JP4739575B2 - Sample preparation equipment for metal component analysis - Google Patents

Sample preparation equipment for metal component analysis Download PDF

Info

Publication number
JP4739575B2
JP4739575B2 JP2001134889A JP2001134889A JP4739575B2 JP 4739575 B2 JP4739575 B2 JP 4739575B2 JP 2001134889 A JP2001134889 A JP 2001134889A JP 2001134889 A JP2001134889 A JP 2001134889A JP 4739575 B2 JP4739575 B2 JP 4739575B2
Authority
JP
Japan
Prior art keywords
sample
arc
processing
processing chamber
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001134889A
Other languages
Japanese (ja)
Other versions
JP2002328125A (en
Inventor
正嗣 永島
康治 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ESU-TECH CO.,LTD.
Original Assignee
ESU-TECH CO.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ESU-TECH CO.,LTD. filed Critical ESU-TECH CO.,LTD.
Priority to JP2001134889A priority Critical patent/JP4739575B2/en
Publication of JP2002328125A publication Critical patent/JP2002328125A/en
Application granted granted Critical
Publication of JP4739575B2 publication Critical patent/JP4739575B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、製鋼時等に得られる金属中成分分析用のサンプル(試料)を、真空状態の中でアークプラズマによる表面処理を行うことにより、ガス分析装置等での金属中成分分析を可能にさせる金属中成分分析用試料の調整装置に関する。
【0002】
【従来の技術】
一般に、製鋼時等において溶鋼中より採取したサンプルは、各種分析方法の金属中成分分析用装置に合わせた大きさと形状できれいに表面処理を施した試料に加工(調整)され、該試料の金属中成分をガス分析装置等で分析した後、この分析結果に基づいて製鋼工程内で脱酸素処理等の必要な処置を行うことにより、所定の品質の製品を製造するようにしている。
従来、上記のような試料の調整を行うにあたり、製鋼炉から取り出されたままの試料は表面に黒皮(炭素等の酸化物)や各種付着物等(以下スケール類と言う)を有しているので、このスケール類をヤスリ掛けや電解研磨等の除去手段を以て除去すると共に、表面清掃を施す等の表面処理を行った後、ガス分析等の金属中成分分析装置にかけて分析作業が行われる。
【0003】
【発明が解決しようとする課題】
然し、上記従来のような試料の調整手段は、異物の混入(コンタミ)を防止するうえで表面処理作業に熟練を要し、1回の試料の分析に略3分程度の時間を要すると共に、1日当たりのサンプル数は多いもので50回程度にも及ぶものであるところ、分析作業に多大な時間と煩雑な労力を伴うこと、及び金属中成分の正確な分析結果を得る迄の間に、製鋼炉を長時間にわたってしばしば待機状態にしなければならないので、ランニングコストが過大になる等の欠点がある。
【0004】
これに対し、一般に金属をアークプラズマによって表面処理すると、金属表面のスケール類がアークプラズマ処理(以下アーク処理と言う)されて数秒程度で除去されることが既に知られているが、このアーク処理手段は真空中をアルゴンガス等でガス置換した雰囲気中で表面処理を行うので、このようなガス置換アーク処理方式を金属中成分分析用試料の調整にそのまま用いると、アルゴンガス等特別なガス体に要する調整コストの増大や、ガス置換工程に要する作業能率の低下を伴う等の課題がある。
【0005】
【課題を解決するための手段】
上記従来の問題点を解消するために本発明による金属中成分分析用試料の調整装置は、第1に、真空状態に維持可能に形成した処理室2a内に、金属中成分分析用の試料Wを上下方向に向き合う陽極部50と陰極部51との間の電極間に形成される表面処理空間Hの陰極部51上に載置してアーク処理するアーク処理部5と、試料Wのアーク処理部5への供給と取り出しを行う試料供給回収部6aと、該試料供給回収部6aから供給された試料Wをアーク処理部5で位置決めするハンドリング部7aとを設置した金属中成分分析用試料の調整装置において、上記該表面処理空間H内にアーク処理時に陰極部51上の試料Wを収容して周囲を空隙を有して囲繞するアーク処理室80を形成する耐熱性及び絶縁性を有するセラミック材よりなる処理ガイド8を設け、該処理ガイド8の上面と陰極部51の下面との間にはアーク処理室80を処理室2aに開放する開放空間83を形成し、試料Wをアーク処理室80内でアーク処理するように構成したことを特徴としている。
【0006】
第2に、陰極部51の高さを調節するアクチュエータ56を設け、処理ガイド8を陽極部50側に取付杆81を介して取付けたことを特徴としている。
【0007】
【発明の実施の形態】
本発明の一実施形態を図面に基づいて説明する。図1,図2において符号1は本発明に係わる表面処理方法(調整方法)によって金属中成分分析用等の金属中成分分析用の試料Wを表面処理する調整装置2を供えた試料調整機であり、図示例の試料調整機1は、キャスター付の移動可能な機体フレーム10上に、製鋼時に取り出したサンプルを適正な形状と大きさの試料Wに加工する試料成形機1aと、成形された試料Wを調整装置2に送給するロボットハンドを有する供給機1bと、供給された試料Wを真空中でアークを発生させてデスケーリング等の表面処理を行う調整装置2等をコンパクトで使用し易く配設した構成にしている。
【0008】
また機体フレーム10の下部には調整装置2に形成する中空な処理室2a内を、所定の気圧(略10Pa程度)の真空状態にする真空ポンプ1cを設置し、その側方には試料調整機1の各種の運転操作を司るコントロールボックス1dを設置している。
そして、表面処理が完了された処理済の試料Wは、試料供給取出部3を介して処理室2a外に取り出し、該試料供給取出部3から外気に曝すことなく、ガス分析装置等の金属中成分分析装置に自動的に送給する移送手段としての移送部1eに継送することにより、処理された試料Wが再び酸化や汚損されることを防止し、次工程で行われる金属中成分分析を精度よく簡単に行うことができるようにしている。
【0009】
上記試料調整機1に設置される本発明に係わる調整装置2は図3,図4で示すように、処理ケース20で形成された処理室2a内に、既述の試料供給取出部3と、真空中でのアーク処理によって試料Wの表面処理を行う処理部5と、該処理部5に試料供給取出部3から試料Wを継送して供給すると共に、処理済の試料Wを回収するホルダ6を有する試料供給回収部6aと、処理部5に供給設置された試料Wを位置決めすると共に、反転させ且つホルダ6内に回収供給するチヤック7を有するハンドリング部7a等を設置している。
【0010】
また図示例の処理ケース20は、上下左右に筒状の開口部を有するように正面視で略十字型の中空状の処理室2aに形成していると共に、各開口部を絶縁部材21を介した蓋部材22によって気密状に閉鎖した状態で、後壁側に排気管23を設けて前記真空ポンプ1cと連通せしめ、処理室2a内を後述する構成によって可及的速やかに所定の真空状態にすることができるようにしている。
【0011】
以下各部の詳細な構成について説明する。先ず図3,図6,図7を参照し試料供給取出部3及び試料供給回収部6aについて説明する。
試料供給取出部3は、供給機1bのロボットハンドに設けたホルダ6から排出供給される試料Wを、漏斗状の受部30aで受けて待機姿勢にある試料供給回収部6aのホルダ6内に供給するパイプ状の供給筒30と、該ホルダ6で回収された試料Wを漏斗状の受部31で受けて、下方の移送部1eに落下状態で継送せしめる取出筒32とから構成している。
【0012】
そして、試料供給取出部3はホルダ6の待機姿勢位置で供給筒30と取出筒32を略鉛直線上に配置させることにより、試料供給及び試料取出し作業を簡潔で廉価な構成を以て的確且つ速やかに行うことができるようにしている。
また供給筒30及び取出筒32の適所には、試料Wの通過時に自動的に開動すると共に非通過時には閉動する開閉弁33を複数介挿し、試料Wの供給取出工程において処理室2a内の真空状態を効率よく維持させるようにしている。
【0013】
上記試料供給回収部6aは、ホルダ6を先端部に開閉可能に設けた支持杆60を、蓋部22の外側に設けた進退作動アクチュエータ61によって、図3で示す実線の待機姿勢から点線の供給姿勢に、略水平方向に進退移動可能にしていると共に、後述する構成によりホルダ6を開閉アクチュエータ62の作動によって、待機姿勢及び供給姿勢において開閉可能に構成することにより、ホルダ6内に適正姿勢で保持した試料Wを速やかに排出し、取出筒32及び処理部5に選択的に供給することができるようにしている。
【0014】
図7を参照しホルダ6について説明すると、このホルダ6は、支持杆60の端部に前記開閉アクチュエータ62に連携して開閉作動するように設けた左右の作動杆65に、左右合わせ型のブロック形状でプラスチック材等からなるホルダ片63,63をそれぞれ設け、開閉アクチュエータ62の作動によって同図(B)で示す保持姿勢から、同図(C)で示す排出姿勢に切換作動するように構成している。
またホルダ片63,63は保持姿勢において試料Wを収容するホルダ穴66を、底面部を下向き円錐状に形成する円錐面67と、これの上方に連なり試料Wの外形よりもやや径大な縦穴を形成する縦壁68と、該縦壁68から上方外側に向けて拡開する漏斗部を形成する受面69とで形成している。
【0015】
以上のように形成してなるホルダ6は、上方から投入される試料Wを受面69でホルダ穴66内に円滑に受け入れると共に、底面部において試料Wの外周コーナー部を、円錐面をなす円錐面67で接当規制し、同図(B)で示すように試料Wを処理部5に供給する供給姿勢と同様な水平姿勢で中心部に誘導保持するから、ホルダ6を処理部5の陰極部51の中心直上の処理位置に位置させた状態において、ホルダ片63,63を拡開させたとき、試料Wはその水平姿勢を乱して陰極部51の平坦面上で大きく跳ね返えらせたりすることなく良好に供給することができ、この分供給スピードを速くすることができると共に、後述するチヤック7による位置決め作業を簡単にする等の利点がある。
【0016】
次に図3,図8を参照し処理部5について説明する。図示例の処理部5は、棒杆状の陽極部50と陰極部51を、処理ケース20の上下の開口部を閉鎖する蓋部22,22にそれぞれ鉛直方向に各別に垂設支持した状態で、前記コントロールボックス1d側のアークプラズマ発生電源と連結せしめている。
そして陽極部50は、電源と連結している電導部材からなる管体52の下端部を閉鎖しており、その内部には図示しない給水装置に連結している給水管53を通水間隔を有して内装し、該通水間隔を介して陽極部50を冷却した水は、管体52の上部に設けた排水口55から排出するようにし、試料Wの連続処理時における陽極部50の過熱を防止するようにしている。
尚、陰極部51も上記のものと同様に図示しない冷却装置を設置している。
【0017】
一方陰極部51は、処理ケース20の下方の蓋部22に取付支持された進退作動アクチュエータ56の杆体57の上部に高さ調節可能に設け、図3の実線で示す待機姿勢から、後述する試料Wをチヤック7で把持するチヤック位置と、処理ガイド8の下面に近接させた処理位置の作業姿勢となるように昇降可能に設けている。尚、杆体57は電源に連結している。
即ち、陰極部51は、銅製或いは鉄製の円柱部材を杆体57の上部に穿設した取付孔58内にスライド可能に嵌挿すると共に、取付ネジ59によって高さ調節可能に固定するようにしているので、陽極部50の下面と陰極部51の上面との間隔を簡単な構成を以て微量調節することができ、電極の特性及び電力の大きさに適応した真空中でのアークプラズマを効率よく発生させて、陰極上でのクリーニング効果を利用して、試料Wのアーク処理を良好に行うことができる表面処理空間Hを、正確に設定することができる等の特徴がある。
【0018】
また上記表面処理空間H内には、試料Wを囲んでアーク処理を良好に行わせるアーク処理室80を形成する処理ガイド8を設けている。
即ち、処理ガイド8は、アーク発生時に充分な耐熱性及び絶縁性等を有するセラミック材等の耐アーク部材とし、試料Wよりもやや厚い板状でその中心部に、電極の径より小径で試料Wの直径の数倍程度の孔を穿設することにより、陰極部51上に試料Wの周囲を囲繞するアーク処理室80を形成している。
また処理ガイド8は、アーク処理室80の外側に複数の取付杆81を立設し、該取付杆81を前記管体52の側面に嵌挿した状態で、適宜な取付具82によって、陽極部50の下面と処理ガイド8の下面の距離が、前記表面処理空間Hと略同程度になるように取付位置調節可能に支持している。
【0019】
この構成により図8(A),(B)で示すように、試料Wを陰極部51上でアーク処理室80の中心に位置決めした状態のアーク処理時において、アーク処理室80は試料Wの外周を空隙を有して囲繞していると共に、その上方を表面処理空間H内で陽極部50の下面と処理ガイド8の上面との間に、開放空間部83を形成して処理室2a側に連通開放せしめている。
従って、電源をONして両極間に適正アーク処理時間として設定された略数秒(本実施形態では試料Wの過熱防止を考慮して略1秒程度に設定している。)程度の間アークプラズマ放電が行われるとき、アーク処理室80は陰極部51上でアークプラズマの発生範囲を絞って定めることができるので、試料Wの表面処理に好適なアークプラズマを安定よく発生させることができ、これにより試料Wの酸化皮膜や付着物等を良好に蒸発除去することができる等の特徴がある。
【0020】
このとき試料Wは、アークプラズマの大きなエネルギー並びにスケールの付着状況に伴うアーク偏負荷等によって、陰極部51上で反射的に動くことがあるが、試料Wはアーク処理室80内で陰極部51上の移動を自由にしながら、処理ガイド8によって表面処理空間H内に保持されて適正なアーク処理を受ける。
またアーク処理室80内で連続的に生ずるアーク発生熱及び蒸発するガスや除去されたスケール類の微細粒子等(以下これらを発散物と言う)は、表面処理空間H内に封じ込めることなく、前記開放空間部83から処理室2aの広い空間部側に自由に排出されるので、上記発散物を試料Wに再付着させることなく、所定時間内における連続的なアーク処理を十分に行うことができ、スケール類をきれいに除去した金属光沢のある金属成分分析に好適な処理済試料Wを、能率よく簡単に得ることができる等の特徴がある。
【0021】
次に図3,図4,図5を参照しハンドリング部7aについて説明する。ハンドリング部7aは、チヤック7を先端部に開閉可能に設けた支持杆70を、蓋部22の外側に設けた回転作動アクチュエータ71によって反転回動可能に支持すると共に、支持杆70の外側端部に設けた開閉アクチュエータ72の作動によって、チヤック7の左右の爪を図4の実線で示すチヤック7が開動した待機姿勢から、閉動した点線の位置決め挟持姿勢に開閉可能に設けている。
これにより、チヤック7はホルダ6によって陰極部51上に載置された試料Wを、図10で示すように両側から一時的に把持することにより適正処理位置に正確に位置決めすることができ、位置決めした後はチヤック7はその場で開動させることで処理部5から速やかに退避するので、試料Wを陰極部51上で精度よく表面処理することができる。
尚、図8の点線で示すように、開放空間部83を気密室8aで覆うと共に、該気密室8aをクリーナー付の真空ポンプ1cに連結すると、発散物の吸引除去をさらに確実に行うことができる。
【0022】
そして、試料Wが図11で示すように表側(片面)の表面処理(以下一次表面処理と言う)を完了した後、陰極部51が昇降作動アクチュエータ56の作動によってチヤック位置に下降すると、チヤック7は再び閉動して試料Wを挟持すると共に、挟持姿勢のまま回転作動アクチュエータ72の作動によって半回転するので、試料Wは裏側(他面)を陽極部50側にした状態で、チヤック7の開動に伴い再び陰極部51上に位置決め載置され、前記一次表面処理時と同様な二次表面処理を適切に行うようにしている。
【0023】
またチヤック7が反転回動するときは、陰極部51はチヤック位置から待機位置に下降するので反転回動を妨げることなく、チヤック7は二次表面処理が完了された試料Wを陰極部51上で再び挟持し、この状態でチヤック位置に下降した陰極部51上にホルダ6が進動する。
次いでチヤック7は、ホルダ6が図12で示す試料Wの供給姿勢と同様な回収姿勢になった状態において開動し、ホルダ6のホルダ穴66内に試料Wを投入する。
そしてこの後、ホルダ6は試料供給取出部3側に退動復帰し、ホルダ片63,63を開動し収容した試料Wを取出筒62に向けて投入する。
【0024】
次に以上のように構成した調整装置2による試料Wの表面処理方法及び表面処理の態様等について説明する。
先ず、この実施形態で処理する試料Wは、溶鋼中に採取した材料を金属中成分分析装置としてのガス分析装置に適合する、厚さが略3ミリ程度で直径が略6ミリ程度の打ち抜きピースとしており、試料成形機1aで所定の形状と大きさに形成した試料Wは、供給機1bのロボットハンドのホルダ6によって、調整装置2に設置される試料供給取出部3の受部30a内に投入されると、試料Wは供給筒30から、図3,図7(B)で示す待機姿勢にあるホルダ6のホルダ穴66内に自動的に収容される。
【0025】
このとき、真空ポンプ1cは運転を開始されており、処理室2a内は所定の真空状態に設定され、次いでホルダ6が図3の点線及び図9で示すように横方向に進動し、待機姿勢にある陰極部51上に試料Wを排出して載置する。
そして、ホルダ6が元の待機姿勢に退動するに伴い、チヤック7が試料Wを陰極部51上で位置決めし(図10)、この後開動退避し陰極部51上を開放状態にする。
次いで、図11で示すように陰極部51が処理位置に上昇停止し、陽極部50との間に表面処理空間Hを形成維持すると共に、処理部5の電源がONされて陽極部50と陰極部51及び該陰極部51に接触している試料W間にアークプラズマを発生させる。
【0026】
これにより試料Wは表側の一次表面処理が行われ、次いで陰極部51がチヤック位置に下降し、この位置でチヤック7による試料Wの反転回動がなされて、陰極部51上における試料Wの他面の位置決めが行われ、この後陰極部51は再び処理位置に上昇し、一次表面処理と同様に裏側の二次表面処理が行われる。
従って、上記のように構成し作動される調整装置2は、処理室2a内に簡潔で廉価な構成を以て設置された一つの処理部5によって、試料Wの全面の表面処理を能率よく的確に完了することができる等の特徴がある。
【0027】
このような試料調整作業において調整装置2は、真空状態に維持可能に形成した処理室2a内に、陽極部50と陰極部51との間に表面処理空間Hを設けるアーク処理部5を設置し、該表面処理空間H内に金属中成分分析用の試料Wを収容可能なアーク処理室80を形成する処理ガイド8を設け、試料Wをアーク処理室80内でアーク処理をするように構成しているので、図8(A),(B)で示すように、試料Wを陰極部51上でアーク処理室80の中心に位置決めした状態のアーク処理時にアークプラズマ放電が行われるとき、アーク処理室80内で試料Wの表面処理に好適なアークプラズマを安定よく発生させることができ、酸化皮膜や付着物等を良好に除去することができる。
【0028】
またこのときのアークプラズマのエネルギーによって、試料Wが陰極部51上で動いても、試料Wはアーク処理室80内で表面処理空間H内に保持されながら、陰極部51上を自由に移動するので、適正なアーク処理を均一的に受ける。
そして、アーク処理室80内で連続的に生ずる前記発散物は、表面処理空間H内に封じ込められることなく、処理ガイド8と陽極部50間に形成した開放空間部83から、処理室2aの広い空間部側に自由に排出され、これらは都度自動的に作動する真空ポンプ1cによっても吸引されるので、上記発散物を試料Wに再付着させることなく連続的なアーク処理を良好に行うことができ、スケール類を除去した金属光沢のある好適な処理済試料Wを、ガス置換を要することなく能率よく簡単に提供することができ、以後のガス分析装置による金属成分分析を精度よく行うことができる等の特徴がある。
【0029】
このようにして試料Wの表面処理工程を完了したのちは、チヤック7が陰極部51上の試料Wを再び挟持した状態で、陰極部51は待機姿勢に下降し、次いでホルダ6が進動し、図12で示す試料Wの供給姿勢と同様な回収姿勢になったとき、チヤック7は開動してホルダ6内に試料Wを投入する。
次いで、試料Wを収容したホルダ6は待機姿勢に退動復帰した状態で開動し、試料Wを試料供給取出部3の取出筒62内に投入して、その下端から真空雰囲気又はアルゴンガス等を封入した不活性ガス雰囲気の気密状態で、ガス分析装置等に向けて移送する移送部1eに継送するから、試料Wを処理室2aから取り出した後も、コンタミや再酸化等を確実に防止しながら、一連の試料調整作業並びに成分分析作業を能率よく簡単に完了することができる。
【0030】
このような試料調整作業を行うことができる調整装置2は、真空状態に維持可能に形成した処理室2a内で、試料Wの全面を電極間で自動的にアーク処理するための各機器を処理ケース20に設置構成するに、該処理ケース20を正面視で略十字型の中空状の処理室2aに形成し、その上下左右に筒状の開口部を設け、各開口部を気密状に閉鎖する蓋部22を利用して、上記各機器を処理室2a内に設置する取付部材に兼用したことによって、装置をコンパクトに纏めながら簡潔で廉価な構成にすると共に、アーク処理を損なうことなく可及的に小容量な処理室2aを形成して真空ポンプ1cによる真空状態の形成を速やかにすると共に、装置のランニングコストを低減することができるようにしている。
【0031】
即ち、処理ケース20の上下の蓋部22には、処理室2a内に処理部5を構成する陽極部50と陰極部51を表面処理空間Hを調節可能に設けると共に、該処理部5にホルダ6を近接位置させるように、試料供給取出部3の供給筒30と取出筒62を取付支持し、また左方の蓋部22にはホルダ6を既述のように作動させる試料供給回収部6aを設置し、右方の蓋部22にはチヤック7を開閉及び回動させるハンドリング部7aを気密構造を以て安定よく設置している。
【0032】
また各蓋部22は開閉可能であること、及び処理ケース20には図示しないメンテナンス作業用の開閉口を設置していることにより、各機器の調整修理並びに処理室2a内の清掃等のメンテナンス作業を簡単に行うことができる等の特徴がある。
従って、製鋼中途に頻繁に行われる試料調整作業を能率よく簡単に行うことを可能にし、精度のよい分析結果を速やかに得ることができ、これに基づく品質の向上を図ることができると共に、製鋼時のランニングコストを大幅に低減することができる等の利点がある。
【0033】
【発明の効果】
本発明は以上のような金属中成分分析用試料の調整装置にしたことにより次のような効果を奏する。
真空状態に維持可能に形成した処理室内に、金属中成分分析用の試料を電極間でアーク処理するアーク処理部と、試料のアーク処理部への供給と取り出しを行う試料供給回収部と、該試料供給回収部から供給された試料をアーク処理部で位置決めするハンドリング部とを設置構成したことにより、真空中の処理室内で試料の表面処理を確実に行うと共に、試料の供給及び取り出しをコンタミや酸化等を防止しながら能率よく簡単に行うことができる。
【0034】
真空状態に維持可能に形成した処理室内に、陽極部と陰極部との間に表面処理空間を設けるアーク処理部を設置すると共に、該表面処理空間内に金属中成分分析用の試料を収容可能なアーク処理室を形成する処理ガイドを設け、試料をアーク処理室内でアーク処理するように構成したことにより、両極間の表面処理空間内でアークプラズマの発生範囲を絞って安定よく発生させることができ、試料の酸化皮膜や付着物等を蒸発除去することができる。
また試料がアークプラズマによって動いても処理ガイドによってアーク処理室内に保持されるから、アーク処理を適正に受けることができる。
【図面の簡単な説明】
【図1】 本発明の調整装置を備えた試料調整機を示す正面図。
【図2】 図1の平面図。
【図3】 図1の調整装置2の構成を示す正断面図。
【図4】 図3の要部の構成を示す平断面図。
【図5】 チヤックとホルダとの関係を示す平面図。
【図6】 調整装置に設置した試料供給取出部と試料供給回収部の構成を示す正面図。
【図7】 (A)はホルダの平面図。(B)は(A)のホルダ片を閉動した状態を示す断面図。(C)は(A)のホルダ片を開動した状態を示す断面図。
【図8】 (A)は処理部の構成を示す断面図。(B)は(A)の処理ガイドの平面図。
【図9】 処理部における試料の供給状態を示す作用図。
【図10】 処理部における試料の位置決め状態を示す作用図。
【図11】 処理部における試料の表面処理状態を示す作用図。
【図12】 処理部における試料の回収状態を示す作用図。
【符号の説明】
1 試料調整機
1c 真空ポンプ
2 調整装置
2a 処理室
3 試料供給取出部
5 アーク処理部(アークプラズマ処理部)
6 ホルダ
6a 試料供給回収部
7 チヤック
7a ハンドリング部
8 処理ガイド
20 処理ケース
22 蓋部
23 排気管
50 陽極部
51 陰極部
80 アーク処理室
H 表面処理空間
W 試料
[0001]
BACKGROUND OF THE INVENTION
The present invention enables analysis of metal components in a gas analyzer or the like by subjecting a sample (sample) for analysis of metal components obtained during steel making to a surface treatment with arc plasma in a vacuum state. The present invention relates to an apparatus for preparing a sample for analyzing an in-metal component.
[0002]
[Prior art]
In general, samples taken from molten steel during steelmaking etc. are processed (adjusted) into a sample that has been subjected to a clean surface treatment with a size and shape suitable for the metal component analysis equipment of various analytical methods. After analyzing the components with a gas analyzer or the like, necessary products such as deoxygenation treatment are performed in the steel making process based on the analysis results, thereby producing a product of a predetermined quality.
Conventionally, in the preparation of the sample as described above, the sample taken out from the steelmaking furnace has a black skin (oxide such as carbon) and various deposits (hereinafter referred to as scales) on the surface. Therefore, the scales are removed by using a removing means such as a filer or electrolytic polishing, and after performing a surface treatment such as surface cleaning, an analysis operation is performed on a metal component analysis apparatus such as gas analysis.
[0003]
[Problems to be solved by the invention]
However, the sample adjusting means as described above requires skill in the surface treatment work in order to prevent contamination of foreign matters (contamination), and it takes about 3 minutes to analyze one sample. The number of samples per day is as large as about 50 times, and it takes a lot of time and troublesome labor for analysis work and until accurate analysis results of metal components are obtained, Since the steelmaking furnace must be kept in a standby state for a long time, there are drawbacks such as excessive running costs.
[0004]
On the other hand, it is already known that when metal is surface-treated with arc plasma, scales on the metal surface are arc plasma treated (hereinafter referred to as arc treatment) and removed in about several seconds. Since the means performs surface treatment in an atmosphere in which the vacuum is replaced with argon gas or the like, a special gas body such as argon gas can be obtained by using such a gas replacement arc treatment method as it is for the preparation of the metal component analysis sample. There are problems such as an increase in adjustment cost required for the process and a reduction in work efficiency required for the gas replacement process.
[0005]
[Means for Solving the Problems]
In order to solve the above-described conventional problems, the apparatus for adjusting a metal component analysis sample according to the present invention firstly has a sample W for analyzing a metal component in a processing chamber 2a formed so as to be maintained in a vacuum state. On the cathode part 51 of the surface treatment space H formed between the electrodes between the anode part 50 and the cathode part 51 facing in the vertical direction, and arc treatment of the sample W a sample supply and recovery unit 6a which performs supply and removal of the parts 5, sample supply and recovery unit 6a handling portion 7a and for installing the metallic in component analysis the positioning arc processing unit 5 the supplied sample W from In the sample adjusting apparatus , the surface treatment space H accommodates the sample W on the cathode portion 51 during arc treatment and forms an arc treatment chamber 80 surrounding the space with a gap. Process made of ceramic material A guide 8 is provided, and an open space 83 for opening the arc processing chamber 80 to the processing chamber 2 a is formed between the upper surface of the processing guide 8 and the lower surface of the cathode portion 51, and the sample W is arced in the arc processing chamber 80. It is characterized by being configured to process .
[0006]
Second, an actuator 56 for adjusting the height of the cathode portion 51 is provided, and the processing guide 8 is attached to the anode portion 50 side via an attachment rod 81 .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. 1 and 2, reference numeral 1 denotes a sample adjusting machine provided with an adjusting device 2 for surface-treating a sample W for analyzing an in-metal component such as for analyzing an in-metal component by a surface treatment method (adjusting method) according to the present invention. The sample adjusting machine 1 shown in the drawing is molded on a movable body frame 10 with casters, and a sample molding machine 1a for processing a sample taken out during steel making into a sample W having an appropriate shape and size. The supply machine 1b having a robot hand for feeding the sample W to the adjusting device 2 and the adjusting device 2 for performing surface treatment such as descaling by generating an arc in the vacuum of the supplied sample W are used in a compact manner. The configuration is easy to arrange.
[0008]
In addition, a vacuum pump 1c is installed at the lower part of the body frame 10 to bring the inside of the hollow processing chamber 2a formed in the adjustment device 2 into a vacuum state at a predetermined atmospheric pressure (about 10 Pa), and a sample adjustment machine is provided on the side. A control box 1d that manages various driving operations is installed.
Then, the processed sample W that has been subjected to the surface treatment is taken out of the processing chamber 2a through the sample supply / extraction unit 3 and exposed to the outside air from the sample supply / extraction unit 3 in a metal such as a gas analyzer. By transferring to the transfer unit 1e as a transfer means for automatically feeding to the component analyzer, the processed sample W is prevented from being oxidized or fouled again, and component analysis in the metal performed in the next step Can be performed accurately and easily.
[0009]
As shown in FIGS. 3 and 4, the adjusting device 2 according to the present invention installed in the sample adjusting machine 1 includes a sample supply / extraction unit 3 described above in a processing chamber 2 a formed by a processing case 20, and A processing unit 5 that performs surface treatment of the sample W by arc processing in a vacuum, and a holder that transfers the sample W to the processing unit 5 from the sample supply / extraction unit 3 and supplies the processed sample W to the processing unit 5 A sample supply / recovery unit 6 a having 6, a sample W supplied to the processing unit 5 and a handling unit 7 a having a chuck 7 that is reversed and recovered and supplied to the holder 6 are installed.
[0010]
Further, the processing case 20 in the illustrated example is formed in a substantially cross-shaped hollow processing chamber 2a in front view so as to have cylindrical openings on the top, bottom, left and right, and each opening is interposed with an insulating member 21. With the lid member 22 closed in an airtight manner, an exhaust pipe 23 is provided on the rear wall side so as to communicate with the vacuum pump 1c, and the inside of the processing chamber 2a is brought into a predetermined vacuum state as quickly as possible by the configuration described later. To be able to.
[0011]
The detailed configuration of each part will be described below. First, the sample supply / extraction unit 3 and the sample supply / recovery unit 6a will be described with reference to FIGS.
The sample supply / extraction unit 3 receives the sample W discharged and supplied from the holder 6 provided in the robot hand of the supply machine 1b by the funnel-shaped receiving unit 30a and puts it in the holder 6 of the sample supply / recovery unit 6a in the standby posture. A pipe-shaped supply cylinder 30 to be supplied, and a take-out cylinder 32 that receives the sample W collected by the holder 6 by a funnel-shaped receiving part 31 and relays the sample W in a fall state to the lower transfer part 1e. Yes.
[0012]
The sample supply / extraction unit 3 arranges the supply cylinder 30 and the extraction cylinder 32 on a substantially vertical line at the stand-by posture position of the holder 6 so that the sample supply and sample extraction operations can be performed accurately and quickly with a simple and inexpensive configuration. To be able to.
Further, a plurality of on-off valves 33 that are automatically opened when the sample W passes and closes when the sample W does not pass are inserted at appropriate positions of the supply cylinder 30 and the extraction cylinder 32, and the inside of the processing chamber 2 a in the sample W supply and extraction process. The vacuum state is efficiently maintained.
[0013]
The sample supply / recovery section 6a supplies a dotted line from the solid standby position shown in FIG. In the posture, the holder 6 can be moved back and forth in a substantially horizontal direction, and the holder 6 can be opened and closed in the standby posture and the supply posture by the operation of the opening and closing actuator 62 by the configuration described later, so that the holder 6 can be moved in an appropriate posture. The held sample W is quickly discharged and can be selectively supplied to the extraction cylinder 32 and the processing unit 5.
[0014]
The holder 6 will be described with reference to FIG. 7. The holder 6 has left and right operation type blocks 65 provided on the end of the support rod 60 so as to open and close in cooperation with the opening and closing actuator 62. Holder pieces 63, 63 made of a plastic material or the like are provided, and the opening / closing actuator 62 is operated to switch from the holding posture shown in FIG. 5B to the discharging posture shown in FIG. ing.
Further, the holder pieces 63, 63 have a holder hole 66 for accommodating the sample W in the holding posture, a conical surface 67 whose bottom surface is formed in a downward conical shape, and a vertical hole that extends above this and has a diameter slightly larger than the outer shape of the sample W. And a receiving surface 69 that forms a funnel portion that expands upward and outward from the vertical wall 68.
[0015]
The holder 6 formed as described above smoothly receives the sample W introduced from above into the holder hole 66 by the receiving surface 69, and at the bottom surface portion, the outer peripheral corner portion of the sample W is a conical cone. Since the contact is restricted by the surface 67 and the sample W is guided and held at the center in the same horizontal posture as the supply posture for supplying the sample W to the processing unit 5 as shown in FIG. When the holder pieces 63, 63 are expanded in a state where the holder pieces 63, 63 are expanded in a state where they are positioned at the processing position immediately above the center of the part 51, the horizontal posture of the sample W is disturbed and greatly rebounds on the flat surface of the cathode part 51. Thus, there is an advantage that the supply speed can be increased by this amount, and the positioning work by the chuck 7 described later can be simplified.
[0016]
Next, the processing unit 5 will be described with reference to FIGS. The processing unit 5 in the illustrated example is in a state in which the rod-shaped anode unit 50 and the cathode unit 51 are vertically supported separately on the lid units 22 and 22 that close the upper and lower openings of the processing case 20. Are connected to an arc plasma generating power source on the control box 1d side.
The anode portion 50 closes the lower end portion of a pipe body 52 made of a conductive member connected to a power source, and a water supply pipe 53 connected to a water supply device (not shown) is passed through the inside thereof. Then, the water that has been cooled and that has cooled the anode part 50 through the water flow interval is discharged from a drain port 55 provided in the upper part of the tube body 52, and the anode part 50 is overheated during the continuous processing of the sample W. Try to prevent.
The cathode unit 51 is also provided with a cooling device (not shown), similar to the above.
[0017]
On the other hand, the cathode portion 51 is provided on the upper portion of the housing 57 of the forward / backward movement actuator 56 that is attached and supported by the lid portion 22 below the processing case 20 so that the height of the cathode portion 51 can be adjusted. It is provided so that it can be moved up and down so as to be in a work posture between a chuck position where W is held by the chuck 7 and a processing position close to the lower surface of the processing guide 8. The housing 57 is connected to a power source.
That is, the cathode portion 51 is slidably fitted into a mounting hole 58 formed in the upper portion of the casing 57 with a copper or iron column member, and is fixed by an attachment screw 59 so that the height can be adjusted. Therefore, the distance between the lower surface of the anode portion 50 and the upper surface of the cathode portion 51 can be adjusted in a small amount with a simple configuration, and arc plasma in a vacuum adapted to the characteristics of the electrode and the power can be generated efficiently. Thus, the surface treatment space H in which the arc treatment of the sample W can be satisfactorily performed using the cleaning effect on the cathode can be accurately set.
[0018]
Further, in the surface treatment space H, a treatment guide 8 is provided that forms an arc treatment chamber 80 that surrounds the sample W and favorably performs the arc treatment.
That is, the processing guide 8 is an arc-resistant member such as a ceramic material having sufficient heat resistance and insulation when an arc is generated. The processing guide 8 is a plate slightly thicker than the sample W and has a diameter smaller than the diameter of the electrode at the center. An arc processing chamber 80 that surrounds the periphery of the sample W is formed on the cathode portion 51 by drilling a hole that is several times the diameter of W.
Further, the processing guide 8 has a plurality of mounting rods 81 standing outside the arc processing chamber 80, and the anode portion is fitted by an appropriate mounting tool 82 in a state where the mounting rods 81 are fitted on the side surfaces of the tubular body 52. The lower surface 50 and the lower surface of the processing guide 8 are supported so that the mounting position can be adjusted so that the distance between the lower surface of the processing guide 8 and the surface processing space H is substantially the same.
[0019]
With this configuration, as shown in FIGS. 8A and 8B, the arc processing chamber 80 has an outer periphery of the sample W during the arc processing in which the sample W is positioned on the cathode portion 51 at the center of the arc processing chamber 80. And an open space 83 is formed between the lower surface of the anode portion 50 and the upper surface of the processing guide 8 in the surface processing space H above the surface of the processing chamber 2a. Open communication.
Therefore, the arc plasma is set for approximately several seconds (in this embodiment, approximately one second is set in consideration of the prevention of overheating of the sample W) set as an appropriate arc processing time between the two electrodes after the power is turned on. When the discharge is performed, the arc processing chamber 80 can determine the generation range of the arc plasma on the cathode portion 51, so that the arc plasma suitable for the surface treatment of the sample W can be stably generated. Therefore, it is possible to evaporate and remove the oxide film and deposits of the sample W.
[0020]
At this time, the sample W may move reflectively on the cathode part 51 due to the large energy of the arc plasma and the arc uneven load accompanying the adhesion state of the scale. While being free to move up, it is held in the surface treatment space H by the treatment guide 8 and subjected to an appropriate arc treatment.
Further, the heat generated by the arc generated continuously in the arc processing chamber 80, the gas to evaporate, the fine particles of the removed scales and the like (hereinafter referred to as divergent materials) are not contained in the surface treatment space H, Since it is freely discharged from the open space 83 to the wide space side of the processing chamber 2a, continuous arc treatment within a predetermined time can be sufficiently performed without causing the divergent matter to reattach to the sample W. Further, there is a feature that a processed sample W suitable for metal component analysis with a metallic luster from which scales have been removed can be obtained easily and efficiently.
[0021]
Next, the handling unit 7a will be described with reference to FIGS. The handling portion 7a supports a support rod 70 provided with the chuck 7 at the tip portion so as to be openable and closable by a rotation actuating actuator 71 provided on the outer side of the lid portion 22 so as to be able to rotate and rotate, and an outer end portion of the support rod 70 4, the left and right claws of the chuck 7 are provided so that they can be opened and closed from the standby position in which the chuck 7 shown by the solid line in FIG.
As a result, the chuck 7 can accurately position the sample W placed on the cathode part 51 by the holder 6 at an appropriate processing position by temporarily grasping the sample W from both sides as shown in FIG. After that, the chuck 7 is quickly moved away from the processing unit 5 by being opened on the spot, so that the sample W can be surface-treated on the cathode unit 51 with high accuracy.
In addition, as shown by the dotted line in FIG. 8, when the open space 83 is covered with the airtight chamber 8a and the airtight chamber 8a is connected to a vacuum pump 1c with a cleaner, the diverging matter can be sucked and removed more reliably. it can.
[0022]
Then, after the sample W completes the front side (one side) surface treatment (hereinafter referred to as the primary surface treatment) as shown in FIG. Is closed again to pinch the sample W and half-rotate by the operation of the rotary actuator 72 in the holding posture, so that the sample W is placed on the chuck 7 with the back side (other side) facing the anode part 50 side. With the opening, it is positioned and mounted again on the cathode part 51, and the secondary surface treatment similar to that at the time of the primary surface treatment is appropriately performed.
[0023]
Further, when the chuck 7 rotates in the reverse direction, the cathode portion 51 descends from the chuck position to the standby position, so that the chuck 7 does not interfere with the reverse rotation, and the sample 7 is placed on the cathode portion 51 with the secondary surface treatment completed. In this state, the holder 6 moves forward on the cathode portion 51 that has been lowered to the chuck position.
Next, the chuck 7 is opened in a state where the holder 6 is in a recovery posture similar to the supply posture of the sample W shown in FIG. 12, and the sample W is put into the holder hole 66 of the holder 6.
Thereafter, the holder 6 is retracted and returned to the sample supply / extraction section 3 side, the holder pieces 63 and 63 are opened, and the sample W accommodated therein is introduced toward the extraction cylinder 62.
[0024]
Next, the surface treatment method and the surface treatment mode of the sample W by the adjusting device 2 configured as described above will be described.
First, a sample W to be processed in this embodiment is a punched piece having a thickness of about 3 mm and a diameter of about 6 mm, which is suitable for a gas analyzer as a metal component analysis apparatus using a material collected in molten steel. The sample W formed in a predetermined shape and size by the sample molding machine 1a is placed in the receiving part 30a of the sample supply / extraction part 3 installed in the adjusting device 2 by the holder 6 of the robot hand of the supply machine 1b. When loaded, the sample W is automatically accommodated from the supply tube 30 into the holder hole 66 of the holder 6 in the standby position shown in FIGS. 3 and 7B.
[0025]
At this time, the operation of the vacuum pump 1c is started, the inside of the processing chamber 2a is set to a predetermined vacuum state, and then the holder 6 moves sideways as shown by the dotted line in FIG. 3 and FIG. The sample W is discharged and placed on the cathode 51 in the posture.
Then, as the holder 6 retreats to the original standby position, the chuck 7 positions the sample W on the cathode part 51 (FIG. 10), and then opens and retracts to open the cathode part 51.
Next, as shown in FIG. 11, the cathode portion 51 stops rising at the processing position, and the surface treatment space H is formed and maintained between the anode portion 50 and the power of the processing portion 5 is turned on so that the anode portion 50 and the cathode are turned on. Arc plasma is generated between the portion 51 and the sample W in contact with the cathode portion 51.
[0026]
As a result, the primary surface of the sample W is subjected to the primary surface treatment, and then the cathode portion 51 is lowered to the chuck position. At this position, the sample W is reversed and rotated by the chuck 7, and the sample W on the cathode portion 51 is rotated. After the surface is positioned, the cathode portion 51 is again raised to the processing position, and the secondary surface treatment on the back side is performed in the same manner as the primary surface treatment.
Therefore, the adjusting device 2 configured and operated as described above efficiently and accurately completes the surface treatment of the entire surface of the sample W by the single processing unit 5 installed in the processing chamber 2a with a simple and inexpensive configuration. There is a feature that can be.
[0027]
In such a sample adjustment operation, the adjustment device 2 is provided with an arc processing section 5 that provides a surface treatment space H between the anode section 50 and the cathode section 51 in a processing chamber 2a formed so as to be maintained in a vacuum state. The surface treatment space H is provided with a treatment guide 8 for forming an arc treatment chamber 80 capable of accommodating a sample W for analyzing metal components, and the sample W is arc-treated in the arc treatment chamber 80. Therefore, as shown in FIGS. 8A and 8B, when arc plasma discharge is performed during arc processing in which the sample W is positioned at the center of the arc processing chamber 80 on the cathode portion 51, arc processing is performed. Arc plasma suitable for the surface treatment of the sample W can be stably generated in the chamber 80, and oxide films, deposits, and the like can be satisfactorily removed.
[0028]
Moreover, even if the sample W moves on the cathode part 51 by the energy of the arc plasma at this time, the sample W moves freely on the cathode part 51 while being held in the surface treatment space H in the arc treatment chamber 80. Therefore, proper arc treatment is uniformly received.
The divergent matter continuously generated in the arc processing chamber 80 is not confined in the surface processing space H, and is widened from the open space 83 formed between the processing guide 8 and the anode portion 50 in the processing chamber 2a. Since these are freely discharged to the space side and are also sucked by the vacuum pump 1c that automatically operates each time, continuous arc treatment can be performed satisfactorily without reattaching the divergent matter to the sample W. It is possible to provide a suitable processed sample W with a metallic luster from which scales have been removed efficiently and easily without the need for gas replacement, and perform subsequent metal component analysis with a gas analyzer accurately. There are features such as being able to.
[0029]
After completing the surface treatment process of the sample W in this way, the cathode portion 51 is lowered to the standby posture with the chuck 7 holding the sample W on the cathode portion 51 again, and then the holder 6 is moved forward. When the recovery posture similar to the supply posture of the sample W shown in FIG. 12 is reached, the chuck 7 is opened and the sample W is put into the holder 6.
Next, the holder 6 containing the sample W is opened in a state of being retracted and returned to the standby posture, and the sample W is put into the take-out cylinder 62 of the sample supply and take-out section 3, and a vacuum atmosphere or argon gas or the like is supplied from the lower end thereof. In the airtight state of the enclosed inert gas atmosphere, it is transferred to the transfer unit 1e that transfers to the gas analyzer and the like, so that contamination and reoxidation are reliably prevented even after the sample W is removed from the processing chamber 2a. However, a series of sample preparation operations and component analysis operations can be completed efficiently and easily.
[0030]
The adjusting device 2 capable of performing such a sample adjusting operation processes each device for automatically arcing the entire surface of the sample W between the electrodes in a processing chamber 2a formed so as to be maintained in a vacuum state. To install and configure the case 20, the processing case 20 is formed in a substantially cross-shaped hollow processing chamber 2 a when viewed from the front, and cylindrical openings are provided on the top, bottom, left, and right, and each opening is closed in an airtight manner. By using the lid portion 22 to be used as a mounting member that is installed in the processing chamber 2a, the apparatus can be compactly and inexpensively configured without compromising the arc processing. The processing chamber 2a having an extremely small capacity is formed so that the vacuum state can be quickly formed by the vacuum pump 1c, and the running cost of the apparatus can be reduced.
[0031]
That is, the upper and lower lid portions 22 of the processing case 20 are provided with the anode portion 50 and the cathode portion 51 constituting the processing portion 5 in the processing chamber 2 a so that the surface treatment space H can be adjusted, and the processing portion 5 has a holder. The supply cylinder 30 and the extraction cylinder 62 of the sample supply / extraction unit 3 are attached and supported so that the sample supply / extraction unit 3 is in the close position, and the sample supply / recovery unit 6a that operates the holder 6 on the left lid 22 as described above. In the right lid portion 22, a handling portion 7a for opening / closing and rotating the chuck 7 is stably installed with an airtight structure.
[0032]
Each lid 22 can be opened and closed, and the processing case 20 is provided with an opening and closing port for maintenance work (not shown), so that maintenance work such as adjustment repair of each device and cleaning of the processing chamber 2a is performed. There is a feature that can be easily performed.
Therefore, it is possible to efficiently and easily perform the sample adjustment work frequently performed in the middle of steelmaking, to obtain an accurate analysis result quickly, and to improve the quality based on this, and to make steelmaking There is an advantage that the running cost can be greatly reduced.
[0033]
【The invention's effect】
The present invention produces the following effects by using the above-described apparatus for preparing a sample for analyzing metal components.
In a processing chamber formed so as to be maintained in a vacuum state, an arc processing unit that arc-processes a sample for analyzing metal components between electrodes, a sample supply and recovery unit that supplies and removes the sample to and from the arc processing unit, By installing the handling unit that positions the sample supplied from the sample supply / recovery unit with the arc processing unit, the surface treatment of the sample is performed reliably in the processing chamber in a vacuum, and the supply and removal of the sample are not contaminated. It can be performed efficiently and easily while preventing oxidation and the like.
[0034]
In the processing chamber that can be maintained in a vacuum state, an arc processing unit is provided to provide a surface treatment space between the anode and cathode, and a sample for analyzing metal components can be accommodated in the surface treatment space. By providing a processing guide that forms an arc processing chamber and arcing the sample in the arc processing chamber, the generation range of the arc plasma can be narrowed and stably generated in the surface treatment space between the two electrodes. It is possible to evaporate and remove the oxide film and deposits of the sample.
Further, even if the sample is moved by the arc plasma, it is held in the arc processing chamber by the processing guide, so that the arc processing can be appropriately received.
[Brief description of the drawings]
FIG. 1 is a front view showing a sample adjusting machine provided with an adjusting device of the present invention.
FIG. 2 is a plan view of FIG.
FIG. 3 is a front sectional view showing a configuration of the adjusting device 2 of FIG. 1;
4 is a plan sectional view showing a configuration of a main part of FIG. 3;
FIG. 5 is a plan view showing a relationship between a chuck and a holder.
FIG. 6 is a front view showing the configuration of a sample supply / extraction unit and a sample supply / recovery unit installed in the adjustment device.
FIG. 7A is a plan view of a holder. (B) is sectional drawing which shows the state which closed the holder piece of (A). (C) is sectional drawing which shows the state which opened the holder piece of (A).
FIG. 8A is a cross-sectional view illustrating a configuration of a processing unit. (B) is a top view of the processing guide of (A).
FIG. 9 is an operation diagram showing a sample supply state in a processing unit.
FIG. 10 is an operation diagram showing a positioning state of a sample in a processing unit.
FIG. 11 is an operation diagram showing a surface treatment state of a sample in a processing unit.
FIG. 12 is an operation diagram showing a sample recovery state in a processing unit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sample adjustment machine 1c Vacuum pump 2 Adjustment apparatus 2a Processing chamber 3 Sample supply extraction part 5 Arc processing part (arc plasma processing part)
6 Holder 6a Sample supply / recovery unit 7 Chuck 7a Handling unit 8 Processing guide 20 Processing case 22 Lid 23 Exhaust pipe 50 Anode unit 51 Cathode unit 80 Arc processing chamber H Surface treatment space W Sample

Claims (2)

真空状態に維持可能に形成した処理室(2a)内に、金属中成分分析用の試料(W)を上下方向に向き合う陽極部(50)と陰極部(51)との間の電極間に形成される表面処理空間(H)の陰極部(51)上に載置してアーク処理するアーク処理部(5)と、試料(W)のアーク処理部(5)への供給と取り出しを行う試料供給回収部(6a)と、該試料供給回収部(6a)から供給された試料(W)をアーク処理部(5)で位置決めするハンドリング部(7a)とを設置した金属中成分分析用試料の調整装置において、上記該表面処理空間(H)内にアーク処理時に陰極部(51)上の試料(W)を収容して周囲を空隙を有して囲繞するアーク処理室(80)を形成する耐熱性及び絶縁性を有するセラミック材よりなる処理ガイド(8)を設け、該処理ガイド(8)の上面と陰極部(51)の下面との間にはアーク処理室(80)を処理室(2a)に開放する開放空間(83)を形成し、試料(W)をアーク処理室(80)内でアーク処理するように構成した金属中成分分析用試料の調整装置。In the processing chamber (2a) formed so as to be maintained in a vacuum state, a sample (W) for metal component analysis is formed between the electrodes between the anode part (50) and the cathode part (51) facing vertically. An arc processing unit (5) that is placed on the cathode part (51) of the surface treatment space (H) to be arc-processed, and a sample that supplies and removes the sample (W) to and from the arc processing unit (5) supply and recovery unit and (6a), sample supply and recovery unit arc section of the sample (W) supplied from (6a) handling unit for positioning in (5) (7a) and metallic in a component analysis which placed the In the sample adjustment apparatus , an arc processing chamber (80) in which the sample (W) on the cathode part (51) is accommodated in the surface treatment space (H) and surrounded by a gap is provided in the surface treatment space (H). Processing guide (8) made of ceramic material having heat resistance and insulation to be formed An open space (83) for opening the arc processing chamber (80) to the processing chamber (2a) is formed between the upper surface of the processing guide (8) and the lower surface of the cathode part (51), and the sample (W ) Is an arc processing chamber (80) in the arc processing chamber (80) . 陰極部(51)の高さを調節するアクチュエータ(56)を設け、処理ガイド(8)を陽極部(50)側に取付杆(81)を介して取付けた請求項1に記載の金属中成分分析用試料の調整装置。The metal component according to claim 1, wherein an actuator (56) for adjusting the height of the cathode part (51) is provided, and the processing guide (8) is attached to the anode part (50) side via an attachment rod (81). Sample preparation device for analysis.
JP2001134889A 2001-05-02 2001-05-02 Sample preparation equipment for metal component analysis Expired - Lifetime JP4739575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001134889A JP4739575B2 (en) 2001-05-02 2001-05-02 Sample preparation equipment for metal component analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001134889A JP4739575B2 (en) 2001-05-02 2001-05-02 Sample preparation equipment for metal component analysis

Publications (2)

Publication Number Publication Date
JP2002328125A JP2002328125A (en) 2002-11-15
JP4739575B2 true JP4739575B2 (en) 2011-08-03

Family

ID=18982474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001134889A Expired - Lifetime JP4739575B2 (en) 2001-05-02 2001-05-02 Sample preparation equipment for metal component analysis

Country Status (1)

Country Link
JP (1) JP4739575B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4888516B2 (en) 2009-04-30 2012-02-29 住友金属工業株式会社 Method for analyzing oxygen in steel
JP2011056578A (en) * 2009-09-14 2011-03-24 Sumitomo Metal Ind Ltd Method for continuously casting molten steel
JP5733377B2 (en) * 2013-11-29 2015-06-10 新日鐵住金株式会社 Continuous casting method for molten steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612541A (en) * 1979-07-11 1981-02-06 Chiyou Lsi Gijutsu Kenkyu Kumiai Removing device of contaminant
JP2700280B2 (en) * 1991-03-28 1998-01-19 理化学研究所 Ion beam generator, film forming apparatus and film forming method
JP3663774B2 (en) * 1996-08-30 2005-06-22 Jfeスチール株式会社 Method and apparatus for analyzing trace oxygen in metal
JP3467189B2 (en) * 1998-07-30 2003-11-17 シャープ株式会社 Elemental analysis method

Also Published As

Publication number Publication date
JP2002328125A (en) 2002-11-15

Similar Documents

Publication Publication Date Title
JP5042470B2 (en) Apparatus and method for plating semiconductor wafer
US4388722A (en) Automatic cleaning device for use in an extracting furnace of an apparatus for analyzing gases in metals
US6511917B2 (en) Plasma treatment apparatus and method
JP6832858B2 (en) Non-thermal soft plasma cleaning
JP4739575B2 (en) Sample preparation equipment for metal component analysis
US6667250B2 (en) Film substrate treatment apparatus, film substrate treatment method, and film substrate transport method
JP3536585B2 (en) Workpiece plasma processing apparatus and plasma processing method
US20100072077A1 (en) Electrolytic deburring apparatus and method
US6726739B2 (en) Method of treating metal analysis sample and device thereof
JP2989570B2 (en) Equipment for cathodic cleaning of wires
CN113211391B (en) Automobile accessory electronic component is with processing fixed station
KR100653316B1 (en) Vacuum Arc Melting Apparatus
JP5241273B2 (en) Charged particle device and method of use
JP3937073B2 (en) Pretreatment method for metal analysis sample, apparatus for the same, and element analysis apparatus in metal
CN216150536U (en) Silicon electrode cleaning device
CN216900304U (en) EBSD sample preparation device for easily oxidized metal
US20190308240A1 (en) Apparatus and method for feeding material
JPH0722150B2 (en) Plasma processing device
JP3769962B2 (en) Chip sample collection device
KR20020000676A (en) Auto-sampler with function cutting probe
RU1806223C (en) Device for electrochemical pickling of metal ingots
EP1160561A3 (en) Methods and apparatuses for pretreatment of metal samples
SU829536A1 (en) Pneumatic gripper
JPH09223696A (en) Method and device for forming bump
JP2000210818A (en) Wire electric discharge machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R150 Certificate of patent or registration of utility model

Ref document number: 4739575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term