JP4740458B2 - Cosmetics, surface-hydrophobized silica-coated metal oxide particles, silica-coated metal oxide sol, and production methods thereof - Google Patents

Cosmetics, surface-hydrophobized silica-coated metal oxide particles, silica-coated metal oxide sol, and production methods thereof Download PDF

Info

Publication number
JP4740458B2
JP4740458B2 JP2000593672A JP2000593672A JP4740458B2 JP 4740458 B2 JP4740458 B2 JP 4740458B2 JP 2000593672 A JP2000593672 A JP 2000593672A JP 2000593672 A JP2000593672 A JP 2000593672A JP 4740458 B2 JP4740458 B2 JP 4740458B2
Authority
JP
Japan
Prior art keywords
metal oxide
silica
coated metal
oxide sol
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000593672A
Other languages
Japanese (ja)
Inventor
紘一 和田
伸晃 石井
満治 入江
和夫 関口
道裕 ▲高▼間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2000593672A priority Critical patent/JP4740458B2/en
Priority claimed from PCT/JP2000/000088 external-priority patent/WO2000042112A1/en
Application granted granted Critical
Publication of JP4740458B2 publication Critical patent/JP4740458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/58Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing atoms other than carbon, hydrogen, halogen, oxygen, nitrogen, sulfur or phosphorus
    • A61K8/585Organosilicon compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0212Face masks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/27Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/28Zirconium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/29Titanium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0047Preparation of sols containing a metal oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0069Post treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • B01J13/22Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • C09C1/043Zinc oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3684Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/26Optical properties
    • A61K2800/262Transparent; Translucent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/04Preparations containing skin colorants, e.g. pigments for lips
    • A61Q1/06Lipsticks
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Description

関連出願との関係
本出願は、1999年1月28日付けで出願された米国仮出願第60/117,551号の優先権の利益を主張するものである。
技術分野
本発明は化粧料、表面疎水化シリカ被覆金属酸化物粒子、シリカ被覆金属酸化物ゾル、及びこれらの製法、より特定的には、化粧料、特に紫外線遮蔽用化粧料、及びそれに用いるのに好適な表面疎水化シリカ被覆金属酸化物粒子とその製法、並びに、特定の赤外吸収スペクトルピークを有し、かつ緻密で実用的なシリカ膜で被覆されており、さらに小さな一次粒径で良好な分散性を有し、化粧料、特に紫外線遮蔽用化粧料に用いるのに好適なシリカ被覆金属酸化物ゾル、シリカ被覆後さらに疎水性付与剤にて表面処理してなる表面疎水化シリカ被覆金属酸化物ゾル及びその製法に関する。更に詳しくは、本発明は、化粧時の使用感に優れ、紫外線遮蔽能が高く、しかも光毒性の低い、保存安定性に優れた化粧料と、特定の赤外吸収スペクトルピークを有し、かつ緻密で実用的なシリカ膜で被覆し、さらに疎水性付与材により表面処理された表面疎水化シリカ被覆金属酸化物粒子に関し、この表面疎水化シリカ被覆金属酸化物粒子は、各種紫外線遮蔽材、化粧品、顔料等に利用できる。また、本発明は、同様に、紫外線遮蔽能が高く、しかも光触媒活性の抑制効果が高く、保存安定性に優れ、さらに化粧時の使用感や透明感に優れた、前記シリカ被覆金属酸化物ゾル及び/又は表面疎水化シリカ被覆金属酸化物ゾルを含有する化粧料に関する。
背景技術
紫外線遮蔽能を有する化粧料には、近年、紫外線遮蔽能に優れ、安全性が高い無機系紫外線遮蔽材が多く用いられている。無機系紫外線遮蔽材としては、チタニア、酸化亜鉛といった金属酸化物の粉末が一般に使われている。
しかしながら、これらの金属酸化物粒子をそのまま化粧料中に配合した場合、使用感が悪くなる、あるいは、金属酸化物粒子が有する光触媒活性により人体、皮膚に悪影響を及ぼすといった問題が知られており、金属酸化物粒子に何らかの被覆を行う必要がある。特に、光触媒反応で化学変化しにくい無機物質による被覆が好ましく行われている。
しかしながら、無機質被覆金属酸化物粒子は、化粧料配合時高い光触媒活性の抑制効果を有しているが、油性化粧料、w/o分散型化粧料、あるいは汗・水により化粧崩れしにくい撥水性化粧料に配合した場合、疎水性の基材中での分散が十分でなく、上記の優れた粉体の特性が十分に発揮できないという不都合があった。
また、上記のような紫外線遮蔽能に優れ、安全性が高い無機系紫外線遮蔽材として広く使われているチタニア、酸化亜鉛といった金属酸化物の粒子をそのまま化粧料中に配合した場合には、化粧時の使用感が悪くなる、あるいは、金属酸化物粒子が有する光触媒活性により人体に悪影響を及ぼすといった問題があるので光触媒活性能を持たない無機物質で表面を被覆することが行われている。アルミナ、シリカ等で被覆された金属酸化物粒子が市販されているが、被覆による光触媒活性の抑制と化粧料に配合した時の良好な使用感を両方満足できる製品は知られていなかった。
本発明者らは、1150〜1250cm−1と1000〜1100cm−1の赤外吸収スペクトルのピーク強度の比I(I=I1/I2:式中I1は1150〜1250cm−1の範囲内にある最大吸収ピーク強度、I2は1000〜1100cm−1の範囲内にある最大吸収ピーク強度を表す。)が0.2以上であり、かつ、屈折率が1.435以上であるシリカ膜を有するシリカ被覆金属酸化物粒子、その製造法及びそれを含有する化粧料について開示し、膜厚0.1〜100nmのシリカ膜で被覆した、テトラリン自動酸化法により測定した光触媒活性度が60Pa/min.以下である前記シリカ被覆金属酸化物粒子を含有することにより、使用感が良好で、しかも光触媒活性の抑制効果が高く、保存安定性に優れた紫外線遮蔽用化粧料が得られることを示した(PCT/JP98/01133号)。
近年、紫外線遮蔽用化粧料において高い紫外線遮蔽能に加え良好な使用感や高い透明感が要求されるようになってきている。従って、紫外線遮蔽材として使用される金属酸化物粒子に対しても、化粧料配合時に良好な使用感や透明感を与えるように、従来よりも一次粒径が小さくかつ分散性が優れたものが望まれてるようになっている。本発明者らの発明に基づく前記シリカ被覆金属酸化物粒子は、光触媒活性の抑制、使用感といった優れた特性を有してはいるが、化粧料配合時の透明性を高めるために、さらなる微粒子化と分散性の向上が望まれていた。
しかし、一次粒径の小さな金属酸化物紛は、溶媒に懸濁するとダマが発生するため、高分散させることが容易でなく、シリカ被覆に際し超音波を用いたり、攪拌を長時間行なうなど通常よりも余分な工程が必要なため、経済上問題であった。
本発明の第1の目的は、油性基材中での金属酸化物粒子の分散が良好であり、化粧時の使用感に優れ、紫外線遮蔽能が高く、光毒性の低く、保存安定性に優れた、化粧料を提供することであり、また特定の特性を有し、形状追随性の高い、緻密で実用的なシリカ被膜に被覆され、さらに表面が疎水化された金属酸化物粒子及びその経済的な製造法を提供することである。
本発明の第2の目的は、前記シリカ被覆金属酸化物ゾルの経済的な製造法を提供すること、緻密で実用的なシリカ膜で被覆され、さらに分散性及び透明性が向上した金属酸化物のゾルを提供すること、化粧料中にシリカ被覆金属酸化物が良好に分散し、特に透明感に優れた紫外線遮蔽用化粧料を提供することである。
発明の開示
上記の目的を達成する本発明は、以下の各発明にある。(1)〜(21)は特に第1の目的に関し、(22)〜(48)は特に第2の目的に関する。
(1)シリカ被覆金属酸化物粒子をさらに疎水性付与剤にて表面処理してなる表面疎水化シリカ被覆金属酸化物粒子を含有することを特徴とする化粧料。
(2)シリカ膜厚が0.1〜100nmであることを特徴とする上記(1)に記載の表面疎水化シリカ被覆金属酸化物粒子を含有する化粧料。
(3)疎水性付与剤が、シリコーン油類、有機アルコキシシラン類及び、高級脂肪酸塩類からなる群から選ばれる1種又は2種以上の疎水性付与剤であることを特徴とする上記(1)(2)に記載の化粧料。
(4)テトラリン自動酸化法により測定した光触媒活性度が60Pa/min.以下である表面疎水化シリカ被覆金属酸化物粒子を含有することを特徴とする上記(1)〜(3)に記載の化粧料。
(5)表面疎水化シリカ被覆金属酸化物粒子の一次粒子径が5〜500nmであり、かつ二次粒子径が0.5〜10μmであることを特徴とする上記(3)に記載の化粧料。
(6)表面疎水化シリカ被覆金属酸化物粒子の一次粒子径が5〜120nmであり、かつシリカ膜厚が0.5〜25nmであることを特徴とする上記(1)〜(5)に記載の化粧料。
(7)金属酸化物が酸化チタン、酸化亜鉛、酸化セリウム、酸化ジルコニウム及び酸化鉄からなる群から選択された1種又は2種以上の金属酸化物であることを特徴とする上記(1)〜(6)記載の化粧料。
(8)金属酸化物が酸化チタンである上記(7)に記載の化粧料。
(9)金属酸化物が酸化亜鉛である上記上記(7)に記載の化粧料。
(10)金属酸化物が酸化セリウムである上記(7)に記載の化粧料。
(11)表面疎水化シリカ被覆金属酸化物粒子に加えて、抗酸化剤を含有することを特徴とする上記(1)〜(10)に記載の化粧料。
(12)表面疎水化シリカ被覆金属酸化物粒子に加えて、有機系紫外線吸収剤を含有することを特徴とする上記(1)〜(11)に記載の化粧料。
(13)1150〜1250cm−1と1000〜1100cm−1の赤外吸収スペクトルの吸収ピーク強度の比I(I=I/I:式中Iは1150〜1250cm−1の吸収ピーク強度、Iは1000〜1100cm−1の吸収ピーク強度を表す。)が0.2以上であり、かつ屈折率が1.435以上であるシリカ膜に被覆された金属酸化物粒子さらに疎水性付与剤で表面処理することを特徴とする表面疎水化シリカ被覆金属酸化物粒子。
(14)疎水性付与剤が、シリコーン油類、有機アルコキシシラン類及び、高級脂肪酸塩類からなる群から選ばれる1種又は2種以上の疎水性付与剤であることを特徴とする上記(13)に記載の表面疎水化シリカ被覆金属酸化物粒子。
(15)金属酸化物粒子の一次粒子の平均粒径が5〜500nmであることを特徴とする上記(13)(14)に記載の表面疎水化シリカ被覆金属酸化物粒子。
(16)イ)珪酸または珪酸を産生し得る前駆体、ロ)水、ハ)アルカリ及びニ)有機溶媒を含有し、水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲であるシリカ被膜形成用組成物に、金属酸化物粒子を接触させて金属酸化物粒子の表面にシリカを選択的に沈着せしめて得られるシリカ被覆金属酸化物粒子を、さらに疎水性付与剤で表面処理することを特徴とする表面疎水化シリカ被覆金属酸化物粒子の製造方法。
(17)疎水性付与剤が、シリコーン油類、有機アルコキシシラン類及び高級脂肪酸塩類からなる群から選ばれる1種又は2種以上の疎水化剤による表面処理であることを特徴とする上記(16)に記載の表面疎水化シリカ被覆金属酸化物粒子の製造方法。
(18)疎水性付与剤が(1)式
(1)式;R(RSiX3−n
(式中Rは炭素数1〜3のアルキル基またはフェニル基、Rは水素基または炭素数1〜3のアルキル基またはフェニル基、Xは炭素数1〜4のアルコキシル基、nは1〜2の整数である)で表されるアルキルアルコキシシランであることを特徴とする上記(16)(17)に記載の表面疎水化シリカ被覆金属酸化物粒子の製造方法。
(19)珪酸または珪酸を産生し得る前駆体、水、アルカリ及び有機溶媒を含有し、水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲であるシリカ被膜形成用組成物に、金属酸化物粒子を接触させて金属酸化物粒子の表面にシリカを選択的に沈着せしめて得られるシリカ被覆金属酸化物粒子を、さらにアルキルアルコキシシランで表面処理することを特徴とする表面疎水化シリカ被覆金属酸化物粒子の製造方法において、
珪酸または珪酸を産生し得る前駆体、水、アルカリ及び有機溶媒を含有し、水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲であるシリカ被膜形成用組成物に、金属酸化物粒子を接触させて金属酸化物粒子の表面にシリカを選択的に沈着せしめた後、さらにアルキルアルコキシシランを添加して水/有機溶媒比が0.1〜10の範囲で、かつ該アルキルアルコキシシランに由来する珪素濃度が0.0001〜5モル/リットルの範囲である組成物となし、該アルキルアルコキシシランの反応生成物で該シリカ被覆金属酸化物粒子を表面処理する、シリカ被覆とアルキルアルコキシシランによる表面処理を連続的に行うことを特徴とする上記(16)〜(18)に記載の表面疎水化シリカ被覆金属酸化物粒子の製造方法。
(20)アルカリが、アンモニア、炭酸アンモニウム、炭酸水素アンモニウム、蟻酸アンモニウム、又は酢酸アンモニウムの少なくても1種類以上から選ばれることを特徴とする上記(16)〜(19)に記載の表面疎水化シリカ被覆金属酸化物粒子の製造方法。
(21)有機溶媒が、メタノール、エタノール、プロパノール、ペンタノール、テトラヒドロフラン、1,4−ジオキサン又はアセトンの少なくてもいずれか1種以上から選ばれることを特徴とする上記(16)に記載の表面疎水化シリカ被覆金属酸化物粒子の製造方法。
(22)イ)加水分解により発生させた金属酸化物ゾル、ロ)珪酸または珪酸を産生し得る前駆体、ハ)アルカリ、ニ)有機溶媒及び必要に応じて、ホ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲になるよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成することを特徴とするシリカ被覆金属酸化物ゾルの製造方法。
(23)イ)アルカリ、ロ)有機溶媒及びハ)水の混合液に、ニ)加水分解により発生させた金属酸化物ゾルを添加し、更に、ホ)珪酸または珪酸を産生し得る前駆体、ヘ)有機溶媒及び必要に応じて、ヘ)水からなる混合液を、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲となるように添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成することを特徴とする上記(22)に記載のシリカ被覆金属酸化物ゾルの製造方法。
(24)アルカリが、アンモニア、炭酸アンモニウム、炭酸水素アンモニウム、蟻酸アンモニウム又は酢酸アンモニウムの少なくとも1種類以上から選ばれることを特徴とする上記(22)(23)に記載のシリカ被覆金属酸化物ゾルの製造方法。
(25)有機溶媒が、メタノール、エタノール、プロパノール、ペンタノール、テトラヒドロフラン、1,4−ジオキサン又はアセトンの少なくともいずれか1種以上から選ばれることを特徴とする上記(22)〜(24)に記載のシリカ被覆金属酸化物ゾルの製造方法。
(26)イ)加水分解により発生させた金属酸化物ゾル、ロ)珪酸または珪酸を産生し得る前駆体、ハ)アルカリ、ニ)有機溶媒及び必要に応じてホ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲になるよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成することを特徴とするシリカ被覆金属酸化物ゾルの製造方法により得られるシリカ被覆金属酸化物ゾル。
(27)イ)アルカリ、ロ)有機溶媒及びハ)水の混合液に、ニ)加水分解により発生させた金属酸化物ゾルを添加し、更に、ホ)珪酸または珪酸を産生し得る前駆体、ヘ)有機溶媒及び必要に応じて、ヘ)水からなる混合液を、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲となるように添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成することを特徴とするシリカ被覆金属酸化物ゾルの製造方法により得られるシリカ被覆金属酸化物ゾル。
(28)シリカ膜が、1150〜1250cm−1と1000〜1100cm−1の赤外吸収スペクトルの吸収ピーク強度の比I(I=I/I:式中Iは1150〜1250cm−1の範囲内にある最大吸収ピーク強度、Iは1000〜1100cm−1の範囲内にある最大吸収ピーク強度を表す。)が0.2以上であり、かつ屈折率が1.435以上であることを特徴とする上記(26)(27)に記載のシリカ被覆金属酸化物ゾル。
(29)金属酸化物粒子の表面を被覆するシリカの膜厚が0.1〜25nmであることを特徴とする上記(26)〜(28)に記載のシリカ被覆金属酸化物ゾル。
(30)金属酸化物粒子の平均一次粒径が1〜100nmであることを特徴とする上記(26)〜(29)に記載のシリカ被覆金属酸化物ゾル。
(31)イ)加水分解により発生させた金属酸化物ゾル、ロ)珪酸または珪酸を産生し得る前駆体、ハ)アルカリ、ニ)有機溶媒及び必要に応じて、ホ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲になるよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成しシリカ被覆金属酸化物ゾルを作成した後、さらに前記シリカ被覆金属酸化物粒子を疎水性付与剤にて表面処理することを特徴とする表面疎水化シリカ被覆金属酸化物ゾルの製造方法。
(32)イ)アルカリ、ロ)有機溶媒及びハ)水の混合液に、ニ)加水分解により発生させた金属酸化物ゾルを添加し、更に、ホ)珪酸または珪酸を産生し得る前駆体、ヘ)有機溶媒及び必要に応じて、ヘ)水からなる混合液を、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲となるように添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成しシリカ被覆金属酸化物ゾルを作成した後、疎水性付与剤にて表面処理することを特徴とする表面疎水化シリカ被覆金属酸化物ゾルの製造方法。
(33)疎水性付与剤が、シリコーン油類、有機アルコキシシラン類及び高級脂肪酸塩類からなる群から選ばれる1種又は2種以上であることを特徴とする上記(31)(32)に記載の表面疎水化シリカ被覆金属酸化物ゾルの製造方法。
(34)有機アルコキシシラン類が、下記の構造式
(RSiX3−n
(式中Rは炭素数1〜4のアルキル基またはフェニル基、Rは水素基または炭素数1〜4のアルキル基またはフェニル基、Xは炭素数1〜4のアルコキシル基、nは0〜2の整数である。)で表されるアルキルアルコキシシランであることを特徴とする上記(31)〜(33に記載の表面疎水化シリカ被覆金属酸化物ゾルの製造方法。
(35)イ)加水分解により発生させた金属酸化物ゾル、ロ)珪酸または珪酸を産生し得る前駆体、ハ)アルカリ、ニ)有機溶媒及び必要に応じて、ホ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲になるよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成しシリカ被覆金属酸化物ゾルを作成した後、さらに前記シリカ被覆金属酸化物粒子を疎水性付与剤にて表面処理することを特徴とする表面疎水化シリカ被覆金属酸化物ゾルの製造方法により得られる表面疎水化シリカ被覆金属酸化物ゾル。
(36)シリカ膜が、1150〜1250cm−1と1000〜1100cm−1の赤外吸収スペクトルの吸収ピーク強度の比I(I=I/I:式中Iは1150〜1250cm−1の範囲内にある最大吸収ピーク強度、Iは1000〜1100cm−1の範囲内にある最大吸収ピーク強度を表す。)が0.2以上であり、かつ屈折率が1.435以上であることを特徴とする上記(35に記載の表面疎水化シリカ被覆金属酸化物ゾル。
(37)金属酸化物粒子の表面を被覆するシリカの膜厚が0.1〜25nmであることを特徴とする上記(35)(36)に記載の表面疎水化シリカ被覆金属酸化物ゾル。
(38)金属酸化物粒子の平均一次粒径が1〜100nmであることを特徴とする上記(35)〜(37)に記載の表面疎水化シリカ被覆金属酸化物ゾル。
(39)イ)加水分解により発生させた金属酸化物ゾル、ロ)珪酸または珪酸を産生し得る前駆体、ハ)アルカリ、ニ)有機溶媒及び必要に応じて、ホ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲になるよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成することを特徴とするシリカ被覆金属酸化物ゾルの製造方法により得られるシリカ被覆金属酸化物ゾルを固・液分離し、乾燥し、必要に応じて粉砕して得られるシリカ被覆金属酸化物ゾル由来のシリカ被覆金属酸化物粒子。
(40)イ)加水分解により発生させた金属酸化物ゾル、ロ)珪酸または珪酸を産生し得る前駆体、ハ)アルカリ、ニ)有機溶媒及び必要に応じて、ホ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲になるよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成しシリカ被覆金属酸化物ゾルを作成した後、さらに前記シリカ被覆金属酸化物粒子を疎水性付与剤にて表面処理することを特徴とする表面疎水化シリカ被覆金属酸化物ゾルの製造方法により得られる表面疎水化シリカ被覆金属酸化物ゾルを固・液分離し、乾燥し、必要に応じて粉砕して得られる表面疎水化シリカ被覆金属酸化物由来の表面疎水化シリカ被覆金属酸化物粒子。
(41)加水分解により発生させた金属酸化物ゾルに、イ)珪酸または珪酸を産生し得る前駆体、ロ)アルカリ、ハ)有機溶媒及び必要に応じて、ニ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲になるよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成することを特徴とするシリカ被覆金属酸化物ゾルの製造方法により得られるシリカ被覆金属酸化物ゾル及び/又は加水分解により発生させた金属酸化物ゾルに、イ)珪酸または珪酸を産生し得る前駆体、ロ)アルカリ、ハ)有機溶媒及び必要に応じて、ニ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲に成るよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成しシリカ被覆金属酸化物ゾルを作成した後、さらに前記シリカ被覆金属酸化物粒子を疎水性付与剤にて表面処理することを特徴とする表面疎水化シリカ被覆金属酸化物ゾルの製造方法により得られる表面疎水化シリカ被覆金属酸化物ゾルを含有することを特徴とする化粧料。
(42)加水分解により発生させた金属酸化物ゾルに、イ)珪酸または珪酸を産生し得る前駆体、ロ)アルカリ、ハ)有機溶媒及び必要に応じて、ニ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲になるよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成することを特徴とするシリカ被覆金属酸化物ゾルの製造方法により得られるシリカ被覆金属酸化物ゾルを固・液分離し、乾燥し、必要に応じて粉砕して得られるシリカ被覆金属酸化物粒子及び/又は加水分解により発生させた金属酸化物ゾルに、イ)珪酸または珪酸を産生し得る前駆体、ロ)アルカリ、ハ)有機溶媒及び必要に応じて、ニ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲に成るよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成しシリカ被覆金属酸化物ゾルを作成した後、さらに前記シリカ被覆金属酸化物粒子を疎水性付与剤にて表面処理することを特徴とする表面疎水化シリカ被覆金属酸化物ゾルの製造方法により得られる表面疎水化シリカ被覆金属酸化物ゾルを固・液分離し、乾燥し、必要に応じて粉砕して得られる表面疎水化シリカ被覆金属酸化物粒子を含有することを特徴とする化粧料。
(43)シリカ被覆金属酸化物ゾル及び表面疎水化シリカ被覆金属酸化物ゾル中の金属酸化物粒子のシリカ膜厚が0.1〜25nmであることを特徴とする上記(41)(42)に記載の化粧料。
(44)シリカ被覆金属酸化物ゾル及び表面疎水化シリカ被覆金属酸化物ゾル中の金属酸化物粒子の平均一次粒径が1〜100nmであることを特徴とする上記(41)〜(43)に記載の化粧料。
(45)シリカ被覆金属酸化物ゾル及び表面疎水化シリカ被覆金属酸化物ゾル中の金属酸化物粒子のテトラリン自動酸化法により測定した光触媒活性度が60Pa/min.以下であることを特徴とする上記(41)〜(44)に記載の化粧料。
(46)金属酸化物が酸化チタン、酸化亜鉛、酸化セリウム、酸化ジルコニウム及び酸化鉄からなる群から選択された1種又は2種以上の金属酸化物であることを特徴とする上記(41)〜(45)に記載の化粧料。
(47)抗酸化剤を含有することを特徴とする上記(41)〜(46)に記載の化粧料。
(48)有機系紫外線吸収剤を含有することを特徴とする上記(41)〜(47)に記載の化粧料。
本発明における「緻密」とは、形成されたシリカ膜の屈折率が1.435以上であることをいう。一般にシリカ膜の緻密性と屈折率は正の相関があるとされており(例えばC.JEFFEREY BRINKER,Sau1−GEL SCIENCE,581〜583,ACADEMIC PRESS(1990))、通常のゾル−ゲル法で得られるシリカ膜は焼成を行なえば屈折率は1.435以上になるが、焼成を行なわなければ1.435未満であり緻密生が低い。しかし、本発明では焼成を行なわずに、この値を達成している。
また、本発明で言う「実用的」とは、シリカの基材金属酸化物への被覆力が強く、実質的に被膜の剥離が起こらず、さらに適度な親水性を有するものを意味する。
シリカ膜の親水性は、1150〜1250cm−1と1000〜1100cm−1の赤外吸収スペクトルの吸収ピーク強度の比I(I=I/I:式中Iは1150〜1250cm−1の範囲内にある最大吸収ピーク強度、Iは1000〜1100cm−1の範囲内にある最大吸収ピーク強度を表す。)で示される。すなわちIはSiOHの変角振動の吸収であり、IはSi−O−Siの伸縮振動の吸収であり、I/I値が大きいほど親水性は高いことになる。本発明における「適度な親水性」とは、この値が0.2以上である場合をいう。通常のゾル−ゲル法で得られるシリカ膜は焼成を行なはなければI値は0.2以上であるが、上記したように緻密さが低下する。一方、焼成を行なえば緻密さは向上するが、I値は0.2未満になり、親水性が低下し、適度な親水性ではなくなる。即ち、本発明のシリカ被膜は、適度な親水性を有するため化粧料に配合した時の良好な表面物性(しっとり感、滑り性)を保持しながら、他方で、焼成しなければ得られなかった緻密で強固な被覆となり、0.1nm程度の極めて薄い膜厚でも金属酸化物の光触媒活性を抑制する能力を高く維持している。
発明を実施するための最良の形態
以下本発明について更に詳しく説明する。
(はじめに)
まず、本発明の第1の側面において、化粧料は、疎水性付与剤で表面処理してなる表面疎水化被覆金属酸化物粒子を含む。この表面疎水化被覆金属酸化物粒子としては、表面が疎水化されていれば有効である。本発明者は、シリカ膜で金属酸化物粒子を被覆し、さらに表面疎水化してなる表面疎水化シリカ被覆金属酸化物粒子を配合することにより、所望の特性を有する化粧料が得られることを見出した。
しかし、好適には、1150〜1250cm−1と1000〜1100cm−1の赤外吸収スペクトルの吸収ピーク強度の比I(I=I/I:式中Iは1150〜1250cm−1の吸収ピーク強度、Iは1000〜1100cm−1の吸収ピーク強度を表す。)が0.2以上であり、かつ屈折率が1.435以上であるシリカ膜に被覆された金属酸化物粒子を用い、この金属酸化物粒子をさらに疎水性付与剤で表面処理して表面疎水化シリカ被覆金属酸化物粒子を得る。
このような好適な表面疎水化シリカ被覆金属酸化物粒子は、イ)珪酸または珪酸を産生し得る前駆体、ロ)水、ハ)アルカリ及びニ)有機溶媒を含有し、水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲であるシリカ被膜形成用組成物に、金属酸化物粒子を接触させて金属酸化物粒子の表面にシリカを選択的に沈着せしめて得られるシリカ被覆金属酸化物粒子を、さらに疎水性付与剤で表面処理することにより得ることが可能である。
以下に、本発明を、特に、表面疎水化シリカ被覆金属酸化物粒子の上記の好適な製造法に基づいて説明すると共に、その説明と併行して、本発明の第2の側面に関連する、シリカ被覆金属酸化物粒子を表面疎水化することなく、金属酸化物ゾルをシリカ被覆する場合についても説明する。
本発明の第2の側面によれば、珪酸または珪酸を産生し得る前駆体、水、アルカリ及び有機溶媒を含有し、水/有機溶媒比が容量比で0.1〜10の範囲であり、かつ珪素濃度が0.0001〜5モル/リットルの範囲であるシリカ被膜形成用組成物に、金属酸化物粒子を接触させて金属酸化物粒子の表面にシリカを選択的に沈着せしめる方法において、金属酸化物粒子としてシリカ被膜形成用組成物に加水分解により発生させた金属酸化物ゾルを用いてシリカ被覆金属酸化物ゾルを製造する。即ち、このシリカ被覆金属酸化物ゾルの製造方法は、イ)加水分解により発生させた金属酸化物ゾル、ロ)珪酸または珪酸を産生し得る前駆体、ハ)アルカリ、ニ)有機溶媒及び必要に応じて、ホ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲になるよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成することを特徴とする。
この本発明の第2の側面においても、得られるシリカ被覆金属酸化物ゾルをさらに表面疎水化することができる。
本発明の第2の側面のシリカ被覆金属酸化物ゾルは、金属酸化物ゾルを原料に用い、途中乾燥工程を経ないで、液系処理だけで製造するため、原料ゾルの良好な分散性、小さな一次粒径が保持されているので、より透明感のある化粧料を得ることができる。また、大きな比表面積を有し、単位質量当たりの紫外線遮蔽能が高く、少ない添加量で済むので経済的である。さらに、本発明では、前記シリカ被覆金属酸化物ゾル中のシリカ被覆金属酸化物微粒子をさらに疎水性付与剤にて表面処理した表面疎水化シリカ被覆金属酸化物ゾルをも含む。このものは、特に油性化粧料、w/o分散型化粧料、又は汗・水により化粧崩れしにくい撥水性化粧料に配合する場合に好適である。このようなシリカ被覆ゾル、表面疎水化シリカ被覆ゾルは知られていない。
(珪酸)
本発明において、シリカ被膜形成用組成物に用いられる珪酸とは、例えば化学大辞典(共立出版(株)昭和44年3月15日発行、第七刷)の『珪酸』の項に示される、オルト珪酸及びその重合体である、メタ珪酸、メソ珪酸、メソ三珪酸、メソ四珪酸等を示す。この「珪酸」は、有機基あるいはハロゲン基を含んでいないことに留意されるべきものである。
珪酸を含む組成物は、例えばテトラアルコキシシラン(Si(OR)、式中Rは炭化水素基、具体的にはテトラメトキシシラン、テトラエトキシシラン、テトラn−プロポキシシラン、テトライソプロポキシシラン、テトラn−ブトキシシラン等)に水、アルカリ、有機溶媒を添加、撹拌し、加水分解反応を進めることにより得られる。この方法は取扱いあるいは操作が容易で実用的であり好ましい。中でもテトラエトキシシランは好ましい材料である。
また、テトラハロゲン化シランに水、アルカリ、有機溶媒を添加し、加水分解する方法や、水ガラスにアルカリ、有機溶媒を添加する方法、あるいは水ガラスを陽イオン交換樹脂にて処理し、アルカリ、有機溶媒を添加する方法を用いても珪酸を含む組成物を得ることができる。珪酸の原料として用いるテトラアルコキシシラン、テトラハロゲン化シラン、水ガラスは特に制限はなく、工業用、あるいは試薬として広く一般に用いられているものでよいが、好ましくはより高純度のものが適している。また本組成物のシリカ被膜形成用組成物には、上記の珪酸の原料の未反応物を含んでいても構わない。
珪酸の量には特に制限はないが、好ましくは珪素濃度として0.0001〜5モル/リットルの範囲である。珪素濃度が0.0001モル/リットル未満ではシリカ被膜の形成速度が極めて遅く実用的ではない。また5モル/リットルを越えると、被膜を形成せずにシリカ粒子が組成物中に生成する場合がある。
珪素濃度は、珪酸の原料、例えばテトラエトキシシランの添加量より算出できるが、組成物を原子吸光分析により測定することもできる。測定は、珪素の波長251.6nmのスペクトルを分析線とし、フレームは、アセチレン/亜酸化窒素によるものを用いるとよい。
(水)
シリカ被膜形成用組成物に用いられる水は、特に限定しないが、好ましくは濾過等により粒子を除去した水である。水中に粒子が含まれると、製品中に不純物として混入するので好ましくない。
水は、水/有機溶媒比が容量比で0.1〜10の範囲となる量で使用することが好ましい。この範囲を外れると成膜できなかったり、成膜速度が極端に落ちる場合がある。更に好ましくは、有機溶媒/水比が容量比で0.1〜0.5の範囲である。水/有機溶媒比が0.1〜0.5の範囲では、用いるアルカリの種類が限定されない。これを外れる範囲すなわち、水/有機溶媒比が0.5以上の場合は、アルカリ金属を含まないアルカリ、例えば、アンモニア、炭酸水素アンモニウム、炭酸アンモニウム等を用いて成膜することが好ましい。
(アルカリ)
シリカ被膜形成用組成物に用いられるアルカリは特に限定されないが、例えばアンモニア、水酸化ナトリウム、水酸化カリウム等の無機アルカリ類、炭酸アンモニウム、炭酸水素アンモニウム、炭酸ナトリウム、炭酸水素ナトリウム等の無機アルカリ塩類、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、ピリジン、アニリン、コリン、テトラメチルアンモニウムハイドロオキサイド、グアニジン等の有機アルカリ類、蟻酸アンモニウム、酢酸アンモニウム、蟻酸モノメチルアミン、酢酸ジメチルアミン、乳酸ピリジン、グアニジノ酢酸、酢酸アニリン等の有機酸アルカリ塩を用いることができる。これらの中でも、アンモニア、炭酸アンモニウム、炭酸水素アンモニウム、蟻酸アンモニウム、酢酸アンモニウム、炭酸ナトリウム、炭酸水素ナトリウムが特に好ましい。アルカリはこれらの群から1種を単独で、又は2種以上を組み合わせて用いることができる。
本組成物で用いられるアルカリの純度には特に制限はなく、工業用、あるいは試薬として広く一般に用いられているものでよいが、好ましくはより高純度のものが適している。
成膜速度を上げるには、被膜形成時の温度を上げることが有効である。この場合には、その被膜形成温度で揮発、分解しにくいアルカリ及び有機溶媒を用いることが好ましい。
アルカリの添加量は、例えば炭酸ナトリウムの場合0.002モル/リットル程度の微量添加で成膜可能であるが、1モル/リットル程度の大量の添加を行ってもかまわない。しかし、固体のアルカリを、溶解度を越える量添加すると、金属酸化物粒子中に不純物として混入するので好ましくない。
アルカリ金属を主成分として含まないアルカリを用いることにより、アルカリ金属含有量の少ないシリカ被覆金属酸化物粒子を作成できる。中でも、成膜速度、残留物除去のしやすさから、アンモニア、炭酸アンモニウム、炭酸水素アンモニウムが特に好ましい。
(有機溶媒)
被膜形成組成物に用いられる有機溶媒は、組成物が均一溶液を形成するものが好ましい。例えば、メタノール、エタノール、プロパノール、ペンタノール等のアルコール類、テトラヒドロフラン、1,4−ジオキサン等のエーテル・アセタール類、アセトアルデヒド等のアルデヒド類、アセトン、ジアセトンアルコール、メチルエチルケトン等のケトン類、エチレングリコール、プロピレングリコール、ジエチレングリコール等の多価アルコール誘導体等を用いることができる。これらの中でもアルコール類が好ましく、特にエタノールが好ましい。有機溶媒としては、これらの群から選択された1種、又は2種以上を混合して用いることができる。
本組成物で用いられる有機溶媒の純度には特に制限はなく、工業用、あるいは試薬として広く一般に用いられているものでよいが、好ましくはより高純度のものが適している。
(シリカ被膜形成用組成物)
シリカ被膜形成用組成物の調製には、一般的な溶液調製法が適用出来る。例えば、所定の量のアルカリと水を有機溶媒に添加、撹拌した後、テトラエトキシシランを添加、撹拌する方法等が挙げられるが、これらの混合の順番は何れが先でも、被膜形成が可能である。水とテトラエトキシシランを混合する際、双方とも有機溶媒で希釈することが、反応の制御性の点で好ましい。
このようにして調製され、特に珪酸または珪酸を産生し得る前駆体、ハ)アルカリ及びニ)有機溶媒を含有し、水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲であるという条件を満たしたシリカ被膜形成用組成物は、安定な組成物であり、金属酸化物粒子と接触させる以前には実質的に沈着、沈殿が起こらない。組成物に金属酸化物粒子を接触させた後、金属酸化物粒子の表面へシリカが選択的に沈着し始める。本発明において金属酸化物粒子の表面へシリカが選択的に沈着するとは、金属酸化物粒子がシリカ被膜形成用組成物と接触した状態において、シリカ被膜形成用組成物の液体自体は、安定で、実質的に沈着、沈殿(即ち、シリカの析出)が起こらず、従って、いわば透明であるが、金属酸化物粒子の表面と接触したところだけで液体組成物からシリカが選択的に析出して固体のシリカ被膜が形成されることをいう。即ち、シリカ被膜形成用組成物の液体中で固体シリカ(粒子など)が生成した後に、その固体シリカが金属酸化物粒子の表面に移動し堆積(付着)するものではなく、また、固体シリカを生成したシリカ被膜形成用組成物のゲルを乾燥させて金属酸化物粒子の表面に固体シリカを付着させるものでもない。
シリカ被膜形成用組成物と金属酸化物粒子との接触は、上記の条件を満たすシリカ被膜形成用組成物を調製した後でもよく、あるいは、シリカ被膜形成用組成物の成分の一部と金属酸化物粒子とを接触させた状態でシリカ被膜形成用組成物の残りの成分を添加して上記の条件を満たすシリカ被膜形成用組成物を調製するようにしても、いずれでもよい。いずれの方法でも、本発明の条件を満たす組成物とすることにより、シリカ被膜形成用組成物あるいはその成分の一部が、金属酸化物粒子と接触する部分以外で、沈着、沈殿(即ち、シリカの析出)を起こさないようにすることができる。
(金属酸化物)
本発明のシリカ被覆金属酸化物粒子(本明細書において、単にシリカ被覆金属酸化物粒子と言うときは、原則として、本発明の第2の側面におけるシリカ被覆金属酸化物ゾルを構成するシリカ被覆金属酸化物粒子あるいはシリカ被覆金属酸化物ゾル由来で得られるシリカ被覆金属酸化物粒子を含む意味であるが、シリカ被覆金属酸化物ゾルについて特に説明が必要なときはその旨を言及する。)の原料となる金属酸化物は、チタニア、酸化亜鉛、酸化セリウム、酸化ジルコニウム、酸化鉄からなる群から選択された1種又は2種以上の金属酸化物が好ましい。これらの原料となる金属酸化物粒子の製造法は特に制限はなく、如何なる方法でもよい。例えばチタニア粉の場合には、TiClの高温気相酸化、TiClの気相加水分解、硫酸法、塩素法の何れの製造法で製造されたものでも用いることができる。
また金属酸化物の結晶性は、何れの結晶型であってもよい。例えばチタニアの場合、非晶質、ルチル型、アナターゼ型、ブッカイト型のいずれでもよく、これらの混合物であってもよい。ただし金属酸化物粒子はできるだけ不純物の少ないものが好ましく、更に凝集の少ないものが、2次粒子径の制御の点で好ましい。
(シリカ被覆金属酸化物ゾル形成用組成物)
本発明のシリカ被覆金属酸化物ゾルの製造に用いるシリカ形成用組成物の調製も、一般的な溶液調製法が適用出来る。例えば、所定の量の金属酸化物ゾルにアルカリ、水及び有機溶媒を添加、撹拌して、金属酸化物ゾルを十分分散した後、テトラエトキシシランを添加、撹拌する方法等が挙げられるが、これらの混合の順番は何れが先でもまた複数回繰返しても、被膜形成が可能である。水とテトラエトキシシランを混合する際、双方とも有機溶媒で希釈することが、反応の制御性の点で好ましい。
このようにして調製したシリカ被膜形成用組成物も、上記において説明したのと同様に、上述と同様の条件を満たす場合には、安定な組成物であり、金属酸化物ゾルと接触させる以前には実質的に沈着、沈殿が起こらない。組成物に金属酸化物ゾルを接触させた後、金属酸化物ゾルの表面へシリカが選択的に沈着し始める。
このような方法により得られた金属酸化物ゾルの分散液をそのままの状態で、あるいは必要があれば、未反応物の除去、pHの調整、金属酸化物ゾル、水、有機溶媒の濃度調整等を行って、シリカ被膜形成組成物に用いることができる。また、金属酸化物ゾルの結晶性は、何れの結晶型であってもよい。例えば、チタニアゾルの場合、非晶質、ルチル型、アナターゼ型、ブッカイト型のいずれでもよく、これらの混合物であってもよい。ただし、金属酸化物ゾルはできるだけ不純物の少ないものが好ましく、更に凝集性の少ないものが、本発明の目的の上で好ましい。凝集性の低い金属酸化物ゾルは、電解質、pHの条件を適切にすることにより得られる。金属酸化物ゾルを構成する金属酸化物の微粒子の平均一次粒径は、好ましくは1〜100nm、より好ましくは5〜20nmである。平均一次粒径は、温度、濃度、熟成時間等の反応条件を適切にすることにより制御することが可能である。
本発明では、ゾル中の金属酸化物粒子の表面が、1150〜1250cm−1と1000〜1100cm−1の赤外吸収スペクトルの吸収ピーク強度の比I(I=I/I:Iは1150〜1250cm−1の範囲内にある最大吸収ピーク強度、Iは1000〜1100cm−1の範囲内にある最大吸収ピーク強度を表す。)が0.2以上であり、かつ屈折率が1.435以上であるシリカ膜で被覆されたシリカ被覆金属酸化物ゾルを用いることができる。
本発明の化粧料に用いることができる上記シリカ被覆金属酸化物ゾルは、加水分解により発生させた金属酸化物ゾルに、珪酸または前記珪酸を産生し得る前駆体、アルカリ、有機溶媒及び必要に応じて水を順序に関係無く、添加後の水/有機溶媒比が容量比で0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲であるように添加し、金属酸化物ゾルの表面にシリカを沈着させシリカ被膜を形成する方法により得られる。
特に好適には、アルカリ、有機溶媒及び必要に応じて水の混合液に加水分解により発生させた金属酸化物ゾルを添加し、更に、珪酸または珪酸を産生し得る前駆体、有機溶媒及び必要に応じて水からなる混合液を、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲となるように添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成する方法により得られる。
シリカ被覆金属酸化物ゾルの原料となる金属酸化物ゾルは、ゾルを構成する金属酸化物としては酸化チタン、酸化亜鉛、酸化セリウム、酸化ジルコニウム、酸化鉄からなる群から選択された1種又は2種以上を挙げることができる。
これらの金属酸化物ゾルの製造法は特に制限はなく、例えば、金属元素のアルコキシド、アセチルアセトネート、酢酸塩・シュウ酸塩等の有機酸塩、塩化物・オキシ塩化物・硝酸塩等の無機化合物を加水分解する方法の何れの製造法で製造されたものでも用いることができる。好ましくは、金属アルコキシド、金属塩化物を加水分解する方法で製造したものである。
(シリカ被覆の形成方法)
基本的には、金属酸化物粒子をシリカ被膜形成用組成物に浸漬し、所定温度に保持しておくことにより該金属酸化物の表面にシリカを選択的に沈着せしめ、シリカ膜を形成させることができる。被膜形成用組成物を予め調製してから金属酸化物粒子を投入し、シリカ膜を形成させる方法でもよいし、金属酸化物粒子を予め溶媒に懸濁してから他の原料成分を添加して被膜形成用組成物となし、シリカ膜を形成させる方法等でもよい。即ち、被膜形成用組成物の原料、金属酸化物粒子を投入する順序は特に制限がなく、何れが先でも被膜形成が可能である。
それらの方法の中でも、金属酸化物粒子と有機溶媒と水とアルカリにより懸濁液を作成した後、有機溶媒で希釈したテトラアルコキシシランを経時的に投入すると、緻密性の良好なシリカ膜を形成でき、工業的に有用な連続プロセスを構築することができるので好ましい。金属酸化物ゾルを用いる場合にも、有機溶媒と水とアルカリの混合液に金属酸化物ゾルを添加し、そこに有機溶媒、場合によっては水で希釈したテトラアルコキシシランを経時的に投入すると、緻密性の良好なシリカ膜を形成でき、工業的に有用な連続プロセスを構築することができるので好ましい。
また、本発明の第1及び第2の側面のいずれにおいても、シリカ膜は金属酸化物表面への沈着により成長するので、成膜時間を長くすればシリカ膜の膜厚を厚くできる。勿論、被膜形成用組成物中の珪酸が被膜の形成により大部分消費された場合には、成膜速度は低下するが、消費量に相当する珪酸を順次追添加することにより、連続して実用的な成膜速度でシリカ被膜の形成を行うことができる。特に、所望のシリカ膜厚に相当する珪酸を加えた被膜形成用組成物中に金属酸化物粒子を所定時間保持し、シリカ膜を形成させて珪酸を消費せしめ、シリカ被覆金属酸化物粒子を系外に取り出した後、消費量に相当する珪酸を追添加することにより、引き続いて該組成物を次の金属酸化物粒子への被膜形成に用いることができ、経済性、生産性の高い連続プロセスを構築できる。
被膜形成時の温度は特に限定されないが、好ましくは10℃から100℃の範囲、より好ましくは、20℃〜50℃の範囲である。温度が高い程成膜速度が増加するが、高過ぎると組成物中の成分の揮発のため溶液組成を一定に保つことが困難になる。また温度が低すぎると、成膜速度が遅くなり実用的でない。
また、被膜形成時のpHはアルカリ性pHであればよい。ただし、pHに依存して溶解性が増すような金属酸化物をシリカ被覆する場合には、被膜形成組成物のpHを制御することが好ましい。例えば、シリカ被覆酸化亜鉛粒子の製造では、アルカリ添加量を下げ、成膜時のpHを11以下に制御することが好ましい。pHが11を越えるとシリカ被覆生成物の収率が低下することがある。さらに、アルカリ量の減少により成膜速度が低下するので、成膜温度を上げたり、珪素濃度を高めることにより、実用的な成膜速度を維持させることが好ましい。
金属酸化物粒子の表面にシリカ被膜を形成した後に、また所望であればシリカ被覆金属酸化物ゾルを形成した後も、固・液の分離を行い、シリカ被膜金属酸化物粒子を単離できる。方法は濾過、遠心沈降、遠心分離等の一般的な分離法を用いることができる。
固・液分離後に乾燥を行い、水分含有量の低いシリカ被膜金属酸化物粒子を得ることができる。方法は自然乾燥、温風乾燥、真空乾燥、スプレードライ等の一般的な乾燥法を用いることができる。
本発明に用いるシリカ被覆金属酸化物粒子の製造法では、必ずしも焼成を必要としない。
また、上記の製造方法で得られるシリカ膜は、基材の金属酸化物粒子の複雑な形状にも付き回りがよく、0.5nm程度の薄い皮膜であっても被覆性が良好で光触媒活性を隠蔽する能力が高い。さらに、アルカリ金属の含有量が極めて少ないシリカ被膜とすることができるので、高温多湿雰囲気下でもシリカ膜が溶解しないでシリカ被覆金属酸化物粒子の物性が変化しないものである。
本発明の第2の側面に従ってシリカ被覆金属酸化物ゾルを形成する場合には、被膜形成後、未反応原料、アルカリ、有機溶媒を除去し、必要に応じて濃縮し、シリカ被膜金属酸化物ゾルを得ることができる。方法は、蒸発、蒸留、膜分離等の一般的な分離法を用いることができる。
本発明のシリカ被覆ゾルの媒体は、特に制限はないが、通常皮膚科学的に無害な媒体の中から選択される。例えば、水、天然油、シリコーン油が用いられる。水系から他の媒体への変更は、一般的な溶媒置換、膜分離等により行うことができる。
また、シリカ被膜金属酸化物ゾルを固・液分離後、乾燥することにより、シリカ被覆金属酸化物粒子を得ることができる。固・液分離の方法は濾過、遠心沈降、遠心分離等の一般的な分離法を用いることができる。乾燥方法としては自然乾燥、温風乾燥、真空乾燥、スプレードライ等の一般的な乾燥法を用いることができる。乾燥によって粒子の凝集が起きる場合には、粉砕することが出来る。本発明のシリカ被覆金属酸化物ゾルは、基材金属酸化物の粒子の被覆力が強いので、粉砕によってシリカの被覆が破壊され、光触媒活性の抑制効果が低下したり、使用感が悪化したりすることがない。粉砕方法は、特に限定はなく、ジェットミル、高速回転ミル等を用いることができる。
上記の製造方法で得られるシリカ膜は、金属酸化物粒子を用いる場合も、金属酸化物ゾルを用いる場合も、1150〜1250cm−1と1000〜1100cm−1の赤外吸収スペクトルの吸収ピーク強度の比I(I=I/I:Iは1150〜1250cm−1の吸収範囲内の最大ピーク強度、Iは1000〜1100cm−1の範囲内の最大吸収ピーク強度を表す。)が0.2以上であり、かつ屈折率が1.435以上であることができる。即ち、本来のシリカ膜が有する表面物性(しっとり感、滑り性)を保持したまま、焼成しなければ得られなかった緻密で実用的なシリカ被膜なっている。さらに、上記シリカ膜は、基材の金属酸化物粒子の複雑な形状にも付き回りがよく、0.1nm程度の薄い皮膜であっても被覆性が良好で光触媒活性を隠蔽する能力が高い。また、アルカリ金属の含有量が極めて少ないシリカ被膜とすることができるので、高温多湿雰囲気下でもシリカ膜が溶解しないでシリカ被覆金属酸化物ゾルの物性が変化しないものが得られる。シリカ膜の好ましい膜厚は0.1〜100nm、より好ましくは1〜20nmである。
(疎水化処理)
本発明において、特に第1の側面においてシリカ被覆金属酸化物粒子を疎水性付与剤で表面処理するが、所望であれば、第2の側面で得られるシリカ被覆金属酸化物ゾルも疎水性付与剤で表面処理することができる。
シリカ被覆金属酸化物粒子を疎水性付与剤で表面処理する方法は、適用できるものであれば、公知の方法が使用できる。通常の乾式法、湿式法、スプレー法を用いることが出来る。例えば、乾式法では、V型混合機、ヘンシェルミキサー等の混合機で攪拌されている金属酸化物粒子中に、疎水性付与剤あるいは疎水性付与剤の有機溶媒溶液をスプレー等の方法で添加し、さらに混合を続け、粉体の表面に均一に付着させ、乾燥し、さらに必要があれば、強固に付着させるために加熱する方法を用いることができる。また、湿式法では、水又は有機溶媒に金属酸化物粒子を分散して、これに疎水性付与剤及び反応触媒等を加え、さらに攪拌した後、これを濾過、乾燥する方法を用いることが出来る。さらに、スプレー法では、高温の金属酸化物粒子に疎水性付与剤又はその溶液をスプレーし、表面を被覆する方法を用いることが出来る。
シリカ被覆金属酸化物ゾルを疎水性付与剤で表面処理する方法も、公知の方法が使用できる。本発明では、原料ゾルの分散性や小さい一次粒径を損なわないという点から、湿式法を用いることが好ましい。例えば、湿式法では、水又は有機溶媒又は混合溶媒に金属酸化物ゾルを分散した液に疎水性付与剤、またはその溶液及び反応触媒等を加え、さらに攪拌した後、表面処理を行う方法を用いることが出来る。
また、シリカ被覆金属酸化物粒子を乾式法あるいはスプレー法を用い直接疎水化することもできる。その方法は、上記と同様の公知の方法であることができる。
(疎水性付与剤)
本発明に用いられる疎水性付与剤は、特に限定されないが、例えば、ロウ、高級脂肪酸トリグリセライド、高級脂肪酸、高級脂肪酸多価金属塩、高級脂肪族硫酸化物の多価金属塩等の高級脂肪酸、高級アルコールまたはそれらの誘導体、パーフロロ化または部分フッ素化した高級脂肪酸及び高級アルコール等の有機フッ素化合物、シリコーン油類、有機アルコキシシラン類、有機クロロシラン類、及びシラザン類等の有機硅素化合物が使用できる。高級脂肪酸多価金属塩、シリコーン油、シランカップリング剤、アルコキシシラン類が好ましく用いられるが、特に実用的な効果の面からアルコキシシラン類、シランカップリング剤が好ましく用いられる。
本発明に用いられるシリコーン油類としては、特に制限はないが、ジメチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルフェニルポリシロキサン及び環状ポリジメチルシロキサンが挙げられる。また、アルキル変性、ポリエーテル変性、アミノ変性、メルカプト変性、エポキシ変性、フッ素変性等の変性シリコーン油を用いても良い。
本発明に用いられるクロロシラン類としては、特に制限はないが、トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン、メチルジクロロシラン、ジメチルビニルクロロシラン、メチルビニルジクロロシラン、トリフェニルクロロシラン、メチルジフェニルクロロシラン、ジフェニルジクロロシラン、メチルフェニルジクロロシラン及びフェニルトリクロロシランが挙げられる。
本発明に用いられるシラザン類としては、特に制限はないが、ヘキサメチルジシラザン、N,N’−ビス(トリメチルシリル)ウレア、N−トリメチルシリルアセトアミド、ジメチルトリメチルシリルアミン、ジエチルトリメチルシリルアミン及びトリメチルシリルイミダゾールが挙げられる。
本発明に用いられる有機アルコキシシラン類としては、特に制限はないが、例えば、ビニルトリクロロシラン、ビニルトリス(β−メトキシエトキシ)シラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−(メタクリロイルオキシプロピル)トリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジエトトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン及びγ−クロロプロピルトリメトキシシランなどのシランカップリング剤及びメチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、トリメチルエトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、ジメチルエトキシシラン、ジメチルビニルメトキシシラン、ジメチルビニルエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトシシシラン及びジフェニルジエトキシシランが挙げられる。また、パーフルオロ化あるいは部分フルオロ化されたアルキル基を有するアルコキシシランも用いることが出来る。
(アルコキシシランによる処理)
特に、下式で表されるアルキルアルコキシシランが、好ましく用いられる。
式;R(RSiX3−n
(式中Rは炭素数1〜4のアルキル基またはフェニル基、Rは水素基または炭素数1〜4のアルキル基またはフェニル基、Xは炭素数1〜4のアルコキシル基、nは0〜2の整数である。)
本発明において、アルコキシシラン類による表面処理は、液相法、乾式法のいずれでも可能であるが、液相法が以下の点から好ましく用いられる。即ち、シリカ被膜形成組成物に金属酸化物粒子を接触させて、シリカ被覆を行った後、粉体を分離することなく、疎水性付与剤を添加して、必要があれば、アルカリ、水、溶媒を添加し、連続的に疎水性付与剤でシリカ被覆金属酸化物の表面処理を行うことができる。この方法は、中間の分離精製工程は省略でき、工業的に有利な製造法である。
本発明の特に第2の側面においては、アルキルアルコキシシラン類を疎水性付与剤として表面処理する場合には、液相法が特に好ましい。即ち、前記の方法に従ってゾル中の金属酸化物粒子のシリカ被覆を行った後、シリカ被覆金属酸化物粒子を分離することなく、疎水性付与剤を添加し、必要に応じて水、有機溶媒、アルカリを添加し、水/有機溶媒比が0.1〜10の範囲で、かつ該アルキルアルコキシシランに由来する珪素濃度が0.0001〜5モル/リットルの範囲である組成物を形成し、アルキルアルコキシシランの反応生成物を該シリカ被覆金属酸化物粒子の表面に選択的に沈着せしめることにより表面処理することができる。この方法は、乾燥工程がないので、原料ゾルの分散性や小さい一次粒径を損なうことがなく、中間の固体分離工程を省略でき、工業的に有利である。
アルキルアルコキシシラン類による表面疎水化シリカ被覆金属ゾルの製造方法における疎水化組成物は、水/有機溶媒比が容量比で0.1〜10の範囲であり、かつアルキルアルコキシシランに由来する珪素濃度が0.0001〜5モル/リットルの範囲である。本組成物における珪素濃度、水、水/有機溶媒比、アルカリ、有機溶媒、温度、pH、及び分離精製工程に関しては、シリカ被膜形成組成物における記述がそのまま適用できる。また、本組成物は、シリカ被膜形成終了後の前記シリカ被膜形成用組成物に、珪酸を産生する前駆体の替りにアルキルアルコキシシラン類を添加することにより得られるが、必ずしも組成や条件を同一にする必要はない。例えば、珪酸を産生する前駆体に比べて該アルキルアルコキシシランの反応速度が異なる場合には、必要に応じてアルカリ、水、または溶媒を添加してもよく、上記の制限範囲内において実用的な反応速度を与えるような水/有機溶媒比、珪素濃度、pH、温度等の反応条件を選択することができる。
(疎水性付与剤処理の被覆量)
疎水性付与剤の被覆量は、該疎水性付与剤が原料のシリカ被覆金属酸化物粒子の表面を完全に被覆できる最小被覆量以上であればよい。この量は、下式

Figure 0004740458
によって算出することができる。疎水性付与剤の添加量の上限は、一概には決められないが、過多にになると金属酸化物粒子の表面以外に析出する分がふえるので、経済的でない。通常シリカ被覆金属酸化物粒子に対して、好ましくは30質量%以下、さらに好ましくは20質量%以下である。
(シリカ被覆金属酸化物粒子及びゾルの特性)
本発明のシリカ被覆金属酸化物粒子及び表面疎水化シリカ被覆金属酸化物粒子(シリカ被覆金属酸化物ゾルのそれを含む。以下同様。)のシリカ膜厚は0.1〜100nm、好ましくは0.5〜25nmである。この範囲以下では、十分な光触媒活性の抑制効果がある化粧料が得られない場合があり、この範囲以上では、十分な紫外線遮蔽能を持つ化粧料が得られない場合があり、また経済的でない。
本発明のシリカ被覆金属酸化物粒子及び表面疎水化シリカ被覆金属酸化物粒子のテトラリン自動酸化法による光触媒活性度が60Pa/min.以下である。この範囲を越えると、十分な光触媒活性の隠蔽効果が得られない場合がある。
本発明で用いられる表面疎水化シリカ被覆金属酸化物粒子は、一次粒子径が5〜500nm、好ましくは5〜120nmであり、かつ、二次粒子径が0.5〜10μmである。本発明のシリカ被覆金属酸化物ゾルのシリカ被覆金属酸化物粒子は、一次粒子径が1〜100nm、より好ましくは5〜20nmである。これらの範囲を外れると、良好な使用感と高い紫外線遮蔽能を合わせ持つ化粧料が得られない場合がある。なお、本発明でいう一次粒子、二次粒子は、久保輝一郎他編『粉体』p56〜66,1979年発行、により定義されているものである。
本発明に用いられるシリカ被覆金属酸化物粒子及び表面疎水化シリカ被覆金属酸化物粒子のガラス平板法により測定される粉体動摩擦係数は、0.54以下であることが好ましく、更に好ましくは0.49以下である。0.54を越えると、良好な使用感を有する化粧料が得られない場合がある。
本発明に用いられるシリカ被覆金属酸化物粒子及び表面疎水化シリカ被覆金属酸化物粒子のサンセットイェロー法により測定される色素退色速度は、0.06以下であることが好ましく、更に好ましくは0.02以下である。0.06を越えると、光触媒活性の隠蔽効果が十分でなく、保存安定性の高い化粧料が得られない場合がある。
本発明に用いられるシリカ被覆金属酸化物粒子及び表面疎水化シリカ被覆金属酸化物粒子のパラソール法により測定される有機系紫外線吸収剤の分解速度は、好ましくは0.02以下、更に好ましくは0.01以下である。0.02未満だと、光触媒活性の隠蔽効果が十分でなく、有機系紫外線吸収剤の分解が少ない化粧料が得られない場合がある。
本発明の表面疎水化シリカ被覆金属酸化物粒子を用いると、高い紫外線遮蔽能を保持しながら、可視光透過性が高いので、透明性のある化粧料が得られる。
本発明に用いられるシリカ被覆金属酸化物粒子は、特に焼成する必要がない。もちろん、焼成して用いることも可能である。
本発明のシリカ被覆金属酸化物ゾルから得られるシリカ被覆金属酸化物粒子及び表面疎水化シリカ被覆金属酸化物粒子は、一次粒径が小さく、凝集性が低くさらに分散性が良好なので、高い紫外線遮蔽能と高い可視光透過性を有する。また、緻密で実用的なシリカ被膜で被覆されているので、光触媒活性の抑制効果が高く、他の化粧料配合成分を変性させることが少なく、触感や滑り性が良好である。従って、シリカ被覆金属酸化物ゾル及び表面疎水化シリカ被覆金属酸化物ゾルあるいはシリカ被覆金属酸化物ゾル及び表面疎水化シリカ被覆金属酸化物ゾルから得られるシリカ被覆金属酸化物粒子及び表面疎水化シリカ被覆金属酸化物粒子を配合することにより、保存安定性が良く、安全で、透明感及び使用感に優れた紫外線遮蔽用化粧料が得られる。表面疎水化シリカ被覆金属酸化物ゾル及び表面疎水化シリカ被覆金属酸化物粒子の場合は、油性化粧料、W/O乳化型の化粧料及び水・汗による化粧崩れが少ない撥水型化粧料に用いることが好ましい。
本発明のシリカ被覆金属酸化物ゾルから得られる化粧料は、前記のシリカ被覆金属酸化物ゾル及び/又は表面疎水化シリカ被覆金属酸化物ゾルあるいはシリカ被覆金属酸化物ゾル及び表面疎水化シリカ被覆金属酸化物ゾルから得られるシリカ被覆金属酸化物粒子及び表面疎水化シリカ被覆金属酸化物粒子を含有するとともに、化粧料に配合可能な通常の原料を使用し、通常の製法により製造することができる。
(化粧料)
本発明の化粧料は、前記のシリカ被覆金属酸化物粒子及び表面疎水化シリカ被覆金属酸化物粒子(シリカ被覆金属酸化物ゾルを含む意味である。以下同じ。)を含有するとともに化粧料に配合可能な通常の原料を使用し、通常の製法により製造することができる。
本発明の化粧料は、粉末及び油分を含有するものであれば、特に限定されるものではなく、粉末を溶剤や溶液に分散したものも含むものとする。例えば、白粉、ファンデーション、パウダー、頬紅、アイシャドー、口紅、アイライナー、マスカラ、アイブロー、クリーム、エッセンス、ローション、化粧水、乳液、ムース等が挙げられる。特に、油性化粧料、W/O乳化型の化粧料及び水・汗による化粧崩れが少ない撥水型化粧料が好ましい。
本発明の化粧料を構成するものとして、粉末成分と油分がある。このうち、粉末成分を構成するものには、シリカ被覆金属酸化物粒子及び表面疎水化シリカ被覆金属酸化物粒子の他に体質顔料(例えば、マイカ、タルク、カオリン、炭酸カルシウム、炭酸マグネシウム、無水珪酸、酸化アルミニウム、硫酸バリウム等)、白色顔料(例えば、二酸化チタン、酸化亜鉛等)、及び着色顔料(例えば、ベンガラ、黄酸化鉄、黒酸化鉄、酸化クロム、群青、紺青、カーボンブラック等)があり、これらを適宜配合することができる。また、使用感を更に向上させる為に、球状粉末(例えばナイロン粉末、ポリメチルメタクリレート粉末等)を用いることもできる。
本発明の化粧料に配合される油分としては、流動パラフィン、スクワラン、ヒマシ油、グリセリルジイソステアレート、グリセリルトリイソステアレート、グリセリルトリ−2−エチルヘキサノエート、イソプロピルミリステート、グリセリルトリイソステアレート、ジメチルポリシロキサン、メチルフェニルポリシロキサン、ワセリン、ジイソステアリルマレート、精製ラノリン等が挙げられる。
固型粉末化粧料に対する油分の配合量は、好ましくは3質量%以上、更に好ましくは10〜90質量%である。
また油分中には、有機系の紫外線吸収剤を配合してもよい。有機系の紫外線吸収剤とは、紫外線を吸収して熱、振動、蛍光、ラジカル等にエネルギー変換し、皮膚を保護するような機能を有する有機化合物を指す。本発明の化粧料に使用できる紫外線吸収剤としては、特に制限はないが、例えば、ベンゾフェノン系、サリチル酸系、PABA系、ケイ皮酸系、ジベンゾイルメタン系、ウロカニン酸系等の紫外線吸収剤が挙げられる。その配合量は0.1〜10質量%の範囲であるが、該吸収剤の紫外線吸収能によって適切な配合量にすることが望ましい。本発明に用いるシリカ被覆金属酸化物粒子は、光触媒活性の遮蔽効果が高いため、有機系の紫外線吸収剤と併用しても、該吸収剤の分解が抑制され、高い紫外線遮蔽能を有する化粧料とすることができる。
本発明の化粧料には、既存の乳化剤を一般的な濃度で添加することもできる。例えば、化粧品原料基準第二版注解、日本公定書教会編、1984(薬事日報社)、化粧品原料基準外成分規格、厚生省薬務局審査課監修、1993(薬事日報社)、化粧品原料基準外成分規格追補、厚生省薬務局審査課監修、1993(薬事日報社)、化粧品種別許可基準、厚生省薬務局審査課監修、1993(薬事日報社)、及び化粧品原料辞典、平成3年(日光ケミカルズ)等、に記載されている全ての乳化剤が使用できる。また、トコフェリルリン酸エステル類も乳化剤として使用できる。
本発明の化粧料には紫外線による炎症を防止を助けるため既存の抗炎症成分または消炎成分を併用又は混用することもできる。本発明の化粧料に添加できる消炎成分としては特に制限はないが、アニリン誘導体型消炎剤、サリチル酸誘導体型消炎剤、ピラゾロン誘導体型消炎剤、インドメタシン系消炎剤、メフェナム酸系消炎剤、抗痛風剤、鎮けい剤、鎮咳剤、去たん剤、気管支拡張剤、呼吸機能改善剤、抗ヒスタミン剤、抗アレルギー剤、抗炎酵素剤等が挙げられる。
本発明におけるシリカ被覆金属酸化物粒子及び表面疎水化シリカ被覆金属酸化物粒子を含有する化粧料において、抗酸化作用を持つ物質である抗酸化剤を併用すると、紫外線によるフリーラジカルの発生量を抑制することによりシリカ被覆金属酸化物粒子の光触媒活性をさらに低く押さえることができ、極めて光毒性の低い化粧料が得られる。本発明の化粧料において光触媒活性を低く押さえる効果のある用いられる抗酸化剤としては、特に制限はないが、例えば、ビタミンA、β−カロチン、アスタキサンチン、ビタミンB、ビタミンC、L−アスコルビン酸−2−リン酸マグネシウム、L−アスコルビン酸−2−リン酸ナトリウム、L−アスコルビン酸−2−リン酸ナトリウムマグネシウム、L−アスコルビン酸−2−グルコシド、L−アスコルビン酸−2−リン酸−5,6−ベンジリデン、天然ビタミンE、dl−α−トコフェロール、dl−α−トコフェリル酢酸エステル、dl−α−トコフェリルリン酸ナトリウム、ユビキノン及びこれらのビタミン誘導体、システイン、グルタチオン、グルタチオンペルオキシターゼ、SOD、カタラーゼ、クエン酸、リン酸、ポリフェノール、カテキン、茶抽出物、コウジ酸、核酸、ハイドロキノン、アルブチン等が挙げられる。これらの群より選択される一種又は二種以上の抗酸化剤を配合することができる。
なお、本発明にかかる化粧料には、化粧料などの組成物に一般的に配合される上記以外の成分、例えば油脂類、ロウ類、炭化水素、脂肪酸類、アルコール類、多価アルコール類、糖類、エステル類、金属石けん、水溶性高分子化合物、界面活性剤、酸化防止剤、殺菌・防腐剤、ビタミン、ホルモン、色材等を配合することができる。
本発明の化粧料におけるシリカ被覆金属酸化物粒子及び表面疎水化シリカ被覆金属酸化物粒子の配合量は、好ましくは化粧料に対して1〜50質量%であり、更に好ましくは5〜30質量%の範囲である。
一般に、シリカ被覆チタニア粒子はアナターゼ型よりも光触媒活性の低いルチル型の比率が高いチタニアを使用するのが好ましい。しかし、本発明の化粧料で用いられるシリカ被覆チタニア粒子及び表面疎水化シリカ被覆チタニア粒子は、紫外線によるフリーラジカルの発生が低く押さえられるので、結晶型に拘ることなく光毒性の低い化粧料が得られる。
本発明になるシリカ被覆金属酸化物粒子及び表面疎水化シリカ被覆金属酸化物を含有した化粧料は、高い紫外線遮蔽能を有するだけでなく、高濃度に金属酸化物粒子を配合した場合にもきしみ感や伸びの悪さがなく、使用感に優れている。また、本発明の化粧料は、透明性が高く、従来のチタニア粒子を含有する場合のように化粧仕上がりが青白くなるということがない。また、金属酸化物による光触媒活性が十分抑制されているので、組成物中の他の配合成分の変性を助長せず、保存安定性に優れている。有機系紫外線吸収剤を含有することが可能であり、より高い紫外線遮蔽能を達成できる。さらに、抗酸化作用を有する抗酸化剤を含有することにより活性酸素等の発生が極めて低くでき、人体に対する安全性を高められる。
本発明においてシリカ膜の膜厚、屈折率は、シリカ被覆金属酸化物粒子を合成する際に系内に浸せきしたシリコンウエハー上に形成されるシリカ膜を用いて行うことができる。このシリコンウエハーには、金属酸化物粒子上と同じシリカ被膜が形成されている。シリカ膜の屈折率は、エリプソメーター(ULVAC製;LASSER ELLIPSOMETER ESM−1A)により測定できる。膜厚測定には段差計を用いることができる。表面疎水化シリカ被膜金属酸化物粒子のシリカ膜の透過赤外吸収スペクトル(日本分光製FT−IR−8000)は、KBr法を用いて測定することができる。
シリカ被覆金属酸化物粒子及び表面疎水化シリカ被覆金属酸化物粒子の1次粒子径及びシリカ膜厚は、透過型電子顕微鏡像より求めることができる。また、二次粒子径は、レーザー光散乱法(日機装製マイクロトラックMK−II)により測定することができる。全アルカリ金属含有量は、シリカ被覆金属酸化物粒子及び表面疎水化シリカ被覆金属酸化物粒子を硫弗酸に溶解し、炎光分析により測定する。
シリカ被覆金属酸化物粒子及び表面疎水化シリカ被覆金属酸化物粒子の光触媒活性度即ち初期酸素消費速度は、テトラリン自動酸化法(清野学著、酸化チタン−物性と応用技術、技報堂出版、p.196−197,1991年)により測定することができる。測定条件は、温度40℃、テトラリン20ml、金属酸化物粒子0.02gとする。
本発明のシリカ被覆金属酸化物粒子及び表面疎水化シリカ被覆金属酸化物粒子の光透過性、有機系紫外線吸収剤の分解速度、粉体動摩擦係数、色素退色速度及び撥水性は、それぞれ本明細書中に記載されたコスモール法、パラソール法、ガラス平板法、サンセットイエロー法、及びメタノール溶液法により測定される。
実施例
以下、本発明の実施例について詳細に説明する。但し、本発明はこれにより限定されるものではない。
(製造例1a) シリカ被覆チタニア粒子の製造
30L反応器に脱イオン水7.07kg、エタノール(純正化学製)25.43kg及び25質量%アンモニア水1.143kg(大盛化工製)を混合し、その中にチタニア粒子(昭和タイタニウム製チタニアF−4;一次粒子径30nm)1.765kgを分散させ、懸濁液1を調製した。次に、テトラエトキシシラン(ナカライテスク製)1.53kg及びエタノール659gを混合し、溶液1を調製した。攪拌翼で撹拌している懸濁液1に、溶液1を9時間かけて一定速度で加えた後、12時間熟成した。シリカ被膜形成及び熟成は25℃にて行った。 その後固形分を遠心濾過にて分離し、50℃で12時間真空乾燥して、シリカ被膜チタニア粒子を得た。
(製造例1b) 表面疎水化シリカ被覆チタニア粒子の製造
製造例1aと同様にシリカ成膜、熟成までの操作を行った。シリカ被覆チタニア粒子を反応液中に存在させたままで、25質量%アンモニア水430gを添加し、撹拌して懸濁液2とした。次に、ジメチルジエトキシシラン(東芝シリコーン製、TSL8122)330g及びエタノール330gを混合し、溶液2を調製した。撹拌している懸濁液2に溶液2を9時間かけて一定速度で加えた後、12時間熟成した。表面被覆及び熟成は45℃にて行った。
その後固形分を遠心濾過にて分離し、50℃で12時間真空乾燥して、表面疎水化シリカ被膜チタニア粒子を得た。
(製造例2a) シリカ被覆酸化亜鉛粒子の製造
50L反応器に脱イオン水20.19kg、エタノール(純正化学製)19.8kg及び25質量%アンモニア水204mL(大盛化工製)を混合し、その中に酸化亜鉛粒子(住友大阪セメント製MZ0350;一次粒子径37nm)1.914kgを分散させ、懸濁液3を調製した。次に、テトラエトキシシラン(ナカライテスク製)740gとエタノール488gを混合し、溶液3を調製した。 攪拌翼で撹拌している懸濁液3に、溶液3を9時間かけて一定速度で加えた後、12時間熟成した。シリカ成膜及び熟成は45℃にて行った。その後、固形分を遠心濾過にて分離し、50℃で12時間真空乾燥して、シリカ被膜酸化亜鉛粒子を得た。
(製造例2b) 表面疎水化シリカ被覆酸化亜鉛粒子の製造
製造例2aと同様にシリカ成膜、熟成までの操作を行った。シリカ被覆酸化亜鉛粒子を反応液中に存在させたままで、25質量%アンモニア水136mL及び脱イオン水200mLを添加し、撹拌して懸濁液4とした。次に、ジメチルジエトキシシラン(東芝シリコーン製、8122)400g及びエタノール400gを混合し、溶液4を調製した。攪拌翼で撹拌している懸濁液4に溶液4を12時間かけて一定速度で加えた後、12時間熟成した。表面被覆及び熟成は45℃にて行った。
その後固形分を遠心濾過にて分離し、50℃で12時間真空乾燥して、表面疎水化シリカ被膜酸化亜鉛粒子を得た。
(製造例3a〜5a) シリカ被覆金属酸化物粒子の製造
製造例1のチタニアの代わりに酸化セリウム粒子、酸化ジルコニウム粒子、ベンガラ粒子をそれぞれ用い、他の製造条件は同様にしてシリカ被膜酸化セリウム粒子、シリカ被膜酸化ジルコニウム粒子、シリカ被膜ベンガラ粒子を得た。
(製造例3b〜5b) 表面疎水化シリカ被覆金属酸化物粒子の
製造
製造例1bのチタニアの代わりに酸化セリウム粒子、酸化ジルコニウム粒子、ベンガラ粒子をそれぞれ用い、他の製造条件は同様にしてシリカ被膜酸化セリウム粒子、シリカ被膜酸化ジルコニウム粒子、シリカ被膜ベンガラ粒子を得た。
KBr法により、製造例1a〜5aで得られたシリカ被膜金属酸化物粒子の透過赤外吸収スペクトルを測定したところ、いずれも1000〜1200cm−1にSi−O−Si伸縮振動由来の吸収が観測され、2800〜3000cm−1にC−H伸縮振動由来の吸収は観測されず、生成した被膜はシリカであると同定された。
更に、一次粒子径、二次粒子、シリカ膜厚、赤外吸収スペクトルの吸収ピーク強度の比I、シリカ膜の屈折率、テトラリン自動酸化法による光触媒活性度及び撥水性全アルカリ金属濃度を測定した。
また、製造例1b〜5bで得られた表面疎水化シリカ被覆チタニア粒子についても一次粒子径、二次粒子、シリカ膜厚、テトラリン自動酸化法による光触媒活性度及び撥水性を測定した。結果を表1に示す。
Figure 0004740458
(製造例6) シリカ被覆チタニアゾルの製造
50L反応器に、エタノール(純正化学製)25.10kg及び25質量%アンモニア水1.14kg(大盛化工製)を混合し、その中に水性チタニアゾル(チタニア濃度20.0質量%、一次粒径16nm、比表面積136g/m)8.83kgを分散させ、懸濁液1を調製した。次に、テトラエトキシシラン(ナカライテスク製)2.30kg及びエタノール990gを混合し、溶液2を調製した。攪拌翼で撹拌している懸濁液1に、溶液2を9時間かけて一定速度で加えた後、12時間熟成した。シリカ被膜形成及び熟成は25℃にて行った。その後、蒸留によりアンモニア、エタノールを除去し、シリカ被膜チタニアゾルを得た。
(製造例7) シリカ被覆酸化亜鉛ゾルの製造
50L反応器に脱イオン水2.96kg、エタノール(純正化学製)19.00kg及び25質量%アンモニア水210mL(大盛化工製)を混合し、その中に水性酸化亜鉛ゾル(酸化亜鉛濃度10.0質量%、一次粒径19nm、比表面積122g/m)19.14kgを分散させ、懸濁液1を調製した。次に、テトラエトキシシラン(ナカライテスク製)1.92kgとエタノール1.28kgを混合し、溶液2を調製した。攪拌翼で撹拌している懸濁液1に、溶液2を9時間かけて一定速度で加えた後、12時間熟成した。シリカ成膜及び熟成は45℃にて行った。その後、蒸留によりアンモニア、エタノールを除去して、シリカ被膜酸化亜鉛ゾルを得た。
(製造例8〜10) シリカ被覆金属酸化物ゾルの製造
製造例6のチタニアゾルの代わりに酸化セリウムゾル、酸化ジルコニウムゾル、ベンガラゾルをそれぞれ用い、他の製造条件は同様にしてシリカ被膜酸化セリウムゾル、シリカ被膜酸化ジルコニウムゾル、シリカ被膜ベンガラゾルを得た。 製造例6〜10で得られたシリカ被膜金属酸化物ゾルの平均一次粒径、シリカ膜厚、赤外吸収スペクトルの吸収ピーク強度の比(I値)、シリカ膜の屈折率、及びBET法比表面積を測定した。結果を表2にまとめて示す。
(製造例11) 表面疎水化シリカ被覆チタニアゾルの製造
製造例6と同様にしてシリカ被膜形成、熟成までの操作を行った後、シリカ被覆チタニアゾルを分離することなく、25質量%アンモニア水880gを添加し、撹拌して懸濁液1とした。次に、ジメチルジエトキシシラン(東芝シリコン製、TSL8122)680g及びエタノール680gを混合し、溶液2を調製した。ジメチルジエトキシシランの添加量は、前記の式より求めた最小被覆量の1.5倍とした。撹拌している懸濁液1に溶液2を9時間かけて一定速度で加えた後、12時間熟成した。表面被覆及び熟成は65℃にて行った。その後、蒸留によりアンモニア、エタノールを除去して、表面疎水化シリカ被膜チタニアゾルを得た。
(製造例12) 表面疎水化シリカ被覆酸化亜鉛ゾルの製造
製造例7と同様の操作でシリカ被膜形成、熟成までを行った後、シリカ被覆酸化亜鉛ゾルを分離することなく反応液中に存在させたままで、脱イオン水330g及び25質量%アンモニア水225gを添加し、撹拌して懸濁液1とした。次に、ジメチルジエトキシシラン(東芝シリコン製、TSL8122)660g及びエタノール660gを混合し、溶液2を調製した。ジメチルジエトキシシランの添加量は、上前記の式より求めた最小被覆量の1.5倍とした。撹拌している懸濁液1に溶液2を9時間かけて一定速度で加えた後、12時間熟成した。表面被覆及び熟成は645℃にて行った。その後、蒸留によりアンモニア、エタノールを除去して、表面疎水化シリカ被膜酸化亜鉛ゾルを得た。
(製造例13〜15) 表面疎水化シリカ被覆金属酸化物ゾルの
製造
製造例8〜10と同様の操作でシリカ被膜形成、熟成までを行った後、シリカ被覆金属酸化物ゾルを反応液中に存在させたままで、25質量%アンモニア水650gを添加し、撹拌して懸濁液1とした。次に、最小被覆量の1.5倍のジメチルジエトキシシラン(東芝シリコン製、TSL8122)及び同量のエタノールを混合し、溶液2を調製した。撹拌している懸濁液1に溶液2を9時間かけて一定速度で加えた後、12時間熟成した。表面被覆及び熟成は45℃にて行った。その後、蒸留によりアンモニア、エタノールを除去して、表面疎水化シリカ被膜酸化セリウムゾル、表面疎水化シリカ被膜酸化ジルコニウムゾル及び表面疎水化シリカ被膜ベンガラゾルを得た。
製造例11〜15で得られた表面疎水化シリカ被膜金属酸化物ゾルの撥水性をメタノール法により測定した。即ち、試験管に20%メタノール水溶液10gを入れ、被験物質を1質量%となるように加え、激しく撹拌した後に静置し、1時間後に撥水性を判定した。いずれも良好な撥水性を示した。更に、一次粒径、シリカ膜厚及びBET法比表面積を測定した。結果を表2にまとめて示す。
Figure 0004740458
(製造例16〜25) シリカ被覆金属酸化物ゾル及び表面疎水
化シリカ被覆金属酸化物ゾル由来の金属
酸化物粒子の製造
製造例6〜10で得られたシリカ被膜金属酸化物ゾル及び製造例11〜15で得られた表面疎水化シリカ被膜金属酸化物ゾルの固形分を遠心濾過にて分離し、50℃で12時間真空乾燥して、さらにジェットミルで粉砕し、シリカ被覆金属酸化物ゾル及び表面疎水化シリカ被覆金属酸化物ゾル由来の金属酸化物粒子を得た。
(撥水性の測定・メタノール法)
製造例1b〜5bで得られた5種類の表面疎水化シリカ被覆金属酸化物粒子と製造例1a〜5aで得られた5種類のシリカ被覆金属酸化物粒子を被験物質としてメタノール法により撥水性を測定した。
即ち、試験管に20%メタノール水溶液10gを入れ、被験物質を1質量%となるように加え、激しく撹拌した後に静置した。1時間後、下記の判定基準により撥水性を評価した。その結果も表1に示す。
本発明の表面疎水化シリカ被覆金属酸化物粒子は良好な撥水性を示す。これに対し、従来のシリカ被覆金属酸化物粒子は撥水性を示さない。
(光透過性の測定・コスモール法)
表面疎水化シリカ被覆チタニア粒子(製造例1b)、表面疎水化シリカ被覆酸化亜鉛粒子(製造例2b)、シリカ被覆チタニア粒子(製造例1a)及びシリカ被覆酸化亜鉛粒子(製造例2a)2種の従来の表面処理チタニア粒子(テイカ社製MT100T及び石原産業製TTO−55A)を被験物質として光透過性をコスモール法により測定した。
さらに、製造例6〜7で得られた2種のシリカ被覆金属酸化物ゾル、製造例11〜12で得られた2種の表面疎水化シリカ被覆金属酸化物ゾルを被験物質として光透過性をコスモール法により測定した。
即ち、被験物質をトリイソステアリン酸ポリグリセリル(コスモール43)に分散させ、1%濃度のスラリーを調製し、該スラリーを厚さ0.1mmの石英セルに入れ、分光光度計(SHIMADZU UV−160)にて光透過率を測定した。波長360nmの吸光度(A360)、波長530nmの吸光度(A530)及び両者の比(A360/A530)を表3及び表4に示す。
本発明の表面疎水化シリカ被覆金属酸化物粒子及びシリカ被覆金属酸化物ゾルは液中分散性が向上した結果、従来のシリカ被覆金属酸化物粒子に比べて、紫外線領域での遮蔽能(A360)が高くなり、可視光領域で透過性が高くなる(1/A530)。従って、表面疎水化シリカ被覆チタニア粒子及びシリカ被覆金属酸化物ゾルを用いた本発明の化粧料においては、より高い紫外線遮蔽能と可視光透明性が得られることが期待できる(A360/A530)。
Figure 0004740458
Figure 0004740458
(ヒドロキシラジカルの発生量の測定)
抗酸化剤混合物(β−カロチン5%、アスタキサンチン5%、L−アスコルビン酸−2−リン酸マグネシウム20%、L−アスコルビン酸−2−リン酸ナトリウム10%、L−アスコルビン酸−2−グルコシド10%、L−アスコルビン酸−2−リン酸−5,6−ベンジリデン10%、天然ビタミンE10%、dl−α−トコフェロール5%、dl−α−トコフェリル酢酸エステル5%、dl−α−トコフェリルリン酸ナトリウム5%、クエン酸5%、リン酸5%、エピガロカテキン5%の混合物:比率は質量%)を調製した。
製造例1のシリカ被覆チタニア粒子に前記抗酸化剤混合物を質量比1:1で混合したもの、製造例1のシリカ被覆チタニア粒子のみ、及び未被覆チタニア紛のみを各々チタニア濃度が同じになるように(0.5%)水懸濁液とし、DMPOをラジカルトラップ剤として、電子スピン共鳴測定法により光照射下でのヒドロキシラジカル発生量を測定した。
この結果ヒドロキシラジカルの発生量は、シリカ被覆チタニア粒子に抗酸化剤を混合した場合が最も低く、次いでシリカ被覆チタニア粒子単独の場合が低く、未被覆チタニア粒子の場合が最も高かった。
(光触媒活性度の測定・テトラリン自動酸化法)
製造例6〜10で得られた5種のシリカ被覆金属酸化物ゾル、実施例11〜15で得られた5種の表面疎水化シリカ被覆金属酸化物ゾルを被験物質として前記テトラリン自動酸化法による光触媒活性度を測定した。結果を表6にまとめて示す。本発明のシリカ被覆金属酸化物ゾル及び表面疎水化シリカ被覆金属酸化物ゾルのいずれもが60Pa/min以下であり、従来のシリカ被覆金属酸化物粉と同等の光触媒活性の抑制を示す。
(有機系紫外線吸収剤の分解速度の測定・パラソール法)
製造例1b〜5bで得られた5種類の表面疎水化シリカ被覆金属酸化物粒子と製造例1a〜5aで得られた5種類のシリカ被覆金属酸化物粒子各々に相当する5種類の未被覆の金属酸化物粒子、及び2種類の従来の表面処理チタニア粒子(テイカ社製MT100T及び石原産業製TTO−55A)を被験物質としてパラソール法により有機系紫外線吸収剤の分解速度を測定した。
さらに、製造例6〜10で得られた5種のシリカ被覆金属酸化物ゾル、実施例11〜15で得られた5種の表面疎水化シリカ被覆金属酸化物ゾルを被験物質としてパラソール法により有機系紫外線吸収剤の分解速度を測定した。
即ち、4−tert−ブチル−4’−メトキシジベンゾイルメタン(パラソール1789)のポリエチレングリコール300溶液(パラソール1789濃度として0.045質量%)に被験物質を分散させ、各々1質量%のスラリーとした。スラリー1.5gをガラス容器に入れ、紫外線照射(1.65mW/cm)した後、1gを分取し、イソプロピルアルコール2mL、ヘキサン2mL、蒸留水3mLを順次添加した。攪拌してヘキサン相にパラソール1789を抽出し、ヘキサン相の光路長1mmでの吸光度(340nm)を分光光度計(SHIMADZU UV−160)で経時的に(紫外線照射0、5及び10時間後の3点)測定した。340nmの吸光度の減少速度(ΔA340/h)を求めた。結果を表5及び表6に示す。
本発明に用いることができる表面疎水化シリカ被覆金属酸化物粒子及びシリカ被覆金属酸化物ゾルのいずれもが0.01(ΔA340/h)以下であり、従来のシリカ被覆金属酸化物粒子と同等の分解性を示している。従って、表面疎水化シリカ被覆金属酸化物粒子及びシリカ被覆金属酸化物ゾルを含有した化粧料は、有機系紫外線遮蔽材との併用が可能であることが明らかである。疎水性付与剤による表面処理を行っても、従来のシリカ被覆表面処理金属酸化物粒子が有する紫外線吸収剤の低分解性を損なわないことが言える。
(粉体動摩擦係数の測定・ガラス平板法)
製造例1b〜5bで得られた5種類の表面疎水化シリカ被覆金属酸化物粒子と製造例1a〜5aで得られた5種類のシリカ被覆金属酸化物粒子各々に相当する6種類の未被覆の金属酸化物粒子、及び2種類の従来の表面処理チタニア粒子(テイカ社製MT100T及び石原産業製TTO−55A)を被験物質としてガラス平板法により粉体動摩擦係数を測定した。
さらに、製造例16〜20で得られた5種のシリカ被覆金属酸化物ゾル由来の金属酸化物粒子、製造例21〜25で得られた5種の表面疎水化シリカ被覆金属酸化物ゾル由来の金属酸化物粒子を被験物質としてガラス平板法により粉体動摩擦係数を測定した。
即ち、100×200mmのガラス板上に被験物質の粉体を10mg/cmとなるように分散させ、このガラス板を表面性状測定装置(HEIDON)の試験台に載せ、荷重22.2g/cm、移動速度200mm/min.、移動距離20mmの条件で動摩擦係数を測定した。結果を表5及び表6に示す。
本発明に用いられる表面疎水化シリカ被覆金属酸化物粒子の動摩擦係数並びにシリカ被覆金属酸化物ゾル及び表面疎水化シリカ被覆金属酸化物ゾル由来の金属酸化物粉体の動摩擦係数のいずれもが0.550以下であり、従来のシリカ被覆金属酸化物粒子と同等の動摩擦係数を示している。未被覆の金属酸化物粒子、従来の表面処理チタニア粒子のそれは0.550をはるかに越える値を示す。即ち、疎水性付与処理によっても、従来のシリカ被覆表面処理金属酸化物粒子が有する低動摩擦係数に悪影響がないと言える。また、本発明のシリカ被覆金属酸化物ゾル由来の金属酸化物粒子及び表面疎水化シリカ被覆金属酸化物ゾル由来の金属酸化物粒子を含有した化粧料は、従来よりも、さらに優れた使用感を有することが示唆されている。
(色素退色速度の測定・サンセットイェロー法)
製造例1b〜5bで得られた5種類の表面疎水化シリカ被覆金属酸化物粒子と製造例1a〜5aで得られた5種類のシリカ被覆金属酸化物粒子製造例2〜4及び6で得られた4種類のシリカ被覆金属酸化物粒子と各々に該当する4種類の未被覆の金属酸化物粒子、及び2種類の従来の表面処理チタニア粒子(テイカ社製MT100T及び石原産業製TTO−55A)を被験物質としてサンセットイェロー法により色素退色速度を測定した。
また、製造例6〜10で得られた5種のシリカ被覆金属酸化物、製造例11〜15で得られた5種の表面疎水化シリカ被覆金属酸化物ゾルを被験物質としてサンセットイェロー法により色素退色速度を測定した。
即ち、化粧料用の色素であるサンセットイェローを98質量%グリセリンに色素濃度が0.02質量%となるように溶解した。被験物質を0.067質量%となるように分散させ、該分散液に紫外線照射(紫外線強度1.65mW/cm)した。光路長1mmでサンセットイェローの最大吸収波長である490nmの吸光度を経時的に分光光度計(SHIMADZU UV−160)で測定し、該吸光度の減少速度(ΔA490/h)を計算した。結果を同じく表5及び表6に示す。
本発明に用いられる表面疎水化シリカ被覆金属酸化物粒子及びシリカ被覆金属酸化物ゾルの色素退色速度は、いずれも0.060(ΔA490/h)以下であり、従来のシリカ被覆金属酸化物粒子と同等の色素退色速度を示す。未被覆の金属酸化物粒子の約1/1000、従来の表面処理チタニア粒子の約1/100であり、色素の分解が低く抑えられている。
本発明に用いられる表面疎水化シリカ被覆金属酸化物粒子及びシリカ被覆金属酸化物ゾル由来のシリカ被覆金属酸化物粒子は、疎水性付与剤による表面処理後も、従来のシリカ被覆金属酸化物粒子が有する低い色素分解性を維持していることが明らかであり、保存安定性の高い化粧料を提供できる。
Figure 0004740458
Figure 0004740458
(化粧料例1〜4) 両用ファンデーション
それぞれ製造例1b〜4bで得られた4種類の表面疎水化シリカ被覆金属酸化物粒子を用いて、定法により下記処方の両用ファンデーションを製造した。製造時、いずれの表面疎水化シリカ被覆金属酸化物粒子も良好に分散した。
両用ファンデーションの処方
表面疎水化シリカ被覆金属酸化物粒子 6.0質量%
シリコーン処理タルク 19.0質量%
シリコーン処理マイカ 40.0質量%
シリコーン処理酸化鉄(赤) 1.0質量%
シリコーン処理酸化鉄(黄) 3.0質量%
シリコーン処理酸化鉄(黒) 0.3質量%
シリコーン処理チタニア 15.0質量%
ステアリン酸亜鉛 0.2質量%
ナイロンパウダー 2.0質量%
スクアラン 4.0質量%
固形パラフィン 0.5質量%
ジメチルポリシロキサン 4.0質量%
トリイソオクタン酸グリセリン 5.0質量%
酸化防止剤 適 量
防腐剤 適 量
香料 適 量
(比較化粧料例1〜4) 両用ファンデーション
化粧料例1〜4の処方において、前記表面疎水化シリカ被覆金属酸化物粒子の代わりに、製造例1a〜4aで得られた従来のシリカ被覆金属酸化物粒子を用いて、両用ファンデーションを製造した。
化粧料例1〜4及び比較化粧料例1〜4のファンデーションについて官能試験を実施して、使用感を評価した。結果を表7に示す。本発明になるシリカ被覆金属酸化物粒子を含有するファンデーションは、全て良好な使用感である。一方、未被覆の金属酸化物粒子及び従来の表面処理チタニア粒子を含有するファンデーションの使用感は普通以下である。また、含有した金属酸化物粒子の動摩擦係数とファンデーションの使用感の間には相関が認められる。
Figure 0004740458
(化粧料例5〜7) ファンデーション
定法により下記処方のファンデーションを製造した。表面疎水化シリカ被覆金属酸化物粒子としては、それぞれ製造例2b〜4bで得られた3種類の表面疎水化シリカ被覆金属酸化物粒子を用いた。製造時、表面疎水化シリカ被覆チタニア粒子及び他の表面疎水化シリカ被覆金属酸化物粒子は、良好に分散した。
ファンデーションの処方
表面疎水化シリカ被覆チタニア粒子(製造例1b) 10.0質量%
表面疎水化シリカ被覆金属酸化物粒子 5.0質量%
タルク 17.8質量%
カオリン 15.0質量%
亜鉛華 15.0質量%
酸化鉄(赤) 1.0質量%
酸化鉄(黄) 3.0質量%
酸化鉄(黒) 0.2質量%
固形パラフィン 3.0質量%
マイクロクリスタリンワックス 6.0質量%
ミツロウ 2.0質量%
ワセリン 12.0質量%
酢酸ラノリン 1.0質量%
スクワラン 6.0質量%
パルミチン酸イソプロピル 18.0質量%
酸化防止剤 適 量
香料 適 量
上記のファンデーションについて官能試験を実施したところ、いずれのファンデーションも極めて良好な使用感だった。
(化粧料例8) W/O乳化型ファンデーション
製造例1bで得られた表面疎水化シリカ被覆チタニア粒子を用いて、定法により下記処方のW/O乳化型ファンデーションを製造した。製造時、表面疎水化シリカ被覆チタニア粒子は、良好に分散した。
W/O乳化型ファンデーションの処方
表面疎水化シリカ被覆チタニア粒子(製造例1b) 9.5質量%
セリサイト 5.4質量%
カオリン 4.0質量%
酸化鉄(赤) 0.4質量%
酸化鉄(黒) 0.2質量%
酸化鉄(黄) 0.8質量%
流動パラフィン 5.0質量%
デカメチルシクロペンタンジオキサン 12.0質量%
ポリオキシエチレン 変性ジメチルポリシロキサン 4.0質量%
1,3ブチレングリコール 5.0質量%
精製水 51.6質量%
分散剤 0.1質量%
安定化剤 2.0質量%
防腐剤 適 量
香料 適 量
上記のファンデーションについて官能試験を実施したところ、極めて良好な使用感だった。
(化粧料例9) 日焼け止めクリーム
製造例1bで得られた表面疎水化シリカ被覆チタニア粒子を用いて、定法により下記処方の日焼け止めクリームを製造した。製造時の表面疎水化シリカ被覆チタニア粒子の分散は良好であった。
日焼け止めクリームの処方
表面疎水化シリカ被膜チタニア粒子(製造例1b) 5.0質量%
パラメトキシケイ皮酸オクチル 5.0質量%
オキシベンゾン 3.0質量%
4−tertブチル−4’−メトキシベンゾイルメタン 1.0質量%
スクワラン 39.0質量%
ジイソステアリン酸グリセリン 3.0質量%
流動パラフィン 10.0質量%
有機変性モンモリロナイト 1.5質量%
1,3ブチレングリコール 5.0質量%
精製水 37.5質量%
香料 適 量
防腐剤 適 量
上記の日焼け止めクリームについて官能試験を実施したところ、良好な使用感だった。
(化粧料例10) サンオイル
製造例2bで得られた表面疎水化シリカ被覆酸化亜鉛粒子を用いて、定法により下記処方のサンオイルを製造した。製造時、表面疎水化シリカ被覆酸化亜鉛粒子は、良好に分散した。
サンオイルの処方
表面疎水化シリカ被膜酸化亜鉛粒子(製造例2b) 1.0質量%
パラメトキシケイ皮酸イソプロピル 0.5質量%
流動パラフィン 56.5質量%
ミリスチン酸イソプロピル 10.0質量%
シリコーンオイル 30.0質量%
シリコーンレジン 2.0質量%
香料 適 量
酸化防止剤 適 量
上記のサンオイルについて官能試験を実施したところ、良好な使用感だった。
(化粧料例11) W/O型乳液
製造例1bで得られた表面疎水化シリカ被覆チタニア粒子を用いて、定法により下記処方の乳液を製造した。製造時、表面疎水化シリカ被覆チタニア粒子は、良好に分散した。
乳液の処方
表面疎水化シリカ被膜チタニア粒子(製造例1b) 3.0質量%
マイクロクリスタリンワックス 1.0質量%
ミツロウ 2.0質量%
ラノリン 2.0質量%
流動パラフィン 18.0質量%
スクワラン 10.0質量%
ポリオキシエチレンソルビタン脂肪酸エステル 1.0質量%
ソルビタンセスキオレイン酸エステル 4.0質量%
ポロピレングリコール 7.0質量%
精製水 52.0質量%
香料 適 量
防腐剤 適 量
上記の乳液について官能試験を実施したところ、良好な使用感だった。
(化粧料例12) W/O型クリーム
製造例1bで得られた表面疎水化シリカ被覆チタニア粒子を用いて、定法により 下記処方のクリームを製造した。製造時、表面疎水化シリカ被覆チタニア粒子は、良好に分散した。
W/O型クリームの処方
表面疎水化シリカ被覆チタニア粒子(製造例1b) 7.0質量%
マイクロクリスタリンワックス 8.5質量%
固形パラフィン 2.0質量%
ミツロウ 3.0質量%
ワセリン 5.0質量%
還元ラノリン 5.0質量%
スクワラン 30.0質量%
ヘキサデシルアジピン酸エステル 10.0質量%
モノオレイン酸グリセリン 3.5質量%
ポリオキシエチレンソルビタンモノオレイン酸エステル 1.0質量%
プロピレングリコール 5.0質量%
精製水 20.0質量%
香料 適 量
酸化防止剤 適 量
防腐剤 適 量
上記のクリームについて官能試験を実施したところ、良好な使用感だった。
(化粧料例13) クリーム
製造例1bで得られた表面疎水化シリカ被覆チタニア粒子及び製造例2bで得られた表面疎水化シリカ被覆酸化亜鉛粒子を用いて、定法により下記処方のクリームを製造した。製造時、表面疎水化シリカ被覆チタニア粒子及び製造例2bで得られた表面疎水化シリカ被覆酸化亜鉛粒子は、良好に分散した。
クリームの処方
表面疎水化シリカ被膜チタニア粒子(製造例1) 7.0質量%
表面疎水化シリカ被膜酸化亜鉛粒子(製造例2) 7.0質量%
スクワラン 17.0質量%
セチルイソオクタノエート 7.5質量%
マイクロクリスタリンワックス 1.0質量%
有機変性モンモリロナイト 1.3質量%
ポリオキシエチレングリセロールトリイソステアリン酸エステル 0.2質量%
グリセリン 8.5質量%
精製水 50.5質量%
香料 適 量
防腐剤 適 量
上記のクリームについて官能試験を実施したところ、良好な使用感だった。
(化粧料例14) 油性クリーム
製造例1bで得られた表面疎水化シリカ被覆チタニア粒子を用いて、定法により下記処方のクリームを製造した。製造時、表面疎水化シリカ被覆チタニア粒子及び製造例2bで得られた表面疎水化シリカ被覆酸化亜鉛粒子は、良好に分散した。
油性クリームの処方
表面疎水化シリカ被膜チタニア粒子(製造例1b) 5.0質量%
セレシン 7.5質量%
マイクロクリスタリンワックス 5.0質量%
ワセリン 33.0質量%
流動パラフィン 47.5質量%
低分子ポリエチレン 2.0質量%
香料 適 量
上記のクリームについて官能試験を実施したところ、良好な使用感だった。
(化粧料例15) パック
製造例1bで得られた表面疎水化シリカ被覆チタニア粒子を用いて、定法により下記処方のパックを製造した。製造時、表面疎水化シリカ被覆チタニア粒子は、良好に分散した。
パックの処方
表面疎水化シリカ被膜チタニア粒子(製造例1b) 5.0質量%
タルク 10.0質量%
ポリ酢酸ビニルエマルジョン 15.0質量%
ポリビニルアルコール 10.0質量%
ソルビトール 5.0質量%
PEG400 5.0質量%
ホホバ油 2.9質量%
スクワラン 2.0質量%
ポリオキシエチレンソルビタンモノステアリン 酸エステル 1.0質量%
エチルアルコール 8.0質量%
精製水 37.7質量%
香料 適 量
防腐剤 適 量
上記のパックについて官能試験を実施したところ、良好な使用感だった。
(化粧料例16) 口紅
製造例1bで得られた表面疎水化シリカ被覆チタニア粒子を用いて、定法により下記処方の口紅を製造した。製造時、表面疎水化シリカ被覆チタニア粒子は、良好に分散した。
口紅の処方
表面疎水化シリカ被膜チタニア粒子(製造例1b) 4.5質量%
ヒマシ油 30.0質量%
セレシン 4.0質量%
キャンデリラロウ 8.0質量%
カルナウバロウ 2.0質量%
プロピレングリコール 1.0質量%
グリセリン 2.0質量%
イソステアリン酸ジグリセライド 40.0質量%
ポリオキシエチレン・ポリオキシプロピレン2−テトラデシルエーテル
1.0質量%
赤色色素 2.5質量%
精製水 5.0質量%
香料 適 量
酸化防止剤 適 量
上記の口紅について官能試験を実施したところ、良好な使用感だった。
(化粧料例17〜20) 官能試験用ファンデーション
常法により下記の処方でファンデーションを製造した。被験物質としては、それぞれ製造例1b〜4bで得られた4種類のシリカ被覆金属酸化物粒子を用いた。
官能試験用ファンデーションの処方
被験物質 6.0質量%
シリコーン処理タルク 18.0質量%
シリコーン処理マイカ 39.0質量%
シリコーン処理酸化鉄(赤) 1.0質量%
シリコーン処理酸化鉄(黄) 3.0質量%
シリコーン処理酸化鉄(黒) 0.3質量%
シリコーン処理チタニア 15.0質量%
ステアリン酸亜鉛 0.2質量%
ナイロンパウダー 2.0質量%
スクアラン 4.0質量%
固形パラフィン 0.5質量%
ジメチルポリシロキサン 4.0質量%
トリイソオクタン酸グリセリン 5.0質量%
酸化防止剤混合物 2.0質量%
防腐剤 適 量
香料 適 量
酸化防止剤混合物としては、β−カロチン5%、アスタキサンチン5%、L−アスコルビン酸−2−リン酸マグネシウム20%、L−アスコルビン酸−2−リン酸ナトリウム10%、L−アスコルビン酸−2−グルコシド10%、L−アスコルビン酸−2−リン酸−5,6−ベンジリデン10%、天然ビタミンE10%、dl−α−トコフェロール5%、dl−α−トコフェリル酢酸エステル5%、dl−α−トコフェリルリン酸ナトリウム5%、クエン酸5%、リン酸5%、エピガロカテキン5%(比率は質量%)からなる混合物を使用した。
(比較化粧料例5〜8) 官能試験用ファンデーション
被験物質としては、それぞれ製造例1a〜4aで得られた4種類のシリカ被覆金属酸化物粒子を用いることを除けば、化粧料例17〜20と同じ処方でファンデーションを製造した。
(官能試験)
化粧料例17〜20及び比較化粧料例5〜8で製造したファンデーションの使用感を20から40歳台の女性50人を用いた官能試験で評価した。50人の被験者によって各々のファンデーションの使用感が、
極めて良い:5点 良い:3点 普通:2点
悪い:1点 極めて悪い:0点
の基準により採点された。次いで、50人の評価点数を集計した合計点数により、下記の基準に基づく5段階で使用感を判定した。
250〜200点:極めて良い(++)
200〜150点:良い (+ )
150〜100点:普通 (+−)
100〜 50点:悪い (− )
50〜 0点:極めて悪い(−−)
結果を表8に示す。本発明になるシリカ被膜金属酸化物粒子を配合したファンデーションの使用感は、いずれも極めて良好(++)である。一方、従来のシリカ被膜金属酸化物粒子を配合したファンデーションは、普通(+−)である。
Figure 0004740458
以下、本発明の表面疎水化シリカ被覆金属酸化物の製造例についてさらに説明する。
(化粧料例21〜28)
ジメチルジエトキシシランの代わりに表9に示すアルキルアルコキシシランを用いて、製造例1bと同様の製造条件で表面疎水化シリカ被覆チタニア粒子を得た。
Figure 0004740458
(化粧料例29〜36)
製造例1a〜5aで得たシリカ被覆金属酸化物粒子を乾式法で表面処理した。即ち、前記シリカ被覆金属酸化物粒子100gをヘンシェル型撹拌混合機(深江工業製、LFS−GS−1J)に入れ、3000rpmの回転数で回転させながら、表7に記載の疎水性付与剤またはその溶液を前記金属酸化物粒子の10質量%に相当する量でスプレーし、シリカ被覆金属酸化物粒子の表面に均一付着させた後、80〜105℃で乾燥した。結果を表10に示す。
Figure 0004740458
(化粧料例37〜39) 日焼け止め乳液
定法により下記処方の日焼け止め乳液を製造した。即ち、精製水にポリエチレングリコールを加え、加熱溶解後、被験物質、ビーガムを加え、ホモミキサーで均一に分散し、70℃に保つ(水相)。他の成分を混合し、加熱溶解して70℃に保つ(油相)。水相に油相を加え、ホモミキサーで均一に乳化分散し、乳化後かき混ぜながら35℃まで冷却した。被験物質には、製造例6〜8で製造した3種類のシリカ被覆金属酸化物ゾルを固形分10%に調整して用いた。
日焼け止め乳液の処方
被験物質 70.0質量%
ステアリン酸 2.0質量%
セチルアルコール 1.0質量%
ワセリン 5.0質量%
シリコン油 2.0質量%
流動パラフィン 10.0質量%
グリセリンモノステアリン酸エステル(自己乳化型) 1.0質量%
ポリオキシエチレン(25モル)モノオレイン酸エステル 1.0質量%
ポリエチレングリコール1500 5.0質量%
ビーガム 0.5質量%
精製水 2.2質量%
香料 0.1質量%
防腐剤 0.2質量%
(官能試験)
化粧料例37〜39で製造した日焼け止め乳液の使用感及び仕上がりの透明感を20から40歳台の女性50人を用いた官能試験で評価した。50人の被験者によって各々のファンデーションの使用感が、
極めて良い:5点 良い:3点 普通:2点
悪い:1点 極めて悪い:0点
の基準により採点された。次いで、50人の評価点数を集計した合計点数により、下記の基準に基づく5段階で使用感を判定した。
250〜200点:極めて良い(++)
200〜150点:良い (+ )
150〜100点:普通 (+−)
100〜 50点:悪い (− )
50〜 0点:極めて悪い(−−)
結果を表11に示す。本発明のシリカ被膜金属酸化物ゾルを配合した日焼け止め乳液の使用感及び透明感は、いずれも極めて良い(++)である。一方、従来のシリカ被覆金属酸化物粉を配合した日焼け止め乳液では、使用感は極めて良い(++)又は良い(+)であるが、透明感は普通(+−)又は良い(+)である。
本発明のシリカ被覆金属酸化物ゾルを含有する日焼け止め乳液は、従来のシリカ被覆金属酸化物粉を含有する日焼け止め乳液に比べて、特に透明感が向上していることが明らかである。
Figure 0004740458
(化粧料例40〜41) ファンデーション
定法により下記処方のファンデーションを製造した。被験物質として、それぞれ製造例16〜17で得られた2種類のシリカ被覆金属酸化物ゾル由来のシリカ被覆金属酸化物粒子を用いた。
ファンデーションの処方
被験物質 15.0質量%
マイカ 15.0質量%
タルク 10.0質量%
亜鉛華 15.0質量%
酸化鉄(赤) 1.5質量%
酸化鉄(黄) 3.4質量%
グリセリン 10.0質量%
精製水 30.0質量%
香料 0.1質量%
(官能試験)
化粧料例40〜41で製造したファンデーションの使用感及び仕上がりの透明感を、前記の方法に従い、官能試験で評価した。
結果を表12に示す。本発明のシリカ被膜金属酸化物ゾル由来の金属酸化物粉体を配合したファンデーションの使用感及び透明感は、いずれも極めて良い(++)である。一方、従来のシリカ被覆金属酸化物粉を配合したファンデーションでは、使用感は極めて良い(++)又は良い(+)であるが、透明感は普通(+−)又は良い(+)である。
本発明のシリカ被覆金属酸化物ゾル由来のシリカ被覆金属酸化物粒子を含有するファウンデーションは、従来のシリカ被覆金属酸化物粉を含有するファンデーションに比べて、特に透明感が向上していることが明らかである。
Figure 0004740458
(化粧料例42〜45) ファンデーション
定法により下記処方のファンデーションを製造した。シリカ被覆金属酸化物ゾルとしては、製造例17〜20で得られた4種類のシリカ被覆金属酸化物ゾル由来のシリカ被覆金属酸化物粉体のいずれか1種を用いた。
ファンデーションの処方
シリカ被覆チタニアゾル由来の
チタニア粉体(製造例16) 10.0質量%
シリカ被覆金属酸化物ゾル由来の
シリカ被覆金属酸化物粒子 5.0質量%
マイカ 15.0質量%
タルク 10.0質量%
亜鉛華 15.0質量%
ベンガラ 1.5質量%
酸化鉄(黄) 3.5質量%
グリセリン 10.0質量%
精製水 29.9質量%
香料 0.1質量%
上記のファンデーションについて官能試験を実施したところ、いずれのファンデーションも極めて良い使用感と極めて良い透明感を示した。
(化粧料例46) 化粧水
定法により下記処方の化粧水を製造した。
化粧水の処方
シリカ被膜酸化亜鉛ゾル(製造例7) 30.0質量%
エチルアルコール 39.6質量%
1,3ブチレングリコール 9.5質量%
ヒマシ油 4.9質量%
メチルパラベン 0.2質量%
精製水 15.8質量%
上記の化粧水について官能試験を実施したところ、良い使用感及び極めて良い透明感という評価を得た。
(化粧料例47) 乳液
定法により下記処方の乳液を製造した。
乳液の処方
シリカ被膜チタニアゾル(製造例6) 30.0質量%
アボガド油 11.0質量%
ベヘニルアルコール 0.6質量%
ステアリン酸 0.4質量%
グリセリン脂肪酸エステル 0.9質量%
ポリオキシエチレンソルビタン脂肪酸エステル 1.1質量%
ポリオキシエチレンアルキルエーテル 0.4質量%
1,3ブチレングリコール 10.1質量%
メチルパラベン 0.2質量%
香料 0.4質量%
精製水 44.9質量%
上記の化粧水について官能試験を実施したところ、極めて良い使用感及び極めて良い透明感という評価を得た。
(化粧料例48) クリーム
定法により下記処方のクリームを製造した。
クリームの処方
シリカ被膜酸化セリウムゾル(製造例8) 35.0質量%
スクワラン 11.1質量%
ステアリン酸 7.8質量%
ステアリルアルコール 6.0質量%
ミツロウ 1.9質量%
プロピレングリコールモノステアレート 3.1質量%
ポリオキシエチレンセチルエーテル 1.1質量%
1,3ブチレングリコール 11.9質量%
メチルパラベン 0.2質量%
香料 0.4質量%
精製水 12.5質量%
上記のクリームについて官能試験を実施したところ、良い使用感及び極めて良い透明感という評価であった。
(化粧料例49) クリーム
定法により下記処方のクリームを製造した。
クリームの処方
シリカ被膜酸化亜鉛ゾル(製造例7) 35.0質量%
スクワラン 15.2質量%
ステアリン酸 7.8質量%
ステアリルアルコール 6.0質量%
ミツロウ 1.9質量%
プロピレングリコールモノステアレート 3.1質量%
ポリオキシエチレンセチルエーテル 1.1質量%
1,3ブチレングリコール 11.9質量%
メチルパラベン 0.2質量%
香料 0.4質量%
精製水 10.4質量%
上記のクリームについて官能試験を実施したところ、極めて良い使用感及び極めて良い透明感という評価であった。
(化粧料例50) クリーム
定法により下記処方のクリームを製造した。
クリームの処方
シリカ被膜酸化ジルコニウムゾル(製造例9) 15.0質量%
スクワラン 40.0質量%
ジイソステアリン酸グリセリル 3.0質量%
オキシベンゼン 3.0質量%
有機変性モンモリロナイト 1.5質量%
1,3−ブチレングリコール 5.0質量%
p−メトキシケイ皮酸オクチル 5.0質量%
4−tertブチル−4’−メトキシ 1.0質量%
ジベンゾイルメタン
メチルパラベン 0.2質量%
香料 0.4質量%
精製水 25.9質量%
上記のクリームについて官能試験を実施したところ、極めて良い使用感と透明感という評価であった。
(化粧料例51) パック
被験物質として製造例16で得られたシリカ被膜チタニアゾル由来のチタニア粉体を用いて、常法により下記の処方でパックを製造した。
パックの処方
被験物質 7.0質量%
ポリビニルアルコール 14.5質量%
カルボキシメチルセルロースナトリウム 4.8質量%
1,3ブチレングリコール 2.9質量%
エチルアルコール 10.0質量%
メチルパラベン 0.1質量%
精製水 60.7質量%
上記のパックについて官能試験を実施したところ、良い使用感と透明感という評価であった。
(化粧料例52) 口紅
被験物質として媒体をシリコン油に置換した製造例7の表面疎水化シリカ被覆酸化亜鉛ゾルを用いて、常法により下記の処方で口紅を製造した。
被験物質 30.0質量%
ヒマシ油 18.3質量%
ヘキサデシルアルコール 25.2質量%
ラノリン 3.9質量%
ミツロウ 4.8質量%
オゾケライト 3.4質量%
キャンデリラロウ 6.2質量%
カルナウバロウ 2.1質量%
メチルパラベン 0.1質量%
赤色色素 4.8質量%
香料 0.1質量%
精製水 1.1質量%
上記の口紅について官能試験を実施したところ、極めて良い使用感及び透明感という評価であった。
(化粧料例53〜57) 両用ファンデーション
製造例21〜25で得られた5種類の表面疎水化シリカ被覆金属酸化物ゾル由来のシリカ被覆金属酸化物粒子を被験物質に用いて、定法により下記処方の両用ファンデーションを製造した。製造時、いずれのシリカ被覆金属酸化物粒子も良好に分散した。
両用ファンデーションの処方
被験物質 6.0質量%
シリコーン処理タルク 19.0質量%
シリコーン処理マイカ 39.6質量%
シリコーン処理酸化鉄(赤) 1.0質量%
シリコーン処理酸化鉄(黄) 3.0質量%
シリコーン処理酸化鉄(黒) 0.3質量%
シリコーン処理チタニア 15.0質量%
ステアリン酸亜鉛 0.2質量%
ナイロンパウダー 2.0質量%
スクアラン 4.0質量%
固形パラフィン 0.5質量%
ジメチルポリシロキサン 4.0質量%
トリイソオクタン酸グリセリン 5.0質量%
酸化防止剤 0.2質量%
防腐剤 0.1質量%
香料 0.1質量%
化粧料例53〜57の両用ファンデーションについて官能試験を実施して、使用感及び透明感を評価した。結果を表13に示す。本発明による表面疎水化シリカ被覆金属酸化物ゾル由来のシリカ被覆金属酸化物粒子を含有するファンデーションは、いずれも極めて良い使用感と極めて良い透明感を示している。
Figure 0004740458
(化粧料例58) ファンデーション
定法により下記処方のファンデーションを製造した。製造例21及び22で得られた表面疎水化シリカ被覆チタニアゾル及び酸化亜鉛ゾル由来のシリカ被覆金属酸化物粒子としては、それぞれ製造例17〜20で得られた4種類の表面疎水化シリカ被覆金属酸化物ゾルを用いた。製造時、シリカ被覆チタニア粒子及びシリカ被覆酸化亜鉛粒子は、いずれも良好に分散した。
ファンデーションの処方
表面疎水化シリカ被覆チタニアゾル由来の
シリカ被覆チタニア粒子(製造例21) 10.0質量%
表面疎水化シリカ被覆酸化亜鉛由来の
シリカ被覆酸化亜鉛粒子(製造例22) 5.0質量%
タルク 17.5質量%
カオリン 15.0質量%
亜鉛華 15.0質量%
酸化鉄(赤) 1.0質量%
酸化鉄(黄) 3.0質量%
酸化鉄(黒) 0.2質量%
固形パラフィン 3.0質量%
マイクロクリスタリンワックス 6.0質量%
ミツロウ 2.0質量%
ワセリン 12.0質量%
酢酸ラノリン 1.0質量%
スクワラン 6.0質量%
パルミチン酸イソプロピル 18.0質量%
酸化防止剤 0.2質量%
香料 0.1質量%
上記のファンデーションについて官能試験を実施したところ、いずれのファンデーションも極めて良好な使用感及び極めて良好な透明感だった。
(化粧料例59) W/O乳化型ファンデーション
製造例11で得られた表面疎水化シリカ被覆チタニアゾルを用いて、定法により下記処方のW/O乳化型ファンデーションを製造した。
W/O乳化型ファンデーションの処方
表面疎水化シリカ被覆チタニアゾル(製造例11) 47.5質量%
セリサイト 5.4質量%
カオリン 4.0質量%
酸化鉄(赤) 0.4質量%
酸化鉄(黒) 0.2質量%
酸化鉄(黄) 0.8質量%
流動パラフィン 5.0質量%
デカメチルシクロペンタンジオキサン 12.0質量%
ポリオキシエチレン変性ジメチルポリシロキサン 4.0質量%
1,3ブチレングリコール 5.0質量%
精製水 13.3質量%
分散剤 0.1質量%
安定化剤 2.0質量%
防腐剤 0.2質量%
香料 0.1質量%
上記のファンデーションについて官能試験を実施したところ、極めて良好な使用感及び極めて良好な透明感だった。
産業上の利用可能性
本発明によって、1150〜1250cm−1と1000〜1100cm−1の赤外吸収スペクトルのピーク強度の比I(I=I/I:式中Iは1150〜1250cm−1の吸収ピーク強度、Iは1000〜1100cm−1の吸収ピーク強度を表す。)が0.2以上であり、かつ、屈折率が1.435以上であり、膜厚0.1〜100nmであるシリカ被膜で被覆した後、疎水性付与剤を表面処理されてなる、更に、テトラリン自動酸化法により測定した光触媒活性度が60Pa/min.以下である表面疎水化シリカ被覆金属酸化物粒子を配合してなる化粧料が提供される。この化粧料は、化粧品基材中での金属酸化物粒子の分散が良好であり、紫外線遮蔽能が高く、化粧仕上がりの透明感が高い、また化粧時の使用感に優れ、光触媒活性の抑制効果が高く、保存安定性に優れているので、実用的化粧料として有用である。また、本発明によればシリカ被覆金属酸化物ゾルの経済的な製造法が提供され、さらに緻密で実用的なシリカ膜で被覆され、かつ分散性及び透明性が向上した金属酸化物ゾルが提供され、さらにシリカ被覆金属酸化物粒子が良好に分散し、特に透明感に優れた紫外線遮蔽用化粧料が提供される。Relationship with related applications
This application claims the benefit of priority of US Provisional Application No. 60 / 117,551, filed Jan. 28, 1999.
Technical field
The present invention relates to cosmetics, surface-hydrophobized silica-coated metal oxide particles, silica-coated metal oxide sols, and production methods thereof, more specifically, cosmetics, particularly UV-shielding cosmetics, and suitable for use therein. Surface-hydrophobized silica-coated metal oxide particles, their production method, and a specific infrared absorption spectrum peak, which is coated with a dense and practical silica film, and is well dispersed with a smaller primary particle size Silica-coated metal oxide sol that has good properties and is suitable for use in cosmetics, in particular UV-blocking cosmetics, and surface-hydrophobized silica-coated metal oxides that are surface-treated with a hydrophobicity-imparting agent after silica coating The present invention relates to a sol and a manufacturing method thereof. More specifically, the present invention has a cosmetic composition excellent in feeling during use, high ultraviolet shielding ability, low phototoxicity, excellent storage stability, a specific infrared absorption spectrum peak, and The surface-hydrophobized silica-coated metal oxide particles coated with a dense and practical silica film and further surface-treated with a hydrophobicity-imparting material. The surface-hydrophobized silica-coated metal oxide particles include various ultraviolet shielding materials and cosmetics. It can be used for pigments. Further, the present invention also provides the silica-coated metal oxide sol having a high ultraviolet shielding ability, a high effect of suppressing photocatalytic activity, excellent storage stability, and excellent use feeling and transparency during makeup. And / or a cosmetic containing a surface-hydrophobized silica-coated metal oxide sol.
Background art
In recent years, many inorganic ultraviolet shielding materials having excellent ultraviolet shielding ability and high safety have been used for cosmetics having ultraviolet shielding ability. As inorganic ultraviolet shielding materials, powders of metal oxides such as titania and zinc oxide are generally used.
However, when these metal oxide particles are blended in cosmetics as they are, there are known problems that the feeling of use deteriorates, or that the photocatalytic activity of the metal oxide particles has an adverse effect on the human body and skin, It is necessary to apply some coating to the metal oxide particles. In particular, coating with an inorganic substance that is difficult to chemically change by a photocatalytic reaction is preferably performed.
However, the inorganic coated metal oxide particles have a high photocatalytic activity suppression effect when blended with cosmetics, but are water-repellent that is not easily collapsed by oily cosmetics, w / o dispersed cosmetics, or sweat / water. When blended in a cosmetic, there is a disadvantage that the dispersion in the hydrophobic base material is not sufficient and the above-mentioned excellent powder characteristics cannot be fully exhibited.
In addition, when the particles of metal oxides such as titania and zinc oxide, which are widely used as inorganic UV shielding materials with excellent UV shielding performance and high safety as described above, are blended in cosmetics as they are, The surface is coated with an inorganic substance having no photocatalytic activity because there is a problem that the feeling of use at the time becomes worse or the human body is adversely affected by the photocatalytic activity of the metal oxide particles. Although metal oxide particles coated with alumina, silica or the like are commercially available, no product has been known that can satisfy both the suppression of photocatalytic activity by coating and a good feeling when used in cosmetics.
The inventors have a ratio I of peak intensities of infrared absorption spectra of 1150 to 1250 cm −1 and 1000 to 1100 cm −1 (I = I1 / I2: where I1 is a maximum in the range of 1150 to 1250 cm −1. Absorption peak intensity, I2 represents the maximum absorption peak intensity in the range of 1000 to 1100 cm <-1>.) Is a silica-coated metal having a silica film having a refractive index of 0.2 or more and a refractive index of 1.435 or more. Disclosed are oxide particles, a method for producing the same, and cosmetics containing the same, and the photocatalytic activity measured by a tetralin auto-oxidation method coated with a silica film having a thickness of 0.1 to 100 nm is 60 Pa / min. It was shown that by containing the silica-coated metal oxide particles as described below, an ultraviolet shielding cosmetic material having a good feeling of use, having a high effect of suppressing photocatalytic activity, and having excellent storage stability was obtained ( PCT / JP98 / 01133).
In recent years, in addition to high ultraviolet shielding ability, cosmetics for shielding ultraviolet rays have been required to have good usability and high transparency. Therefore, the metal oxide particles used as an ultraviolet shielding material also have a smaller primary particle size and superior dispersibility than conventional ones so as to give a good feeling of use and transparency when blending cosmetics. It has come to be desired. The silica-coated metal oxide particles based on the inventors' invention have excellent characteristics such as suppression of photocatalytic activity and feeling of use, but in order to increase transparency when blended with cosmetics, further fine particles Improvement in dispersibility and dispersibility has been desired.
However, metal oxide powder with a small primary particle size generates lumps when suspended in a solvent, so it is not easy to disperse highly, and using ultrasonic waves for silica coating, stirring for a long time, etc. However, it was an economic problem because an extra process was required.
The first object of the present invention is that the dispersion of the metal oxide particles in the oily base material is good, the feeling of use at the time of makeup is excellent, the ultraviolet shielding ability is high, the phototoxicity is low, and the storage stability is excellent. The present invention also provides cosmetics, metal oxide particles having specific characteristics, high shape following characteristics, coated with a dense and practical silica coating, and having a hydrophobic surface, and its economy. Is to provide an efficient manufacturing method.
The second object of the present invention is to provide an economical method for producing the silica-coated metal oxide sol, which is coated with a dense and practical silica film, and further has improved dispersibility and transparency. It is to provide a UV shielding cosmetic material in which the silica-coated metal oxide is well dispersed in the cosmetic material and is particularly excellent in transparency.
Disclosure of the invention
The present invention that achieves the above-described object resides in the following inventions. (1) to (21) particularly relate to the first object, and (22) to (48) particularly relate to the second object.
(1) A cosmetic comprising surface-hydrophobized silica-coated metal oxide particles obtained by further surface-treating silica-coated metal oxide particles with a hydrophobicity-imparting agent.
(2) A cosmetic comprising the surface-hydrophobized silica-coated metal oxide particles according to (1) above, wherein the silica film has a thickness of 0.1 to 100 nm.
(3) The above (1), wherein the hydrophobicity-imparting agent is one or more hydrophobicity-imparting agents selected from the group consisting of silicone oils, organic alkoxysilanes, and higher fatty acid salts. Cosmetics as described in (2).
(4) The photocatalytic activity measured by the tetralin auto-oxidation method is 60 Pa / min. Cosmetics as described in said (1)-(3) characterized by containing the surface hydrophobization silica covering metal oxide particle | grains which are the following.
(5) The cosmetic according to (3) above, wherein the surface-hydrophobized silica-coated metal oxide particles have a primary particle size of 5 to 500 nm and a secondary particle size of 0.5 to 10 μm. .
(6) The primary particle size of the surface-hydrophobized silica-coated metal oxide particles is 5 to 120 nm, and the silica film thickness is 0.5 to 25 nm, as described in (1) to (5) above Cosmetics.
(7) The metal oxide is one or more metal oxides selected from the group consisting of titanium oxide, zinc oxide, cerium oxide, zirconium oxide and iron oxide. (6) Cosmetics as described.
(8) The cosmetic according to (7), wherein the metal oxide is titanium oxide.
(9) The cosmetic according to (7) above, wherein the metal oxide is zinc oxide.
(10) The cosmetic according to (7), wherein the metal oxide is cerium oxide.
(11) The cosmetic according to any one of (1) to (10) above, which contains an antioxidant in addition to the surface-hydrophobized silica-coated metal oxide particles.
(12) The cosmetic according to any one of (1) to (11) above, which contains an organic ultraviolet absorber in addition to the surface-hydrophobized silica-coated metal oxide particles.
(13) 1150-1250 cm-1And 1000-1100cm-1Of the absorption peak intensity of the infrared absorption spectrum of I (I = I1/ I2: In the formula I11150-1250cm-1Absorption peak intensity, I2Is 1000-1100cm-1Represents the absorption peak intensity. ) Is 0.2 or more, and a metal oxide particle coated on a silica film having a refractive index of 1.435 or more is further surface-treated with a hydrophobicity imparting agent. Particle.
(14) The above (13), wherein the hydrophobicity-imparting agent is one or more hydrophobicity-imparting agents selected from the group consisting of silicone oils, organic alkoxysilanes, and higher fatty acid salts. Surface-hydrophobized silica-coated metal oxide particles as described in 1.
(15) The surface-hydrophobized silica-coated metal oxide particles as described in (13) and (14) above, wherein the average particle diameter of primary particles of the metal oxide particles is 5 to 500 nm.
(16) a) silicic acid or a precursor capable of producing silicic acid, b) water, c) alkali and d) an organic solvent, the water / organic solvent ratio is in the range of 0.1 to 10, and the silicon concentration is Silica-coated metal oxide obtained by bringing metal oxide particles into contact with a composition for forming a silica film in the range of 0.0001 to 5 mol / liter and selectively depositing silica on the surface of the metal oxide particles A method for producing surface-hydrophobized silica-coated metal oxide particles, wherein the particles are further surface-treated with a hydrophobicity-imparting agent.
(17) The above (16), wherein the hydrophobicity imparting agent is a surface treatment with one or more hydrophobizing agents selected from the group consisting of silicone oils, organic alkoxysilanes and higher fatty acid salts. ) For producing surface-hydrophobized silica-coated metal oxide particles.
(18) The hydrophobicity-imparting agent is represented by the formula (1)
(1) Formula; R1(R2)nSiX3-n
(Where R1Is an alkyl group having 1 to 3 carbon atoms or a phenyl group, R2Is a hydrogen group, an alkyl group having 1 to 3 carbon atoms or a phenyl group, X is an alkoxyl group having 1 to 4 carbon atoms, and n is an integer of 1 to 2). The method for producing surface-hydrophobized silica-coated metal oxide particles according to (16) and (17) above.
(19) Silica or a precursor capable of producing silicic acid, water, alkali and organic solvent, water / organic solvent ratio is in the range of 0.1 to 10, and silicon concentration is 0.0001 to 5 mol / liter The silica-coated metal oxide particles obtained by bringing the metal oxide particles into contact with the composition for forming a silica film in the range of 1 and selectively depositing silica on the surface of the metal oxide particles are further treated with an alkylalkoxysilane. In the method for producing surface-hydrophobized silica-coated metal oxide particles, wherein the surface treatment is performed,
Containing silicic acid or a precursor capable of producing silicic acid, water, alkali and organic solvent, water / organic solvent ratio in the range of 0.1-10, and silicon concentration in the range of 0.0001-5 mol / liter After a metal oxide particle is brought into contact with a composition for forming a silica film to selectively deposit silica on the surface of the metal oxide particle, an alkylalkoxysilane is further added so that the water / organic solvent ratio is 0. A composition having a silicon concentration in the range of 1 to 10 and a silicon concentration derived from the alkylalkoxysilane in the range of 0.0001 to 5 mol / liter is obtained by reacting the alkylalkoxysilane with the silica-coated metal oxide. The surface-hydrophobized silica-coated gold according to any one of (16) to (18) above, wherein the particles are subjected to surface treatment, and silica coating and surface treatment with alkylalkoxysilane are continuously performed. Production method of the oxide particles.
(20) Surface hydrophobization as described in (16) to (19) above, wherein the alkali is selected from at least one of ammonia, ammonium carbonate, ammonium hydrogen carbonate, ammonium formate, or ammonium acetate. A method for producing silica-coated metal oxide particles.
(21) The surface as described in (16) above, wherein the organic solvent is selected from at least one of methanol, ethanol, propanol, pentanol, tetrahydrofuran, 1,4-dioxane and acetone. A method for producing hydrophobized silica-coated metal oxide particles.
(22) a) metal oxide sol generated by hydrolysis, b) silicic acid or a precursor capable of producing silicic acid, c) alkali, d) organic solvent and, if necessary, e) water, regardless of order Add the water / organic solvent ratio in the range of 0.1 to 10 and the silicon concentration in the range of 0.0001 to 5 mol / liter to deposit silica on the surface of the metal oxide sol particles. A method for producing a silica-coated metal oxide sol, comprising forming a silica film.
(23) a) a mixed metal oxide sol generated by hydrolysis to a mixed solution of a) alkali, b) organic solvent and c) water, and further, e) a precursor capable of producing silicic acid or silicic acid, F) An organic solvent and, if necessary, f) a mixed solution comprising water having a water / organic solvent ratio in the range of 0.1 to 10 and a silicon concentration of 0.0001 to 5 mol / liter The method for producing a silica-coated metal oxide sol as described in (22) above, wherein silica is deposited on the surface of the metal oxide sol particles to form a silica film.
(24) The silica-coated metal oxide sol according to (22) or (23) above, wherein the alkali is selected from at least one of ammonia, ammonium carbonate, ammonium hydrogen carbonate, ammonium formate, and ammonium acetate. Production method.
(25) The organic solvent is selected from at least one of methanol, ethanol, propanol, pentanol, tetrahydrofuran, 1,4-dioxane and acetone, described in (22) to (24) above A method for producing a silica-coated metal oxide sol.
(26) a) metal oxide sol generated by hydrolysis, b) silicic acid or a precursor capable of producing silicic acid, c) alkali, d) organic solvent, and optionally e) water, regardless of the order, After the addition, the water / organic solvent ratio is in the range of 0.1 to 10 and the silicon concentration is in the range of 0.0001 to 5 mol / liter to deposit silica on the surface of the metal oxide sol particles. A silica-coated metal oxide sol obtained by a method for producing a silica-coated metal oxide sol, wherein a silica film is formed.
(27) a) a metal oxide sol generated by hydrolysis to a mixed solution of a) alkali, b) organic solvent and c) water, and further, e) a precursor capable of producing silicic acid or silicic acid, F) An organic solvent and, if necessary, f) a mixed solution comprising water having a water / organic solvent ratio in the range of 0.1 to 10 and a silicon concentration of 0.0001 to 5 mol / liter A silica-coated metal oxide sol obtained by a method for producing a silica-coated metal oxide sol, wherein the silica-coated metal oxide sol is added so as to fall within a range and silica is deposited on the surface of the metal oxide sol particles to form a silica film.
(28) The silica film is 1150 to 1250 cm-1And 1000-1100cm-1Of the absorption peak intensity of the infrared absorption spectrum of I (I = I1/ I2: In the formula I11150-1250cm-1Maximum absorption peak intensity in the range I2Is 1000-1100cm-1Represents the maximum absorption peak intensity within the range. ) Is 0.2 or more and the refractive index is 1.435 or more, the silica-coated metal oxide sol as described in (26) or (27) above.
(29) The silica-coated metal oxide sol as described in (26) to (28) above, wherein the thickness of the silica coating the surface of the metal oxide particles is 0.1 to 25 nm.
(30) The silica-coated metal oxide sol as described in (26) to (29) above, wherein the metal oxide particles have an average primary particle size of 1 to 100 nm.
(31) a) metal oxide sol generated by hydrolysis, b) silicic acid or a precursor capable of producing silicic acid, c) alkali, d) organic solvent and, if necessary, e) water regardless of the order Add the water / organic solvent ratio in the range of 0.1 to 10 and the silicon concentration in the range of 0.0001 to 5 mol / liter to deposit silica on the surface of the metal oxide sol particles. A surface-hydrophobized silica-coated metal oxide sol, wherein a silica film is formed to form a silica-coated metal oxide sol, and the silica-coated metal oxide particles are further surface-treated with a hydrophobicity-imparting agent. Production method.
(32) A) A metal oxide sol generated by hydrolysis is added to a mixed solution of (b) an alkali, (b) an organic solvent and (c) water, and (e) a precursor capable of producing silicic acid or silicic acid; F) An organic solvent and, if necessary, f) a mixed solution comprising water having a water / organic solvent ratio in the range of 0.1 to 10 and a silicon concentration of 0.0001 to 5 mol / liter It is added so as to be within the range, and silica is deposited on the surface of the metal oxide sol particles to form a silica film to form a silica-coated metal oxide sol, which is then surface-treated with a hydrophobicity imparting agent. A method for producing a surface-hydrophobized silica-coated metal oxide sol.
(33) The hydrophobicity-imparting agent is one or more selected from the group consisting of silicone oils, organic alkoxysilanes and higher fatty acid salts, as described in (31) and (32) above A method for producing a surface-hydrophobized silica-coated metal oxide sol.
(34) The organoalkoxysilane has the following structural formula
R1(R2)nSiX3-n
(Where R1Is an alkyl group having 1 to 4 carbon atoms or a phenyl group, R2Is a hydrogen group, an alkyl group having 1 to 4 carbon atoms or a phenyl group, X is an alkoxyl group having 1 to 4 carbon atoms, and n is an integer of 0 to 2. The method for producing a surface-hydrophobized silica-coated metal oxide sol according to any of (31) to (33) above, wherein the alkylalkoxysilane is represented by
(35) a) metal oxide sol generated by hydrolysis, b) silicic acid or a precursor capable of producing silicic acid, c) alkali, d) organic solvent and, if necessary, e) water regardless of the order Add the water / organic solvent ratio in the range of 0.1 to 10 and the silicon concentration in the range of 0.0001 to 5 mol / liter to deposit silica on the surface of the metal oxide sol particles. A surface-hydrophobized silica-coated metal oxide sol, wherein a silica film is formed to form a silica-coated metal oxide sol, and the silica-coated metal oxide particles are further surface-treated with a hydrophobicity-imparting agent. Surface hydrophobized silica-coated metal oxide sol obtained by the production method.
(36) The silica film is 1150 to 1250 cm-1And 1000-1100cm-1Of the absorption peak intensity of the infrared absorption spectrum of I (I = I1/ I2: In the formula I11150-1250cm-1Maximum absorption peak intensity in the range I2Is 1000-1100cm-1Represents the maximum absorption peak intensity within the range. ) Is 0.2 or more, and the refractive index is 1.435 or more, the surface hydrophobized silica-coated metal oxide sol described in (35) above.
(37) The surface-hydrophobized silica-coated metal oxide sol as described in (35) or (36) above, wherein the thickness of the silica coating the surface of the metal oxide particles is 0.1 to 25 nm.
(38) The surface hydrophobized silica-coated metal oxide sol as described in (35) to (37) above, wherein the metal oxide particles have an average primary particle size of 1 to 100 nm.
(39) a) metal oxide sol generated by hydrolysis, b) silicic acid or a precursor capable of producing silicic acid, c) alkali, d) organic solvent and, if necessary, e) water regardless of the order Add the water / organic solvent ratio in the range of 0.1 to 10 and the silicon concentration in the range of 0.0001 to 5 mol / liter to deposit silica on the surface of the metal oxide sol particles. Silica coating obtained by solid-liquid separation of the silica-coated metal oxide sol obtained by the method for producing a silica-coated metal oxide sol characterized by forming a silica film, drying, and grinding as necessary Silica-coated metal oxide particles derived from metal oxide sol.
(40) a) metal oxide sol generated by hydrolysis, b) silicic acid or a precursor capable of producing silicic acid, c) alkali, d) organic solvent and, if necessary, e) water regardless of the order Add the water / organic solvent ratio in the range of 0.1 to 10 and the silicon concentration in the range of 0.0001 to 5 mol / liter to deposit silica on the surface of the metal oxide sol particles. A surface-hydrophobized silica-coated metal oxide sol, wherein a silica film is formed to form a silica-coated metal oxide sol, and the silica-coated metal oxide particles are further surface-treated with a hydrophobicity-imparting agent. Surface hydrophobized silica-coated metal oxide sol derived from surface hydrophobized silica-coated metal oxide obtained by solid-liquid separation, drying, and grinding as necessary Particle.
(41) To the metal oxide sol generated by hydrolysis, a) silicic acid or a precursor capable of producing silicic acid, b) an alkali, c) an organic solvent and, if necessary, d) water regardless of the order, After the addition, the water / organic solvent ratio is in the range of 0.1 to 10 and the silicon concentration is in the range of 0.0001 to 5 mol / liter to deposit silica on the surface of the metal oxide sol particles. A) Silica or silicic acid is produced in a silica-coated metal oxide sol obtained by a method for producing a silica-coated metal oxide sol characterized by forming a silica film and / or a metal oxide sol generated by hydrolysis. Possible precursors, b) alkali, c) organic solvent and, if necessary, d) regardless of the order of water, the water / organic solvent ratio after addition is in the range of 0.1-10, and the silicon concentration is 0.0001-5 mol / liter After adding silica to form a silica film by depositing silica on the surface of the metal oxide sol particles to form a silica-coated metal oxide sol, the silica-coated metal oxide particles are further added with a hydrophobicity-imparting agent. A cosmetic comprising a surface-hydrophobized silica-coated metal oxide sol obtained by a method for producing a surface-hydrophobized silica-coated metal oxide sol characterized by surface treatment.
(42) To the metal oxide sol generated by hydrolysis, a) silicic acid or a precursor capable of producing silicic acid, b) an alkali, c) an organic solvent and, if necessary, d) water regardless of the order, After the addition, the water / organic solvent ratio is in the range of 0.1 to 10 and the silicon concentration is in the range of 0.0001 to 5 mol / liter to deposit silica on the surface of the metal oxide sol particles. Silica-coated metal obtained by solid-liquid separation of the silica-coated metal oxide sol obtained by the method for producing a silica-coated metal oxide sol characterized by forming a silica film, drying, and grinding as necessary In order to oxide particles and / or metal oxide sol generated by hydrolysis, i) silicic acid or a precursor capable of producing silicic acid, b) alkali, c) organic solvent and, if necessary, d) water in order Regardless of water after addition / presence The solvent ratio is in the range of 0.1 to 10 and the silicon concentration is in the range of 0.0001 to 5 mol / liter, and silica is deposited on the surface of the metal oxide sol particles to form a silica film. A surface hydrophobicity obtained by a method for producing a surface-hydrophobized silica-coated metal oxide sol, wherein the silica-coated metal oxide particles are further surface-treated with a hydrophobicity-imparting agent after forming the coated metal oxide sol. A cosmetic comprising surface-hydrophobized silica-coated metal oxide particles obtained by solid / liquid separation of a silica-coated metal oxide sol, drying, and pulverizing as necessary.
(43) The above (41) and (42), wherein the silica film thickness of the metal oxide particles in the silica-coated metal oxide sol and the surface-hydrophobized silica-coated metal oxide sol is 0.1 to 25 nm. Cosmetics described.
(44) In the above (41) to (43), the average primary particle size of the metal oxide particles in the silica-coated metal oxide sol and the surface-hydrophobized silica-coated metal oxide sol is 1 to 100 nm. The cosmetics described.
(45) The photocatalytic activity of the metal oxide particles in the silica-coated metal oxide sol and the surface-hydrophobized silica-coated metal oxide sol measured by a tetralin auto-oxidation method is 60 Pa / min. Cosmetics as described in said (41)-(44) characterized by being below.
(46) The above (41) to (41), wherein the metal oxide is one or more metal oxides selected from the group consisting of titanium oxide, zinc oxide, cerium oxide, zirconium oxide and iron oxide. The cosmetic according to (45).
(47) The cosmetic as described in (41) to (46) above, which contains an antioxidant.
(48) The cosmetic described in (41) to (47) above, which contains an organic ultraviolet absorber.
“Dense” in the present invention means that the formed silica film has a refractive index of 1.435 or more. In general, the denseness of the silica film and the refractive index are considered to have a positive correlation (for example, C. JEFFERY BRINKER, Sau1-GEL SCIENCE, 581-583, ACADEMICS PRESS (1990)), and obtained by a usual sol-gel method. The resulting silica film has a refractive index of 1.435 or more when fired, but it is less than 1.435 unless fired and has a low density. However, in the present invention, this value is achieved without firing.
The term “practical” as used in the present invention means that the covering power of the silica to the base metal oxide is strong, the film does not peel off substantially, and has an appropriate hydrophilic property.
The hydrophilicity of the silica membrane is 1150-1250 cm-1And 1000-1100cm-1Of the absorption peak intensity of the infrared absorption spectrum of I (I = I1/ I2: In the formula I11150-1250cm-1Maximum absorption peak intensity in the range I2Is 1000-1100cm-1Represents the maximum absorption peak intensity within the range. ). I1Is the absorption of bending vibration of SiOH, and I2Is absorption of stretching vibration of Si-O-Si, and I1/ I2The higher the value, the higher the hydrophilicity. “Moderate hydrophilicity” in the present invention means a case where this value is 0.2 or more. A silica film obtained by a normal sol-gel method has an I value of 0.2 or more unless fired, but the denseness is reduced as described above. On the other hand, if the baking is performed, the density is improved, but the I value is less than 0.2, the hydrophilicity is lowered, and the hydrophilicity is not appropriate. That is, since the silica coating of the present invention has appropriate hydrophilicity, it cannot be obtained unless it is fired while maintaining good surface properties (moist feeling, slipperiness) when blended in cosmetics. It has a dense and strong coating and maintains a high ability to suppress the photocatalytic activity of the metal oxide even with a very thin film thickness of about 0.1 nm.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
(Introduction)
First, in the first aspect of the present invention, the cosmetic includes surface-hydrophobized coated metal oxide particles that are surface-treated with a hydrophobicity-imparting agent. The surface hydrophobized coated metal oxide particles are effective as long as the surface is hydrophobized. The present inventor has found that a cosmetic having desired properties can be obtained by coating surface-hydrophobized silica-coated metal oxide particles obtained by coating metal oxide particles with a silica film and further hydrophobizing the surface. It was.
However, preferably 1150-1250 cm-1And 1000-1100cm-1Of the absorption peak intensity of the infrared absorption spectrum of I (I = I1/ I2: In the formula I11150-1250cm-1Absorption peak intensity, I2Is 1000-1100cm-1Represents the absorption peak intensity. ) Is 0.2 or more, and a metal oxide particle coated with a silica film having a refractive index of 1.435 or more is used, and the metal oxide particle is further surface-treated with a hydrophobicity-imparting agent to obtain a surface hydrophobicity. Silica-coated metal oxide particles are obtained.
Such suitable surface hydrophobized silica-coated metal oxide particles contain a) silicic acid or a precursor capable of producing silicic acid, b) water, c) alkali, and d) an organic solvent, with a water / organic solvent ratio of In the range of 0.1 to 10 and the silicon concentration is in the range of 0.0001 to 5 mol / liter, the metal oxide particles are brought into contact with the composition for forming a silica film, and silica is applied to the surfaces of the metal oxide particles. The silica-coated metal oxide particles obtained by selective deposition can be obtained by further surface treatment with a hydrophobicity-imparting agent.
In the following, the present invention will be described in particular on the basis of the above-mentioned preferred production method of surface hydrophobized silica-coated metal oxide particles, and in conjunction with the description, related to the second aspect of the present invention, A case where the metal oxide sol is coated with silica without hydrophobizing the surface of the silica-coated metal oxide particles will also be described.
According to the second aspect of the present invention, containing silicic acid or a precursor capable of producing silicic acid, water, alkali and organic solvent, the water / organic solvent ratio is in the range of 0.1 to 10 by volume ratio, And a method of selectively depositing silica on the surface of the metal oxide particles by bringing the metal oxide particles into contact with a composition for forming a silica film having a silicon concentration in the range of 0.0001 to 5 mol / liter. A silica-coated metal oxide sol is produced using a metal oxide sol generated by hydrolysis in a composition for forming a silica film as oxide particles. That is, the method for producing this silica-coated metal oxide sol comprises: 1) a metal oxide sol generated by hydrolysis, b) silicic acid or a precursor capable of producing silicic acid, c) an alkali, d) an organic solvent and Depending on the order, water is added so that the water / organic solvent ratio after addition is in the range of 0.1 to 10 and the silicon concentration is in the range of 0.0001 to 5 mol / liter, regardless of the order. Silica is deposited on the surface of the metal oxide sol particles to form a silica film.
Also in the second aspect of the present invention, the obtained silica-coated metal oxide sol can be further hydrophobized.
Since the silica-coated metal oxide sol according to the second aspect of the present invention is produced only by liquid processing without using a metal oxide sol as a raw material and without undergoing a drying step, a good dispersibility of the raw material sol, Since a small primary particle size is maintained, a more transparent cosmetic can be obtained. Further, it has a large specific surface area, has a high ultraviolet shielding ability per unit mass, and is economical because a small amount of addition is sufficient. Furthermore, the present invention also includes a surface-hydrophobized silica-coated metal oxide sol obtained by surface-treating silica-coated metal oxide fine particles in the silica-coated metal oxide sol with a hydrophobicity imparting agent. This is particularly suitable for blending into oily cosmetics, w / o dispersed cosmetics, or water-repellent cosmetics that do not easily lose makeup due to sweat and water. Such silica-coated sol and surface-hydrophobized silica-coated sol are not known.
(Silicic acid)
In the present invention, the silicic acid used in the composition for forming a silica film is shown, for example, in the section of “silicic acid” in the Chemical Dictionary (Kyoritsu Shuppan Co., Ltd., issued on March 15, 1969, No. 7). Examples of orthosilicic acid and polymers thereof include metasilicic acid, mesosilicic acid, mesotrisilicic acid, and mesotetrasilicic acid. It should be noted that this “silicic acid” does not contain organic or halogen groups.
The composition containing silicic acid is, for example, tetraalkoxysilane (Si (OR)4In the formula, R is a hydrocarbon group, specifically, tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, etc.), water, alkali, organic solvent is added and stirred And obtained by advancing the hydrolysis reaction. This method is preferable because it is easy to handle or operate and practical. Of these, tetraethoxysilane is a preferred material.
In addition, water, alkali, and organic solvent are added to tetrahalogenated silane and hydrolyzed, alkali and organic solvent are added to water glass, or water glass is treated with a cation exchange resin to obtain alkali, A composition containing silicic acid can also be obtained by using a method of adding an organic solvent. Tetraalkoxysilane, tetrahalogenated silane, and water glass used as a raw material for silicic acid are not particularly limited, and may be those generally used industrially or as reagents, but those of higher purity are preferred. . The composition for forming a silica film of the present composition may contain an unreacted material of the above silicic acid raw material.
Although there is no restriction | limiting in particular in the quantity of silicic acid, Preferably it is the range of 0.0001-5 mol / liter as silicon concentration. If the silicon concentration is less than 0.0001 mol / liter, the formation rate of the silica film is very slow and not practical. On the other hand, if it exceeds 5 mol / liter, silica particles may be formed in the composition without forming a film.
The silicon concentration can be calculated from the amount of silicic acid raw material, for example, tetraethoxysilane, but the composition can also be measured by atomic absorption analysis. For the measurement, the spectrum of silicon having a wavelength of 251.6 nm is used as an analysis line, and the frame is preferably made of acetylene / nitrous oxide.
(water)
The water used in the composition for forming a silica film is not particularly limited, but is preferably water from which particles have been removed by filtration or the like. If particles are contained in water, it is not preferable because they are mixed as impurities in the product.
Water is preferably used in such an amount that the water / organic solvent ratio is in the range of 0.1 to 10 by volume ratio. If it is out of this range, film formation may not be possible or the film formation speed may be extremely reduced. More preferably, the organic solvent / water ratio is in the range of 0.1 to 0.5 by volume ratio. When the water / organic solvent ratio is in the range of 0.1 to 0.5, the type of alkali used is not limited. In a range outside this range, that is, when the water / organic solvent ratio is 0.5 or more, it is preferable to form a film using an alkali not containing an alkali metal, for example, ammonia, ammonium hydrogen carbonate, ammonium carbonate or the like.
(alkali)
The alkali used in the composition for forming a silica film is not particularly limited. For example, inorganic alkalis such as ammonia, sodium hydroxide and potassium hydroxide, inorganic alkali salts such as ammonium carbonate, ammonium hydrogen carbonate, sodium carbonate and sodium hydrogen carbonate Organic alkalis such as monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, pyridine, aniline, choline, tetramethylammonium hydroxide, guanidine, ammonium formate, ammonium acetate, monomethylamine formate, dimethylamine acetate, lactic acid Organic acid alkali salts such as pyridine, guanidinoacetic acid and aniline acetate can be used. Among these, ammonia, ammonium carbonate, ammonium hydrogen carbonate, ammonium formate, ammonium acetate, sodium carbonate, and sodium hydrogen carbonate are particularly preferable. An alkali can be used individually by 1 type from these groups or in combination of 2 or more types.
The purity of the alkali used in the present composition is not particularly limited, and may be industrially used or widely used as a reagent, but higher purity is preferable.
In order to increase the film formation rate, it is effective to increase the temperature during film formation. In this case, it is preferable to use an alkali and an organic solvent that hardly volatilize and decompose at the film forming temperature.
For example, in the case of sodium carbonate, the alkali can be added with a small amount of about 0.002 mol / liter, but a large amount of about 1 mol / liter may be added. However, it is not preferable to add a solid alkali in an amount exceeding the solubility because it is mixed as an impurity in the metal oxide particles.
By using an alkali not containing an alkali metal as a main component, silica-coated metal oxide particles having a low alkali metal content can be produced. Among these, ammonia, ammonium carbonate, and ammonium hydrogen carbonate are particularly preferable from the viewpoint of film formation speed and ease of residue removal.
(Organic solvent)
The organic solvent used for the film-forming composition is preferably such that the composition forms a uniform solution. For example, alcohols such as methanol, ethanol, propanol and pentanol, ethers and acetals such as tetrahydrofuran and 1,4-dioxane, aldehydes such as acetaldehyde, ketones such as acetone, diacetone alcohol and methyl ethyl ketone, ethylene glycol, Polyhydric alcohol derivatives such as propylene glycol and diethylene glycol can be used. Among these, alcohols are preferable, and ethanol is particularly preferable. As an organic solvent, 1 type selected from these groups, or 2 or more types can be mixed and used.
There is no restriction | limiting in particular in the purity of the organic solvent used by this composition, Although what is used widely industrially or widely as a reagent may be used, Preferably the thing of higher purity is suitable.
(Composition for forming silica film)
A general solution preparation method can be applied to the preparation of the composition for forming a silica film. For example, a method of adding a predetermined amount of alkali and water to an organic solvent and stirring and then adding and stirring tetraethoxysilane can be mentioned. is there. When mixing water and tetraethoxysilane, it is preferable to dilute both with an organic solvent from the viewpoint of controllability of the reaction.
In particular, silicic acid or a precursor capable of producing silicic acid, c) an alkali and d) an organic solvent, a water / organic solvent ratio in the range of 0.1 to 10 and a silicon concentration of 0 The composition for forming a silica film that satisfies the condition of 0.0001 to 5 mol / liter is a stable composition and does not substantially deposit or precipitate before contacting with the metal oxide particles. . After contacting the metal oxide particles with the composition, silica begins to selectively deposit on the surface of the metal oxide particles. In the present invention, the silica is selectively deposited on the surface of the metal oxide particles when the metal oxide particles are in contact with the silica film-forming composition, the liquid of the silica film-forming composition is stable, Substantially no deposition or precipitation (i.e., silica deposition) occurs, and so to speak, is transparent, but the silica is selectively deposited from the liquid composition only in contact with the surface of the metal oxide particles to form a solid. This means that a silica coating is formed. That is, after solid silica (particles, etc.) is formed in the liquid of the silica film forming composition, the solid silica does not move and deposit (adhere) on the surface of the metal oxide particles. The resulting gel of the composition for forming a silica film is not dried and solid silica is adhered to the surface of the metal oxide particles.
The contact between the composition for forming a silica film and the metal oxide particles may be after the preparation of the composition for forming a silica film satisfying the above conditions, or a part of the components of the composition for forming a silica film and metal oxidation. The composition for forming a silica film satisfying the above conditions may be prepared by adding the remaining components of the composition for forming a silica film in contact with the product particles. In any method, by forming a composition that satisfies the conditions of the present invention, the composition for forming a silica film or a part of the component is deposited, precipitated (that is, silica) except for the part that contacts the metal oxide particles. Precipitation) can be prevented.
(Metal oxide)
Silica-coated metal oxide particles of the present invention (in the present specification, when simply referred to as silica-coated metal oxide particles, in principle, the silica-coated metal constituting the silica-coated metal oxide sol in the second aspect of the present invention) It is meant to include the oxide-coated particles or silica-coated metal oxide particles obtained from the silica-coated metal oxide sol. The metal oxide to be used is preferably one or more metal oxides selected from the group consisting of titania, zinc oxide, cerium oxide, zirconium oxide and iron oxide. There are no particular restrictions on the method for producing the metal oxide particles used as these raw materials, and any method may be used. For example, in the case of titania powder, TiCl4High temperature vapor phase oxidation of TiCl4Those produced by any of the gas phase hydrolysis, sulfuric acid method, and chlorine method can be used.
The crystallinity of the metal oxide may be any crystal type. For example, in the case of titania, any of amorphous, rutile, anatase, and buccite types may be used, or a mixture thereof. However, it is preferable that the metal oxide particles have as few impurities as possible, and those having less aggregation are preferable in terms of controlling the secondary particle diameter.
(Composition for forming silica-coated metal oxide sol)
A general solution preparation method can also be applied to the preparation of the silica-forming composition used in the production of the silica-coated metal oxide sol of the present invention. For example, a method of adding and stirring alkali, water and an organic solvent to a predetermined amount of metal oxide sol and thoroughly dispersing the metal oxide sol, and then adding and stirring tetraethoxysilane can be mentioned. The film can be formed regardless of which order of mixing is repeated first or multiple times. When mixing water and tetraethoxysilane, it is preferable to dilute both with an organic solvent from the viewpoint of controllability of the reaction.
The composition for forming a silica film thus prepared is a stable composition when the same conditions as described above are satisfied, as described above, and before the contact with the metal oxide sol. No substantial deposition or precipitation occurs. After contacting the metal oxide sol with the composition, silica begins to selectively deposit on the surface of the metal oxide sol.
The dispersion of the metal oxide sol obtained by such a method is left as it is, or if necessary, removal of unreacted substances, pH adjustment, metal oxide sol, water, organic solvent concentration adjustment, etc. Can be used for a silica film-forming composition. The crystallinity of the metal oxide sol may be any crystal type. For example, in the case of titania sol, any of amorphous, rutile, anatase, and buccite types may be used, or a mixture thereof. However, it is preferable that the metal oxide sol has as few impurities as possible, and one having less cohesion is preferable for the purpose of the present invention. A metal oxide sol with low cohesiveness can be obtained by making the conditions of electrolyte and pH appropriate. The average primary particle size of the metal oxide fine particles constituting the metal oxide sol is preferably 1 to 100 nm, more preferably 5 to 20 nm. The average primary particle size can be controlled by making appropriate reaction conditions such as temperature, concentration, and aging time.
In the present invention, the surface of the metal oxide particles in the sol is 1150 to 1250 cm.-1And 1000-1100cm-1Of the absorption peak intensity of the infrared absorption spectrum of I (I = I1/ I2: I11150-1250cm-1Maximum absorption peak intensity in the range I2Is 1000-1100cm-1Represents the maximum absorption peak intensity within the range. ) Is 0.2 or more, and a silica-coated metal oxide sol coated with a silica film having a refractive index of 1.435 or more can be used.
The silica-coated metal oxide sol that can be used in the cosmetic composition of the present invention includes a metal oxide sol generated by hydrolysis, silicic acid or a precursor capable of producing silicic acid, an alkali, an organic solvent, and, if necessary. Regardless of the order, water is added so that the water / organic solvent ratio after addition is in the range of 0.1 to 10 by volume and the silicon concentration is in the range of 0.0001 to 5 mol / liter, It is obtained by a method in which silica is deposited on the surface of the metal oxide sol to form a silica film.
Particularly preferably, a metal oxide sol generated by hydrolysis is added to a mixed solution of an alkali, an organic solvent and, if necessary, water, and further silicic acid or a precursor capable of producing silicic acid, an organic solvent and, if necessary, Accordingly, a mixed solution composed of water is added so that the water / organic solvent ratio after addition is in the range of 0.1 to 10 and the silicon concentration is in the range of 0.0001 to 5 mol / liter. It is obtained by a method in which silica is deposited on the surface of the product sol particles to form a silica film.
The metal oxide sol used as a raw material for the silica-coated metal oxide sol is one or two selected from the group consisting of titanium oxide, zinc oxide, cerium oxide, zirconium oxide, and iron oxide as the metal oxide constituting the sol. More than species can be mentioned.
There are no particular restrictions on the method for producing these metal oxide sols, for example, metal element alkoxides, acetylacetonates, organic acid salts such as acetates and oxalates, and inorganic compounds such as chlorides, oxychlorides and nitrates. Any of those produced by any of the methods for hydrolyzing can be used. Preferably, it is produced by a method of hydrolyzing metal alkoxide and metal chloride.
(Method for forming silica coating)
Basically, the silica is selectively deposited on the surface of the metal oxide by immersing the metal oxide particles in the composition for forming a silica film and maintaining the temperature at a predetermined temperature to form a silica film. Can do. Alternatively, the film forming composition may be prepared in advance, and then the metal oxide particles may be added to form a silica film. Alternatively, the metal oxide particles may be suspended in a solvent before adding other raw material components. A method for forming a silica film or the like may be used. That is, there are no particular restrictions on the order in which the raw material of the film-forming composition and the metal oxide particles are added, and any film can be formed first.
Among these methods, after making a suspension with metal oxide particles, organic solvent, water, and alkali, when tetraalkoxysilane diluted with organic solvent is added over time, a dense silica film is formed. This is preferable because an industrially useful continuous process can be constructed. Even when using a metal oxide sol, when a metal oxide sol is added to a mixed liquid of an organic solvent, water and alkali, and tetraalkoxysilane diluted with an organic solvent, in some cases water, is added over time, It is preferable because a silica film having good denseness can be formed, and an industrially useful continuous process can be constructed.
In both the first and second aspects of the present invention, the silica film grows by deposition on the surface of the metal oxide, so that the film thickness of the silica film can be increased by increasing the film formation time. Of course, when most of the silicic acid in the composition for forming a film is consumed due to the formation of the film, the film formation rate decreases, but by adding the silicic acid corresponding to the amount of consumption sequentially, it can be put into practical use. The silica film can be formed at a suitable film formation rate. In particular, the metal oxide particles are held for a predetermined time in the film-forming composition to which silicic acid corresponding to the desired silica film thickness is added, and the silica film is formed to consume the silicic acid. After taking out, by adding a silicic acid corresponding to the consumption amount, the composition can be subsequently used for forming a film on the next metal oxide particles, and is a continuous process with high economic efficiency and high productivity. Can be built.
Although the temperature at the time of film formation is not specifically limited, Preferably it is the range of 10 to 100 degreeC, More preferably, it is the range of 20 to 50 degreeC. The higher the temperature, the higher the film forming rate. However, if the temperature is too high, it becomes difficult to keep the solution composition constant due to volatilization of the components in the composition. On the other hand, if the temperature is too low, the film formation rate becomes slow, which is not practical.
Moreover, the pH at the time of film formation should just be alkaline pH. However, when the metal oxide whose solubility increases depending on the pH is coated with silica, it is preferable to control the pH of the film-forming composition. For example, in the production of silica-coated zinc oxide particles, it is preferable to reduce the amount of alkali added and control the pH during film formation to 11 or less. When the pH exceeds 11, the yield of the silica-coated product may decrease. Furthermore, since the film formation rate decreases due to a decrease in the amount of alkali, it is preferable to maintain a practical film formation rate by increasing the film formation temperature or increasing the silicon concentration.
After forming the silica coating on the surface of the metal oxide particles, and if desired, after forming the silica-coated metal oxide sol, the silica-coated metal oxide particles can be isolated by solid / liquid separation. As the method, general separation methods such as filtration, centrifugal sedimentation, and centrifugal separation can be used.
The silica-coated metal oxide particles having a low water content can be obtained by drying after the solid / liquid separation. As the method, a general drying method such as natural drying, warm air drying, vacuum drying, spray drying, or the like can be used.
The method for producing silica-coated metal oxide particles used in the present invention does not necessarily require firing.
In addition, the silica film obtained by the above-described production method is also suitable for the complicated shape of the metal oxide particles of the base material, and even if it is a thin film of about 0.5 nm, the coating property is good and the photocatalytic activity is good. High ability to conceal. Furthermore, since it can be set as a silica film having a very low alkali metal content, the silica film does not dissolve even in a high-temperature and high-humidity atmosphere, and the physical properties of the silica-coated metal oxide particles do not change.
When the silica-coated metal oxide sol is formed according to the second aspect of the present invention, after the coating is formed, the unreacted raw material, alkali and organic solvent are removed, and the silica-coated metal oxide sol is concentrated as necessary. Can be obtained. As the method, a general separation method such as evaporation, distillation, membrane separation or the like can be used.
The silica-coated sol medium of the present invention is not particularly limited, but is usually selected from dermatologically harmless media. For example, water, natural oil, or silicone oil is used. The change from the aqueous system to another medium can be performed by general solvent replacement, membrane separation, or the like.
Further, silica-coated metal oxide particles can be obtained by solid-liquid separation of the silica-coated metal oxide sol, followed by drying. As a solid / liquid separation method, general separation methods such as filtration, centrifugal sedimentation, and centrifugal separation can be used. As a drying method, a general drying method such as natural drying, warm air drying, vacuum drying, spray drying, or the like can be used. If the particles aggregate due to drying, they can be crushed. Since the silica-coated metal oxide sol of the present invention has a strong covering power of the base metal oxide particles, the silica coating is destroyed by pulverization, the effect of suppressing the photocatalytic activity is reduced, and the feeling of use is deteriorated. There is nothing to do. The pulverization method is not particularly limited, and a jet mill, a high-speed rotary mill, or the like can be used.
The silica film obtained by the above production method is used in the case of using metal oxide particles or metal oxide sol, 1150 to 1250 cm.-1And 1000-1100cm-1Of the absorption peak intensity of the infrared absorption spectrum of I (I = I1/ I2: I11150-1250cm-1Maximum peak intensity within the absorption range, I2Is 1000-1100cm-1Represents the maximum absorption peak intensity within the range. ) Can be 0.2 or more, and the refractive index can be 1.435 or more. That is, the silica film is a dense and practical silica film that could not be obtained without firing while maintaining the surface properties (moist feeling, slipperiness) of the original silica film. Furthermore, the above silica film is well attached to the complicated shape of the metal oxide particles of the base material, and even if it is a thin film of about 0.1 nm, the covering property is good and the ability to conceal the photocatalytic activity is high. Moreover, since it can be set as a silica film with an extremely low alkali metal content, a silica film that does not dissolve even in a high-temperature and high-humidity atmosphere and does not change the physical properties of the silica-coated metal oxide sol can be obtained. The preferred film thickness of the silica film is 0.1 to 100 nm, more preferably 1 to 20 nm.
(Hydrophobic treatment)
In the present invention, the silica-coated metal oxide particles are surface-treated with a hydrophobicity-imparting agent, particularly in the first aspect. If desired, the silica-coated metal oxide sol obtained on the second aspect is also hydrophobicity-imparting agent. Can be surface treated.
As the method for surface-treating the silica-coated metal oxide particles with a hydrophobicity imparting agent, a known method can be used as long as it can be applied. Usual dry methods, wet methods, and spray methods can be used. For example, in the dry method, the hydrophobicity-imparting agent or the organic solvent solution of the hydrophobicity-imparting agent is added to the metal oxide particles stirred by a mixer such as a V-type mixer or a Henschel mixer by a method such as spraying. Further, mixing can be continued to uniformly adhere to the surface of the powder, dried, and if necessary, a heating method can be used to firmly adhere. Further, in the wet method, a method in which metal oxide particles are dispersed in water or an organic solvent, a hydrophobicity imparting agent, a reaction catalyst, and the like are added thereto, and further stirred and then filtered and dried can be used. . Furthermore, in the spray method, a method of spraying a hydrophobicity imparting agent or a solution thereof onto high-temperature metal oxide particles to coat the surface can be used.
A well-known method can also be used for the surface treatment of the silica-coated metal oxide sol with a hydrophobicity imparting agent. In the present invention, it is preferable to use a wet method from the viewpoint that the dispersibility of the raw material sol and the small primary particle size are not impaired. For example, in the wet method, a method is used in which a hydrophobicity-imparting agent, a solution thereof, a reaction catalyst, or the like is added to a liquid in which a metal oxide sol is dispersed in water, an organic solvent, or a mixed solvent, and the surface treatment is performed after stirring. I can do it.
Further, the silica-coated metal oxide particles can be directly hydrophobized using a dry method or a spray method. The method can be a known method similar to the above.
(Hydrophobicity imparting agent)
The hydrophobicity-imparting agent used in the present invention is not particularly limited, and examples thereof include higher fatty acids such as wax, higher fatty acid triglycerides, higher fatty acids, higher fatty acid polyvalent metal salts, and higher aliphatic sulfates. Organic fluorine compounds such as alcohols or derivatives thereof, perfluoro- or partially fluorinated higher fatty acids and higher alcohols, silicone oils, organic alkoxysilanes, organic chlorosilanes, and silazanes can be used. Higher fatty acid polyvalent metal salts, silicone oil, silane coupling agents, and alkoxysilanes are preferably used, but alkoxysilanes and silane coupling agents are particularly preferably used from the viewpoint of practical effects.
The silicone oil used in the present invention is not particularly limited, and examples thereof include dimethylpolysiloxane, methylhydrogenpolysiloxane, methylphenylpolysiloxane, and cyclic polydimethylsiloxane. Further, modified silicone oils such as alkyl-modified, polyether-modified, amino-modified, mercapto-modified, epoxy-modified and fluorine-modified may be used.
There are no particular restrictions on the chlorosilanes used in the present invention, but trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, methyldichlorosilane, dimethylvinylchlorosilane, methylvinyldichlorosilane, triphenylchlorosilane, methyldiphenylchlorosilane, diphenyldisilane. Mention may be made of chlorosilane, methylphenyldichlorosilane and phenyltrichlorosilane.
Silazanes used in the present invention are not particularly limited, and examples include hexamethyldisilazane, N, N′-bis (trimethylsilyl) urea, N-trimethylsilylacetamide, dimethyltrimethylsilylamine, diethyltrimethylsilylamine, and trimethylsilylimidazole. .
The organoalkoxysilanes used in the present invention are not particularly limited. For example, vinyltrichlorosilane, vinyltris (β-methoxyethoxy) silane, vinyltrimethoxysilane, vinyltriethoxysilane, γ- (methacryloyloxypropyl) Trimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidyloxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, N-β (aminoethyl) γ-aminopropyl Trimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldietoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane and γ Silane coupling agents such as chloropropyltrimethoxysilane and methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, trimethylethoxysilane, methyldimethoxysilane, methyldiethoxysilane, dimethylethoxy Examples include silane, dimethylvinylmethoxysilane, dimethylvinylethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane. Also, alkoxysilanes having perfluorinated or partially fluorinated alkyl groups can be used.
(Treatment with alkoxysilane)
In particular, an alkylalkoxysilane represented by the following formula is preferably used.
Formula; R1(R2)nSiX3-n
(Where R1Is an alkyl group having 1 to 4 carbon atoms or a phenyl group, R2Is a hydrogen group, an alkyl group having 1 to 4 carbon atoms or a phenyl group, X is an alkoxyl group having 1 to 4 carbon atoms, and n is an integer of 0 to 2. )
In the present invention, the surface treatment with alkoxysilanes can be performed by either a liquid phase method or a dry method, but the liquid phase method is preferably used from the following points. That is, after the metal oxide particles are brought into contact with the silica film-forming composition to perform silica coating, the hydrophobicity-imparting agent is added without separating the powder, and if necessary, alkali, water, By adding a solvent, the surface treatment of the silica-coated metal oxide can be continuously performed with a hydrophobicity imparting agent. In this method, an intermediate separation and purification step can be omitted, and this is an industrially advantageous production method.
In the second aspect of the present invention, the liquid phase method is particularly preferred when surface treatment is performed using alkylalkoxysilanes as hydrophobicity imparting agents. That is, after the silica coating of the metal oxide particles in the sol according to the above-described method, the hydrophobicity-imparting agent is added without separating the silica-coated metal oxide particles, and water, an organic solvent, An alkali is added to form a composition in which the water / organic solvent ratio is in the range of 0.1 to 10 and the silicon concentration derived from the alkylalkoxysilane is in the range of 0.0001 to 5 mol / liter. Surface treatment can be performed by selectively depositing the reaction product of the alkoxysilane on the surface of the silica-coated metal oxide particles. Since this method does not have a drying step, it does not impair the dispersibility of the raw material sol and the small primary particle size, and an intermediate solid separation step can be omitted, which is industrially advantageous.
The hydrophobizing composition in the method for producing a surface-hydrophobized silica-coated metal sol with alkylalkoxysilanes has a water / organic solvent ratio in the range of 0.1 to 10 in terms of volume ratio, and a silicon concentration derived from alkylalkoxysilanes. Is in the range of 0.0001 to 5 mol / liter. Regarding the silicon concentration, water, water / organic solvent ratio, alkali, organic solvent, temperature, pH, and separation / purification step in the present composition, the description in the silica film-forming composition can be applied as it is. The composition can be obtained by adding alkylalkoxysilanes to the silica film-forming composition after completion of silica film formation, instead of the precursor that produces silicic acid, but the composition and conditions are not necessarily the same. There is no need to make it. For example, when the reaction rate of the alkylalkoxysilane is different from that of a precursor that produces silicic acid, an alkali, water, or a solvent may be added if necessary, and is practical within the above-mentioned limit range. Reaction conditions such as water / organic solvent ratio, silicon concentration, pH, temperature, etc. that give reaction rate can be selected.
(Coating amount of hydrophobicity imparting agent treatment)
The coating amount of the hydrophobicity-imparting agent may be at least the minimum coating amount that allows the hydrophobicity-imparting agent to completely cover the surface of the silica-coated metal oxide particles as a raw material. This amount is
Figure 0004740458
Can be calculated. The upper limit of the addition amount of the hydrophobicity-imparting agent is not generally determined, but if it is excessive, the amount deposited on the surface other than the surface of the metal oxide particles is increased, which is not economical. Usually, it is preferably 30% by mass or less, more preferably 20% by mass or less, based on the silica-coated metal oxide particles.
(Characteristics of silica-coated metal oxide particles and sol)
The silica film thickness of the silica-coated metal oxide particles and surface-hydrophobized silica-coated metal oxide particles of the present invention (including those of silica-coated metal oxide sols; the same shall apply hereinafter) is 0.1 to 100 nm, preferably 0.8. 5-25 nm. Below this range, cosmetics with a sufficient photocatalytic activity-suppressing effect may not be obtained, and above this range, cosmetics having sufficient UV shielding ability may not be obtained, and it is not economical. .
The photocatalytic activity of the silica-coated metal oxide particles and the surface-hydrophobized silica-coated metal oxide particles of the present invention by a tetralin auto-oxidation method is 60 Pa / min. It is as follows. If this range is exceeded, there may be cases where a sufficient concealing effect for photocatalytic activity cannot be obtained.
The surface hydrophobized silica-coated metal oxide particles used in the present invention have a primary particle size of 5 to 500 nm, preferably 5 to 120 nm, and a secondary particle size of 0.5 to 10 μm. The silica-coated metal oxide particles of the silica-coated metal oxide sol of the present invention have a primary particle size of 1 to 100 nm, more preferably 5 to 20 nm. If it is out of these ranges, a cosmetic having both a good feeling of use and a high ultraviolet shielding ability may not be obtained. The primary particles and secondary particles referred to in the present invention are those defined by Kuichiro Teruichiro et al., “Powder”, p. 56-66, published in 1979.
The powder dynamic friction coefficient measured by the glass plate method of the silica-coated metal oxide particles and the surface-hydrophobized silica-coated metal oxide particles used in the present invention is preferably 0.54 or less, more preferably 0.8. 49 or less. If it exceeds 0.54, a cosmetic material having a good feeling in use may not be obtained.
The dye fading rate measured by the sunset yellow method of the silica-coated metal oxide particles and surface-hydrophobized silica-coated metal oxide particles used in the present invention is preferably 0.06 or less, more preferably 0.8. 02 or less. If it exceeds 0.06, the concealing effect of the photocatalytic activity may not be sufficient, and a cosmetic with high storage stability may not be obtained.
The decomposition rate of the organic ultraviolet absorber measured by the parasol method of the silica-coated metal oxide particles and the surface-hydrophobized silica-coated metal oxide particles used in the present invention is preferably 0.02 or less, more preferably 0.8. 01 or less. If it is less than 0.02, the concealing effect of the photocatalytic activity may not be sufficient, and a cosmetic with little decomposition of the organic ultraviolet absorber may not be obtained.
When the surface-hydrophobized silica-coated metal oxide particles of the present invention are used, a transparent cosmetic is obtained because the visible light permeability is high while maintaining high ultraviolet shielding ability.
The silica-coated metal oxide particles used in the present invention do not need to be fired in particular. Of course, it can also be used after firing.
The silica-coated metal oxide particles and the surface-hydrophobized silica-coated metal oxide particles obtained from the silica-coated metal oxide sol of the present invention have a high primary UV particle size because they have a small primary particle size, low cohesiveness, and good dispersibility. And high visible light permeability. In addition, since it is coated with a dense and practical silica coating, it has a high effect of suppressing photocatalytic activity, hardly modifies other cosmetic ingredients, and has good tactile sensation and slipperiness. Accordingly, silica-coated metal oxide particles and surface-hydrophobized silica coatings obtained from silica-coated metal oxide sols and surface-hydrophobized silica-coated metal oxide sols or silica-coated metal oxide sols and surface-hydrophobized silica-coated metal oxide sols By blending the metal oxide particles, an ultraviolet shielding cosmetic material having good storage stability, safety, and excellent transparency and usability can be obtained. In the case of surface hydrophobized silica-coated metal oxide sol and surface hydrophobized silica-coated metal oxide particles, oil-based cosmetics, W / O emulsified cosmetics, and water-repellent cosmetics with little makeup collapse due to water and sweat It is preferable to use it.
The cosmetic obtained from the silica-coated metal oxide sol of the present invention comprises the above-mentioned silica-coated metal oxide sol and / or surface-hydrophobized silica-coated metal oxide sol or silica-coated metal oxide sol and surface-hydrophobized silica-coated metal. It contains silica-coated metal oxide particles obtained from an oxide sol and surface-hydrophobized silica-coated metal oxide particles, and can be produced by an ordinary production method using ordinary raw materials that can be blended in cosmetics.
(Cosmetics)
The cosmetic of the present invention contains the above-mentioned silica-coated metal oxide particles and surface-hydrophobized silica-coated metal oxide particles (meaning including silica-coated metal oxide sol, the same shall apply hereinafter) and is incorporated into the cosmetic. It can be produced by ordinary production methods using possible ordinary raw materials.
The cosmetic of the present invention is not particularly limited as long as it contains powder and oil, and includes those obtained by dispersing powder in a solvent or solution. Examples include white powder, foundation, powder, blusher, eye shadow, lipstick, eyeliner, mascara, eyebrow, cream, essence, lotion, lotion, emulsion, mousse and the like. In particular, oil-based cosmetics, W / O emulsified cosmetics, and water-repellent cosmetics that are less likely to collapse by water and sweat are preferred.
As a constituent of the cosmetic of the present invention, there are a powder component and an oil component. Among these, constituents of the powder component include extender pigments (for example, mica, talc, kaolin, calcium carbonate, magnesium carbonate, anhydrous silicic acid) in addition to silica-coated metal oxide particles and surface-hydrophobized silica-coated metal oxide particles. , Aluminum oxide, barium sulfate, etc.), white pigments (eg, titanium dioxide, zinc oxide, etc.), and colored pigments (eg, bengara, yellow iron oxide, black iron oxide, chromium oxide, ultramarine, bitumen, carbon black, etc.) Yes, these can be blended as appropriate. In order to further improve the feeling of use, spherical powder (for example, nylon powder, polymethyl methacrylate powder, etc.) can also be used.
The oils blended in the cosmetic of the present invention include liquid paraffin, squalane, castor oil, glyceryl diisostearate, glyceryl triisostearate, glyceryl tri-2-ethylhexanoate, isopropyl myristate, glyceryl triiso Examples include stearate, dimethylpolysiloxane, methylphenylpolysiloxane, petrolatum, diisostearyl malate, and purified lanolin.
The blending amount of the oil in the solid powder cosmetic is preferably 3% by mass or more, more preferably 10 to 90% by mass.
Moreover, you may mix | blend an organic type ultraviolet absorber in oil. The organic ultraviolet absorber refers to an organic compound having a function of protecting the skin by absorbing ultraviolet rays and converting the energy into heat, vibration, fluorescence, radicals and the like. The ultraviolet absorber that can be used in the cosmetic of the present invention is not particularly limited, and examples thereof include ultraviolet absorbers such as benzophenone series, salicylic acid series, PABA series, cinnamic acid series, dibenzoylmethane series, and urocanic acid series. Can be mentioned. The blending amount is in the range of 0.1 to 10% by mass, but it is desirable to make the blending amount appropriate depending on the ultraviolet absorbing ability of the absorbent. Since the silica-coated metal oxide particles used in the present invention have a high photocatalytic activity shielding effect, even when used in combination with an organic ultraviolet absorber, the decomposition of the absorber is suppressed, and the cosmetic has a high ultraviolet shielding ability. It can be.
An existing emulsifier can be added to the cosmetic of the present invention at a general concentration. For example, Cosmetic Material Standards Second Edition Annotation, Japan Official Church Church, 1984 (Pharmaceutical Daily Report), Cosmetic Raw Material Standards Non-Standard, Supervised by Ministry of Health and Welfare Pharmaceutical Affairs Bureau Examination Division, 1993 (Pharmaceutical Daily Report), Cosmetic Raw Material Non-Standard Components Standards supplement, supervised by the Ministry of Health and Welfare Pharmacy Examination Division, 1993 (Pharmaceutical Daily), permission standards by cosmetic type, supervision by the Ministry of Health and Welfare Pharmacy Examination Division, 1993 (Pharmaceutical Daily), and Cosmetic Raw Material Dictionary, 1991 (Nikko Chemicals) Etc. All emulsifiers described in etc. can be used. Tocopheryl phosphates can also be used as emulsifiers.
In the cosmetic of the present invention, an existing anti-inflammatory component or anti-inflammatory component can be used together or mixed in order to help prevent inflammation caused by ultraviolet rays. The anti-inflammatory component that can be added to the cosmetic of the present invention is not particularly limited, but an aniline derivative anti-inflammatory agent, a salicylic acid derivative anti-inflammatory agent, a pyrazolone derivative anti-inflammatory agent, an indomethacin-based anti-inflammatory agent, a mefenamic acid-based anti-inflammatory agent, and an anti-gout agent , Antispasmodic agents, antitussives, expectorants, bronchodilators, respiratory function improvers, antihistamines, antiallergic agents, anti-inflammatory enzyme agents and the like.
In cosmetics containing silica-coated metal oxide particles and surface-hydrophobized silica-coated metal oxide particles in the present invention, when an antioxidant, which is an antioxidant, is used in combination, the amount of free radicals generated by ultraviolet rays is suppressed. By doing so, the photocatalytic activity of the silica-coated metal oxide particles can be further reduced, and a cosmetic with extremely low phototoxicity can be obtained. There are no particular limitations on the antioxidant used to suppress the photocatalytic activity to a low level in the cosmetics of the present invention. For example, vitamin A, β-carotene, astaxanthin, vitamin B, vitamin C, L-ascorbic acid— 2-magnesium phosphate, L-ascorbic acid-2-sodium phosphate, L-ascorbic acid-2-sodium magnesium phosphate, L-ascorbic acid-2-glucoside, L-ascorbic acid-2-phosphate-5, 6-benzylidene, natural vitamin E, dl-α-tocopherol, dl-α-tocopheryl acetate, dl-α-tocopheryl phosphate, ubiquinone and their vitamin derivatives, cysteine, glutathione, glutathione peroxidase, SOD, catalase, Citric acid, phosphoric acid, polypheno Le, catechin, tea extract, kojic acid, nucleic acid, hydroquinone, arbutin, and the like. One or more antioxidants selected from these groups can be blended.
The cosmetics according to the present invention include components other than the above that are generally blended in compositions such as cosmetics, such as oils and fats, waxes, hydrocarbons, fatty acids, alcohols, polyhydric alcohols, Sugars, esters, metal soaps, water-soluble polymer compounds, surfactants, antioxidants, bactericides / preservatives, vitamins, hormones, coloring materials, and the like can be blended.
The blending amount of the silica-coated metal oxide particles and the surface-hydrophobized silica-coated metal oxide particles in the cosmetic of the present invention is preferably 1 to 50% by mass, more preferably 5 to 30% by mass with respect to the cosmetic. Range.
In general, the silica-coated titania particles are preferably titania having a higher ratio of the rutile type having a lower photocatalytic activity than the anatase type. However, since the silica-coated titania particles and the surface-hydrophobized silica-coated titania particles used in the cosmetics of the present invention can suppress generation of free radicals due to ultraviolet rays, cosmetics with low phototoxicity can be obtained regardless of the crystal form. It is done.
The cosmetic containing the silica-coated metal oxide particles and the surface-hydrophobized silica-coated metal oxide according to the present invention not only has a high ultraviolet shielding ability but also squeaks when the metal oxide particles are blended at a high concentration. There is no bad feeling and elongation, and it is excellent in the feeling of use. Further, the cosmetic of the present invention has high transparency and does not have a pale finish as in the case of containing conventional titania particles. Moreover, since the photocatalytic activity by the metal oxide is sufficiently suppressed, the modification of other compounding components in the composition is not promoted, and the storage stability is excellent. An organic ultraviolet absorber can be contained, and higher ultraviolet shielding ability can be achieved. Furthermore, the generation of active oxygen or the like can be made extremely low by containing an antioxidant having an antioxidant action, and the safety to the human body can be enhanced.
In the present invention, the film thickness and refractive index of the silica film can be determined by using a silica film formed on a silicon wafer immersed in the system when the silica-coated metal oxide particles are synthesized. The same silica film as that on the metal oxide particles is formed on the silicon wafer. The refractive index of the silica film can be measured by an ellipsometer (manufactured by ULVAC; LASSER ELIPSOMETER ESM-1A). A step gauge can be used for the film thickness measurement. The transmission infrared absorption spectrum (FT-IR-8000 manufactured by JASCO Corporation) of the silica film of the surface-hydrophobized silica-coated metal oxide particles can be measured using the KBr method.
The primary particle diameter and the silica film thickness of the silica-coated metal oxide particles and the surface-hydrophobized silica-coated metal oxide particles can be obtained from a transmission electron microscope image. The secondary particle diameter can be measured by a laser light scattering method (Nikkiso Microtrack MK-II). The total alkali metal content is measured by flame analysis by dissolving silica-coated metal oxide particles and surface-hydrophobized silica-coated metal oxide particles in hydrofluoric acid.
The photocatalytic activity of the silica-coated metal oxide particles and the surface-hydrophobized silica-coated metal oxide particles, that is, the initial oxygen consumption rate, was determined by the tetralin auto-oxidation method (Kiyano Manabu, Titanium oxide-physical properties and applied technology, Gihodo Publishing, p. -197, 1991). The measurement conditions are a temperature of 40 ° C., 20 ml of tetralin, and 0.02 g of metal oxide particles.
The light transmittance of the silica-coated metal oxide particles and the surface-hydrophobized silica-coated metal oxide particles of the present invention, the decomposition rate of the organic ultraviolet absorber, the powder dynamic friction coefficient, the dye fading rate, and the water repellency are described herein. It is measured by the Cosmol method, the parasol method, the glass plate method, the sunset yellow method, and the methanol solution method described therein.
Example
Examples of the present invention will be described in detail below. However, the present invention is not limited thereby.
(Production Example 1a) Production of silica-coated titania particles
In a 30 L reactor, 7.07 kg of deionized water, 25.43 kg of ethanol (manufactured by Junsei Kagaku) and 1.143 kg of 25% by mass ammonia water (manufactured by Daisei Kako) were mixed, and titania particles (Titania F made by Showa Titanium) were mixed therein. -4; primary particle diameter 30 nm) 1.765 kg was dispersed to prepare suspension 1. Next, 1.53 kg of tetraethoxysilane (manufactured by Nacalai Tesque) and 659 g of ethanol were mixed to prepare Solution 1. Solution 1 was added to suspension 1 stirred with a stirring blade at a constant rate over 9 hours, and then aged for 12 hours. Silica film formation and aging were performed at 25 ° C. Thereafter, the solid content was separated by centrifugal filtration and vacuum dried at 50 ° C. for 12 hours to obtain silica-coated titania particles.
(Production Example 1b) Production of surface-hydrophobized silica-coated titania particles
In the same manner as in Production Example 1a, operations up to silica film formation and aging were performed. While the silica-coated titania particles were present in the reaction solution, 430 g of 25% by mass ammonia water was added and stirred to obtain a suspension 2. Next, 330 g of dimethyldiethoxysilane (manufactured by Toshiba Silicone Co., Ltd., TSL8122) and 330 g of ethanol were mixed to prepare Solution 2. Solution 2 was added to stirring suspension 2 at a constant rate over 9 hours, and then aged for 12 hours. Surface coating and aging were performed at 45 ° C.
Thereafter, the solid content was separated by centrifugal filtration and vacuum-dried at 50 ° C. for 12 hours to obtain surface-hydrophobized silica-coated titania particles.
(Production Example 2a) Production of silica-coated zinc oxide particles
In a 50 L reactor, 20.19 kg of deionized water, 19.8 kg of ethanol (manufactured by Junsei Kagaku) and 204 mL of 25% by mass ammonia water (manufactured by Daisei Kako) were mixed, and zinc oxide particles (MZ0350, manufactured by Sumitomo Osaka Cement) were mixed therein. Suspension 3 was prepared by dispersing 1.914 kg of the primary particle diameter (37 nm). Next, 740 g of tetraethoxysilane (manufactured by Nacalai Tesque) and 488 g of ethanol were mixed to prepare a solution 3. Solution 3 was added to suspension 3 stirred with a stirring blade at a constant rate over 9 hours, and then aged for 12 hours. Silica film formation and aging were performed at 45 ° C. Thereafter, the solid content was separated by centrifugal filtration and vacuum dried at 50 ° C. for 12 hours to obtain silica-coated zinc oxide particles.
(Production Example 2b) Production of surface hydrophobized silica-coated zinc oxide particles
In the same manner as in Production Example 2a, operations up to silica film formation and aging were performed. While the silica-coated zinc oxide particles were present in the reaction solution, 136 mL of 25% by mass ammonia water and 200 mL of deionized water were added and stirred to obtain a suspension 4. Next, 400 g of dimethyldiethoxysilane (manufactured by Toshiba Silicone, 8122) and 400 g of ethanol were mixed to prepare a solution 4. Solution 4 was added to suspension 4 stirred with a stirring blade at a constant rate over 12 hours, and then aged for 12 hours. Surface coating and aging were performed at 45 ° C.
Thereafter, the solid content was separated by centrifugal filtration and vacuum dried at 50 ° C. for 12 hours to obtain surface-hydrophobized silica-coated zinc oxide particles.
(Production Examples 3a to 5a) Production of silica-coated metal oxide particles
In place of the titania of Production Example 1, cerium oxide particles, zirconium oxide particles, and bengara particles were used, respectively, and other production conditions were similarly used to obtain silica-coated cerium oxide particles, silica-coated zirconium oxide particles, and silica-coated bengara particles.
(Production Examples 3b to 5b) Surface hydrophobized silica-coated metal oxide particles
Manufacturing
Cerium oxide particles, zirconium oxide particles, and bengara particles were used in place of titania in Production Example 1b, and silica-coated cerium oxide particles, silica-coated zirconium oxide particles, and silica-coated bengara particles were obtained in the same manner under other production conditions.
When the transmission infrared absorption spectrum of the silica-coated metal oxide particles obtained in Production Examples 1a to 5a was measured by the KBr method, all were 1000 to 1200 cm.-1The absorption derived from Si—O—Si stretching vibration was observed in 2800 to 3000 cm.-1No absorption derived from C—H stretching vibration was observed, and the resulting coating was identified as silica.
Furthermore, primary particle diameter, secondary particle, silica film thickness, absorption peak intensity ratio I of infrared absorption spectrum, silica film refractive index, photocatalytic activity by tetralin auto-oxidation method and water repellent total alkali metal concentration were measured. .
Further, the surface hydrophobized silica-coated titania particles obtained in Production Examples 1b to 5b were also measured for primary particle diameter, secondary particles, silica film thickness, photocatalytic activity and water repellency by the tetralin auto-oxidation method. The results are shown in Table 1.
Figure 0004740458
Production Example 6 Production of silica-coated titania sol
Ethanol (made by Junsei Kagaku) 25.10 kg and 25% by mass ammonia water 1.14 kg (made by Daisei Kako) were mixed in a 50 L reactor, and an aqueous titania sol (titania concentration 20.0% by mass, primary particle size) was mixed therein. 16 nm, specific surface area 136 g / m2) 8.83 kg was dispersed to prepare suspension 1. Next, 2.30 kg of tetraethoxysilane (manufactured by Nacalai Tesque) and 990 g of ethanol were mixed to prepare a solution 2. Solution 2 was added to suspension 1 stirred with a stirring blade at a constant rate over 9 hours, and then aged for 12 hours. Silica film formation and aging were performed at 25 ° C. Thereafter, ammonia and ethanol were removed by distillation to obtain a silica-coated titania sol.
(Production Example 7) Production of silica-coated zinc oxide sol
A 50 L reactor was mixed with 2.96 kg of deionized water, 19.00 kg of ethanol (manufactured by Junsei Kagaku) and 210 mL of 25% by mass ammonia water (manufactured by Daisei Kako), and an aqueous zinc oxide sol (zinc oxide concentration of 10. 0% by mass, primary particle size 19 nm, specific surface area 122 g / m2) 19.14 kg was dispersed to prepare suspension 1. Next, 1.92 kg of tetraethoxysilane (manufactured by Nacalai Tesque) and 1.28 kg of ethanol were mixed to prepare a solution 2. Solution 2 was added to suspension 1 stirred with a stirring blade at a constant rate over 9 hours, and then aged for 12 hours. Silica film formation and aging were performed at 45 ° C. Thereafter, ammonia and ethanol were removed by distillation to obtain a silica-coated zinc oxide sol.
(Production Examples 8 to 10) Production of silica-coated metal oxide sol
A cerium oxide sol, a zirconium oxide sol, and a bengara sol were used in place of the titania sol of Production Example 6, respectively. Average primary particle diameter of silica-coated metal oxide sols obtained in Production Examples 6 to 10, silica film thickness, ratio of absorption peak intensity of infrared absorption spectrum (I value), refractive index of silica film, and BET method ratio The surface area was measured. The results are summarized in Table 2.
(Production Example 11) Production of surface-hydrophobized silica-coated titania sol
After performing the operations up to silica film formation and aging in the same manner as in Production Example 6, 880 g of 25% by mass ammonia water was added without stirring the silica-coated titania sol, and the suspension 1 was stirred. Next, 680 g of dimethyldiethoxysilane (manufactured by Toshiba Silicon Co., Ltd., TSL8122) and 680 g of ethanol were mixed to prepare a solution 2. The amount of dimethyldiethoxysilane added was 1.5 times the minimum coating amount determined from the above formula. The solution 2 was added to the stirring suspension 1 at a constant rate over 9 hours, and then aged for 12 hours. Surface coating and aging were performed at 65 ° C. Thereafter, ammonia and ethanol were removed by distillation to obtain a surface-hydrophobized silica-coated titania sol.
(Production Example 12) Production of surface hydrophobized silica-coated zinc oxide sol
After performing silica film formation and aging in the same manner as in Production Example 7, 330 g of deionized water and 225 g of 25% by mass ammonia water were left in the reaction solution without separating the silica-coated zinc oxide sol. Added and stirred to Suspension 1. Next, 660 g of dimethyldiethoxysilane (manufactured by Toshiba Silicone, TSL8122) and 660 g of ethanol were mixed to prepare a solution 2. The addition amount of dimethyldiethoxysilane was 1.5 times the minimum coating amount obtained from the above formula. The solution 2 was added to the stirring suspension 1 at a constant rate over 9 hours, and then aged for 12 hours. Surface coating and aging were performed at 645 ° C. Thereafter, ammonia and ethanol were removed by distillation to obtain a surface hydrophobized silica-coated zinc oxide sol.
(Production Examples 13 to 15) Surface hydrophobized silica-coated metal oxide sol
Manufacturing
After performing silica film formation and aging by the same operations as in Production Examples 8 to 10, 650 g of 25% by mass ammonia water was added and stirred while the silica-coated metal oxide sol was present in the reaction solution. Suspension 1 was obtained. Next, dimethyldiethoxysilane (manufactured by Toshiba Silicon Corp., TSL8122) 1.5 times the minimum coating amount and the same amount of ethanol were mixed to prepare Solution 2. The solution 2 was added to the stirring suspension 1 at a constant rate over 9 hours, and then aged for 12 hours. Surface coating and aging were performed at 45 ° C. Thereafter, ammonia and ethanol were removed by distillation to obtain a surface-hydrophobized silica-coated cerium oxide sol, a surface-hydrophobized silica-coated zirconium oxide sol, and a surface-hydrophobized silica-coated Bengala sol.
The water repellency of the surface-hydrophobized silica-coated metal oxide sol obtained in Production Examples 11 to 15 was measured by a methanol method. That is, 10 g of a 20% aqueous methanol solution was added to a test tube, the test substance was added to 1% by mass, the mixture was vigorously stirred and allowed to stand, and water repellency was determined after 1 hour. All showed good water repellency. Furthermore, the primary particle size, the silica film thickness, and the BET method specific surface area were measured. The results are summarized in Table 2.
Figure 0004740458
(Production Examples 16 to 25) Silica-coated metal oxide sol and surface hydrophobicity
Metal derived from silica-coated metal oxide sol
Production of oxide particles
The silica-coated metal oxide sol obtained in Production Examples 6 to 10 and the surface-hydrophobized silica-coated metal oxide sol obtained in Production Examples 11 to 15 were separated by solid filtration and centrifuged at 50 ° C. for 12 hours. After vacuum drying, the mixture was further pulverized with a jet mill to obtain metal oxide particles derived from a silica-coated metal oxide sol and a surface-hydrophobized silica-coated metal oxide sol.
(Measurement of water repellency, methanol method)
Water repellency by the methanol method using the five types of surface-hydrophobized silica-coated metal oxide particles obtained in Production Examples 1b to 5b and the five types of silica-coated metal oxide particles obtained in Production Examples 1a to 5a as test substances It was measured.
That is, 10 g of a 20% methanol aqueous solution was added to a test tube, the test substance was added to 1% by mass, and the mixture was vigorously stirred and allowed to stand. After 1 hour, the water repellency was evaluated according to the following criteria. The results are also shown in Table 1.
The surface hydrophobized silica-coated metal oxide particles of the present invention exhibit good water repellency. In contrast, conventional silica-coated metal oxide particles do not exhibit water repellency.
(Measurement of light transmittance, Cosmol method)
Surface-hydrophobized silica-coated titania particles (Production Example 1b), surface-hydrophobized silica-coated zinc oxide particles (Production Example 2b), silica-coated titania particles (Production Example 1a) and silica-coated zinc oxide particles (Production Example 2a) Light transmittance was measured by the Cosmol method using conventional surface-treated titania particles (MT100T manufactured by Teika and TTO-55A manufactured by Ishihara Sangyo Co., Ltd.) as test substances.
Further, the two types of silica-coated metal oxide sols obtained in Production Examples 6 to 7 and the two types of surface-hydrophobized silica-coated metal oxide sols obtained in Production Examples 11 to 12 were used as test substances for light transmittance. It was measured by the Cosmol method.
That is, a test substance is dispersed in polyglyceryl triisostearate (Cosmol 43) to prepare a 1% concentration slurry, and the slurry is placed in a quartz cell having a thickness of 0.1 mm, and placed in a spectrophotometer (SHIMADZU UV-160). The light transmittance was measured. Table 3 and Table 4 show the absorbance at a wavelength of 360 nm (A360), the absorbance at a wavelength of 530 nm (A530), and the ratio (A360 / A530) of both.
The surface-hydrophobized silica-coated metal oxide particles and the silica-coated metal oxide sol of the present invention have improved dispersibility in the liquid. As a result, the shielding ability in the ultraviolet region compared to conventional silica-coated metal oxide particles (A360) And the transparency increases in the visible light region (1 / A530). Therefore, in the cosmetics of the present invention using the surface-hydrophobized silica-coated titania particles and the silica-coated metal oxide sol, it can be expected that higher ultraviolet shielding ability and visible light transparency can be obtained (A360 / A530).
Figure 0004740458
Figure 0004740458
(Measurement of hydroxy radical generation)
Antioxidant mixture (β-carotene 5%, astaxanthin 5%, L-ascorbic acid-2-magnesium phosphate 20%, L-ascorbic acid-2-sodium phosphate 10%, L-ascorbic acid-2-glucoside 10 %, L-ascorbic acid-2-phosphate-5,6-benzylidene 10%, natural vitamin E 10%, dl-α-tocopherol 5%, dl-α-tocopheryl acetate 5%, dl-α-tocopheryl phosphorus A mixture of sodium acid 5%, citric acid 5%, phosphoric acid 5% and epigallocatechin 5%: the ratio was mass%) was prepared.
The silica-coated titania particles of Production Example 1 were mixed with the antioxidant mixture at a mass ratio of 1: 1, only the silica-coated titania particles of Production Example 1 and only the uncoated titania powder so that the titania concentrations were the same. (0.5%) was used as an aqueous suspension, and the amount of hydroxy radicals generated under light irradiation was measured by electron spin resonance measurement using DMPO as a radical trapping agent.
As a result, the amount of hydroxy radicals generated was the lowest when the antioxidant was mixed with the silica-coated titania particles, then the silica-coated titania particles alone were the lowest, and the uncoated titania particles were the highest.
(Measurement of photocatalytic activity, tetralin auto-oxidation method)
By the tetralin auto-oxidation method using the five types of silica-coated metal oxide sols obtained in Production Examples 6 to 10 and the five types of surface-hydrophobized silica-coated metal oxide sols obtained in Examples 11 to 15 as test substances Photocatalytic activity was measured. The resultTable 6It summarizes and shows. Both of the silica-coated metal oxide sol and the surface-hydrophobized silica-coated metal oxide sol of the present invention are 60 Pa / min or less, showing the suppression of photocatalytic activity equivalent to that of the conventional silica-coated metal oxide powder.
(Measurement of decomposition rate of organic UV absorbers, parasol method)
Five types of uncoated glass oxide particles corresponding to the five types of surface-hydrophobized silica-coated metal oxide particles obtained in Production Examples 1b to 5b and the five types of silica-coated metal oxide particles obtained in Production Examples 1a to 5a. The decomposition rate of the organic ultraviolet absorber was measured by the parasol method using metal oxide particles and two types of conventional surface-treated titania particles (MT100T manufactured by Teika and TTO-55A manufactured by Ishihara Sangyo Co., Ltd.) as test substances.
Further, the five types of silica-coated metal oxide sols obtained in Production Examples 6 to 10 and the five types of surface-hydrophobized silica-coated metal oxide sols obtained in Examples 11 to 15 were used as test substances to be organic by the parasol method. The decomposition rate of the UV absorber was measured.
That is, the test substance was dispersed in a polyethylene glycol 300 solution (parasol 1789 concentration 0.045% by mass) of 4-tert-butyl-4′-methoxydibenzoylmethane (parasol 1789) to form a slurry of 1% by mass. . 1.5 g of slurry is put in a glass container and irradiated with ultraviolet rays (1.65 mW / cm2), 1 g was collected, and 2 mL of isopropyl alcohol, 2 mL of hexane, and 3 mL of distilled water were sequentially added. The mixture was stirred to extract parasol 1789 in the hexane phase, and the absorbance (340 nm) at an optical path length of 1 mm of the hexane phase was measured with a spectrophotometer (SHIMADZU UV-160) over time (3 after UV irradiation 0, 5 and 10 hours). Point) measured. The rate of decrease in absorbance at 340 nm (ΔA340 / h) was determined. The results are shown in Tables 5 and 6.
Both the surface-hydrophobized silica-coated metal oxide particles and the silica-coated metal oxide sol that can be used in the present invention are 0.01 (ΔA340 / h) or less, which is equivalent to the conventional silica-coated metal oxide particles. Degradability is shown. Therefore, it is clear that the cosmetic containing the surface-hydrophobized silica-coated metal oxide particles and the silica-coated metal oxide sol can be used in combination with the organic ultraviolet shielding material. It can be said that even when the surface treatment with the hydrophobicity imparting agent is performed, the low decomposability of the ultraviolet absorber of the conventional silica-coated surface-treated metal oxide particles is not impaired.
(Measurement of powder dynamic friction coefficient, glass plate method)
6 types of uncoated metal oxide particles corresponding to 5 types of surface-hydrophobized silica-coated metal oxide particles obtained in Production Examples 1b to 5b and 5 types of silica-coated metal oxide particles obtained in Production Examples 1a to 5a The powder dynamic friction coefficient was measured by the glass plate method using metal oxide particles and two types of conventional surface-treated titania particles (MT100T manufactured by Teika and TTO-55A manufactured by Ishihara Sangyo Co., Ltd.) as test substances.
Further, the metal oxide particles derived from the five types of silica-coated metal oxide sols obtained in Production Examples 16 to 20, and the five types of surface hydrophobized silica-coated metal oxide sols obtained in Production Examples 21 to 25 The powder dynamic friction coefficient was measured by the glass plate method using metal oxide particles as a test substance.
That is, 10 mg / cm of the test substance powder on a 100 × 200 mm glass plate.2The glass plate was placed on a test table of a surface texture measuring device (HEIDON), and the load was 22.2 g / cm.2, Moving speed 200 mm / min. The dynamic friction coefficient was measured under the condition of a moving distance of 20 mm. The results are shown in Tables 5 and 6.
Both the dynamic friction coefficient of the surface-hydrophobized silica-coated metal oxide particles used in the present invention and the dynamic friction coefficient of the silica-coated metal oxide sol and the metal oxide powder derived from the surface-hydrophobized silica-coated metal oxide sol are 0. It is 550 or less, and shows a dynamic friction coefficient equivalent to that of conventional silica-coated metal oxide particles. Uncoated metal oxide particles, that of conventional surface-treated titania particles, show values far exceeding 0.550. That is, it can be said that the low dynamic friction coefficient of the conventional silica-coated surface-treated metal oxide particles is not adversely affected even by the hydrophobic treatment. Further, the cosmetics containing the metal oxide particles derived from the silica-coated metal oxide sol and the metal oxide particles derived from the surface-hydrophobized silica-coated metal oxide sol of the present invention have an even better feeling than before. It is suggested to have.
(Measurement of dye fading speed / Sunset yellow method)
5 types of surface-hydrophobized silica-coated metal oxide particles obtained in Production Examples 1b to 5b and 5 types of silica-coated metal oxide particles obtained in Production Examples 1a to 5a were obtained in Production Examples 2 to 4 and 6. 4 types of silica-coated metal oxide particles, 4 types of uncoated metal oxide particles corresponding to each, and 2 types of conventional surface-treated titania particles (MT100T manufactured by Teika and TTO-55A manufactured by Ishihara Sangyo) As a test substance, the dye fading rate was measured by the sunset yellow method.
Further, the five types of silica-coated metal oxides obtained in Production Examples 6 to 10 and the five types of surface-hydrophobized silica-coated metal oxide sols obtained in Production Examples 11 to 15 were used as test substances by the sunset yellow method. The dye fading rate was measured.
That is, Sunset Yellow, which is a pigment for cosmetics, was dissolved in 98% by mass glycerin so that the pigment concentration was 0.02% by mass. The test substance is dispersed so as to be 0.067% by mass, and the dispersion is irradiated with ultraviolet rays (ultraviolet intensity: 1.65 mW / cm2)did. Absorbance at 490 nm, which is the maximum absorption wavelength of Sunset Yellow with an optical path length of 1 mm, was measured over time with a spectrophotometer (SHIMADZU UV-160), and the rate of decrease in the absorbance (ΔA490 / h) was calculated. The results are also shown in Tables 5 and 6.
The dye fading speeds of the surface-hydrophobized silica-coated metal oxide particles and the silica-coated metal oxide sol used in the present invention are both 0.060 (ΔA490 / h) or less, and the conventional silica-coated metal oxide particles and Equivalent dye fading rate. About 1/1000 of the uncoated metal oxide particles and about 1/100 of the conventional surface-treated titania particles, the decomposition of the pigment is kept low.
The surface-hydrophobized silica-coated metal oxide particles and silica-coated metal oxide particles derived from the silica-coated metal oxide sol used in the present invention are the same as the conventional silica-coated metal oxide particles after the surface treatment with the hydrophobicity-imparting agent. It is clear that the low pigment decomposability is maintained, and a cosmetic with high storage stability can be provided.
Figure 0004740458
Figure 0004740458
(Cosmetics Examples 1-4) Amphibious foundation
Using the four types of surface-hydrophobized silica-coated metal oxide particles obtained in Production Examples 1b to 4b, a dual-use foundation having the following formulation was produced by a conventional method. During production, any surface hydrophobized silica-coated metal oxide particles were well dispersed.
Prescription for amphibious foundation
Surface hydrophobized silica-coated metal oxide particles 6.0% by mass
Silicone-treated talc 19.0% by mass
Silicone-treated mica 40.0% by mass
Silicone-treated iron oxide (red) 1.0% by mass
Silicone-treated iron oxide (yellow) 3.0% by mass
Silicone-treated iron oxide (black) 0.3% by mass
Silicone-treated titania 15.0% by mass
Zinc stearate 0.2% by mass
Nylon powder 2.0% by mass
Squalane 4.0% by mass
Solid paraffin 0.5% by mass
Dimethylpolysiloxane 4.0% by mass
Glycerin triisooctanoate 5.0% by mass
Antioxidant appropriate amount
Preservative appropriate amount
Perfume appropriate amount
(Comparative Cosmetic Examples 1-4) Amphibious Foundation
In the formulations of Cosmetic Examples 1 to 4, dual-use foundations were produced using the conventional silica-coated metal oxide particles obtained in Production Examples 1a to 4a instead of the surface hydrophobized silica-coated metal oxide particles. .
A sensory test was performed on the foundations of Cosmetic Examples 1 to 4 and Comparative Cosmetic Examples 1 to 4 to evaluate the feeling of use. The results are shown in Table 7. The foundations containing the silica-coated metal oxide particles according to the present invention all have a good feeling of use. On the other hand, the feeling of use of the foundation containing uncoated metal oxide particles and conventional surface-treated titania particles is usually below. In addition, there is a correlation between the dynamic friction coefficient of the contained metal oxide particles and the feeling of use of the foundation.
Figure 0004740458
(Cosmetics Examples 5-7) Foundation
The foundation of the following prescription was manufactured by the usual method. As the surface-hydrophobized silica-coated metal oxide particles, three types of surface-hydrophobized silica-coated metal oxide particles obtained in Production Examples 2b to 4b were used. During production, the surface-hydrophobized silica-coated titania particles and other surface-hydrophobized silica-coated metal oxide particles were well dispersed.
Foundation prescription
Surface-hydrophobized silica-coated titania particles (Production Example 1b) 10.0% by mass
Surface hydrophobized silica-coated metal oxide particles 5.0% by mass
Talc 17.8% by mass
Kaolin 15.0% by mass
Zinc flower 15.0% by mass
Iron oxide (red) 1.0% by mass
Iron oxide (yellow) 3.0% by mass
Iron oxide (black) 0.2% by mass
Solid paraffin 3.0% by mass
Microcrystalline wax 6.0% by mass
Beeswax 2.0% by mass
Vaseline 12.0% by mass
Lanolin acetate 1.0% by mass
Squalane 6.0% by mass
Isopropyl palmitate 18.0% by mass
Antioxidant appropriate amount
Perfume appropriate amount
When the sensory test was implemented about said foundation, all the foundations were very favorable feelings of use.
(Cosmetic Example 8) W / O emulsified foundation
Using the surface-hydrophobized silica-coated titania particles obtained in Production Example 1b, a W / O emulsion foundation having the following formulation was produced by a conventional method. During production, the surface-hydrophobized silica-coated titania particles were well dispersed.
Formulation of W / O emulsified foundation
Surface hydrophobized silica-coated titania particles (Production Example 1b) 9.5% by mass
Sericite 5.4% by mass
Kaolin 4.0% by mass
Iron oxide (red) 0.4% by mass
Iron oxide (black) 0.2% by mass
Iron oxide (yellow) 0.8% by mass
Liquid paraffin 5.0% by mass
Decamethylcyclopentanedioxane 12.0% by mass
Polyoxyethylene modified dimethylpolysiloxane 4.0% by mass
1,3-butylene glycol 5.0% by mass
Purified water 51.6% by mass
Dispersant 0.1% by mass
Stabilizer 2.0% by mass
Preservative appropriate amount
Perfume appropriate amount
When a sensory test was performed on the above foundation, it was a very good feeling of use.
(Cosmetic example 9) Sunscreen cream
Using the surface-hydrophobized silica-coated titania particles obtained in Production Example 1b, a sunscreen cream having the following formulation was produced by a conventional method. The dispersion of surface-hydrophobized silica-coated titania particles during production was good.
Sunscreen cream formula
Surface hydrophobized silica-coated titania particles (Production Example 1b) 5.0% by mass
Octyl paramethoxycinnamate 5.0% by mass
Oxybenzone 3.0% by mass
4-tertbutyl-4'-methoxybenzoylmethane 1.0 mass%
Squalane 39.0% by mass
Glycerin diisostearate 3.0% by mass
Liquid paraffin 10.0% by mass
Organically modified montmorillonite 1.5% by mass
1,3-butylene glycol 5.0% by mass
Purified water 37.5% by mass
Perfume appropriate amount
Preservative appropriate amount
When a sensory test was conducted on the above sunscreen cream, it was a good feeling of use.
(Cosmetic Example 10) Sun Oil
Using the surface-hydrophobized silica-coated zinc oxide particles obtained in Production Example 2b, a sun oil having the following formulation was produced by a conventional method. During production, the surface-hydrophobized silica-coated zinc oxide particles were well dispersed.
Sun oil prescription
Surface hydrophobized silica-coated zinc oxide particles (Production Example 2b) 1.0% by mass
Isopropyl paramethoxycinnamate 0.5% by mass
Liquid paraffin 56.5% by mass
Isopropyl myristate 10.0% by mass
Silicone oil 30.0% by mass
Silicone resin 2.0% by mass
Perfume appropriate amount
Antioxidant appropriate amount
When a sensory test was performed on the above sun oil, it was a good feeling of use.
(Cosmetics example 11) W / O type emulsion
Using the surface-hydrophobized silica-coated titania particles obtained in Production Example 1b, an emulsion having the following formulation was produced by a conventional method. During production, the surface-hydrophobized silica-coated titania particles were well dispersed.
Milk formula
Surface hydrophobized silica-coated titania particles (Production Example 1b) 3.0% by mass
Microcrystalline wax 1.0% by mass
Beeswax 2.0% by mass
Lanolin 2.0% by mass
Liquid paraffin 18.0% by mass
Squalane 10.0% by mass
Polyoxyethylene sorbitan fatty acid ester 1.0% by mass
Sorbitan sesquioleate ester 4.0% by mass
Polyopylene glycol 7.0% by mass
Purified water 52.0% by mass
Perfume appropriate amount
Preservative appropriate amount
When a sensory test was performed on the above emulsion, the feeling was good.
(Cosmetic example 12) W / O cream
Using the surface-hydrophobized silica-coated titania particles obtained in Production Example 1b, a cream having the following formulation was produced by a conventional method. During production, the surface-hydrophobized silica-coated titania particles were well dispersed.
W / O cream formula
Surface-hydrophobized silica-coated titania particles (Production Example 1b) 7.0% by mass
Microcrystalline wax 8.5% by mass
Solid paraffin 2.0% by mass
Beeswax 3.0% by mass
Vaseline 5.0% by mass
Reduced lanolin 5.0% by mass
Squalane 30.0% by mass
Hexadecyl adipate 10.0% by mass
Glycerol monooleate 3.5% by mass
Polyoxyethylene sorbitan monooleate 1.0% by mass
Propylene glycol 5.0% by mass
Purified water 20.0% by mass
Perfume appropriate amount
Antioxidant appropriate amount
Preservative appropriate amount
When a sensory test was performed on the above cream, it was a good feeling.
(Cosmetic example 13) Cream
Using the surface-hydrophobized silica-coated titania particles obtained in Production Example 1b and the surface-hydrophobized silica-coated zinc oxide particles obtained in Production Example 2b, a cream having the following formulation was produced by a conventional method. At the time of production, the surface-hydrophobized silica-coated titania particles and the surface-hydrophobized silica-coated zinc oxide particles obtained in Production Example 2b were well dispersed.
Cream formula
Surface hydrophobized silica-coated titania particles (Production Example 1) 7.0% by mass
Surface hydrophobized silica-coated zinc oxide particles (Production Example 2) 7.0% by mass
Squalane 17.0% by mass
Cetyl isooctanoate 7.5% by mass
Microcrystalline wax 1.0% by mass
Organically modified montmorillonite 1.3% by mass
Polyoxyethylene glycerol triisostearate 0.2% by mass
Glycerin 8.5% by mass
Purified water 50.5% by mass
Perfume appropriate amount
Preservative appropriate amount
When a sensory test was performed on the above cream, it was a good feeling.
(Cosmetic example 14) Oily cream
Using the surface-hydrophobized silica-coated titania particles obtained in Production Example 1b, a cream having the following formulation was produced by a conventional method. At the time of production, the surface-hydrophobized silica-coated titania particles and the surface-hydrophobized silica-coated zinc oxide particles obtained in Production Example 2b were well dispersed.
Oily cream formulation
Surface hydrophobized silica-coated titania particles (Production Example 1b) 5.0% by mass
Ceresin 7.5% by mass
Microcrystalline wax 5.0% by mass
Vaseline 33.0% by mass
Liquid paraffin 47.5% by mass
Low molecular weight polyethylene 2.0% by mass
Perfume appropriate amount
When a sensory test was performed on the above cream, it was a good feeling.
(Cosmetic example 15) Pack
Using the surface-hydrophobized silica-coated titania particles obtained in Production Example 1b, a pack having the following formulation was produced by a conventional method. During production, the surface-hydrophobized silica-coated titania particles were well dispersed.
Pack prescription
Surface hydrophobized silica-coated titania particles (Production Example 1b) 5.0% by mass
Talc 10.0% by mass
Polyvinyl acetate emulsion 15.0% by mass
Polyvinyl alcohol 10.0% by mass
Sorbitol 5.0% by mass
PEG400 5.0 mass%
Jojoba oil 2.9% by mass
Squalane 2.0% by mass
Polyoxyethylene sorbitan monostearate 1.0% by mass
Ethyl alcohol 8.0% by mass
Purified water 37.7% by mass
Perfume appropriate amount
Preservative appropriate amount
When the sensory test was conducted on the above pack, it was a good feeling.
(Cosmetics example 16) Lipstick
Using the surface-hydrophobized silica-coated titania particles obtained in Production Example 1b, a lipstick having the following formulation was produced by a conventional method. During production, the surface-hydrophobized silica-coated titania particles were well dispersed.
Lipstick prescription
Surface hydrophobized silica-coated titania particles (Production Example 1b) 4.5% by mass
Castor oil 30.0% by mass
Ceresin 4.0% by mass
Candelilla wax 8.0% by mass
Carnauba wax 2.0% by mass
Propylene glycol 1.0% by mass
Glycerin 2.0% by mass
Isostearic acid diglyceride 40.0% by mass
Polyoxyethylene / polyoxypropylene 2-tetradecyl ether
1.0% by mass
Red pigment 2.5% by mass
Purified water 5.0% by mass
Perfume appropriate amount
Antioxidant appropriate amount
When a sensory test was performed on the above lipstick, it was a good feeling of use.
(Cosmetic Examples 17-20) Sensory Test Foundation
The foundation was manufactured by the following prescription by the conventional method. As the test substance, four types of silica-coated metal oxide particles obtained in Production Examples 1b to 4b were used.
Formulating a foundation for sensory testing
Test substance 6.0% by mass
Silicone-treated talc 18.0% by mass
Silicone-treated mica 39.0% by mass
Silicone-treated iron oxide (red) 1.0% by mass
Silicone-treated iron oxide (yellow) 3.0% by mass
Silicone-treated iron oxide (black) 0.3% by mass
Silicone-treated titania 15.0% by mass
Zinc stearate 0.2% by mass
Nylon powder 2.0% by mass
Squalane 4.0% by mass
Solid paraffin 0.5% by mass
Dimethylpolysiloxane 4.0% by mass
Glycerin triisooctanoate 5.0% by mass
Antioxidant mixture 2.0% by mass
Preservative appropriate amount
Perfume appropriate amount
As an antioxidant mixture, β-carotene 5%, astaxanthin 5%, L-ascorbic acid-2-magnesium phosphate 20%, L-ascorbic acid-2-sodium phosphate 10%, L-ascorbic acid-2- 10% glucoside, 10% L-ascorbic acid-2-phosphate-5,6-benzylidene, 10% natural vitamin E, 5% dl-α-tocopherol, 5% dl-α-tocopheryl acetate, dl-α-toco A mixture consisting of 5% sodium ferryl phosphate, 5% citric acid, 5% phosphoric acid and 5% epigallocatechin (ratio by mass) was used.
(Comparative Cosmetic Examples 5-8) Sensory Test Foundation
As the test substance, foundations were produced with the same formulation as in Cosmetic Examples 17-20, except that the four types of silica-coated metal oxide particles obtained in Production Examples 1a-4a were used.
(Sensory test)
The feeling of use of the foundations produced in Cosmetic Examples 17 to 20 and Comparative Cosmetic Examples 5 to 8 was evaluated by a sensory test using 50 women aged 20 to 40 years. The feeling of use of each foundation by 50 subjects
Very good: 5 points Good: 3 points Normal: 2 points
Bad: 1 point Extremely bad: 0 point
Scored according to the criteria. Next, the feeling of use was determined in five stages based on the following criteria based on the total score obtained by counting the evaluation scores of 50 people.
250-200 points: very good (++)
200-150 points: Good (+)
150-100 points: Normal (+-)
100-50 points: Bad (-)
50-0 points: Extremely bad (-)
The results are shown in Table 8. The feeling of use of the foundation containing the silica-coated metal oxide particles according to the present invention is extremely good (++). On the other hand, a foundation containing conventional silica-coated metal oxide particles is normal (+-).
Figure 0004740458
Hereinafter, production examples of the surface-hydrophobized silica-coated metal oxide of the present invention will be further described.
(Cosmetic Examples 21-28)
Surface alkylated silica-coated titania particles were obtained under the same production conditions as in Production Example 1b using alkylalkoxysilanes shown in Table 9 instead of dimethyldiethoxysilane.
Figure 0004740458
(Cosmetic Examples 29-36)
The silica-coated metal oxide particles obtained in Production Examples 1a to 5a were surface-treated by a dry method. That is, 100 g of the silica-coated metal oxide particles were put into a Henschel type stirring mixer (manufactured by Fukae Kogyo Co., Ltd., LFS-GS-1J) and rotated at 3000 rpm, or the hydrophobicity-imparting agent described in Table 7 or its The solution was sprayed in an amount corresponding to 10% by mass of the metal oxide particles, uniformly adhered to the surface of the silica-coated metal oxide particles, and then dried at 80 to 105 ° C. The results are shown in Table 10.
Figure 0004740458
(Cosmetics Examples 37-39) Sunscreen latex
A sunscreen emulsion having the following formulation was produced by a conventional method. That is, polyethylene glycol is added to purified water, heated and dissolved, and then the test substance and bee gum are added. The other ingredients are mixed, dissolved by heating and kept at 70 ° C. (oil phase). The oil phase was added to the aqueous phase, and the mixture was uniformly emulsified and dispersed with a homomixer. The emulsion was cooled to 35 ° C. with stirring. As the test substance, the three types of silica-coated metal oxide sols produced in Production Examples 6 to 8 were used by adjusting the solid content to 10%.
Sunscreen latex prescription
Test substance 70.0% by mass
Stearic acid 2.0% by mass
Cetyl alcohol 1.0 mass%
Vaseline 5.0% by mass
Silicon oil 2.0% by mass
Liquid paraffin 10.0% by mass
Glycerin monostearate (self-emulsifying) 1.0% by mass
Polyoxyethylene (25 mol) monooleate 1.0% by mass
Polyethylene glycol 1500 5.0% by mass
Bee gum 0.5% by mass
Purified water 2.2% by mass
Fragrance 0.1% by mass
Preservative 0.2% by mass
(Sensory test)
The feeling of use and the transparency of the finished sunscreen emulsion produced in Cosmetic Examples 37 to 39 were evaluated by a sensory test using 50 women aged 20 to 40 years. The feeling of use of each foundation by 50 subjects
Very good: 5 points Good: 3 points Normal: 2 points
Bad: 1 point Extremely bad: 0 point
Scored according to the criteria. Next, the feeling of use was determined in five stages based on the following criteria based on the total score obtained by counting the evaluation scores of 50 people.
250-200 points: very good (++)
200-150 points: Good (+)
150-100 points: Normal (+-)
100-50 points: Bad (-)
50-0 points: Extremely bad (-)
The results are shown in Table 11. The feeling of use and the transparency of the sunscreen emulsion containing the silica-coated metal oxide sol of the present invention are both very good (++). On the other hand, in the sunscreen emulsion containing the conventional silica-coated metal oxide powder, the feeling of use is very good (++) or good (+), but the transparency is normal (+-) or good (+). .
It is apparent that the sunscreen emulsion containing the silica-coated metal oxide sol of the present invention has a particularly improved transparency as compared with the conventional sunscreen emulsion containing the silica-coated metal oxide powder.
Figure 0004740458
(Cosmetics Examples 40-41) Foundation
The foundation of the following prescription was manufactured by the usual method. As test substances, silica-coated metal oxide particles derived from the two types of silica-coated metal oxide sols obtained in Production Examples 16 to 17 were used.
Foundation prescription
Test substance 15.0% by mass
Mica 15.0% by mass
Talc 10.0% by mass
Zinc flower 15.0% by mass
Iron oxide (red) 1.5% by mass
Iron oxide (yellow) 3.4% by mass
Glycerin 10.0% by mass
Purified water 30.0% by mass
Fragrance 0.1% by mass
(Sensory test)
The feeling of use and the finished transparency of the foundations produced in Cosmetic Examples 40 to 41 were evaluated by a sensory test according to the above methods.
The results are shown in Table 12. The feeling of use and transparency of the foundation containing the metal oxide powder derived from the silica-coated metal oxide sol of the present invention are both very good (++). On the other hand, in the foundation containing the conventional silica-coated metal oxide powder, the feeling of use is very good (++) or good (+), but the transparency is normal (+ −) or good (+).
It is clear that the foundation containing the silica-coated metal oxide particles derived from the silica-coated metal oxide sol of the present invention has a particularly improved transparency compared to the foundation containing the conventional silica-coated metal oxide powder. It is.
Figure 0004740458
(Cosmetic Examples 42-45) Foundation
The foundation of the following prescription was manufactured by the usual method. As the silica-coated metal oxide sol, any one of the four types of silica-coated metal oxide powders derived from the silica-coated metal oxide sols obtained in Production Examples 17 to 20 was used.
Foundation prescription
Derived from silica-coated titania sol
Titania powder (Production Example 16) 10.0% by mass
Derived from silica-coated metal oxide sol
Silica-coated metal oxide particles 5.0% by mass
Mica 15.0% by mass
Talc 10.0% by mass
Zinc flower 15.0% by mass
Bengala 1.5% by mass
Iron oxide (yellow) 3.5% by mass
Glycerin 10.0% by mass
Purified water 29.9% by mass
Fragrance 0.1% by mass
When the sensory test was implemented about said foundation, all foundations showed very good usability and very good transparency.
(Cosmetic Example 46) Lotion
A lotion having the following formulation was produced by a conventional method.
Prescription for lotion
Silica-coated zinc oxide sol (Production Example 7) 30.0% by mass
Ethyl alcohol 39.6% by mass
1,3 butylene glycol 9.5% by mass
Castor oil 4.9% by mass
Methylparaben 0.2% by mass
Purified water 15.8% by mass
When the sensory test was implemented about said lotion, evaluation that it was good use feeling and very good transparency was obtained.
(Cosmetic example 47) Latex
The emulsion of the following prescription was manufactured by the usual method.
Milk formula
Silica-coated titania sol (Production Example 6) 30.0% by mass
Avocado oil 11.0% by mass
Behenyl alcohol 0.6% by mass
Stearic acid 0.4% by mass
Glycerin fatty acid ester 0.9% by mass
Polyoxyethylene sorbitan fatty acid ester 1.1% by mass
Polyoxyethylene alkyl ether 0.4% by mass
1,3-butylene glycol 10.1% by mass
Methylparaben 0.2% by mass
Fragrance 0.4% by mass
Purified water 44.9% by mass
When the sensory test was implemented about said lotion, the evaluations of a very good feeling of use and a very good transparency were obtained.
(Cosmetic example 48) Cream
A cream having the following formulation was produced by a conventional method.
Cream formula
Silica-coated cerium oxide sol (Production Example 8) 35.0% by mass
Squalane 11.1% by mass
Stearic acid 7.8% by mass
Stearyl alcohol 6.0% by mass
Beeslow 1.9% by mass
Propylene glycol monostearate 3.1% by mass
Polyoxyethylene cetyl ether 1.1% by mass
1,3 Butylene glycol 11.9% by mass
Methylparaben 0.2% by mass
Fragrance 0.4% by mass
Purified water 12.5% by mass
When the sensory test was implemented about said cream, it was evaluation of a good usability and very good transparency.
(Cosmetic example 49) Cream
A cream having the following formulation was produced by a conventional method.
Cream formula
Silica-coated zinc oxide sol (Production Example 7) 35.0% by mass
Squalane 15.2% by mass
Stearic acid 7.8% by mass
Stearyl alcohol 6.0% by mass
Beeslow 1.9% by mass
Propylene glycol monostearate 3.1% by mass
Polyoxyethylene cetyl ether 1.1% by mass
1,3 Butylene glycol 11.9% by mass
Methylparaben 0.2% by mass
Fragrance 0.4% by mass
Purified water 10.4% by mass
When the sensory test was implemented about said cream, it was evaluation of a very good feeling of use and a very good transparency.
(Cosmetics example 50) Cream
A cream having the following formulation was produced by a conventional method.
Cream formula
Silica-coated zirconium oxide sol (Production Example 9) 15.0% by mass
Squalane 40.0% by mass
Glyceryl diisostearate 3.0% by mass
Oxybenzene 3.0% by mass
Organically modified montmorillonite 1.5% by mass
1,3-butylene glycol 5.0% by mass
Octyl p-methoxycinnamate 5.0% by mass
4-tertbutyl-4'-methoxy 1.0 mass%
Dibenzoylmethane
Methylparaben 0.2% by mass
Fragrance 0.4% by mass
Purified water 25.9% by mass
When the sensory test was implemented about said cream, it was evaluation of very good usability and transparency.
(Cosmetics example 51) Pack
Using the titania powder derived from the silica-coated titania sol obtained in Production Example 16 as a test substance, a pack was produced according to the following formulation by a conventional method.
Pack prescription
Test substance 7.0% by mass
Polyvinyl alcohol 14.5% by mass
Sodium carboxymethylcellulose 4.8% by mass
1,3-butylene glycol 2.9% by mass
Ethyl alcohol 10.0% by mass
Methylparaben 0.1% by mass
Purified water 60.7% by mass
When the sensory test was conducted on the above pack, the evaluation was good feeling of use and transparency.
(Cosmetic example 52) Lipstick
Using the surface hydrophobized silica-coated zinc oxide sol of Production Example 7 in which the medium was replaced with silicon oil as a test substance, a lipstick was produced according to the following formulation by a conventional method.
Test substance 30.0% by mass
Castor oil 18.3% by mass
Hexadecyl alcohol 25.2% by mass
Lanolin 3.9% by mass
Beeswax 4.8% by mass
Ozokerite 3.4% by mass
Candelilla wax 6.2% by mass
Carnauba wax 2.1% by mass
Methylparaben 0.1% by mass
4.8% by mass of red pigment
Fragrance 0.1% by mass
Purified water 1.1% by mass
When a sensory test was performed on the above lipstick, the evaluation was extremely good feeling of use and transparency.
(Cosmetic Examples 53-57) Amphibious Foundation
Using the five types of surface-hydrophobized silica-coated metal oxide sol-derived silica-coated metal oxide particles obtained in Production Examples 21 to 25 as test substances, amphibious foundations having the following formulation were produced by a conventional method. During production, any silica-coated metal oxide particles were well dispersed.
Prescription for amphibious foundation
Test substance 6.0% by mass
Silicone-treated talc 19.0% by mass
Silicone-treated mica 39.6% by mass
Silicone-treated iron oxide (red) 1.0% by mass
Silicone-treated iron oxide (yellow) 3.0% by mass
Silicone-treated iron oxide (black) 0.3% by mass
Silicone-treated titania 15.0% by mass
Zinc stearate 0.2% by mass
Nylon powder 2.0% by mass
Squalane 4.0% by mass
Solid paraffin 0.5% by mass
Dimethylpolysiloxane 4.0% by mass
Glycerin triisooctanoate 5.0% by mass
Antioxidant 0.2% by mass
Preservative 0.1% by mass
Fragrance 0.1% by mass
The sensory test was implemented about the amphibious foundation of cosmetic example 53-57, and the usability | use_condition and transparency were evaluated. The results are shown in Table 13. The foundations containing the silica-coated metal oxide particles derived from the surface-hydrophobized silica-coated metal oxide sol according to the present invention all exhibit a very good feeling of use and a very good transparency.
Figure 0004740458
(Cosmetic example 58) Foundation
The foundation of the following prescription was manufactured by the usual method. As the silica-coated metal oxide particles derived from the surface-hydrophobized silica-coated titania sol and zinc oxide sol obtained in Production Examples 21 and 22, the four types of surface-hydrophobized silica-coated metal oxides obtained in Production Examples 17 to 20, respectively. The product sol was used. During production, both the silica-coated titania particles and the silica-coated zinc oxide particles were well dispersed.
Foundation prescription
Surface hydrophobized silica-coated titania sol
Silica-coated titania particles (Production Example 21) 10.0% by mass
Surface hydrophobized silica coated zinc oxide derived
Silica-coated zinc oxide particles (Production Example 22) 5.0% by mass
Talc 17.5% by mass
Kaolin 15.0% by mass
Zinc flower 15.0% by mass
Iron oxide (red) 1.0% by mass
Iron oxide (yellow) 3.0% by mass
Iron oxide (black) 0.2% by mass
Solid paraffin 3.0% by mass
Microcrystalline wax 6.0% by mass
Beeswax 2.0% by mass
Vaseline 12.0% by mass
Lanolin acetate 1.0% by mass
Squalane 6.0% by mass
Isopropyl palmitate 18.0% by mass
Antioxidant 0.2% by mass
Fragrance 0.1% by mass
When the sensory test was implemented about said foundation, all foundations were very favorable usability and very favorable transparency.
(Cosmetics example 59) W / O emulsified foundation
Using the surface-hydrophobized silica-coated titania sol obtained in Production Example 11, a W / O emulsified foundation having the following formulation was produced by a conventional method.
Formulation of W / O emulsified foundation
Surface hydrophobized silica-coated titania sol (Production Example 11) 47.5% by mass
Sericite 5.4% by mass
Kaolin 4.0% by mass
Iron oxide (red) 0.4% by mass
Iron oxide (black) 0.2% by mass
Iron oxide (yellow) 0.8% by mass
Liquid paraffin 5.0% by mass
Decamethylcyclopentanedioxane 12.0% by mass
Polyoxyethylene-modified dimethylpolysiloxane 4.0% by mass
1,3-butylene glycol 5.0% by mass
Purified water 13.3% by mass
Dispersant 0.1% by mass
Stabilizer 2.0% by mass
Preservative 0.2% by mass
Fragrance 0.1% by mass
When a sensory test was performed on the above foundation, it was found to have a very good feeling of use and a very good transparency.
Industrial applicability
According to the invention, 1150 to 1250 cm-1And 1000-1100cm-1Of the peak intensity of the infrared absorption spectrum of I (I = I1/ I2: In the formula I11150-1250cm-1Absorption peak intensity, I2Is 1000-1100cm-1Represents the absorption peak intensity. ) Is 0.2 or more, the refractive index is 1.435 or more, and is coated with a silica film having a film thickness of 0.1 to 100 nm, and then is subjected to a surface treatment with a hydrophobicity-imparting agent. The photocatalytic activity measured by the tetralin auto-oxidation method is 60 Pa / min. A cosmetic comprising the following surface-hydrophobized silica-coated metal oxide particles is provided. This cosmetic has good dispersion of metal oxide particles in a cosmetic base material, high UV shielding ability, high transparency of makeup finish, excellent use feeling during makeup, and suppression effect of photocatalytic activity Since it is high and has excellent storage stability, it is useful as a practical cosmetic. The present invention also provides an economical method for producing a silica-coated metal oxide sol, and further provides a metal oxide sol that is coated with a dense and practical silica film and that has improved dispersibility and transparency. Furthermore, an ultraviolet shielding cosmetic material in which silica-coated metal oxide particles are well dispersed and particularly excellent in transparency is provided.

Claims (48)

1150〜1250cm-1と1000〜1100cm-1の赤外吸収スペクトルの吸収ピーク強度の比I(I=I1 /I2 :式中I1 は1150〜1250cm-1の吸収ピーク強度、I2 は1000〜1100cm-1の吸収ピーク強度を表す。)が0.2以上であり、かつ屈折率が1.435以上であるシリカ膜に被覆された金属酸化物粒子をさらに疎水性付与剤で表面処理して得られる表面疎水化シリカ被覆金属酸化物粒子を含有することを特徴とする化粧料。1150~1250Cm -1 and 1000~1100cm ratio of the absorption peak intensity of the infrared absorption spectrum of -1 I (I = I 1 / I 2: absorption peak intensity wherein I 1 is 1150~1250cm -1, I 2 is The metal oxide particles coated with a silica film having an absorption peak intensity of 1000 to 1100 cm −1 ) of 0.2 or more and a refractive index of 1.435 or more are further surface treated with a hydrophobicity-imparting agent. cosmetic characterized by containing a surface-hydrophobicized silica-coated metal oxide particles child obtained by. シリカ膜厚が0.1〜100nmであり、かつ、テトラリン自動酸化法により測定した光触媒活性度が60Pa/min.以下である表面疎水化シリカ被覆金属酸化物粒子を含有することを特徴とする請求項1に記載の表面疎水化シリカ被覆金属酸化物粒子を含有する化粧料。  The silica film thickness is 0.1 to 100 nm, and the photocatalytic activity measured by the tetralin auto-oxidation method is 60 Pa / min. The cosmetic comprising the surface-hydrophobized silica-coated metal oxide particles according to claim 1, comprising the following surface-hydrophobized silica-coated metal oxide particles. 疎水性付与剤が、シリコーン油類、有機アルコキシシラン類及び、高級脂肪酸塩類からなる群から選ばれる1種又は2種以上の疎水性付与剤であることを特徴とする請求項1または2に記載の化粧料。  The hydrophobicity imparting agent is one or two or more hydrophobicity imparting agents selected from the group consisting of silicone oils, organic alkoxysilanes, and higher fatty acid salts. Cosmetics. テトラリン自動酸化法により測定した光触媒活性度が60Pa/min.以下である表面疎水化シリカ被覆金属酸化物粒子を含有することを特徴とする請求項1又は3のいずれかに記載の化粧料。  The photocatalytic activity measured by the tetralin auto-oxidation method is 60 Pa / min. The cosmetic according to claim 1, comprising surface-hydrophobized silica-coated metal oxide particles that are: 表面疎水化シリカ被覆金属酸化物粒子の一次粒子径が5〜500nmであり、かつ二次粒子径が0.5〜10μmであることを特徴とする請求項1〜4のいずれかに記載の化粧料。  5. The makeup according to claim 1, wherein the surface-hydrophobized silica-coated metal oxide particles have a primary particle size of 5 to 500 nm and a secondary particle size of 0.5 to 10 [mu] m. Fee. 表面疎水化シリカ被覆金属酸化物粒子の一次粒子径が5〜120nmであり、かつシリカ膜厚が0.5〜25nmであることを特徴とする請求項5に記載の化粧料。  6. The cosmetic according to claim 5, wherein the primary particle diameter of the surface-hydrophobized silica-coated metal oxide particles is 5 to 120 nm, and the silica film thickness is 0.5 to 25 nm. 金属酸化物が酸化チタン、酸化亜鉛、酸化セリウム、酸化ジルコニウム及び酸化鉄からなる群から選択された1種又は2種以上の金属酸化物であることを特徴とする請求項1〜6のいずれかに記載の化粧料。  The metal oxide is one or more metal oxides selected from the group consisting of titanium oxide, zinc oxide, cerium oxide, zirconium oxide, and iron oxide. Cosmetics described in 1. 金属酸化物が酸化チタンである請求項7に記載の化粧料。  The cosmetic according to claim 7, wherein the metal oxide is titanium oxide. 金属酸化物が酸化亜鉛である請求項7に記載の化粧料。  The cosmetic according to claim 7, wherein the metal oxide is zinc oxide. 金属酸化物が酸化セリウムである請求項7に記載の化粧料。  The cosmetic according to claim 7, wherein the metal oxide is cerium oxide. 表面疎水化シリカ被覆金属酸化物粒子に加えて、抗酸化剤を含有することを特徴とする請求項1〜10のいずれかに記載の化粧料。  The cosmetic according to any one of claims 1 to 10, further comprising an antioxidant in addition to the surface-hydrophobized silica-coated metal oxide particles. 表面疎水化シリカ被覆金属酸化物粒子に加えて、有機系紫外線吸収剤を含有することを特徴とする請求項1〜11のいずれかに記載の化粧料。  The cosmetic according to any one of claims 1 to 11, further comprising an organic ultraviolet absorber in addition to the surface-hydrophobized silica-coated metal oxide particles. 1150〜1250cm−1と1000〜1100cm−1の赤外吸収スペクトルの吸収ピーク強度の比I(I=I/I:式中Iは1150〜1250cm−1の吸収ピーク強度、Iは1000〜1100cm−1の吸収ピーク強度を表す。)が0.2以上であり、かつ屈折率が1.435以上であるシリカ膜に被覆された金属酸化物粒子をさらに疎水性付与剤で表面処理することを特徴とする表面疎水化シリカ被覆金属酸化物粒子。1150~1250Cm -1 and 1000~1100cm ratio of the absorption peak intensity of the infrared absorption spectrum of -1 I (I = I 1 / I 2: absorption peak intensity wherein I 1 is 1150~1250cm -1, I 2 is represents an absorption peak intensity of 1000~1100cm -1.) is not less than 0.2, and the refractive index is surface treated with a more hydrophobic imparting agent metal oxide particles coated with the silica film is 1.435 or more Surface-hydrophobized silica-coated metal oxide particles characterized in that 疎水性付与剤が、シリコーン油類、有機アルコキシシラン類及び、高級脂肪酸塩類からなる群から選ばれる1種又は2種以上の疎水性付与剤であることを特徴とする請求項13に記載の表面疎水化シリカ被覆金属酸化物粒子。  The surface according to claim 13, wherein the hydrophobicity-imparting agent is one or more hydrophobicity-imparting agents selected from the group consisting of silicone oils, organic alkoxysilanes, and higher fatty acid salts. Hydrophobized silica-coated metal oxide particles. 金属酸化物粒子の一次粒子の平均粒径が5〜500nmであることを特徴とする請求項13または14に記載の表面疎水化シリカ被覆金属酸化物粒子。  The surface hydrophobized silica-coated metal oxide particles according to claim 13 or 14, wherein the primary particle diameter of the metal oxide particles is 5 to 500 nm. イ)珪酸または珪酸を産生し得る前駆体、ロ)水、ハ)アルカリ及びニ)有機溶媒を含有し、水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲であるシリカ被膜形成用組成物に、金属酸化物粒子を接触させて金属酸化物粒子の表面にシリカを選択的に沈着せしめて得られるシリカ被覆金属酸化物粒子を、さらに疎水性付与剤で表面処理することを特徴とする表面疎水化シリカ被覆金属酸化物粒子の製造方法。  B) containing silicic acid or a precursor capable of producing silicic acid, b) water, c) alkali and d) an organic solvent, with a water / organic solvent ratio in the range of 0.1 to 10, and a silicon concentration of 0.0001 Silica-coated metal oxide particles obtained by bringing metal oxide particles into contact with the composition for forming a silica film in a range of ˜5 mol / liter and selectively depositing silica on the surface of the metal oxide particles, Further, the method for producing surface hydrophobized silica-coated metal oxide particles, wherein the surface is treated with a hydrophobicity imparting agent. 疎水性付与剤が、シリコーン油類、有機アルコキシシラン類及び高級脂肪酸塩類からなる群から選ばれる1種又は2種以上の疎水化剤による表面処理であることを特徴とする請求項16に記載の表面疎水化シリカ被覆金属酸化物粒子の製造方法。  The hydrophobicity imparting agent is a surface treatment with one or two or more hydrophobizing agents selected from the group consisting of silicone oils, organic alkoxysilanes and higher fatty acid salts. A method for producing surface-hydrophobized silica-coated metal oxide particles. 疎水性付与剤が(1)式(1)式;R(RSiX3−n(式中Rは炭素数1〜3のアルキル基またはフェニル基、Rは水素基または炭素数1〜3のアルキル基またはフェニル基、Xは炭素数1〜4のアルコキシル基、nは1〜2の整数である)で表されるアルキルアルコキシシランであることを特徴とする請求項16または17に記載の表面疎水化シリカ被覆金属酸化物粒子の製造方法。The hydrophobicity-imparting agent is (1) Formula (1) Formula; R 1 (R 2 ) n SiX 3-n (wherein R 1 is an alkyl group or phenyl group having 1 to 3 carbon atoms, R 2 is a hydrogen group or carbon) 17. An alkylalkoxysilane represented by any one of 1 to 3 alkyl group or phenyl group, X is an alkoxyl group having 1 to 4 carbon atoms, and n is an integer of 1 to 2. 18. The method for producing surface hydrophobized silica-coated metal oxide particles according to item 17. 珪酸または珪酸を産生し得る前駆体、水、アルカリ及び有機溶媒を含有し、水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲であるシリカ被膜形成用組成物に、金属酸化物粒子を接触させて金属酸化物粒子の表面にシリカを選択的に沈着せしめて得られるシリカ被覆金属酸化物粒子を、さらにアルキルアルコキシシランで表面処理することを特徴とする表面疎水化シリカ被覆金属酸化物粒子の製造方法において、珪酸または珪酸を産生し得る前駆体、水、アルカリ及び有機溶媒を含有し、水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲であるシリカ被膜形成用組成物に、金属酸化物粒子を接触させて金属酸化物粒子の表面にシリカを選択的に沈着せしめた後、さらにアルキルアルコキシシランを添加して水/有機溶媒比が0.1〜10の範囲で、かつ該アルキルアルコキシシランに由来する珪素濃度が0.0001〜5モル/リットルの範囲である組成物となし、該アルキルアルコキシシランの反応生成物で該シリカ被覆金属酸化物粒子を表面処理する、シリカ被覆とアルキルアルコキシシランによる表面処理を連続的に行うことを特徴とする請求項16〜18のいずれかに記載の表面疎水化シリカ被覆金属酸化物粒子の製造方法。  Containing silicic acid or a precursor capable of producing silicic acid, water, alkali and organic solvent, water / organic solvent ratio in the range of 0.1-10, and silicon concentration in the range of 0.0001-5 mol / liter A silica-coated metal oxide particle obtained by bringing a metal oxide particle into contact with a certain composition for forming a silica film and selectively depositing silica on the surface of the metal oxide particle is further surface-treated with an alkylalkoxysilane. In the method for producing surface hydrophobized silica-coated metal oxide particles characterized by comprising silicic acid or a precursor capable of producing silicic acid, water, alkali and organic solvent, the water / organic solvent ratio is 0.1-10. The silica is selectively applied to the surface of the metal oxide particles by bringing the metal oxide particles into contact with the composition for forming a silica film having a silicon concentration in the range of 0.0001 to 5 mol / liter. After the application, an alkylalkoxysilane is further added so that the water / organic solvent ratio is in the range of 0.1 to 10, and the silicon concentration derived from the alkylalkoxysilane is in the range of 0.0001 to 5 mol / liter. The surface treatment with a silica coating and an alkylalkoxysilane is carried out continuously, wherein the silica-coated metal oxide particles are surface-treated with a reaction product of the alkylalkoxysilane with a composition. The method for producing surface-hydrophobized silica-coated metal oxide particles according to any one of 18. アルカリが、アンモニア、炭酸アンモニウム、炭酸水素アンモニウム、蟻酸アンモニウム、又は酢酸アンモニウムの少なくても1種類以上から選ばれることを特徴とする請求項16〜19のいずれかに記載の表面疎水化シリカ被覆金属酸化物粒子の製造方法。  The surface-hydrophobized silica-coated metal according to any one of claims 16 to 19, wherein the alkali is selected from at least one of ammonia, ammonium carbonate, ammonium hydrogen carbonate, ammonium formate, and ammonium acetate. A method for producing oxide particles. 有機溶媒が、メタノール、エタノール、プロパノール、ペンタノール、テトラヒドロフラン、1,4−ジオキサン又はアセトンの少なくてもいずれか1種以上から選ばれることを特徴とする請求項16〜20のいずれかに記載の表面疎水化シリカ被覆金属酸化物粒子の製造方法。  The organic solvent is selected from at least one of methanol, ethanol, propanol, pentanol, tetrahydrofuran, 1,4-dioxane, and acetone, according to any one of claims 16 to 20. A method for producing surface-hydrophobized silica-coated metal oxide particles. イ)加水分解により発生させた金属酸化物ゾル、ロ)珪酸または珪酸を産生し得る前駆体、ハ)アルカリ、ニ)有機溶媒及び必要に応じて、ホ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲になるよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成することを特徴とするシリカ被覆金属酸化物ゾルの製造方法。  B) Addition of metal oxide sol generated by hydrolysis, b) silicic acid or a precursor capable of producing silicic acid, c) alkali, d) organic solvent and, if necessary, e) water, regardless of order. The water / organic solvent ratio is 0.1 to 10 and the silicon concentration is 0.0001 to 5 mol / liter, and silica is deposited on the surface of the metal oxide sol particles. A method for producing a silica-coated metal oxide sol, wherein イ)アルカリ、ロ)有機溶媒及びハ)水の混合液に、ニ)加水分解により発生させた金属酸化物ゾルを添加し、更に、ホ)珪酸または珪酸を産生し得る前駆体、ヘ)有機溶媒及び必要に応じて、ヘ)水からなる混合液を、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲となるように添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成することを特徴とする請求項22に記載のシリカ被覆金属酸化物ゾルの製造方法。  B) Addition of a metal oxide sol generated by hydrolysis to a mixed solution of alkali, b) organic solvent and c) water, and further, e) a precursor capable of producing silicic acid or silicic acid; f) an organic The mixture of the solvent and, if necessary, f) water, the water / organic solvent ratio after addition is in the range of 0.1 to 10, and the silicon concentration is in the range of 0.0001 to 5 mol / liter. 23. The method for producing a silica-coated metal oxide sol according to claim 22, wherein silica is deposited on the surface of the metal oxide sol particles to form a silica film. アルカリが、アンモニア、炭酸アンモニウム、炭酸水素アンモニウム、蟻酸アンモニウム又は酢酸アンモニウムの少なくとも1種類以上から選ばれることを特徴とする請求項22または23に記載のシリカ被覆金属酸化物ゾルの製造方法。  The method for producing a silica-coated metal oxide sol according to claim 22 or 23, wherein the alkali is selected from at least one of ammonia, ammonium carbonate, ammonium hydrogencarbonate, ammonium formate, and ammonium acetate. 有機溶媒が、メタノール、エタノール、プロパノール、ペンタノール、テトラヒドロフラン、1,4−ジオキサン又はアセトンの少なくともいずれか1種以上から選ばれることを特徴とする請求項22〜24のいずれかに記載のシリカ被覆金属酸化物ゾルの製造方法。  The silica coating according to any one of claims 22 to 24, wherein the organic solvent is selected from at least one of methanol, ethanol, propanol, pentanol, tetrahydrofuran, 1,4-dioxane and acetone. A method for producing a metal oxide sol. イ)加水分解により発生させた金属酸化物ゾル、ロ)珪酸または珪酸を産生し得る前駆体、ハ)アルカリ、ニ)有機溶媒及び必要に応じてホ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲になるよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成することを特徴とするシリカ被覆金属酸化物ゾルの製造方法により得られるシリカ被覆金属酸化物ゾル。  B) Metal oxide sol generated by hydrolysis, b) Silicic acid or a precursor capable of producing silicic acid, c) Alkali, d) Organic solvent and, if necessary, e) Water, regardless of order, after addition A silica film is formed by adding silica so that the water / organic solvent ratio is in the range of 0.1 to 10 and the silicon concentration is in the range of 0.0001 to 5 mol / liter, and silica is deposited on the surface of the metal oxide sol particles. A silica-coated metal oxide sol obtained by a method for producing a silica-coated metal oxide sol characterized by comprising: イ)アルカリ、ロ)有機溶媒及びハ)水の混合液に、ニ)加水分解により発生させた金属酸化物ゾルを添加し、更に、ホ)珪酸または珪酸を産生し得る前駆体、ヘ)有機溶媒及び必要に応じて、ヘ)水からなる混合液を、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲となるように添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成することを特徴とするシリカ被覆金属酸化物ゾルの製造方法により得られるシリカ被覆金属酸化物ゾル。  B) Addition of a metal oxide sol generated by hydrolysis to a mixed solution of alkali, b) organic solvent and c) water, and further, e) a precursor capable of producing silicic acid or silicic acid; f) an organic The mixture of the solvent and, if necessary, f) water, the water / organic solvent ratio after addition is in the range of 0.1 to 10, and the silicon concentration is in the range of 0.0001 to 5 mol / liter. A silica-coated metal oxide sol obtained by the method for producing a silica-coated metal oxide sol, wherein the silica is deposited on the surface of the metal oxide sol particles to form a silica film. シリカ膜が、1150〜1250cm−1と1000〜1100cm−1の赤外吸収スペクトルの吸収ピーク強度の比I(I=I/I:式中Iは1150〜1250cm−1の範囲内にある最大吸収ピーク強度、Iは1000〜1100cm−1の範囲内にある最大吸収ピーク強度を表す。)が0.2以上であり、かつ屈折率が1.435以上であることを特徴とする請求項26または27のいずれかに記載のシリカ被覆金属酸化物ゾル。Silica film, 1150~1250cm -1 and 1000~1100cm ratio of the absorption peak intensity of the infrared absorption spectrum of -1 I (I = I 1 / I 2: wherein I 1 is in the range of 1150~1250Cm -1 A certain maximum absorption peak intensity, I 2 represents a maximum absorption peak intensity within a range of 1000 to 1100 cm −1 ) is 0.2 or more, and a refractive index is 1.435 or more. The silica-coated metal oxide sol according to claim 26 or 27. 金属酸化物粒子の表面を被覆するシリカの膜厚が0.1〜25nmであることを特徴とする請求項26〜28のいずれかに記載のシリカ被覆金属酸化物ゾル。  The silica-coated metal oxide sol according to any one of claims 26 to 28, wherein a film thickness of silica covering the surface of the metal oxide particles is 0.1 to 25 nm. 金属酸化物粒子の平均一次粒径が1〜100nmであることを特徴とする請求項26〜29のいずれかに記載のシリカ被覆金属酸化物ゾル。  30. The silica-coated metal oxide sol according to claim 26, wherein the metal oxide particles have an average primary particle size of 1 to 100 nm. イ)加水分解により発生させた金属酸化物ゾル、ロ)珪酸または珪酸を産生し得る前駆体、ハ)アルカリ、ニ)有機溶媒及び必要に応じて、ホ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲になるよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成しシリカ被覆金属酸化物ゾルを作成した後、さらに前記シリカ被覆金属酸化物粒子を疎水性付与剤にて表面処理することを特徴とする表面疎水化シリカ被覆金属酸化物ゾルの製造方法。  B) Addition of metal oxide sol generated by hydrolysis, b) silicic acid or a precursor capable of producing silicic acid, c) alkali, d) organic solvent and, if necessary, e) water, regardless of order. The water / organic solvent ratio is 0.1 to 10 and the silicon concentration is 0.0001 to 5 mol / liter, and silica is deposited on the surface of the metal oxide sol particles. After forming the silica-coated metal oxide sol, the silica-coated metal oxide particles are further surface treated with a hydrophobicity-imparting agent. イ)アルカリ、ロ)有機溶媒及びハ)水の混合液に、ニ)加水分解により発生させた金属酸化物ゾルを添加し、更に、ホ)珪酸または珪酸を産生し得る前駆体、ヘ)有機溶媒及び必要に応じて、ヘ)水からなる混合液を、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲となるように添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成しシリカ被覆金属酸化物ゾルを作成した後、疎水性付与剤にて表面処理することを特徴とする表面疎水化シリカ被覆金属酸化物ゾルの製造方法。  B) Addition of a metal oxide sol generated by hydrolysis to a mixed solution of alkali, b) organic solvent and c) water, and further, e) a precursor capable of producing silicic acid or silicic acid; f) an organic The mixture of the solvent and, if necessary, f) water, the water / organic solvent ratio after addition is in the range of 0.1 to 10, and the silicon concentration is in the range of 0.0001 to 5 mol / liter. The surface hydrophobization is characterized in that silica is deposited on the surface of the metal oxide sol particles to form a silica film to form a silica-coated metal oxide sol, followed by surface treatment with a hydrophobicity-imparting agent. A method for producing a silica-coated metal oxide sol. 疎水性付与剤が、シリコーン油類、有機アルコキシシラン類及び高級脂肪酸塩類からなる群から選ばれる1種又は2種以上であることを特徴とする請求項31または32のいずれかに記載の表面疎水化シリカ被覆金属酸化物ゾルの製造方法。  The surface hydrophobicity according to claim 31 or 32, wherein the hydrophobicity-imparting agent is one or more selected from the group consisting of silicone oils, organic alkoxysilanes and higher fatty acid salts. For producing a silica-coated metal oxide sol. 有機アルコキシシラン類が、下記の構造式 R(RSiX3−n(式中Rは炭素数1〜4のアルキル基またはフェニル基、Rは水素基または炭素数1〜4のアルキル基またはフェニル基、Xは炭素数1〜4のアルコキシル基、nは0〜2の整数である。)で表されるアルキルアルコキシシランであることを特徴とする請求項31〜33に記載の表面疎水化シリカ被覆金属酸化物ゾルの製造方法。The organic alkoxysilane has the following structural formula R 1 (R 2 ) n SiX 3-n (wherein R 1 is an alkyl group or phenyl group having 1 to 4 carbon atoms, R 2 is a hydrogen group or 1 to 4 carbon atoms) 34. The alkyl group or phenyl group, X is an alkoxyl group having 1 to 4 carbon atoms, and n is an integer of 0 to 2. Of manufacturing a surface hydrophobized silica-coated metal oxide sol. イ)加水分解により発生させた金属酸化物ゾル、ロ)珪酸または珪酸を産生し得る前駆体、ハ)アルカリ、ニ)有機溶媒及び必要に応じて、ホ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲になるよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成しシリカ被覆金属酸化物ゾルを作成した後、さらに前記シリカ被覆金属酸化物粒子を疎水性付与剤にて表面処理することを特徴とする表面疎水化シリカ被覆金属酸化物ゾルの製造方法により得られる表面疎水化シリカ被覆金属酸化物ゾル。  B) Addition of metal oxide sol generated by hydrolysis, b) silicic acid or a precursor capable of producing silicic acid, c) alkali, d) organic solvent and, if necessary, e) water, regardless of order. The water / organic solvent ratio is 0.1 to 10 and the silicon concentration is 0.0001 to 5 mol / liter, and silica is deposited on the surface of the metal oxide sol particles. After forming the silica-coated metal oxide sol, the silica-coated metal oxide particles are further surface-treated with a hydrophobicity-imparting agent. Obtained surface hydrophobized silica-coated metal oxide sol. シリカ膜が、1150〜1250cm−1と1000〜1100cm−1の赤外吸収スペクトルの吸収ピーク強度の比I(I=I/I:式中Iは1150〜1250cm−1の範囲内にある最大吸収ピーク強度、Iは1000〜1100cm−1の範囲内にある最大吸収ピーク強度を表す。)が0.2以上であり、かつ屈折率が1.435以上であることを特徴とする請求項35に記載の表面疎水化シリカ被覆金属酸化物ゾル。Silica film, 1150~1250cm -1 and 1000~1100cm ratio of the absorption peak intensity of the infrared absorption spectrum of -1 I (I = I 1 / I 2: wherein I 1 is in the range of 1150~1250Cm -1 A certain maximum absorption peak intensity, I 2 represents a maximum absorption peak intensity within a range of 1000 to 1100 cm −1 ) is 0.2 or more, and a refractive index is 1.435 or more. 36. The surface-hydrophobized silica-coated metal oxide sol according to claim 35. 金属酸化物粒子の表面を被覆するシリカの膜厚が0.1〜25nmであることを特徴とする請求項35または36のいずれかに記載の表面疎水化シリカ被覆金属酸化物ゾル。  37. The surface-hydrophobized silica-coated metal oxide sol according to claim 35 or 36, wherein the thickness of the silica coating the surface of the metal oxide particles is 0.1 to 25 nm. 金属酸化物粒子の平均一次粒径が1〜100nmであることを特徴とする請求項35〜37のいずれかに記載の表面疎水化シリカ被覆金属酸化物ゾル。  38. The surface-hydrophobized silica-coated metal oxide sol according to claim 35, wherein the average primary particle size of the metal oxide particles is 1 to 100 nm. イ)加水分解により発生させた金属酸化物ゾル、ロ)珪酸または珪酸を産生し得る前駆体、ハ)アルカリ、ニ)有機溶媒及び必要に応じて、ホ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲になるよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成することを特徴とするシリカ被覆金属酸化物ゾルの製造方法により得られるシリカ被覆金属酸化物ゾルを固・液分離し、乾燥し、必要に応じて粉砕して得られるシリカ被覆金属酸化物ゾル由来のシリカ被覆金属酸化物粒子。  B) Addition of metal oxide sol generated by hydrolysis, b) silicic acid or a precursor capable of producing silicic acid, c) alkali, d) organic solvent and, if necessary, e) water, regardless of order. The water / organic solvent ratio is 0.1 to 10 and the silicon concentration is 0.0001 to 5 mol / liter, and silica is deposited on the surface of the metal oxide sol particles. The silica-coated metal oxide obtained by solid-liquid separation of the silica-coated metal oxide sol obtained by the method for producing a silica-coated metal oxide sol characterized by forming, drying, and grinding as necessary Silica-coated metal oxide particles derived from sol. イ)加水分解により発生させた金属酸化物ゾル、ロ)珪酸または珪酸を産生し得る前駆体、ハ)アルカリ、ニ)有機溶媒及び必要に応じて、ホ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲になるよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成しシリカ被覆金属酸化物ゾルを作成した後、さらに前記シリカ被覆金属酸化物粒子を疎水性付与剤にて表面処理することを特徴とする表面疎水化シリカ被覆金属酸化物ゾルの製造方法により得られる表面疎水化シリカ被覆金属酸化物ゾルを固・液分離し、乾燥し、必要に応じて粉砕して得られる表面疎水化シリカ被覆金属酸化物由来の表面疎水化シリカ被覆金属酸化物粒子。  B) Addition of metal oxide sol generated by hydrolysis, b) silicic acid or a precursor capable of producing silicic acid, c) alkali, d) organic solvent and, if necessary, e) water, regardless of order. The water / organic solvent ratio is 0.1 to 10 and the silicon concentration is 0.0001 to 5 mol / liter, and silica is deposited on the surface of the metal oxide sol particles. After forming the silica-coated metal oxide sol, the silica-coated metal oxide particles are further surface-treated with a hydrophobicity-imparting agent. Surface hydrophobized silica-coated metal oxide particles derived from surface hydrophobized silica-coated metal oxide obtained by solid / liquid separation of the obtained surface hydrophobized silica-coated metal oxide sol, drying, and pulverizing as necessary. 加水分解により発生させた金属酸化物ゾルに、イ)珪酸または珪酸を産生し得る前駆体、ロ)アルカリ、ハ)有機溶媒及び必要に応じて、ニ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲になるよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成することを特徴とするシリカ被覆金属酸化物ゾルの製造方法により得られるシリカ被覆金属酸化物ゾル及び/又は加水分解により発生させた金属酸化物ゾルに、イ)珪酸または珪酸を産生し得る前駆体、ロ)アルカリ、ハ)有機溶媒及び必要に応じて、ニ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲に成るよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成しシリカ被覆金属酸化物ゾルを作成した後、さらに前記シリカ被覆金属酸化物粒子を疎水性付与剤にて表面処理することを特徴とする表面疎水化シリカ被覆金属酸化物ゾルの製造方法により得られる表面疎水化シリカ被覆金属酸化物ゾルを含有することを特徴とする化粧料。  After adding the metal oxide sol generated by hydrolysis, a) silicic acid or a precursor capable of producing silicic acid, b) alkali, c) organic solvent and, if necessary, d) water regardless of the order. A silica film is formed by adding silica so that the water / organic solvent ratio is in the range of 0.1 to 10 and the silicon concentration is in the range of 0.0001 to 5 mol / liter, and silica is deposited on the surface of the metal oxide sol particles. The silica-coated metal oxide sol obtained by the method for producing a silica-coated metal oxide sol characterized in that the silica-coated metal oxide sol and / or the metal oxide sol generated by hydrolysis are a) silicic acid or a precursor capable of producing silicic acid. Body, b) alkali, c) organic solvent and, if necessary, d) regardless of the order of water, the water / organic solvent ratio after addition is in the range of 0.1-10, and the silicon concentration is 0.0001. In the range of ~ 5 mol / liter After the silica is deposited on the surface of the metal oxide sol particles to form a silica film to form a silica-coated metal oxide sol, the silica-coated metal oxide particles are further surface treated with a hydrophobicity-imparting agent. A cosmetic comprising a surface-hydrophobized silica-coated metal oxide sol obtained by a method for producing a surface-hydrophobized silica-coated metal oxide sol. 加水分解により発生させた金属酸化物ゾルに、イ)珪酸または珪酸を産生し得る前駆体、ロ)アルカリ、ハ)有機溶媒及び必要に応じて、ニ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲になるよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成することを特徴とするシリカ被覆金属酸化物ゾルの製造方法により得られるシリカ被覆金属酸化物ゾルを固・液分離し、乾燥し、必要に応じて粉砕して得られるシリカ被覆金属酸化物粒子及び/又は加水分解により発生させた金属酸化物ゾルに、イ)珪酸または珪酸を産生し得る前駆体、ロ)アルカリ、ハ)有機溶媒及び必要に応じて、ニ)水を順序に関係無く、添加後の水/有機溶媒比が0.1〜10の範囲で、かつ珪素濃度が0.0001〜5モル/リットルの範囲に成るよう添加し、金属酸化物ゾル粒子の表面にシリカを沈着させシリカ膜を形成しシリカ被覆金属酸化物ゾルを作成した後、さらに前記シリカ被覆金属酸化物粒子を疎水性付与剤にて表面処理することを特徴とする表面疎水化シリカ被覆金属酸化物ゾルの製造方法により得られる表面疎水化シリカ被覆金属酸化物ゾルを固・液分離し、乾燥し、必要に応じて粉砕して得られる表面疎水化シリカ被覆金属酸化物粒子を含有することを特徴とする化粧料。  After adding the metal oxide sol generated by hydrolysis, a) silicic acid or a precursor capable of producing silicic acid, b) alkali, c) organic solvent and, if necessary, d) water regardless of the order. A silica film is formed by adding silica so that the water / organic solvent ratio is in the range of 0.1 to 10 and the silicon concentration is in the range of 0.0001 to 5 mol / liter, and silica is deposited on the surface of the metal oxide sol particles. Silica-coated metal oxide particles obtained by solid-liquid separation of a silica-coated metal oxide sol obtained by the method for producing a silica-coated metal oxide sol characterized by forming, drying, and grinding as necessary And / or the metal oxide sol generated by hydrolysis, i) silicic acid or a precursor capable of producing silicic acid, b) an alkali, c) an organic solvent and, if necessary, d) water regardless of the order, Water / organic solvent ratio after addition Silica-coated metal oxide is formed by adding silica in the range of 0.1 to 10 and silicon concentration in the range of 0.0001 to 5 mol / liter and depositing silica on the surface of the metal oxide sol particles. Surface-hydrophobized silica coating obtained by a method for producing a surface-hydrophobized silica-coated metal oxide sol, wherein the silica-coated metal oxide particles are further surface-treated with a hydrophobicity-imparting agent A cosmetic comprising surface-hydrophobized silica-coated metal oxide particles obtained by solid / liquid separation of a metal oxide sol, drying, and optionally pulverizing. シリカ被覆金属酸化物ゾル及び表面疎水化シリカ被覆金属酸化物ゾル中の金属酸化物粒子のシリカ膜厚が0.1〜25nmであることを特徴とする請求項41または42のいずれかに記載の化粧料。  43. The silica film thickness of the metal oxide particles in the silica-coated metal oxide sol and the surface-hydrophobized silica-coated metal oxide sol is 0.1 to 25 nm, according to claim 41 or 42. Cosmetics. シリカ被覆金属酸化物ゾル及び表面疎水化シリカ被覆金属酸化物ゾル中の金属酸化物粒子の平均一次粒径が1〜100nmであることを特徴とする請求項41〜43のいずれかに記載の化粧料。  44. The makeup according to claim 41, wherein the average primary particle size of the metal oxide particles in the silica-coated metal oxide sol and the surface-hydrophobized silica-coated metal oxide sol is 1 to 100 nm. Fee. シリカ被覆金属酸化物ゾル及び表面疎水化シリカ被覆金属酸化物ゾル中の金属酸化物粒子のテトラリン自動酸化法により測定した光触媒活性度が60Pa/min.以下であることを特徴とする請求項41〜44のいずれかに記載の化粧料。  The photocatalytic activity of the metal oxide particles in the silica-coated metal oxide sol and the surface-hydrophobized silica-coated metal oxide sol measured by a tetralin auto-oxidation method is 60 Pa / min. The cosmetic according to any one of claims 41 to 44, which is as follows. 金属酸化物が酸化チタン、酸化亜鉛、酸化セリウム、酸化ジルコニウム及び酸化鉄からなる群から選択された1種又は2種以上の金属酸化物であることを特徴とする請求項41〜45のいずれかに記載の化粧料。  The metal oxide is one or two or more metal oxides selected from the group consisting of titanium oxide, zinc oxide, cerium oxide, zirconium oxide, and iron oxide. Cosmetics described in 1. 抗酸化剤を含有することを特徴とする請求項41〜46のいずれかに記載の化粧料。  The cosmetic according to any one of claims 41 to 46, comprising an antioxidant. 有機系紫外線吸収剤を含有することを特徴とする請求項41〜47のいずれかに記載の化粧料。  48. The cosmetic according to any one of claims 41 to 47, comprising an organic ultraviolet absorber.
JP2000593672A 1999-01-11 2000-01-11 Cosmetics, surface-hydrophobized silica-coated metal oxide particles, silica-coated metal oxide sol, and production methods thereof Expired - Lifetime JP4740458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000593672A JP4740458B2 (en) 1999-01-11 2000-01-11 Cosmetics, surface-hydrophobized silica-coated metal oxide particles, silica-coated metal oxide sol, and production methods thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP461399 1999-01-11
JP1999004613 1999-01-11
US11755199P 1999-01-28 1999-01-28
US60/117,551 1999-01-28
JP31231899 1999-11-02
JP1999312318 1999-11-02
PCT/JP2000/000088 WO2000042112A1 (en) 1999-01-11 2000-01-11 Cosmetic preparation, surface-hydrophobized silica-coated metal oxide particles, sol of silica-coated metal oxide, and processes for producing these
JP2000593672A JP4740458B2 (en) 1999-01-11 2000-01-11 Cosmetics, surface-hydrophobized silica-coated metal oxide particles, silica-coated metal oxide sol, and production methods thereof

Publications (1)

Publication Number Publication Date
JP4740458B2 true JP4740458B2 (en) 2011-08-03

Family

ID=26338425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000593672A Expired - Lifetime JP4740458B2 (en) 1999-01-11 2000-01-11 Cosmetics, surface-hydrophobized silica-coated metal oxide particles, silica-coated metal oxide sol, and production methods thereof

Country Status (5)

Country Link
JP (1) JP4740458B2 (en)
KR (1) KR100517673B1 (en)
AT (1) ATE492260T1 (en)
AU (1) AU750973B2 (en)
DE (1) DE60045414D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104479415A (en) * 2014-12-26 2015-04-01 天津滨浦生产力促进有限公司 Calcium carbonate surface modifier
JP2022506462A (en) * 2018-10-31 2022-01-17 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Active ingredient composition as an effect promoter for UV filters

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100704465B1 (en) * 2000-05-20 2007-04-09 (주)아모레퍼시픽 A cosmetic loose powder composition containing moisture
KR100481374B1 (en) * 2002-06-21 2005-04-07 학교법인 서강대학교 Surface Modification Of Titanium Dioxide For Sunscreen
KR100479742B1 (en) * 2002-11-05 2005-03-31 주식회사 엘지생활건강 Gel typed lip make up composition containing inorganic pigment with optically color variable properties
FR2926473B1 (en) * 2008-01-22 2012-07-27 Commissariat Energie Atomique COATED AND FUNCTIONALIZED PARTICLES, POLYMER CONTAINING THEM, PROCESS FOR PREPARING THEM AND USES THEREOF
KR101138235B1 (en) * 2009-10-30 2012-04-26 주식회사 선진화학 Preparation mathod of silica surface-treated titanium oxide powder
WO2014061689A1 (en) * 2012-10-17 2014-04-24 堺化学工業株式会社 Surface-treated spherical calcium carbonate particles for cosmetic and method for manufacturing same
CN114621681B (en) * 2016-06-02 2023-07-18 M技术株式会社 Ultraviolet and/or near infrared ray blocking agent composition for transparent material
KR102196305B1 (en) * 2019-08-13 2020-12-29 이스트힐(주) Optical complex for cosmetics, process for preparing the same, and cosmetic composition for improving skin color

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226805A (en) * 1984-04-25 1985-11-12 Nippon Chem Ind Co Ltd:The Cosmetic
JPS6344510A (en) * 1986-08-11 1988-02-25 Kobayashi Kooc:Kk Makeup cosmetic
JPH03115211A (en) * 1990-08-22 1991-05-16 Kao Corp Cosmetic
JPH0416518A (en) * 1990-05-07 1992-01-21 Mitsubishi Heavy Ind Ltd Method for modifying surface of inorganic material
JPH06192593A (en) * 1992-10-24 1994-07-12 Tioxide Group Services Ltd Method of coating inorganic particle
JPH07133105A (en) * 1993-11-04 1995-05-23 Catalysts & Chem Ind Co Ltd Multiple oxide sol, its production and base material
JPH07315832A (en) * 1994-05-20 1995-12-05 Catalysts & Chem Ind Co Ltd Silica-modified alumina sol and its production
JPH09315939A (en) * 1996-05-28 1997-12-09 Kanebo Ltd Cosmetic
JPH10158015A (en) * 1996-10-02 1998-06-16 Ishihara Sangyo Kaisha Ltd Production of surface-treated titanium dioxide sol
WO1998047476A1 (en) * 1997-04-18 1998-10-29 Showa Denko K.K. Cosmetic preparation, silica-coated metal oxide powder, and process for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226805A (en) * 1984-04-25 1985-11-12 Nippon Chem Ind Co Ltd:The Cosmetic
JPS6344510A (en) * 1986-08-11 1988-02-25 Kobayashi Kooc:Kk Makeup cosmetic
JPH0416518A (en) * 1990-05-07 1992-01-21 Mitsubishi Heavy Ind Ltd Method for modifying surface of inorganic material
JPH03115211A (en) * 1990-08-22 1991-05-16 Kao Corp Cosmetic
JPH06192593A (en) * 1992-10-24 1994-07-12 Tioxide Group Services Ltd Method of coating inorganic particle
JPH07133105A (en) * 1993-11-04 1995-05-23 Catalysts & Chem Ind Co Ltd Multiple oxide sol, its production and base material
JPH07315832A (en) * 1994-05-20 1995-12-05 Catalysts & Chem Ind Co Ltd Silica-modified alumina sol and its production
JPH09315939A (en) * 1996-05-28 1997-12-09 Kanebo Ltd Cosmetic
JPH10158015A (en) * 1996-10-02 1998-06-16 Ishihara Sangyo Kaisha Ltd Production of surface-treated titanium dioxide sol
WO1998047476A1 (en) * 1997-04-18 1998-10-29 Showa Denko K.K. Cosmetic preparation, silica-coated metal oxide powder, and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104479415A (en) * 2014-12-26 2015-04-01 天津滨浦生产力促进有限公司 Calcium carbonate surface modifier
JP2022506462A (en) * 2018-10-31 2022-01-17 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Active ingredient composition as an effect promoter for UV filters

Also Published As

Publication number Publication date
KR100517673B1 (en) 2005-09-28
KR20010101455A (en) 2001-11-14
ATE492260T1 (en) 2011-01-15
AU750973B2 (en) 2002-08-01
AU1893000A (en) 2000-08-01
DE60045414D1 (en) 2011-02-03

Similar Documents

Publication Publication Date Title
US6534044B1 (en) Cosmetic preparation, surface-hydrophobized silica-coated metal oxide particles, sol of silica-coated metal oxide, and processes for producing these
JP3570730B2 (en) Cosmetic, silica-coated metal oxide powder and method for producing the same
EP1317245B8 (en) Sunscreen cosmetic composition
US7347986B2 (en) Silica-coated mixed crystal oxide particle, production process thereof and cosmetic material using the same
US6235270B1 (en) Cosmetics, silica-coated metal oxide powder and production method therefor
JP4849586B2 (en) Cosmetics
US6197282B1 (en) Fine ultraviolet screening particles, process for preparing the same, and cosmetic preparation
JP4105971B2 (en) Porous titanium oxide powder and method for producing the same
AU2001286189A1 (en) Sunscreen cosmetic composition
JP4740458B2 (en) Cosmetics, surface-hydrophobized silica-coated metal oxide particles, silica-coated metal oxide sol, and production methods thereof
JP2004115541A (en) Cosmetic, silica coated metallic oxide powder and method for producing the powder
JP3848697B2 (en) Ultraviolet shielding composite fine particles, production method thereof and cosmetics
JP2002154915A (en) Cosmetic
JP5082179B2 (en) Silica-coated mixed crystal oxide particles, process for producing the same, and cosmetics using the same
JP4160477B2 (en) Hydrophobic composite powder and cosmetics containing the same
ES2358246T3 (en) COSMETIC PREPARATION, METALLIC OXIDE PARTICLES COATED WITH SILICON WITH HYDROPHOBIZED SURFACE, METALLIC OXIDE SUN COATED WITH HYDROPHOBIZED SURFACE SILICA AND PROCEDURES FOR PREPARATION.
JP3640566B2 (en) Titanium oxide coated powder and cosmetics
JP2012193119A (en) Spherical powder and cosmetic including the same
JP2001151640A (en) Cosmetic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Ref document number: 4740458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

EXPY Cancellation because of completion of term