JP3937073B2 - Pretreatment method for metal analysis sample, apparatus for the same, and element analysis apparatus in metal - Google Patents

Pretreatment method for metal analysis sample, apparatus for the same, and element analysis apparatus in metal Download PDF

Info

Publication number
JP3937073B2
JP3937073B2 JP2001315324A JP2001315324A JP3937073B2 JP 3937073 B2 JP3937073 B2 JP 3937073B2 JP 2001315324 A JP2001315324 A JP 2001315324A JP 2001315324 A JP2001315324 A JP 2001315324A JP 3937073 B2 JP3937073 B2 JP 3937073B2
Authority
JP
Japan
Prior art keywords
sample
metal
metal analysis
analysis sample
pretreatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001315324A
Other languages
Japanese (ja)
Other versions
JP2002189023A (en
Inventor
久雄 安原
眞 志村
兼次 安彦
秀夫 岩井
隆 新井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Ulvac-Phi Inc
Original Assignee
JFE Steel Corp
Ulvac-Phi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Ulvac-Phi Inc filed Critical JFE Steel Corp
Priority to JP2001315324A priority Critical patent/JP3937073B2/en
Publication of JP2002189023A publication Critical patent/JP2002189023A/en
Application granted granted Critical
Publication of JP3937073B2 publication Critical patent/JP3937073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は金属分析試料の予備処理方法および装置に係り、特に金属中微量元素を分析するのに先立ち予め試料表面に付着・吸着している汚染物質を除去するための金属分析試料の予備処理方法および装置さらにはそれを利用した金属中の元素分析装置に関する。
【0002】
【従来の技術】
鋼中の微量元素、例えば酸素、炭素、窒素、硫黄は鋼の延性や加工性などの材料特性に影響を与えるため、正確な定量分析が必要である。このことは、鋼のみならず、金属材料の高純度化に伴い金属材料全般について広く指摘されているところであり、そのため精度が高く、かつ操作性のよい分析装置や分析方法が求められている。
【0003】
このような要求に応えるために、分析手段の精度向上とともに、金属分析試料の調整段階で試料表面に生じた汚染を除去することが必要になっている。例えば、鋼中酸素分析では、試料表面に吸着有機物が存在したり、炭酸ガス、大気等の雰囲気による表面酸化があると分析値に有意な誤差の生ずる原因になる。そのため、金属中微量酸素分析法として広く用いられる不活性ガス融解−赤外線吸収法においては、金属分析試料表面を分析に先立って電解研磨法や化学研磨法によってよって処理し清浄化しておくことが行われている。
【0004】
しかし、このような方法によって表面汚染を除去しても、洗浄や研磨に伴う洗浄化学種や研磨化学種が残存したり、あるいは分析装置で測定するまでの間に試料表面が大気により再汚染され、あるいは再酸化される等の事態が生じ得る。これらの原因により、ppmレベルの精度で行われる定量分析に有意な誤差が生じることになる(鉄と鋼 vol.85, p.138(1999)等)。特に、清浄な金属の表面は、雰囲気の吸着や酸化等が瞬時に起こりやすく、分析精度の向上のためには再汚染部の除去が重要である。
【0005】
そのため、低圧ガス中での放電により金属分析試料表面をスパッタリング処理することによりその表面汚染を除去し、そのまま分析装置に移送して炭素分析を行う方法が開示されている(特開平8-211043号公報)。また、分析試料の表面汚染を除去するための予備処理室内において分析試料を点支持で固定し、不活性ガス雰囲気下でスパッタリング処理して表面汚染部を除去した後、予備処理室と反応室とを隔てているシャッターを開け、金属分析試料を反応室に落下させることより、処理後の分析対象を大気に暴露させることなく、分析する方法が開示されている(特開平11-316220号公報)。
【0006】
【発明が解決しようとする課題】
しかし、上記特開平8-211043号公報に開示された手段では、スパッタリング処理をする際に金属分析試料が試料台に載せられているために、その裏面(試料の試料台との接触面)を清浄にするには金属分析試料を回転あるいは反転させる必要があり、操作が煩雑なばかりではなく、金属分析試料が試料台から脱落し、分析不能となるおそれがある。
