the supporting force of the horizontal component through the tensile material By the above-mentioned, the seismic reinforcement structure of the embankment characterized by supporting the increase of the vertical load by the looseness of the ground of each embankment side part across the embankment middle part among the embankments.
前記振動解析用2次元FEMモデルを用いて所定の入力地震波に対する前記盛土の変形を求めるとともに該盛土の変形からその天端における伸張量を求める演算を、鉛直面に対する前記地中壁の配置角をパラメータとして行い、
前記パラメータ解析の結果から前記盛土天端の伸張量が最小になる前記地中壁の配置角を求めることを特徴とした盛土の耐震補強構造に用いる地中壁の設計方法。 A pair of underground walls are arranged opposite to the ground so as to respectively extend downward from the vicinity of each bottom of the embankment so that the ground extending below the embankment is sandwiched, and the pair of underground walls are Inclined with respect to the vertical plane so that the mutual separation distance at the lower edge is smaller than the mutual separation distance at the upper edge, and the upper edges of the pair of underground walls are connected to each other via a tensile member A seismic reinforcement structure for embankment , wherein the pair of underground walls are supported by a horizontal component through the tension member, or in a region sandwiched between the pair of underground walls or a back region thereof. While restraining the shear deformation of the ground along the horizontal direction, the support force of the vertical upward component supports the increase in vertical load due to the looseness of the ground on each side of the bank body across the bank center part of the embankment. Is supposed to To create a two-dimensional FEM model for vibration analysis of seismic reinforcement structure of the embankment,
Using the two-dimensional FEM model for vibration analysis, the calculation of the deformation of the embankment with respect to a predetermined input seismic wave and the calculation of the extension amount at the top of the embankment from the deformation of the embankment are performed. As a parameter,
An underground wall design method used for a seismic reinforcement structure for embankments, wherein an arrangement angle of the underground wall that minimizes the extension amount of the embankment top is obtained from a result of the parameter analysis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011016974A JP5729754B2 (en) | 2011-01-28 | 2011-01-28 | Seismic reinforcement structure for embankment and design method of underground wall used for it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011016974A JP5729754B2 (en) | 2011-01-28 | 2011-01-28 | Seismic reinforcement structure for embankment and design method of underground wall used for it |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012158863A JP2012158863A (en) | 2012-08-23 |
JP5729754B2 true JP5729754B2 (en) | 2015-06-03 |
Family
ID=46839625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011016974A Active JP5729754B2 (en) | 2011-01-28 | 2011-01-28 | Seismic reinforcement structure for embankment and design method of underground wall used for it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5729754B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109024670A (en) * | 2018-06-25 | 2018-12-18 | 中国建筑第八工程局有限公司 | Underground pipe gallery protection reinforcement system and reinforcement means are worn on buried high-tension cable |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6287358B2 (en) * | 2014-03-06 | 2018-03-07 | 新日鐵住金株式会社 | Embankment reinforcement structure |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH111926A (en) * | 1997-06-12 | 1999-01-06 | Nkk Corp | Countermeasure against liquefaction of embankment structure |
JP4965922B2 (en) * | 2006-07-21 | 2012-07-04 | 大成建設株式会社 | Embankment reinforcement structure and embankment body |
JP4987652B2 (en) * | 2007-09-26 | 2012-07-25 | 大成建設株式会社 | Reinforcement structure and method of embankment and linear embankment |
-
2011
- 2011-01-28 JP JP2011016974A patent/JP5729754B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109024670A (en) * | 2018-06-25 | 2018-12-18 | 中国建筑第八工程局有限公司 | Underground pipe gallery protection reinforcement system and reinforcement means are worn on buried high-tension cable |
Also Published As
Publication number | Publication date |
---|---|
JP2012158863A (en) | 2012-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4965922B2 (en) | Embankment reinforcement structure and embankment body | |
JP5471797B2 (en) | Seismic reinforcement structure of revetment structure and existing revetment structure | |
JP4851881B2 (en) | Embankment structure and method for reinforcing embankment structure | |
JP7149919B2 (en) | Improvement structure and improvement method of existing wharf | |
JP6082916B2 (en) | Underground steel wall structure and construction method of underground steel wall structure | |
JP5729754B2 (en) | Seismic reinforcement structure for embankment and design method of underground wall used for it | |
JP6902144B2 (en) | Slope ground flow control method and slope ground flow control structure | |
JP4987652B2 (en) | Reinforcement structure and method of embankment and linear embankment | |
JP5421191B2 (en) | Design method for embankment reinforcement structure | |
JP6711006B2 (en) | Settling prevention structure for linear structures | |
JP6287358B2 (en) | Embankment reinforcement structure | |
JP7183816B2 (en) | Embankment reinforcement structure | |
JP5983436B2 (en) | Gravity breakwater | |
JP3769335B2 (en) | Side flow prevention method for ground | |
JP6347120B2 (en) | Embankment reinforcement structure | |
JP2016148196A (en) | Structure and method for reinforcing abutment | |
JP6641873B2 (en) | Reinforcement structure of quay and revetment and reinforcement construction method of quay and revetment | |
JP2015221994A (en) | Embankment reinforcing structure | |
JP4325225B2 (en) | Projection amount calculation method for shunt structure in fluidization countermeasure method | |
JPH03275813A (en) | Method for coping with liquefaction of embedded structure | |
JP2876471B2 (en) | Lateral flow countermeasure structure | |
JP3841679B2 (en) | Ground improvement method | |
JP3360061B2 (en) | Preceding plate-shaped beam of mountain retaining frame | |
JP2004346636A (en) | Soil improving method | |
JP6269267B2 (en) | Seismic structure of embankment structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140728 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140731 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140922 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150325 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150402 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5729754 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |