JP4741093B2 - Pipe line structure with deformed pipe - Google Patents

Pipe line structure with deformed pipe Download PDF

Info

Publication number
JP4741093B2
JP4741093B2 JP2001043144A JP2001043144A JP4741093B2 JP 4741093 B2 JP4741093 B2 JP 4741093B2 JP 2001043144 A JP2001043144 A JP 2001043144A JP 2001043144 A JP2001043144 A JP 2001043144A JP 4741093 B2 JP4741093 B2 JP 4741093B2
Authority
JP
Japan
Prior art keywords
pipe
locking member
flange
joint
retaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001043144A
Other languages
Japanese (ja)
Other versions
JP2002243076A (en
Inventor
弘司 藤田
義徳 吉田
直岐 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2001043144A priority Critical patent/JP4741093B2/en
Publication of JP2002243076A publication Critical patent/JP2002243076A/en
Application granted granted Critical
Publication of JP4741093B2 publication Critical patent/JP4741093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、一の管の受口に他の管の挿し口を挿入した管継手を管路方向に順々に構成し、前記両管の少なくとも一方を異形管とした管継手を有する土中埋設管路構造に関するものである。
【0002】
【従来の技術】
上下水道などの液体輸送施設(以下、管路という)は、一の管の受口に挿し口を挿入した管継手を管路方向に順々に構成して施設され、一般に、その管継手の伸縮と屈曲(受口に対する挿し口の抜き差しと屈曲)によってある程度の地震や地盤沈下などに順応する柔構造とされている。その柔構造管路における管継手形式には、図18乃至図20に示す、A形、K形、T形などの伸縮機能は有するものの、離脱防止機能を有しないものがある。そのA形継手及びK形継手は、図18、図19に示すように、一の管1の受口1aに他の管1の挿し口2aを挿し込み、その受口1aと挿し口2aの間にゴム輪6を介在したのち、押し輪4をTボルト・ナット5により受口フランジ1bに締め付け、その締め付けによりゴム輪6を圧入した構成である。T形継手は図20に示すように、受口1a内にゴム輪6を装填した後、挿し口2aを受口1aに挿入した構成である。
【0003】
これらのいずれの継手構造も、受口1aから挿し口2aが抜け出ない限りにおいて、一の管1に対し他の管1が管軸方向に動くことにより、管1、1間の伸縮を吸収して、経年変化による地盤沈下や地震時における継手部の地盤変動などに対して地盤追従性を発揮し、止水性能を損なうことはない。
【0004】
しかし、管路設計時に想定していた伸縮量を越えた場合、例えば大地震などの場合には、受口1aから挿し口2aが抜け出る恐れがある。このため、伸縮時、最終的には、止水機能を保持するために、離脱阻止機能が働くことが求められる。この離脱阻止機能を有する継手構造として、図21、図22に示す、NS形継手、SII形継手などがある。この両継手とも、受口1aの内面にロックリング3を設け、挿し口2aには突起3bを設け、その突起3bをロックリング3に係止することにより、受口1aから挿し口2aの抜け出しを阻止する。図中、3aはロックリング3の心出しゴム、3cはバックアップリングである。
【0005】
この伸縮余裕代と離脱防止機能(抜け止め機能)を有する管継手からなる管路は鎖構造となり、この鎖構造の管路は、おおきな地盤変動に対して、ちょうど地中に埋没された鎖のように継手が伸縮・屈曲しながら追従し、さらに限界まで伸び出した後は、離脱防止構造によって管路を維持する。
【0006】
近年、耐震性が望まれることから、管路には上述のNS形、S形、SII形などの離脱阻止機能付き伸縮継手を使用した鎖構造が採用されているが、旧来の管路にはA形などの離脱阻止機能のないものが使われている。このため、そのような管路を離脱阻止機能付き継手からなるものにするには、NS形継手などの管路への布設替えが考えられるが、コスト的に高いものとなる。
【0007】
このため、従来から、離脱阻止機能のない管路にその機能を付与する技術が開発され、その一つとして、特開平10−122456号公報で示されるものがある。この技術は、図23に示すように、受口1a及び挿し口2aにリング状板体11、12をそれぞれ嵌め、挿し口2aの板体12にはロック部材13を設け、このロック部材13をボルト14によって挿し口2aに圧接することにより、そのロック部材13を挿し口2a外周面に喰い込ませて板体12を固定している。その両板体11、12間にねじ棒15を掛け渡し、そのねじ棒15両端のナット16で許容される両板体11、12の接離により、受口1aと挿し口2a間の伸縮及び離脱を阻止する。
【0008】
これらの離脱防止及び伸縮機能を有する継手Bを使用した柔構造管路において、図29に示すそのわん曲部や分岐部には、曲管、T字管、片落ち管などの各種の異形管1’が採用されるが、これらの管路部分には、その内水圧により不平均力Pが働く。このとき、その管継手Bが伸縮可能なものであると、その機能によって、管1、1’が移動し、地盤中に空隙が生じて上部の道路面に陥没などの悪影響を及ぼす恐れがある。このため、通常、その異形管1’から成る継手は、伸縮及び屈曲機能を有しない一体化したものとして、その不平均力Pによって異形管1’が他の接続直管1に対し動かないようにしている。
【0009】
例えば、図23に示す管継手Bにあっては、同図鎖線のごとく、ナット16をリング状板体12に当接させて、挿し口2aの移動幅を少なくして一体化管継手としている。NS形継手にあっては、図24に示すように、直管受口1aに異形管1’の挿し口2aを挿入した管継手B’にあっては、受口1a内面に、心出し用ゴム9aを介してライナ9を設け、このライナ9により挿し口2aの差し込みを阻止するとともに、ロックリング3に対する突起3bの移動幅を少なくして一体化管継手としている。図中、1cは屈曲防止突部である。また、図25に示すように、異形管1’の受口1aに直管1の挿し口2aを挿入した管継手B”にあっては、同じく、ロックリング3に対する突起3bの移動幅を少なくし、屈曲防止リング8aをセットボルト8bにより挿し口2a外面に圧接して一体化管継手としている。図29中、黒く塗り潰した継手B’がライナ9を介在して伸縮機能を防止したものである(以下、同じ)。
【0010】
また、A、T、K形の一般管路及びSII、NS形の耐震管路共通の防護工法として、図30に示すように、不平均力Pが働く異形管1’全体を囲むようにコンクリートを打設し、そのコンクリートブロックCにより、異形管1’を不動にして不平均力Pに抗する構造もある。
【0011】
さらに、図31に示すように、異形管1’全体ではなく、その中程を囲むようにコンクリートを打設し、そのコンクリートブロックCで異形管1’を不動にした構成のものもある。このとき、異形管1’の挿し口2aと直管1の受口1a間は図24に示す一体化継手B’として、直管1のずれが抑制される。
【0012】
これらの一体化継手B’、B”を使用して異形管1’の部分を一体化した管路において、異形管1’部分を一体化しても、それに続く、直管1が動き得ると、上記不平均力Pの働く継手B’、B”がその直管1も含めて移動する恐れがある。このため、図29に示すように、直管1と直管1の継手部においても、伸縮不能の一体化を図っている。その直管1同士の継手B’にあっては、図26、図27に示すように、上述と同様に、心出し用ゴム9aを介してライナ9を設けて一体化しており、φ300以上の管路であれば、図28に示す、KF形継手構造を採用する場合もある。このようにすれば、一体化構造(図29乃至図33中、長さL)が長くなることにより、地盤反力Qと管体摩擦力Rによる制動力が大きくなって不平均力Pに抗して、管継手内の管移動を有効に阻止する。
【0013】
【発明が解決しようとする課題】
図23に示す継手構造は、一方の板体12を食い込みによって挿し口2aに固定しているため、大地震などにより大きな引き抜き力が働くと、その喰い込み力では、その引き抜き力に抗することができず、受口1aから挿し口2aが抜け出る恐れがある。
【0014】
図30、図31に示す構造にあっては、コンクリートブロックCの添設は煩雑であり、コストアップの要因になる。図中、Fは柔構造部分を示す。また、最近の市街地配管のように管路が複雑に入り込み、曲がり管が連続するなどの輻輳している個所では、コンクリートブロックCの埋設スペースの確保が困難になっている。また、図32(a)に示す直線管路において、同図斜線のごとく、その管路上に他埋設物Dが新設される場合には、同図(b)に示すように、その管路を迂回させる(切り廻す)必要があるが、図33に示すように、コンクリートブロックCの打設を行うと、コンクリートの養生時間を必要とするため、工事期間が長くなり、通水再開となるまで時間がかかる。通常、上水道、下水道、工業用水道等は日常生活や産業活動に欠かすことのできない、重要なライフラインであるので、既設管路の更新、切り廻し配管に伴う断水時間はできるだけ短い方がよい。また、新設管路敷設工事でも同様に工事期間が長くなる。
【0015】
このように、従来、異形管1’の継手部B’、B”は不動とするが、その継手部においても、不平均力Pに対しては不動で、地震時などの大きな地盤変動時には受口1aから挿し口2aが抜け出ない限りにおいて、異形管1’に対し他の管1が軸方向に動いて追従し、管路の破損を防止して止水性能を確保することが好ましい。
【0016】
この発明は、コンクリートを打設することなく、異形管部が地震時に離脱防止力(一般に3DKN)を発揮することを第1の課題とし、不平均力には抗じることができ、地震時などの大きな地盤変動には追従し、最終的に離脱防止力を発揮することを第2の課題とする。
【0017】
【課題を解決するための手段】
上記第1の課題を達成するために、この発明は、フランジ付き受口から成る管継手の管路を前提とし、その隣接する管のフランジ間に杆を掛け渡し、この杆によって、両フランジの接離を規制することとしたのである。
【0018】
受口に設けたフランジであるため、そのフランジは、破損しないかぎり十分な耐抗力を有し、また、杆の破損及び両端のフランジとの係止部の破損を招かないかぎり、フランジ間は規制される。このため、異形管両端の継手部は一体化されて、不平均力によって異形管は動かず、コンクリートブロックなどによるその異形管を含めた管路の一体化を行う必要がなくなる。
【0019】
また、上記第2の課題を達成するために、この発明は、上記両フランジ間に杆を掛け渡す構成において、その杆がフランジに対し不平均力では動かず、大きな地盤変動が生じたときには、フランジに対し動いてその変動に追従するようにしたのである。
【0020】
【発明の実施の形態】
上記第1の課題を達成するこの発明の実施形態としては、一の管の受口に他の管の挿し口を挿入した管継手を管路方向に順々に構成し、前記両管の少なくとも一方を異形管とした管継手を有する土中埋設管路構造において、前記異形管両端の管継手におけるフランジ間に抜け止め杆を掛け渡し、その抜け止め杆の両端をそれぞれ前記フランジに固着して両フランジ間を拡張不能とした構成を採用し得る。
【0021】
その両フランジ間を拡張不能とする構成の一例として、フランジに係止部材を嵌め、その係止部材に上記抜け止め杆を挿し通し、その抜け止め杆の端には係止部材からの抜け止め用突部を設けたものを挙げることができ、その突部にはねじ込みナットなどを採用し得る。このとき、前記係止部材の側壁から前記フランジに当接するボルトをねじ込んだ構成とすれば、係止部材とフランジの固定を確実に行うことができ、係止部材とフランジの嵌合公差の影響が少なくなって、管継手部の設計伸縮量の施工精度を向上することができる。
【0022】
上記係止部材は、管外面に当てがわれる突片と、その突片から前記フランジに延びて係止するフックとから成り、前記突片に前記抜け止め杆を挿し通して、その抜け止め杆の端には係止部材からの抜け止め用突部を設けた構成とし得る。この構成の係止部材であれば、A形、K形継手などの押し輪及びTボルト・ナット等を有するものにおいて、その押し輪を迂回して抜け止め杆をフランジ間に掛け渡し得る利点がある。
【0023】
この係止部材の構成において、管の周方向に分割されたものにあっては、その各係止部材の外周全長に亘る拘束部材を設けて、各分割部材の浮き上がりを防止するとよい。
【0024】
また、上記抜け止め杆の中程で異形管全周に至って拘束具を設け、この拘束具により、その抜け止め杆を管外周面に押し付けて、抜け止め杆を管にでき得るかぎり沿わせるとよい。
【0025】
第2の課題を達成するこの発明の実施形態は、上記各実施形態において、上記抜け止め杆の一端を介在物を介して固着し、この介在物は、管路内水圧による不平均力では破壊せず、地震による圧縮力では破壊するものとした構成を採用し得る。
【0026】
その介在物としては、その機能を発揮するものであればいずれでもよいが、例えば、発泡樹脂成形体を採用でき、そのとき、発泡樹脂成形体を剛板で挟持し、その両剛板を上記抜け止め杆の一端が貫通するものを採用し得る。剛板で受圧して樹脂成形体全体に均一に加圧されるため、発泡樹脂成形体であっても、容易に、不平均力に十分に耐え得るものとなる。
【0027】
【実施例】
一実施例を図1乃至図3に示し、この実施例は、K形継手による管路に係り、直管1、1同士の継手部Bにおいては、各受口1aのフランジ1bに、半割りリング状の係止部材20を嵌合し、その係止部材20間にPC鋼棒から成る抜け止め杆30を挿し通し、その杆30の両端にナット31をねじ込み溶着したものである。抜け止め杆30の長さは、ナット31、31間が両管1、1の継手部の許容伸長長さとなるように適宜に選定する。また、抜け止め杆30の管周方向の数は等分位に任意である。
【0028】
また、異形管1’との継手部Bにおいては、抜け止め杆30及び屈曲し得るPC鋼線30’などを使用し、その中程を半割りの拘束具35で締結する。この拘束具35は図3に示すように分割部材両端の突片をボルト・ナット36で締結することによりリング状とする。このとき、ナット31は係止部材20に当接させて両フランジ1b、1b間を拡張不能とする。必要があれば、図29に示すように、隣接する直管1、1同士の継手部間でも同様にしてその拡張を不能とする。
【0029】
係止部材20は半割り状の分割部材の両端の突片21、21をボルト・ナット22で締結してリング状とされる。また、係止部材20の断面はコ字状で、このコ字状部23内に受口1aのフランジ1bが入るように嵌合される。コ字状部23の両側壁には周囲6等分位に突部24が形成されており、この突部24がフランジ1bに深く係止して左右両方向への離脱を確実に防止する。突部24の数はTボルト・ナット5の数に応じて任意である。これらの係止部材20及び抜け止め杆30、30’の取付けは、図1鎖線のごとく既設管路の周りを所要長さ掘削して行う(掘削溝H)。
【0030】
この係止部材20と抜け止め杆30、30’によって連結された管1、1’……から成る管路は、大部分の直管1、1の継手管Bにおいては、各管1……の抜け出し方向への移動に対しては、受口1aに対し挿し口2aが前記抜け止め杆30で規制される範囲内において移動し、その変位を吸収して水密性が維持される。変位量が許容量に達すると、抜け止め杆30のナット31が係止部材20に当接してそれ以上の変位を阻止して、受口1aからの挿し口2aの抜け出しを防止する。このとき、隣り合う管1、1の継手部Bにおいて、その受口1aに対する挿し口2aの変位量が許容値に達していなければ、抜け止めを阻止された管1側からの力でもって、その変位量が許容値になるまで管1が移動させられる。一方、異形管1’の継手部Bにおいては、異形管1’とその両隣りの直管1、1が抜け止め杆30、30’によりその管軸方向に不動とされて一体化されている。このため、不平均力Pによって動くことはない。このようにして、この構成の管路は、不平均力Pに抗しつつ、その伸縮を管路全体によって吸収する。
【0031】
なお、PC鋼棒、PC鋼線(抜け止め杆)30、30’の管周方向の数及び太さは適用継手部Bの伸長力を考慮して適宜に設定する。また、これらの棒(線)30、30’の伸びは、線長が短いため、継手の抜け出しには考慮する必要はない。
【0032】
図4には、係止部材20のコ字状部23の他方の側壁に調整ボルト25をねじ込んだ実施例を示し、そのボルト25をフランジ1bに当接することにより、係止部材20がフランジ1bに確実に(ガタツクことなく)係止する。このため、フランジ1bの厚み公差等の影響が少なくなり、設計伸縮量の施工精度を高くし得る。
【0033】
図5乃至図9に示す実施例は、係止部材20をフランジ1bを跨ぐサドル状としたものであり、図6、図7に受口側のもの20a、図8、図9に挿し口側のもの20bを示す。いずれも、抜け止め杆30、30’が挿通係止される伝達部(突片)26とフランジ1bに係止する鉤状部(フック)27とから成る。各係止部材20a、20bは半割りとなっており、前述と同様にボルト・ナット22よりリング状に締結される。なお、この係止部材20a、20bも含め、前述の係止部材20の分割数は2個に限らず3個以上と任意である。
【0034】
この実施例は、図5(a)に示すように、一継手部Bに両係止部材20a、20bを嵌め、その係止部材20a、20bは、同図(b)のごとく鉤状部27を周方向にずらすとともにフランジ1bを跨いでそのフランジ1bに係止させる。このとき、受口側係止部材20aの鉤状部27及び係止片27aはその厚みtを挿し口側係止部材20bのそれに比べて薄くして、フランジ1bと押し輪4の間に入り易くしてある。この受口側係止片27aの厚みtを薄くしたことにより、挿し口側に比べてその受口側係止片27aの幅wを広くして引張り力に対して挿し口側と同一の強度としている。
【0035】
なお、この実施例では、各継手部間の抜け止め杆30、30’の位置が管軸方向に向かって順々に周方向にズレていくが、両係止部材20a、20bにおいて、図10に示すように、抜け止め杆30、30’の孔29を長孔としたり、周方向にズラすことにより、管軸方向全長に亘って抜け止め杆30、30’を同一軸線上とし得る。
【0036】
図11乃至図12に示す実施例は、上記実施例において、係止部材20a、20bを、抜け止め杆30、30’の数に対応して分割したもの(分割サドル片20a’、20b’)である。この実施例では、図11に示すように、図12(c)の半割りの拘束具28でもって、各分割サドル片20a’、20b’を締結する。その締結個所は、伝達部26と鉤状部27の連結部分及び鉤状部27の中程部分の両者又はどちらか一方を適宜に選択する。
【0037】
図13にはT形継手の場合の施工例を示す。この実施例及び後述の各実施例も図4に示す調整ボルト25を採用し得る。
【0038】
図14乃至図17に示す実施例は異形管1’の両端などの拡張不能とした継手部Bにおいても地震などの地盤変動への追従機能を持たせたものであり、抜け止め杆30、30’を少し長くし、その係止部材20から突出した部分に、管路内水圧の不平均力Pでは破壊せず、地震による圧縮力では破壊する介在物40を介設したものである。その介在物40は、図14(b)、図15(b)に示すように、発泡樹脂成形体41を鉄板42で挟んで一体化したものであり、成形体41の強度は、加わる不平均力Pを考慮して適宜に決定する。この介在物40は、図14、図16に示すように、各杆30、30’毎にそれぞれ介在してもよいが、図15、図17に示すように、リング状とすることもでき、また、数本づつでもよい。図14、15がK形継手、図16、図17がT形継手の場合である。発泡樹脂成形体41に代えて、他の種々の素材のものを採用し得る。
【0039】
これらの実施例は、通常時は、介在物40の存在により、異形管1’とその両隣りの直管1、1’などが抜け止め杆30、30’によってその管軸方向に不動とされて一体化され、不平均力Pによって動くことはない。地震などの大きな地盤変動が加われば、その変動により、介在物40が破壊されて、抜け止め杆30,30’の一端の係止部材20方向への移動が許容され、異形管1’の両継手部B等においても、管軸方向の移動を許容して、その変動に追従する。その追従は、ナット31が鉄板42を介して係止部材20に当接するまで行われ、それ以後は、両管1、1’の継手部Bにおける抜け止めされる。
【0040】
また、これらの実施例は、抜け止め杆30、30’の一端のみに介在物40を設けたが、他端、すなわち抜け止め杆30、30’の両端に介在物40を設けることもできる。このようにすれば、追従幅を広くすることができる。さらに、各実施例は、A、K、T形継手の場合であったが、NS、SII形などのように、離脱防止及び伸縮機能を有する継手でも、この発明は採用し得ることは勿論である。この場合、図29に示すB’の継手において、ライナー9を省略した介在物40の介在構造を採用する。
【0041】
この発明の異形管の管路構造は、水道をはじめとする流体輸送配管の新管敷設工事、既設管更新工事、他企業管敷設に伴う管路路線変更工事等のいずれにおいても採用し得る。
【0042】
【発明の効果】
この発明は、以上のように、異形管両端のフランジ間に杆を掛け渡し、この杆により、両フランジ間を一体化したので、A、K、T形の一般管路にも耐震管並みの離脱阻止力を付与し得る。また、異形管設置場所が近接して一体化長さが重複した場合にも、地震力によって圧壊する介在物を付加することにより、地震時に広範囲に渡って管路の一体化が連続することを防ぐことができる。このようにして、地震に有利な柔構造部分を従来手法で設計・施工した管路に比べて多く構築することができる。
【図面の簡単な説明】
【図1】一実施例の一部切断正面図
【図2】図1の管継手部を示し、(a)は切断右側面図、(b)は要部切断正面図
【図3】同実施例の拘束具の正面図
【図4】他の実施例を示し、(a)は要部切断正面図、(b)は要部切断右側面図
【図5】他の実施例を示し、(a)は要部切断正面図、(b)は(a)のA−A線断面図
【図6】同実施例の受口側係止部材の斜視図
【図7】(a)は同係止部材の左側面図、(b)は同切断正面図、(c)は同右側面図
【図8】同実施例の挿し口側係止部材の斜視図
【図9】(a)は同係止部材の左側面図、(b)は同切断正面図、(c)は同右側面図
【図10】(a)、(b)ともに同係止部材の他例の側面図
【図11】他の実施例を示し、(a)は要部切断正面図、(b)は(a)のA−A線断面図
【図12】(a)は同実施例の受口側分割サドル片の斜視図、(b)は同挿し口側分割サドルの斜視図、(c)は同拘束具の斜視図
【図13】他の実施例の要部切断正面図
【図14】(a)は他の実施例の切断正面図、(b)は同介在物の断面図
【図15】(a)は他の実施例の切断正面図、(b)は同介在物の断面図
【図16】他の実施例の要部切断正面図
【図17】他の実施例の要部切断正面図
【図18】一管継手の要部断面図
【図19】他の管継手の要部断面図
【図20】他の管継手の要部断面図
【図21】他の管継手の要部断面図
【図22】他の管継手の要部断面図
【図23】他の管継手の要部断面図
【図24】他の管継手の要部断面図
【図25】他の管継手の要部断面図
【図26】他の管継手の要部断面図
【図27】他の管継手の要部断面図
【図28】他の管継手の要部断面図
【図29】配管説明図
【図30】従来の配管説明図
【図31】従来の配管説明図
【図32】(a)、(b)ともに切り廻し配管説明図
【図33】切り廻し配管説明図
【符号の説明】
1、1’ 管
1a 受口
1b 受口フランジ
2a 挿し口
20、20a、20b 係止部材
20a’、20b’ 分割サドル片
22 ボルト・ナット
23 係止部材コ字状部
24 係止部材の突部
25 調整ボルト
26 伝達部(突片)
27 鉤状部(フック)
28 拘束具
30、30’ 抜け止め杆(PC鋼棒、PC鋼線)
31 ナット(抜け止め用突
35 拘束具
40 介在物
41 発泡樹脂成形体
42 剛板(鉄板)
[0001]
BACKGROUND OF THE INVENTION
The present invention comprises a pipe joint in which an insertion port of another pipe is inserted into a receiving port of one pipe in order in the pipe direction, and has a pipe joint in which at least one of the two pipes is a deformed pipe. It relates to the buried pipeline structure.
[0002]
[Prior art]
Liquid transport facilities such as water and sewage systems (hereinafter referred to as pipes) are constructed with pipe joints that are inserted into the inlets of one pipe in order in the pipe direction. It has a flexible structure that adapts to earthquakes and land subsidence to some extent by expansion and contraction and bending (removal and bending of the insertion slot with respect to the receiving port). As the pipe joint type in the flexible structure pipe, there are those having an expansion / contraction function such as A-type, K-type, and T-type shown in FIGS. As shown in FIGS. 18 and 19, the A-shaped joint and the K-shaped joint are inserted into the receiving port 1a of one tube 1 and the insertion port 2a of the other tube 1 is inserted into the receiving port 1a and the insertion port 2a. After the rubber ring 6 is interposed therebetween, the push ring 4 is fastened to the receiving flange 1b by T-bolts and nuts 5, and the rubber ring 6 is press-fitted by the tightening. As shown in FIG. 20, the T-shaped joint has a configuration in which after inserting the rubber ring 6 in the receiving port 1a, the insertion port 2a is inserted into the receiving port 1a.
[0003]
In any of these joint structures, as long as the insertion port 2a does not come out from the receiving port 1a, the other tube 1 moves in the tube axis direction with respect to one tube 1, thereby absorbing the expansion and contraction between the tubes 1 and 1. Therefore, it exhibits ground followability against ground subsidence due to secular change and ground deformation of joints during earthquakes, etc., and does not impair the water stop performance.
[0004]
However, when the amount of expansion and contraction assumed at the time of pipeline design is exceeded, for example in the case of a large earthquake, the insertion port 2a may come out from the receiving port 1a. For this reason, at the time of expansion and contraction, in order to maintain the water stop function, it is required that the separation preventing function works. As the joint structure having the separation preventing function, there are an NS-type joint, an SII-type joint, and the like shown in FIGS. In both the joints, the lock ring 3 is provided on the inner surface of the receiving port 1a, the projection 2b is provided on the insertion port 2a, and the projection 3b is engaged with the lock ring 3, so that the insertion port 2a is removed from the receiving port 1a. To prevent. In the figure, 3a is a centering rubber of the lock ring 3, and 3c is a backup ring.
[0005]
The pipes composed of pipe joints that have this allowance for expansion and contraction and the function to prevent separation (prevention of detachment function) have a chain structure. Thus, after the joint follows expansion and contraction and bends, and further extends to the limit, the pipe line is maintained by the separation preventing structure.
[0006]
In recent years, since seismic resistance is desired, a chain structure using an expansion joint with a detachment prevention function such as the NS, S, and SII types described above has been adopted for the pipe. A type with no withdrawal prevention function such as A type is used. For this reason, in order to make such a pipe line composed of a joint with a separation preventing function, it is possible to replace the pipe with a pipe line such as an NS type joint, but the cost becomes high.
[0007]
For this reason, conventionally, a technique for imparting a function to a pipeline having no separation preventing function has been developed, and one of them is disclosed in Japanese Patent Laid-Open No. 10-122456. In this technique, as shown in FIG. 23, ring-shaped plates 11 and 12 are fitted to the receiving port 1a and the insertion port 2a, respectively, and a lock member 13 is provided on the plate 12 of the insertion port 2a. By press-contacting the insertion port 2a with the bolt 14, the lock member 13 is inserted into the outer peripheral surface of the insertion port 2a to fix the plate body 12. The screw rod 15 is passed between the plate bodies 11 and 12, and the expansion and contraction between the receiving port 1a and the insertion port 2a is achieved by the contact and separation of the plate bodies 11 and 12 which are allowed by the nuts 16 at both ends of the screw rod 15. Stop withdrawal.
[0008]
In the flexible structure pipe using the joint B having the detachment prevention and expansion / contraction function, various bent pipes such as a curved pipe, a T-shaped pipe, and a fallen pipe are provided in the bent portion and the branched portion shown in FIG. Although 1 'is adopted, the non-average force P works on these pipe line portions due to the internal water pressure. At this time, if the pipe joint B is expandable / contractable, the function may cause the pipes 1, 1 ′ to move, creating a void in the ground and causing adverse effects such as depression on the upper road surface. . For this reason, normally, the joint composed of the deformed pipe 1 ′ is assumed to be an integrated one having no expansion and contraction and bending functions, so that the deformed pipe 1 ′ does not move relative to the other connecting straight pipes 1 due to the non-average force P. I have to.
[0009]
For example, in the pipe joint B shown in FIG. 23, as indicated by a chain line in FIG. 23, the nut 16 is brought into contact with the ring-shaped plate body 12 to reduce the movement width of the insertion port 2a to form an integrated pipe joint. . In the NS type joint, as shown in FIG. 24, in the pipe joint B ′ in which the insertion port 2a of the deformed tube 1 ′ is inserted into the straight tube receiving port 1a, the centering is provided on the inner surface of the receiving port 1a. A liner 9 is provided via a rubber 9a. The liner 9 prevents the insertion port 2a from being inserted, and the movement width of the projection 3b with respect to the lock ring 3 is reduced to form an integrated pipe joint. In the figure, 1c is a bending prevention protrusion. Further, as shown in FIG. 25, in the pipe joint B ″ in which the insertion port 2a of the straight tube 1 is inserted into the receiving port 1a of the deformed tube 1 ′, the movement width of the projection 3b with respect to the lock ring 3 is reduced. Then, an anti-bending ring 8a is connected to the outer surface of the insertion port 2a by a set bolt 8b to form an integrated pipe joint, and a joint B 'painted black in FIG. Yes (hereinafter the same).
[0010]
In addition, as shown in FIG. 30, as a common protective method common to A, T, K type general pipes and SII, NS type seismic pipes, concrete is enclosed so as to surround the deformed pipe 1 ′ where the non-average force P works. There is also a structure that resists the non-average force P by immobilizing the deformed pipe 1 'by the concrete block C.
[0011]
Furthermore, as shown in FIG. 31, there is a configuration in which concrete is cast so as to surround the middle of the deformed pipe 1 ′ and not in the whole, and the deformed pipe 1 ′ is fixed by the concrete block C. At this time, the gap between the insertion port 2a of the deformed tube 1 'and the receiving port 1a of the straight tube 1 is suppressed as the integrated joint B' shown in FIG.
[0012]
In the pipe line in which the parts of the deformed pipe 1 ′ are integrated using these integrated joints B ′ and B ″, even if the deformed pipe 1 ′ part is integrated, the subsequent straight pipe 1 can move. There is a risk that the joints B ′ and B ″ on which the non-average force P works include the straight pipe 1. For this reason, as shown in FIG. 29, also in the joint part of the straight pipe 1 and the straight pipe 1, the unstretchable integration is aimed at. In the joint B ′ between the straight pipes 1, as shown in FIGS. 26 and 27, the liner 9 is provided and integrated through the centering rubber 9 a in the same manner as described above. In the case of a pipeline, a KF joint structure shown in FIG. 28 may be employed. In this way, the integrated structure (length L in FIGS. 29 to 33) becomes longer, so that the braking force due to the ground reaction force Q and the tube friction force R is increased, and the non-average force P is resisted. Thus, the pipe movement in the pipe joint is effectively prevented.
[0013]
[Problems to be solved by the invention]
In the joint structure shown in FIG. 23, since one plate 12 is fixed to the insertion port 2a by biting, if a large pulling force is applied due to a large earthquake or the like, the biting force resists the pulling force. There is a risk that the insertion port 2a may come out of the receiving port 1a.
[0014]
In the structure shown in FIGS. 30 and 31, the installation of the concrete block C is complicated and causes an increase in cost. In the figure, F indicates a soft structure portion. In addition, it is difficult to secure a space for embedding the concrete block C in a congested place such as a recent urban pipe where the pipe line is complicated and bent pipes continue. In addition, in the straight pipeline shown in FIG. 32 (a), when another buried object D is newly installed on the pipeline, as shown by the oblique lines in FIG. 32 (b), as shown in FIG. Although it is necessary to make a detour (turn around), as shown in FIG. 33, when concrete block C is placed, the concrete curing time is required, so the construction period becomes longer and water flow is resumed. take time. Normally, water supply, sewage, industrial water supply, etc. are important lifelines that are indispensable for daily life and industrial activities. Therefore, it is preferable that the water cut-off time associated with renewal of existing pipelines and cut-off piping is as short as possible. Similarly, the construction period will be longer in the construction of new pipelines.
[0015]
Thus, conventionally, the joint portions B ′ and B ″ of the deformed pipe 1 ′ are immovable. However, the joint portion is also immobile with respect to the non-average force P, and is not subject to large ground fluctuations such as during an earthquake. As long as the insertion port 2a does not come out from the port 1a, it is preferable that the other tube 1 moves in the axial direction to follow the deformed tube 1 'to prevent breakage of the pipe line and ensure water stopping performance.
[0016]
The first object of the present invention is that the deformed pipe portion exerts a separation preventing force (generally 3DKN) at the time of an earthquake without placing concrete, and can resist non-average forces. The second problem is to follow large ground fluctuations such as the above, and to finally exhibit the ability to prevent separation.
[0017]
[Means for Solving the Problems]
In order to achieve the above first object, the present invention presupposes a pipe joint comprising a flanged receiving port, spanning a flange between adjacent flanges of the pipe, and by this flange, It was decided to regulate contact and separation.
[0018]
Since it is a flange provided at the receiving port, the flange has sufficient resistance unless it is damaged, and the flange is restricted as long as it does not cause damage to the flange and damage to the locking parts on both ends. Is done. For this reason, the joint portions at both ends of the deformed pipe are integrated, and the deformed pipe does not move due to the non-average force, and it is not necessary to integrate the pipe including the deformed pipe by a concrete block or the like.
[0019]
Further, in order to achieve the second problem, in the present invention, in the configuration in which the flange is spanned between the flanges, when the flange does not move with an average force against the flange and a large ground fluctuation occurs, It moved with respect to the flange to follow the fluctuation.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
As an embodiment of the present invention for achieving the first object, a pipe joint in which an insertion port of another pipe is inserted into a receiving port of one pipe is configured in order in the pipeline direction, and at least the two pipes are In the underground buried pipe structure having a pipe joint with one of the deformed pipes, a retaining rod is spanned between the flanges of the pipe joint at both ends of the deformed pipe, and both ends of the retaining collar are fixed to the flange, respectively. A configuration in which the gap between both flanges cannot be expanded can be adopted.
[0021]
As an example of a configuration in which the gap between the two flanges is not expandable, a locking member is fitted into the flange, the retaining rod is inserted into the locking member, and the retaining rod is prevented from coming off from the locking member. The thing provided with the protrusion for a use can be mentioned, A screwed nut etc. can be employ | adopted for the protrusion . At this time, if the bolt that contacts the flange is screwed in from the side wall of the locking member, the locking member and the flange can be securely fixed, and the influence of the fitting tolerance between the locking member and the flange is affected. Therefore, the construction accuracy of the design expansion / contraction amount of the pipe joint portion can be improved.
[0022]
The locking member includes a projecting piece applied to the outer surface of the pipe and a hook that extends from the projecting piece to the flange and engages, and the retaining member is inserted through the projecting piece. The end may be provided with a protrusion for preventing the locking member from coming off. In the case of a locking member having this configuration, there is an advantage that a retaining rod can be routed between flanges by bypassing the pressing wheel in the case of having a pressing wheel such as an A-shaped or K-shaped joint and a T bolt / nut. is there.
[0023]
In the structure of this locking member, if it is divided in the circumferential direction of the tube, it is preferable to provide a restraining member that extends over the entire outer circumference of each locking member to prevent the floating of each divided member.
[0024]
Also, in the middle of the retaining rod, a restraining tool is provided to reach the entire circumference of the deformed pipe, and with this restraining tool, the retaining rod is pressed against the outer peripheral surface of the pipe so that the retaining rod is aligned with the pipe as much as possible. Good.
[0025]
The embodiment of the present invention that achieves the second problem is that, in each of the above embodiments, one end of the retaining rod is fixed via an inclusion, and the inclusion is broken by an unbalanced force due to water pressure in the pipe. Instead, it is possible to adopt a configuration in which it is destroyed by the compressive force of the earthquake.
[0026]
The inclusions may be any as long as they exhibit their functions. For example, a foamed resin molded body can be adopted, and at that time, the foamed resin molded body is sandwiched between rigid plates, One in which one end of the retaining rod penetrates may be employed. Since the pressure is received by the rigid plate and uniformly applied to the entire resin molded body, even the foamed resin molded body can easily sufficiently withstand the non-average force.
[0027]
【Example】
One embodiment is shown in FIGS. 1 to 3, and this embodiment relates to a pipe line formed by a K-shaped joint. In the joint portion B between the straight pipes 1 and 1, the flange 1b of each receiving port 1a is divided in half. A ring-shaped locking member 20 is fitted, a retaining rod 30 made of a PC steel rod is inserted between the locking members 20, and nuts 31 are screwed and welded to both ends of the rod 30. The length of the retaining rod 30 is appropriately selected so that the space between the nuts 31 and 31 is the allowable extension length of the joint portion of both pipes 1 and 1. Further, the number of retaining rods 30 in the pipe circumferential direction is arbitrarily set to the equidistant.
[0028]
Further, in the joint portion B with the deformed pipe 1 ′, a retaining rod 30, a PC steel wire 30 ′ that can be bent, and the like are used, and the middle portion thereof is fastened by a half-constraint 35. As shown in FIG. 3, the restraining tool 35 is formed into a ring shape by fastening projecting pieces at both ends of the divided member with bolts and nuts 36. At this time, the nut 31 is brought into contact with the locking member 20 so that the gap between the flanges 1b and 1b cannot be expanded. If necessary, as shown in FIG. 29, the expansion between the adjacent straight pipes 1 and 1 between the joint portions is similarly disabled.
[0029]
The locking member 20 is formed into a ring shape by fastening the projecting pieces 21 and 21 at both ends of the half-divided divided member with bolts and nuts 22. The cross-section of the locking member 20 is U-shaped, and is fitted so that the flange 1b of the receiving port 1a enters the U-shaped portion 23. Protrusions 24 are formed on the both side walls of the U-shaped portion 23 at a circumference of about six equal parts, and the protrusions 24 are deeply locked to the flange 1b to reliably prevent left and right detachment. The number of protrusions 24 is arbitrary depending on the number of T bolts and nuts 5. The attachment of these locking members 20 and retaining rods 30 and 30 'is performed by excavating the required length around the existing pipeline (excavation groove H) as shown by the chain line in FIG.
[0030]
The pipe formed by the pipes 1, 1 ′, etc. connected to the locking member 20 by the retaining rods 30, 30 ′ is composed of the pipes 1,. With respect to the movement in the withdrawal direction, the insertion port 2a moves with respect to the receiving port 1a within a range regulated by the retaining rod 30, and the displacement is absorbed to maintain the watertightness. When the amount of displacement reaches an allowable amount, the nut 31 of the retaining rod 30 abuts against the locking member 20 to prevent further displacement, thereby preventing the insertion port 2a from coming out of the receiving port 1a. At this time, in the joint part B of the adjacent pipes 1 and 1, if the displacement amount of the insertion port 2a with respect to the receiving port 1a does not reach the allowable value, the force from the side of the tube 1 that is prevented from coming off is The tube 1 is moved until the displacement amount becomes an allowable value. On the other hand, in the joint portion B of the deformed pipe 1 ′, the deformed pipe 1 ′ and the adjacent straight pipes 1 and 1 are made immovable in the pipe axis direction by the retaining rods 30 and 30 ′ and integrated. . For this reason, it does not move by the non-average force P. In this way, the pipeline of this configuration absorbs the expansion and contraction by the entire pipeline while resisting the non-average force P.
[0031]
The number and thickness of the PC steel bars and the PC steel wires (retaining rods) 30 and 30 ′ in the pipe circumferential direction are appropriately set in consideration of the extension force of the applied joint portion B. Further, the elongation of these rods (wires) 30 and 30 'has a short wire length, and therefore does not need to be taken into consideration when the joint is pulled out.
[0032]
FIG. 4 shows an embodiment in which an adjustment bolt 25 is screwed into the other side wall of the U-shaped portion 23 of the locking member 20, and the locking member 20 is brought into contact with the flange 1b by contacting the bolt 25 with the flange 1b. Securely (without rattling). For this reason, the influence of the thickness tolerance etc. of the flange 1b decreases, and the construction accuracy of the design expansion / contraction amount can be increased.
[0033]
In the embodiment shown in FIGS. 5 to 9, the locking member 20 has a saddle shape straddling the flange 1b. FIGS. 6 and 7 show the receiving side 20a, and FIGS. 8 and 9 show the insertion side. The thing 20b is shown. Each includes a transmission portion (projection piece) 26 into which the retaining rods 30 and 30 'are inserted and locked, and a hook-shaped portion (hook) 27 locked to the flange 1b. Each locking member 20a, 20b is divided in half, and is fastened in a ring shape from the bolt / nut 22 as described above. In addition, the number of divisions of the locking member 20 including the locking members 20a and 20b is not limited to two and may be three or more.
[0034]
In this embodiment, as shown in FIG. 5 (a), both locking members 20a and 20b are fitted into one joint B, and the locking members 20a and 20b are hook-like portions 27 as shown in FIG. 5 (b). together with to shifting in the circumferential direction engaged to the flange 1b across flange 1b. At this time, the flange-like portion 27 and the locking piece 27a of the receiving side locking member 20a are inserted between the flange 1b and the push ring 4 so that the thickness t is made thinner than that of the opening side locking member 20b. It is easy. By reducing the thickness t of the receiving side locking piece 27a, the width w of the receiving side locking piece 27a is made wider than that of the insertion port side, and the same strength as the insertion port side with respect to the tensile force. It is said.
[0035]
In this embodiment, the positions of the retaining rods 30 and 30 'between the joint portions are shifted in the circumferential direction one by one in the direction of the pipe axis, but in both the locking members 20a and 20b, FIG. As shown in FIG. 3, the retaining rods 30 and 30 ′ can be made on the same axis over the entire length in the tube axis direction by making the holes 29 of the retaining rods 30 and 30 ′ long or by shifting in the circumferential direction.
[0036]
In the embodiment shown in FIG. 11 to FIG. 12, the locking members 20a and 20b are divided in accordance with the number of retaining rods 30 and 30 ′ in the above embodiment (divided saddle pieces 20a ′ and 20b ′). It is. In this embodiment, as shown in FIG. 11, the divided saddle pieces 20a ′ and 20b ′ are fastened with the half-constrained fixture 28 shown in FIG. As the fastening portion, either or both of the connecting portion of the transmission portion 26 and the hook-shaped portion 27 and the middle portion of the hook-shaped portion 27 are appropriately selected.
[0037]
FIG. 13 shows a construction example in the case of a T-shaped joint. The adjusting bolt 25 shown in FIG. 4 can also be adopted in this embodiment and each embodiment described later.
[0038]
In the embodiment shown in FIG. 14 to FIG. 17, the joint portion B which cannot be expanded, such as both ends of the deformed pipe 1 ′, is provided with a function of following ground changes such as an earthquake. 'Is a little longer, and an inclusion 40 that is not broken by the non-average force P of the water pressure in the pipe and broken by the compressive force due to the earthquake is interposed in the portion protruding from the locking member 20. As shown in FIGS. 14B and 15B, the inclusion 40 is obtained by integrating a foamed resin molded body 41 with an iron plate 42, and the strength of the molded body 41 is an added average. The power P is appropriately determined in consideration of the force P. As shown in FIGS. 14 and 16, the inclusion 40 may be interposed for each of the scissors 30 and 30 ′. However, as shown in FIGS. 15 and 17, the inclusion 40 may be ring-shaped, Moreover, several may be sufficient. 14 and 15 show the case of a K-type joint, and FIGS. 16 and 17 show the case of a T-type joint. Instead of the foamed resin molded body 41, other various materials can be adopted.
[0039]
In these embodiments, normally, due to the presence of the inclusion 40, the deformed pipe 1 ′ and the straight pipes 1 and 1 ′ on both sides thereof are fixed in the direction of the pipe axis by the retaining rods 30 and 30 ′. And are not moved by the non-average force P. If a large ground fluctuation such as an earthquake is applied, the inclusion 40 is destroyed due to the fluctuation, and the movement of one end of the retaining rods 30 and 30 ′ toward the locking member 20 is allowed. Also in the joint part B and the like, the movement in the tube axis direction is allowed to follow the fluctuation. Its follow-up is performed until the nut 31 abuts against the locking member 20 through the iron plate 42, thereafter is retained in the joint portion B of the two pipe 1, 1 'are.
[0040]
In these embodiments, the inclusions 40 are provided only at one end of the retaining rods 30 and 30 '. However, the inclusions 40 may be provided at the other end, that is, both ends of the retaining rods 30 and 30'. In this way, the follow-up width can be widened. Further, each example is a case of A, K, and T type joints, but it goes without saying that the present invention can also be applied to a joint having an anti-separation and expansion / contraction function such as NS and SII types. is there. In this case, in the joint B ′ shown in FIG. 29, an intervening structure of inclusions 40 in which the liner 9 is omitted is employed.
[0041]
The pipe structure of the deformed pipe according to the present invention can be adopted in any of new pipe laying work for fluid transportation piping including water supply, existing pipe renewal work, and pipe line change work accompanying other company pipe laying.
[0042]
【The invention's effect】
In the present invention, as described above, the flanges are spanned between the flanges at both ends of the deformed pipe, and the flanges are integrated with each other by using the flanges. The ability to prevent withdrawal can be applied. In addition, even if the installation location of the deformed pipe is close and the integrated length overlaps, by adding inclusions that are crushed by the seismic force, it is possible to continue the integration of the pipeline over a wide area during an earthquake. Can be prevented. In this way, it is possible to construct more flexible structures that are advantageous to earthquakes than pipes designed and constructed by conventional methods.
[Brief description of the drawings]
FIG. 1 is a partially cut front view of an embodiment. FIG. 2 shows the pipe joint portion of FIG. 1, (a) is a cut right side view, and (b) is a cut front view of the main part. FIG. 4 shows another embodiment, (a) is a cutaway front view of the main part, (b) is a right side view of the cut main part. FIG. 5 shows another embodiment, FIG. 6A is a cross-sectional view taken along the line AA of FIG. 6A. FIG. 6 is a perspective view of the receiving-side locking member of the same embodiment. FIG. The left side view of the stopper member, (b) is the same cut front view, (c) is the right side view [FIG. 8] The perspective view of the insertion side locking member of the same embodiment [FIG. FIG. 10B is a left side view of the locking member, FIG. 10B is a cutaway front view thereof, and FIG. 10C is a right side view thereof. FIG. 10A is a side view of another example of the locking member. Another embodiment is shown, (a) is a cutaway front view of the main part, (b) is a cross-sectional view taken along line AA of (a). 12 (a) is a perspective view of the receiving side split saddle piece of the embodiment, FIG. 12 (b) is a perspective view of the insertion side split saddle, and FIG. 12 (c) is a perspective view of the restraint tool. 14A is a cut front view of another embodiment, FIG. 14B is a cross-sectional view of the inclusion, and FIG. 15A is a cut view of the other embodiment. Front view, (b) is a cross-sectional view of the inclusions. [FIG. 16] Front cutaway view of the main part of another embodiment. [FIG. 17] Front cutaway view of the main part of another embodiment. FIG. 19 is a cross-sectional view of the main part of another pipe joint. FIG. 20 is a cross-sectional view of the main part of another pipe joint. FIG. 21 is a cross-sectional view of the main part of the other pipe joint. [Fig. 23] Cross-sectional view of the main part of another pipe joint [Fig. 24] Cross-sectional view of the main part of another pipe joint [Fig. 25] Cross-sectional view of the main part of other pipe joint [Fig. Cross-sectional view of the main part of the pipe fitting [Fig.27] FIG. 28 is a sectional view of the main part of another pipe joint. FIG. 29 is an explanatory diagram of piping. FIG. 30 is an explanatory diagram of conventional piping. FIG. 31 is an explanatory diagram of conventional piping. b) Both cutting piping explanatory diagram [Fig. 33] Cutting piping explanatory diagram [Explanation of symbols]
1, 1 'pipe 1a receiving port 1b receiving flange 2a insertion port 20, 20a, 20b locking member 20a', 20b 'split saddle piece 22 bolt / nut 23 locking member U-shaped portion 24 protruding portion of locking member 25 Adjustment bolt 26 Transmission part (projection piece)
27 Hook-shaped part (hook)
28 Restraint 30, 30 'Retaining rod (PC steel bar, PC steel wire)
31 nuts (stop for the butt section missing)
35 Restraint 40 Inclusion 41 Foamed resin molded body 42 Rigid plate (iron plate)

Claims (4)

一の管(1、1’)の受口(1a)に他の管(1、1’)の挿し口(2a)を挿入した管継手(B)を管路方向に順々に構成し、前記両管の少なくとも一方を異形管(1’)とした管継手(B)を有する土中埋設管路構造において、
上記異形管(1’)両端の管継手におけるフランジ(1b)にそのフランジ(1b)に向かって断面コ字状の係止部材(20)をそのコ字状部(23)内にフランジ(1b)が入るように嵌め、その係止部材(20)を嵌めた両フランジ(1b、1b)間に抜け止め杆(30’)を掛け渡すとともに、その抜け止め杆(30’)の端を前記係止部材に挿し通し、その抜け止め杆(30’)の端には係止部材からの抜け止め用突部(31)を設けて抜け止め杆(30’)の両端をそれぞれ前記フランジ(1b)に固着して両フランジ(1b、1b)間を拡張不能としたことを特徴とする土中埋設管路構造。
A pipe joint (B) in which an insertion opening (2a) of another pipe (1, 1 ') is inserted into a receiving opening (1a) of one pipe (1, 1') is configured in order in the pipe line direction, In the underground buried pipe structure having a pipe joint (B) in which at least one of the two pipes is a deformed pipe (1 ′),
The profiled pipe (1 ') the U-shaped portion of the U-shaped cross section of the locking member (20) towards the flange the flange (1b) (1b) at both ends of the pipe joint (23) flange in (1b ) fitted so enters, flanges (1b which fitted the locking member (20), 1b) 'with to pass over the), the retaining rod (30' stop rod (30 exits between the end of) The locking member is inserted into the retaining member (30 '), and a retaining projection (31) is provided at the end of the retaining member (30'). A buried underground pipe structure characterized in that it cannot be expanded between both flanges (1b, 1b) by being fixed to 1b).
一の管(1、1’)の受口(1a)に他の管(1、1’)の挿し口(2a)を挿入した管継手(B)を管路方向に順々に構成し、前記両管の少なくとも一方を異形管(1’)とした管継手(B)を有する土中埋設管路構造において、
上記異形管(1’)両端の管継手におけるフランジ(1b)間に抜け止め杆(30’)を掛け渡し、その抜け止め杆(30’)の記フランジ(1b)との係止部材(20a、20b)が、管外面に当てがわれる突片(26)と、その突片(26)から前記フランジ(1b)に向かって延びてそのフランジ(1b)を跨いで係止するフック(27)とから成り、前記突片(26)に前記抜け止め杆(30’)を挿し通して、その抜け止め杆(30’)の端には係止部材からの抜け止め用突部(31)を設けて、両フランジ(1b、1b)間を拡張不能としたことを特徴とする土中埋設管路構造。
A pipe joint (B) in which an insertion opening (2a) of another pipe (1, 1 ') is inserted into a receiving opening (1a) of one pipe (1, 1') is configured in order in the pipe line direction, In the underground buried pipe structure having a pipe joint (B) in which at least one of the two pipes is a deformed pipe (1 ′),
The profiled pipe (1 ') passing over the flange (1b) retaining rod between (30 at both ends of the pipe joint'), the locking member of the previous SL flange (1b) of the retaining rod (30 ') ( 20a, 20b) a projecting piece (26) applied to the outer surface of the pipe, and a hook (27 ) extending from the projecting piece (26) toward the flange (1b) and straddling the flange (1b). ), And the retaining rod (30 ′) is inserted through the protruding piece (26), and the retaining projection (31) from the locking member is attached to the end of the retaining rod (30 ′). A buried underground pipe structure characterized in that the space between the flanges (1b, 1b) is not expandable.
上記抜け止め杆(30’)の中程外周に半割り円環状拘束具(35)を設け、その拘束具(35)の半割り分割部材両端の突片をボルト・ナット(36)で締結することによって、上記管(1’)全周に至ってその抜け止め杆(30’)を管外周面に押し付けるようにしたことを特徴とする請求項1又は2に記載の土中埋設管路構造。A half-circular annular restraining tool (35) is provided on the middle outer periphery of the retaining rod (30 '), and the projecting pieces at both ends of the half-dividing member of the restraining tool (35) are fastened with bolts and nuts (36). it allows soil buried duct structure according to claim 1 or 2, characterized in that the tube (1 ') the retaining rod reached the entire periphery (30') to urge the Kangaishu surface. 上記管継手(B)がその管軸方向の伸縮機能を有する場合は、上記係止部材(20、20a、20b)を挿し通った抜け止め杆(30’)の一端介在物(40)を介在して上記抜け止め用突部(31)を設け、この介在物(40)は、管路内水圧による不平均力(P)では破壊せず、地震による圧縮力では破壊して、前記抜け止め杆(30’)の一端の前記係止部材(20、20a、20b)方向への移動を許容して前記異形管(1’)の管軸方向の移動を許容し、前記抜け止め用突部(31)と係止部材(20、20a、20b)が当接すると、それ以後は上記両管(1、1’)の管継手(B)における抜け止めがされるものとしたことを特徴とする請求項1乃至のいずれかに記載の土中埋設管路構造。 When the pipe joint (B) has a function of expanding and contracting in the pipe axis direction , the inclusion (40) is attached to one end of the retaining rod (30 ′) inserted through the locking member (20, 20a, 20b). the exit is provided a stop projection (31) with Mashimashi through, the inclusions (40) does not destroy the non-round force (P) by conduit pressure, and destroyed by the compressive force due to an earthquake, the One end of a retaining rod (30 ′) is allowed to move in the direction of the locking member (20, 20a, 20b) to allow movement of the deformed tube (1 ′) in the tube axis direction, and the retaining member When the protrusion (31) and the locking member (20, 20a, 20b) come into contact with each other, the pipe joint (B) of both the pipes (1, 1 ′) is to be prevented from coming off thereafter. The underground buried pipe structure according to any one of claims 1 to 3 .
JP2001043144A 2001-02-20 2001-02-20 Pipe line structure with deformed pipe Expired - Lifetime JP4741093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001043144A JP4741093B2 (en) 2001-02-20 2001-02-20 Pipe line structure with deformed pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001043144A JP4741093B2 (en) 2001-02-20 2001-02-20 Pipe line structure with deformed pipe

Publications (2)

Publication Number Publication Date
JP2002243076A JP2002243076A (en) 2002-08-28
JP4741093B2 true JP4741093B2 (en) 2011-08-03

Family

ID=18905359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001043144A Expired - Lifetime JP4741093B2 (en) 2001-02-20 2001-02-20 Pipe line structure with deformed pipe

Country Status (1)

Country Link
JP (1) JP4741093B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100945944B1 (en) 2009-10-19 2010-03-05 (주)한국친환경연구원 A coupling connection of pipe

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2975344B1 (en) * 1998-06-22 1999-11-10 国産ラセン管株式会社 Conduit connection device
JP3398060B2 (en) * 1998-06-30 2003-04-21 株式会社栗本鐵工所 Propulsion method and pipe joints used for it
JP2000192779A (en) * 1998-12-28 2000-07-11 Kubota Corp Joint structure of pipe for use in earthquake-resistant pipe propulsion method

Also Published As

Publication number Publication date
JP2002243076A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
US20040207201A1 (en) Corrugated plastic pipe sections having flanged ends and structurally tight joints thereof
JP2016138637A (en) Pipe fitting structure
EP3601864B1 (en) Positive lock system for restrained joints of ductile iron spun pipes and fittings
KR101844820B1 (en) flexible pipe joint apparatus improved pressure resistance
JP4741093B2 (en) Pipe line structure with deformed pipe
JP7144241B2 (en) Propulsion force transmission device for seismic pipe propulsion installation method
JP2001330185A (en) Aseismatic joint and aseismatic pipeline
JPH08165700A (en) Joint for closed conduit
JPH11148582A (en) Plastic pipe fitting
JP3677446B2 (en) Seismic duct structure
JP3436864B2 (en) Captive fittings
JP3275298B2 (en) Captive fittings
JP3185858B2 (en) Captive fittings
JP3514563B2 (en) Seismic fluid piping system
GB2550933A (en) Self-aligning pipe coupling
JP2002156079A (en) Pipe joint structure
JPH1163328A (en) Earthquake resistant detachment preventing collar
JP4871112B2 (en) Telescopic tube water leakage prevention device
JP3402171B2 (en) Captive fittings
JP6300161B2 (en) Seismic detachment prevention joint for curved pipe section and underground pipe using the same
JP3303069B2 (en) Captive fittings
JP3939100B2 (en) Earthquake resistant joints and earthquake resistant pipelines
JP7326524B2 (en) Separation prevention structure for pipe connections
JP3373396B2 (en) Propulsion method and pipe joint structure
JP2009019757A (en) Tubular deformable conduit and method for constructing conduit temporary pipe for clean water or sewage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110506

R150 Certificate of patent or registration of utility model

Ref document number: 4741093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

EXPY Cancellation because of completion of term