【0007】
特開平11-316220号公報に開示された手段は、分析試料のほぼ全面について同時に汚染除去処理することができる。しかし、この方法は、金属分析試料を点支持するものであるため、分析試料のセットに困難を伴うという操作性に係る問題が残されている。
【0008】
本発明は、上記従来技術の有する問題を解決することを目的とし、金属中の微量成分の分析に当たり、試料表面部の汚染を除去する操作性のよい手段を提供し、さらにはこれらの手段を利用した金属中元素の分析装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、金属中成分の分析に先立ち不活性ガス雰囲気に維持された予備処理室内で金属分析試料の表面をスパッタリングにより清浄化する金属分析試料の予備処理方法において、前記金属分析試料を該金属分析試料に対する接触面積の割合が極めて小さい試料受けによって底面側から支持しながらスパッタリングを施すことによって上記課題を解決する。
【0010】
上記発明において、スパッタリングを行う不活性ガス雰囲気は100Pa以上、1000Pa以下に圧力調整されていることが望ましく、また試料受けの金属分析試料接触面積が該金属分析試料の表面積の10%以下であることが望ましい。
【0011】
また、本発明の金属分析試料の予備処理装置は、上部に開閉可能な試料装入口、下部に反応室に通ずる開閉可能な試料導入口を有するとともに、ガス導入口及び排出口を有する予備処理室、前記予備処理室の少なくとも一つの側壁を貫通し水平移動と軸回転が可能な支持棒によって支持され、金属分析試料に対する接触面積の割合が極めて小さい状態で試料を所定電位に維持する試料受け、および前記試料受けおよび試料と逆の極性を有し、前記予備処理室内への試料の装入と反応室への試料の導入を妨げない領域に配置された対極、とからなるものである。
【0012】
上記装置は、上記試料受けの支持棒を試料受けおよびそれに載置された金属分析試料とともに反応室に通ずる開閉自在の導入口直上に送り出す分析試料支持部移動機構を具備するものとするのが好ましく、また、上記試料受けの試料接触面積を該金属分析試料の表面積の10%以下とするのが好ましい。
【0013】
本発明の金属中元素の分析装置は、上記金属分析試料の予備処理装置を用いるものとする。
【0014】
【発明の実施の形態】
以下、本発明に係る実施例の図面を用いて本発明の実施形態を詳細に説明する。
【0015】
本発明は、例えば、特開平11-316220号公報に開示されているような金属中成分の分析に先立ち不活性ガス雰囲気に維持された予備処理室内で金属分析試料の表面をスパッタリングにより清浄化する金属分析試料の予備処理方法にの適用される。そして、本発明の最大の特徴は、金属分析試料の支持方法に改善を加えて金属分析試料をその底面側から支持されるようにしたこと、およびその支持部材を金属分析試料に対する接触面積が極力小さくなる構造の試料受けを採用した点にある。
【0016】
図1は、本発明に係る金属分析試料の予備処理装置の1例を示す模式的説明図である。ここに示すように、本発明でも、従来例である特開平11-316220号公報に開示されている例などと同様に、金属分析試料Sは予備処理室1内においてその表面汚染部がスパッタリング処理により除去され、その後、金属元素分析装置の反応室13内に導かれるようになっている。
【0017】
ここにおいて、予備処理室1は全体として匡体状をなしており、たとえばセラミックスによって製作された本体に不活性ガス導入口、排気口を備えている。また、この予備処理室1は上部に試料投入口12および下部に試料排出口9を備えている。この試料排出口9は、機密保持が可能なスライドゲート11を介して金属元素分析装置本体の反応室13に通ずる試料導入口10とつながっている。
【0018】
上記予備処理室1の内部には、試料受け3が配置されており、この試料受け3は、上記予備処理室1の側壁を貫通する支持棒4を介して分析試料支持部移動回転機構2につながっている。それにより、金属分析試料Sを試料受け3に載置した状態で前後(水平方向)に出し入れし、さらに軸回転することによって所定位置で反転して試料を試料受けから落下させることができる。試料受け3は、金属分析試料Sを一方の極性にする電極を兼ねており、そのため支持棒4は、高圧、例えば1KVを発生する電源(図示されていない)の一方の電極(図1においては陰極)に接続されている。
【0019】
金属分析試料Sを載置する試料受けが出入り可能な位置に金属試料Sおよびそれを載置する試料受け3と電気的に対向する対極7が設置される。この対極7は上記支持棒4と同様に高圧電源に接続されており、その極性を支持棒と逆(この場合陽極)にとっている。これにより、予備処理室1内を排気した後、不活性ガス、例えばアルゴンガスを所定圧力になるように導入して試料支持部と対極との間に電圧を加えれば、金属分析試料Sの表面はスパッタリングにより汚染が除去される。
【0020】
上記対極7の設置位置は、前記予備処理室1内への試料の装入と反応室13への試料の導入を妨げない領域に配置する。具体的には、対極7の設置位置は、図1に示すように装入口12と排出口9の周囲を取り囲む鉛直線内の領域を除く領域に、通常は、試料装入口の鉛直域から離間した位置に配置するのがよい。しかし、対極7が試料装入口12と排出口9の周囲を取り囲む鉛直線内の領域をはみ出したとしても、試料の装入と排出を阻害しない限り、本発明の実施に支障を生じない。
【0021】
なお、上記対極7は、図1に示す例では金属分析試料Sを載置した試料受けを挟んで上下に設置されているが、これに限定されない。試料の形状により左右あるいは斜めに向かい合わせて配置することもできる。そのほか、試料に対して非対称の位置に配置することも可能である。また、対極を筒状としすることも可能であり、これにより試料の周囲から均一かつ効率的にスッパタリングによる清浄を行うことができる。対極の形状は、このようにその目的を逸脱しない限り自由に取りうるものであって、たとえば、角筒状も用い得る。また、対極の数にも特に制限されない。
【0022】
本発明においては、金属分析試料Sは、例えば、図2に示されているように2本の棒状の試料受け3によって支持される。これにより、金属分析試料Sは試料支持部3上に載置された状態でありながら、その底面との接触面積が極めて小さい状態で支持されることになる。その結果、金属分析試料Sの上面および側面だけではなく、底面側も支持部3とのわずかな接触部を除いてスパッタリングすることになる。すなわち、金属分析試料Sの全面を同時に汚染除去処理することができる。また、試料保持は、単に支持部3上に載置するだけなので取り扱いが簡便である。
【0023】
このような機能は、試料支持部3を金属分析試料Sの底面側から支持すること、およびに、金属分析試料Sの底面側にスパッタリングのためのイオン(例えばアルゴンガスイオン)が対極7から金属分析試料Sの底面側へ高速で衝突するための隙間が十分確保されていることによって達成できる。そのためには、試料支持部3には、金属分析試料Sを底面側から試料に対する接触面積の割合が極めて小さい状態で支持するものであることが要求される。
【0024】
そのような要求を満たす試料受けの具体的な形状としては、図2に示した2本の棒状体があるが、例えば、図3に示すように金網状のものとしてもよい。そのほか、四角あるいは円形の枠体状など、金属分析試料Sとの接触面積が小さく対極7から見て隙間が大きく開いているものであればよい。なお、金属分析試料Sと試料支持部3との接触面積は、表面汚染部の除去率、ひいては分析誤差に影響するので、これが極力小さくなるよう設計するのがよい。一般には、試料表面積にに対する試料受けの接触面積の比が10%以下となるようにすれば十分である。なお、より好ましくは、金属分析試料の底面積の5%以下、さらに好ましくは3%以下とするのがよい。
【0025】
なお、これら試料受け3は、スパッタリングによる表面汚染除去の行われる間、金属分析試料Sを一定の極性に保つものであるから、電気伝導度が優れたものでなければならず、また、スパッタリング処理のとき発生する熱などによってガスなどの汚染物質を発生することのないものでなければならない。そのような意味で、例えば、18-8ステンレス鋼製とするのがよい。
【0026】
本発明の予備処理装置は、試料受け3を予備処理室1内で前進、後退および回転自在に構成するのがよい。図1に示す例では、試料受け3が支持棒4を介して移動回転機構2に接続されており、この移動回転機構2はモータ、シリンダなど公知の手段によって試料支持部3を予備処理室1内で前進、後退および回転自在にする。
【0027】
このようにすることにより、金属分析試料Sの表面汚染の除去(スパッタリング)を対極7で囲まれた比較的狭い空間で効率的に行うことができる。また、スパッタリングの終了後は、試料受け3を予備処理室1内で、予備処理室1の下方にある試料導入口10の直上まで前進させさらに回転させることにより金属分析試料Sを反応室13内に落とし込むことができる。
【0028】
上記のように構成された金属分析試料の予備処理装置を用いて金属分析試料を予備処理するには、まず、試料受け3を試料装入口12の直下まで移動させておいて金属分析試料Sをその上に落とし込む。次いで、装入口12とスライドゲート11を閉じて処理室1内を排気した後、不活性ガス、たとえばアルゴンガスを導き入れ、その圧を100〜1000Paに調整する。これにより、スパッタリングによる清浄が効率的かつ確実に行われるようになる。
【0029】
次いで試料受け3を、金属分析試料Sを載置した状態にて対極7の間に水平移動させる。この状態で、試料受け3と対極7に電圧を印加し、スパッタリングにより金属分析試料Sの表面を清浄化する。
【0030】
表面が清浄化金属分析試料は、元素分析装置内に落とし込まれる。具体的には、表面が清浄化金属分析試料を載置している試料受けを、移動回転機構2によって試料排出口9の上方まで水平移動させ、これをスライドゲート11を明けた状態で移動回転機構2によって反転させ、金属分析試料Sを試料導入口10を通じて元素分析装置内に落とし込むのである。
【0031】
このようにして、本発明によれば、金属分析試料のスパッタリングによる表面汚染を効率よく、操作性よく除去できる。なお、本発明は、分析対象となる金属の種類に関係なく適用できるものであり、また、分析される元素の種類あるいは分析方法にも関係なく適用できる。さらに、スパッタリングを行うための極性、種類にも制限されない。図1に示した例では分析試料側が陰極になっているがこれを陽極としてもよく、また、スパッタリングの種類をアークスパッタリングに変えてもよい。さらに、分析試料支持部、対極などおよびその周辺を適当な冷媒によって直接あるいは間接に冷却することもできる。
【0032】
【実施例】
金属分析試料として直径6mm、長さ5mmの鉄鋼試料を用い、不活性ガス中における融解−赤外吸収法で試料中の酸素を定量した。結果を表1に示す。なお、表1中の実施例は、図1に示した本発明の予備処理装置による予備処理を行った後に酸素分析を行った結果である。一方、比較例は、予備処理を行うことなく、直接、酸素分析を行った結果である。
【0033】
【表1】

Figure 0003937073
【0034】
XはA、Bの2試料について各5回づつ測定した酸素濃度の平均値であり、σはその標準偏差(ばらつき)を示す。このように本発明の実施例の場合、比較例に比べて酸素分析値は約1〜2ppm低い値を示し、分析精度も改善されている。分析に供した試料について表面解析を行ったところ、表面汚染相当分は約1〜2mmと推定され、本発明の適用によりちょうどその分の汚染が除去されたものと推定された。
【0035】
【発明の効果】
本発明によれば、上記のように分析試料表面の汚染をスパッタリングにより除去する一連の操作を従来に比べて簡易に行うことができる。すなわち、上記特開平8-211043号公報に開示された手段のように試料台に載せられた分析試料を回転あるいは反転させる必要もなく、また、特開平11-316220号公報に開示された手段のように、分析試料を点支持するために煩雑なセット作業を伴うということもない。そのため、分析試料の予備処理に要する時間が減少し、試料1個当たりの分析時間が著しく減少する。
【図面の簡単な説明】
【図1】 本発明に係る金属分析試料の予備処理装置を備えた金属分析装置の1例を示す模式的説明図である。
【図2】 本発明における試料支持部と試料載置状態の1例を示す斜視図である。
【図3】 本発明における試料支持部と試料載置状態の他の1例を示す斜視図である。
【符号の説明】
1:予備処理室
2:(試料受けの)移動回転機構
3:試料受け
4:支持棒
7:対極
9:試料排出口
10:試料導入口
11:スライドゲート
12:試料投入口
13:反応室
S:金属分析試料[0001]
BACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal analysis sample pretreatment method and apparatus, and more particularly to a metal analysis sample pretreatment method for removing contaminants adhering and adsorbing to a sample surface in advance of analyzing trace elements in the metal. The present invention also relates to an apparatus for analyzing elements in metals using the apparatus.
[0002]
[Prior art]
Trace elements in steel, such as oxygen, carbon, nitrogen, and sulfur, affect material properties such as ductility and workability of steel, so accurate quantitative analysis is necessary. This has been widely pointed out not only for steel but also for metal materials in general as the purity of metal materials is increased, and therefore, there is a need for an analysis apparatus and analysis method with high accuracy and good operability.
[0003]
In order to meet such requirements, it is necessary to improve the accuracy of the analysis means and to remove contamination generated on the sample surface in the adjustment stage of the metal analysis sample. For example, in oxygen analysis in steel, if there is an adsorbed organic substance on the sample surface, or if there is surface oxidation due to an atmosphere such as carbon dioxide or air, a significant error will be caused in the analysis value. Therefore, in the inert gas melting-infrared absorption method widely used as a method for analyzing trace oxygen in metals, the surface of a metal analysis sample is treated and cleaned by electrolytic polishing or chemical polishing prior to analysis. It has been broken.
[0004]
However, even if the surface contamination is removed by such a method, cleaning chemical species and polishing chemical species associated with cleaning and polishing remain, or the sample surface is recontaminated by the air before measurement with an analyzer. Or reoxidation may occur. Due to these causes, significant errors occur in the quantitative analysis performed with the accuracy of ppm level (iron and steel vol.85, p.138 (1999), etc.). In particular, a clean metal surface is susceptible to atmospheric adsorption and oxidation, and removal of the recontaminated part is important for improving analysis accuracy.
[0005]
For this reason, a method is disclosed in which the surface contamination is removed by sputtering the surface of a metal analysis sample by discharge in a low-pressure gas, and the carbon analysis is carried out by transferring it directly to an analyzer (Japanese Patent Laid-Open No. 8-211043). Publication). In addition, after fixing the analysis sample with point support in the pretreatment chamber for removing the surface contamination of the analysis sample and removing the surface contamination portion by sputtering under an inert gas atmosphere, the pretreatment chamber, the reaction chamber, A method is disclosed in which a shutter is separated and a metal analysis sample is dropped into a reaction chamber, whereby the analysis target after processing is not exposed to the atmosphere (Japanese Patent Laid-Open No. 11-316220). .
[0006]
[Problems to be solved by the invention]
However, in the means disclosed in the above Japanese Patent Laid-Open No. 8-211043, since the metal analysis sample is placed on the sample stage during the sputtering process, the back surface (contact surface of the sample with the sample stage) is In order to clean it, it is necessary to rotate or reverse the metal analysis sample, which is not only complicated, but also the metal analysis sample may fall off the sample stage, making analysis impossible.
[0007]
The means disclosed in Japanese Patent Application Laid-Open No. 11-316220 can simultaneously perform decontamination treatment on almost the entire surface of the analysis sample. However, since this method provides point support for a metal analysis sample, there remains a problem relating to operability, which involves difficulty in setting the analysis sample.
[0008]
The present invention aims to solve the above-mentioned problems of the prior art, and provides an easy-to-operate means for removing contamination on the surface of a sample when analyzing a trace component in a metal. It is an object of the present invention to provide an analysis apparatus for elements in metals that are used.
[0009]
[Means for Solving the Problems]
The present invention provides a metal analysis sample pretreatment method in which the surface of a metal analysis sample is cleaned by sputtering in a pretreatment chamber maintained in an inert gas atmosphere prior to analysis of the components in the metal. The above-mentioned problem is solved by performing sputtering while supporting from the bottom side by a sample receiver with a very small contact area ratio with respect to the analysis sample.
[0010]
In the above-mentioned invention, it is desirable that the inert gas atmosphere for performing sputtering is pressure adjusted to 100 Pa or more and 1000 Pa or less, and the metal analysis sample contact area of the sample receiver is 10% or less of the surface area of the metal analysis sample. Is desirable.
[0011]
The metal analysis sample pretreatment apparatus of the present invention has a sample loading inlet that can be opened and closed at the top, a sample introduction port that can be opened and closed that communicates with the reaction chamber at the bottom, and a pretreatment chamber that has a gas inlet and an outlet. A sample receiver that is supported by a support rod that penetrates at least one side wall of the pretreatment chamber and is capable of horizontal movement and axial rotation, and maintains the sample at a predetermined potential in a state where the ratio of the contact area to the metal analysis sample is extremely small; And a counter electrode having a polarity opposite to that of the sample receiver and the sample, and arranged in a region that does not hinder the introduction of the sample into the pretreatment chamber and the introduction of the sample into the reaction chamber.
[0012]
It is preferable that the apparatus includes an analysis sample support moving mechanism that sends the support rod of the sample receiver together with the sample receiver and the metal analysis sample mounted thereon directly above the openable and closable inlet. The sample contact area of the sample receiver is preferably 10% or less of the surface area of the metal analysis sample.
[0013]
The metal element analysis apparatus of the present invention uses the metal analysis sample pretreatment apparatus.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings of examples according to the present invention.
[0015]
In the present invention, for example, the surface of a metal analysis sample is cleaned by sputtering in a pretreatment chamber maintained in an inert gas atmosphere prior to analysis of components in the metal as disclosed in JP-A-11-316220. It is applied to a pretreatment method for metal analysis samples. The greatest feature of the present invention is that the method for supporting the metal analysis sample is improved so that the metal analysis sample is supported from the bottom surface side, and the contact area of the support member with the metal analysis sample is as much as possible. This is in that a sample receiver with a smaller structure is adopted.
[0016]
FIG. 1 is a schematic explanatory view showing an example of a pretreatment apparatus for a metal analysis sample according to the present invention. As shown here, in the present invention, similarly to the example disclosed in Japanese Patent Application Laid-Open No. 11-316220, which is a conventional example, the metal analysis sample S has a surface contaminated portion in the pretreatment chamber 1 whose sputtering is performed. And then guided into the reaction chamber 13 of the metal element analyzer.
[0017]
Here, the pretreatment chamber 1 has a body shape as a whole. For example, a main body made of ceramics is provided with an inert gas inlet and an exhaust port. The pretreatment chamber 1 has a sample inlet 12 at the upper part and a sample outlet 9 at the lower part. The sample discharge port 9 is connected to a sample introduction port 10 that communicates with the reaction chamber 13 of the metal element analyzer main body through a slide gate 11 capable of maintaining confidentiality.
[0018]
A sample receiver 3 is arranged inside the preliminary processing chamber 1, and this sample receiver 3 is connected to the analysis sample support part moving and rotating mechanism 2 via a support rod 4 penetrating the side wall of the preliminary processing chamber 1. linked. As a result, the metal analysis sample S can be put in and out (horizontal direction) in a state where the metal analysis sample S is placed on the sample receiver 3, and can be inverted at a predetermined position by rotating the shaft to be dropped from the sample receiver. The sample receiver 3 also serves as an electrode for setting the metal analysis sample S to one polarity. Therefore, the support bar 4 is one electrode (not shown) of a power source (not shown) that generates a high voltage, for example, 1 KV. Connected to the cathode).
[0019]
A metal sample S and a counter electrode 7 electrically facing the sample receiver 3 on which the metal sample S is placed are installed at a position where the sample receiver on which the metal analysis sample S is placed can enter and exit. The counter electrode 7 is connected to a high-voltage power source in the same manner as the support bar 4, and its polarity is opposite to that of the support bar (in this case, the anode). Thus, after evacuating the inside of the pretreatment chamber 1, if an inert gas, for example, argon gas, is introduced at a predetermined pressure and a voltage is applied between the sample support portion and the counter electrode, the surface of the metal analysis sample S The contamination is removed by sputtering.
[0020]
The counter electrode 7 is placed in a region that does not hinder the introduction of the sample into the pretreatment chamber 1 and the introduction of the sample into the reaction chamber 13. Specifically, as shown in FIG. 1, the installation position of the counter electrode 7 is usually separated from the vertical area of the sample inlet in an area excluding the area within the vertical line surrounding the inlet 12 and the outlet 9. It is good to arrange at the position. However, even if the counter electrode 7 protrudes from the region in the vertical line surrounding the sample inlet 12 and the outlet 9, the implementation of the present invention will not be hindered unless the sample is charged and discharged.
[0021]
In the example shown in FIG. 1, the counter electrode 7 is installed above and below the sample receiver on which the metal analysis sample S is placed. However, the present invention is not limited to this. Depending on the shape of the sample, it can also be arranged facing left and right or diagonally. In addition, it is also possible to arrange at an asymmetrical position with respect to the sample. Further, the counter electrode can be formed into a cylindrical shape, and thereby, cleaning can be performed uniformly and efficiently from the periphery of the sample. The shape of the counter electrode can be freely set as long as it does not deviate from the purpose, and for example, a rectangular tube shape can also be used. Also, the number of counter electrodes is not particularly limited.
[0022]
In the present invention, the metal analysis sample S is supported by, for example, two rod-shaped sample receivers 3 as shown in FIG. As a result, the metal analysis sample S is supported in a state where the contact area with the bottom surface of the metal analysis sample S is extremely small while being placed on the sample support portion 3. As a result, not only the top and side surfaces of the metal analysis sample S but also the bottom surface side is sputtered except for a slight contact portion with the support portion 3. That is, the entire surface of the metal analysis sample S can be simultaneously subjected to the decontamination process. In addition, since the sample is simply placed on the support portion 3, the handling is simple.
[0023]
Such functions include supporting the sample support 3 from the bottom side of the metal analysis sample S, and sputtering ions (for example, argon gas ions) from the counter electrode 7 to the metal on the bottom side of the metal analysis sample S. This can be achieved by ensuring a sufficient gap for high-speed collision with the bottom surface side of the analysis sample S. For this purpose, the sample support unit 3 is required to support the metal analysis sample S from the bottom side in a state where the ratio of the contact area with the sample is extremely small.
[0024]
As a specific shape of the sample receiver that satisfies such requirements, there are two rod-like bodies shown in FIG. 2, but for example, a wire mesh-like one may be used as shown in FIG. In addition, it is only necessary that the contact area with the metal analysis sample S is small, such as a square or circular frame, and the gap is wide as viewed from the counter electrode 7. Note that the contact area between the metal analysis sample S and the sample support portion 3 affects the removal rate of the surface contaminated portion, and hence the analysis error, so it is preferable to design the contact area so as to be as small as possible. In general, it is sufficient if the ratio of the contact area of the sample receiver to the sample surface area is 10% or less. More preferably, the bottom area of the metal analysis sample is 5% or less, more preferably 3% or less.
[0025]
Note that these sample receivers 3 keep the metal analysis sample S at a constant polarity during the surface contamination removal by sputtering, so that the electrical conductivity must be excellent, and the sputtering treatment It must be free from gas and other pollutants generated by heat. In that sense, for example, it is preferable to use 18-8 stainless steel.
[0026]
In the pretreatment apparatus of the present invention, the sample receiver 3 is preferably configured to be movable forward, backward, and rotatable within the pretreatment chamber 1. In the example shown in FIG. 1, a sample receiver 3 is connected to a moving and rotating mechanism 2 via a support rod 4, and this moving and rotating mechanism 2 attaches the sample support part 3 to the preliminary processing chamber 1 by a known means such as a motor or a cylinder. Within, make it forward, backward and rotatable.
[0027]
By doing so, the surface contamination removal (sputtering) of the metal analysis sample S can be efficiently performed in a relatively narrow space surrounded by the counter electrode 7. Further, after the sputtering is finished, the metal analysis sample S is moved into the reaction chamber 13 by advancing and rotating the sample receiver 3 in the pretreatment chamber 1 to the position immediately above the sample introduction port 10 below the pretreatment chamber 1. Can be dropped.
[0028]
In order to pre-process a metal analysis sample using the metal analysis sample pre-processing apparatus configured as described above, first, the sample receiver 3 is moved to a position immediately below the sample inlet 12, and the metal analysis sample S is loaded. Drop it on it. Next, after closing the charging port 12 and the slide gate 11 and evacuating the processing chamber 1, an inert gas, for example, argon gas is introduced, and the pressure is adjusted to 100 to 1000 Pa. Thereby, the cleaning by sputtering is performed efficiently and reliably.
[0029]
Next, the sample receiver 3 is moved horizontally between the counter electrodes 7 in a state where the metal analysis sample S is placed. In this state, a voltage is applied to the sample receiver 3 and the counter electrode 7, and the surface of the metal analysis sample S is cleaned by sputtering.
[0030]
The metal analysis sample whose surface is cleaned is dropped into the elemental analyzer. Specifically, the sample holder on which the cleaned metal analysis sample is placed is horizontally moved to above the sample outlet 9 by the moving rotation mechanism 2, and this is moved and rotated with the slide gate 11 opened. The metal analysis sample S is inverted by the mechanism 2 and dropped into the elemental analysis device through the sample introduction port 10.
[0031]
Thus, according to the present invention, surface contamination due to sputtering of a metal analysis sample can be efficiently removed with good operability. The present invention can be applied regardless of the type of metal to be analyzed, and can also be applied regardless of the type of element to be analyzed or the analysis method. Furthermore, it is not restrict | limited also to the polarity and kind for performing sputtering. In the example shown in FIG. 1, the analysis sample side is a cathode, but this may be an anode, and the type of sputtering may be changed to arc sputtering. Furthermore, the analysis sample support part, the counter electrode, etc. and their surroundings can be directly or indirectly cooled by an appropriate refrigerant.
[0032]
【Example】
A steel sample having a diameter of 6 mm and a length of 5 mm was used as a metal analysis sample, and oxygen in the sample was quantified by a melting-infrared absorption method in an inert gas. The results are shown in Table 1. The examples in Table 1 are the results of oxygen analysis after the pretreatment by the pretreatment apparatus of the present invention shown in FIG. On the other hand, the comparative example is a result of performing oxygen analysis directly without performing pretreatment.
[0033]
[Table 1]
Figure 0003937073
[0034]
X is the average value of the oxygen concentration measured 5 times for each of the two samples A and B, and σ indicates the standard deviation (variation). Thus, in the example of the present invention, the oxygen analysis value is about 1 to 2 ppm lower than the comparative example, and the analysis accuracy is also improved. When the surface analysis was performed on the sample subjected to the analysis, the surface contamination equivalent was estimated to be about 1 to 2 mm, and it was estimated that the contamination was just removed by the application of the present invention.
[0035]
【The invention's effect】
According to the present invention, as described above, a series of operations for removing contamination on the surface of an analysis sample by sputtering can be easily performed as compared with the conventional case. That is, there is no need to rotate or reverse the analysis sample placed on the sample stage as in the means disclosed in the above-mentioned JP-A-8-211043, and the means disclosed in JP-A-11-316220 As described above, there is no complicated setting work for point-supporting the analysis sample. For this reason, the time required for preprocessing the analysis sample is reduced, and the analysis time per sample is significantly reduced.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing an example of a metal analyzer equipped with a pretreatment apparatus for a metal analysis sample according to the present invention.
FIG. 2 is a perspective view showing an example of a sample support portion and a sample mounting state in the present invention.
FIG. 3 is a perspective view showing another example of a sample support portion and a sample mounting state in the present invention.
[Explanation of symbols]
1: Pretreatment chamber
2: Moving rotation mechanism (of sample holder)
3: Sample receiver
4: Support rod
7: Counter electrode
9: Sample outlet
10: Sample inlet
11: Slide gate
12: Sample inlet
13: Reaction chamber
S: Metal analysis sample

Claims (7)

金属中成分の分析に先立ち不活性ガス雰囲気に維持された予備処理室内で金属分析試料の表面をスパッタリングにより清浄化する金属分析試料の予備処理方法において、
前記金属分析試料を該金属分析試料に対する接触面積の割合が極めて小さい試料受けによって底面側から支持しながらスパッタリングを施すことを特徴とする金属分析試料の予備処理方法。
In a pretreatment method of a metal analysis sample, the surface of the metal analysis sample is cleaned by sputtering in a pretreatment chamber maintained in an inert gas atmosphere prior to analysis of the components in the metal.
A pretreatment method for a metal analysis sample, characterized in that the metal analysis sample is sputtered while being supported from the bottom side by a sample receiver having a very small contact area ratio with respect to the metal analysis sample.
不活性ガス雰囲気は100Pa以上、1000Pa以下に圧力調整されていることを特徴とする請求項1記載の金属分析試料の予備処理方法。2. The pretreatment method for a metal analysis sample according to claim 1, wherein the pressure of the inert gas atmosphere is adjusted to 100 Pa or more and 1000 Pa or less. 試料受けの金属分析試料接触面積が該金属分析試料の表面積の10%以下であることを特徴とする請求項1又は2に記載の金属分析試料の予備処理方法。The metal analysis sample pretreatment method according to claim 1 or 2, wherein the metal analysis sample contact area of the sample receiver is 10% or less of the surface area of the metal analysis sample. 上部に開閉可能な試料装入口、下部に金属試料分析装置本体の反応室に通ずる開閉可能な試料導入口を有するとともに、ガス導入口及びガス排気口を有する予備処理室、
前記予備処理室の少なくとも一つの側壁を貫通し水平移動と軸回転が可能な支持棒によって支持され、金属分析試料に対する接触面積の割合が極めて小さい状態で試料を所定電位に維持する試料受け、および
前記試料受けおよび試料と逆の極性を有し、前記予備処理室内への試料の装入と反応室への試料の導入を妨げない領域に配置された対極、とからなることを特徴とする金属分析試料の予備処理装置。
A sample loading inlet that can be opened and closed at the top, a sample processing inlet that can be opened and closed that communicates with the reaction chamber of the metal sample analyzer main body at the bottom, and a pretreatment chamber having a gas inlet and a gas outlet.
A sample receiver that is supported by a support rod that passes through at least one side wall of the pretreatment chamber and is capable of horizontal movement and axial rotation, and maintains the sample at a predetermined potential in a state in which the ratio of the contact area to the metal analysis sample is extremely small; and A metal having a polarity opposite to that of the sample receiver and the sample, and a counter electrode disposed in a region that does not hinder the introduction of the sample into the pretreatment chamber and the introduction of the sample into the reaction chamber Analytical sample pretreatment equipment.
支持棒は試料受けを金属分析試料とともに反応室に通ずる開閉自在の試料排出口直上に送り出す分析試料支持部移動機構を具備するものであることを特徴とする請求項4記載の金属分析試料の予備処理装置。5. The preliminary analysis of a metal analysis sample according to claim 4, wherein the support bar includes a moving mechanism for moving an analysis sample supporting portion that sends the sample receiver together with the metal analysis sample directly above the openable / closable sample discharge port. Processing equipment. 試料受けの金属分析試料接触面積が該金属分析試料の表面積の10%以下であることを特徴とする請求項5記載の金属分析試料の予備処理装置。6. The pretreatment apparatus for a metal analysis sample according to claim 5, wherein the metal analysis sample contact area of the sample receiver is 10% or less of the surface area of the metal analysis sample. 請求項4〜6のいずれかに記載の金属分析装置を具備してなる金属中の元素分析装置。The elemental analyzer in the metal which comprises the metal analyzer in any one of Claims 4-6.
JP2001315324A 2000-10-12 2001-10-12 Pretreatment method for metal analysis sample, apparatus for the same, and element analysis apparatus in metal Expired - Fee Related JP3937073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001315324A JP3937073B2 (en) 2000-10-12 2001-10-12 Pretreatment method for metal analysis sample, apparatus for the same, and element analysis apparatus in metal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000311479 2000-10-12
JP2000-311479 2000-10-12
JP2001315324A JP3937073B2 (en) 2000-10-12 2001-10-12 Pretreatment method for metal analysis sample, apparatus for the same, and element analysis apparatus in metal

Publications (2)

Publication Number Publication Date
JP2002189023A JP2002189023A (en) 2002-07-05
JP3937073B2 true JP3937073B2 (en) 2007-06-27

Family

ID=26601930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001315324A Expired - Fee Related JP3937073B2 (en) 2000-10-12 2001-10-12 Pretreatment method for metal analysis sample, apparatus for the same, and element analysis apparatus in metal

Country Status (1)

Country Link
JP (1) JP3937073B2 (en)

Also Published As

Publication number Publication date
JP2002189023A (en) 2002-07-05

Similar Documents

Publication Publication Date Title
US20070246065A1 (en) Ion sampling method for wafer
JP3937073B2 (en) Pretreatment method for metal analysis sample, apparatus for the same, and element analysis apparatus in metal
US6726739B2 (en) Method of treating metal analysis sample and device thereof
CN111570390A (en) Treatment method of tantalum part in glow discharge mass spectrometer
Hoffmann et al. Analysis of thin layers by total-reflection X-ray fluorescence spectrometry
JP2005134170A (en) Electron spectroscopic analysis method and analysis apparatus
US7387720B2 (en) Electrolytic method and apparatus for trace metal analysis
JPH11316220A (en) Method and apparatus for high-accuracy analysis of trace element in metal
EP1160561B1 (en) Methods and apparatuses for pretreatment of metal samples
JP3663774B2 (en) Method and apparatus for analyzing trace oxygen in metal
EP0890839B1 (en) Method for analytically determining oxygen for each form of oxide
JP4739575B2 (en) Sample preparation equipment for metal component analysis
Hoppstock et al. Purification of reagents and separation of element traces by electrodeposition onto a graphite tube cathode
JP3725883B2 (en) Method for analyzing impurities in metallic sodium
JP2000028580A (en) Instrument for analyzing element in metal sample
JPH08211043A (en) Pretreatment apparatus for carbon-in-metal analyzing sample
JP3365461B2 (en) Surface treatment method and apparatus
JP2002168741A (en) Preliminary treatment method and device for sample for analyzing trace element in metal
JPH04262253A (en) Glow-discharge mass spectrometry
Yasuhara et al. Development of a Pre‐Treatment Procedure for the Determination of Trace Amount of Bulk Oxygen in Iron and Steel
JPH0943174A (en) Surface analyzer with plasma etching unit
SU966792A1 (en) Method of analysis of trace quantities of organic compounds on solid body surfaces
JPH05218165A (en) Method for analyzing impurity
Bouwman et al. On‐line treatment chamber for surface studies
JPH07218437A (en) Method and device for emission spectrochemical analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees