JP4739190B2 - 光情報読取装置 - Google Patents

光情報読取装置 Download PDF

Info

Publication number
JP4739190B2
JP4739190B2 JP2006512837A JP2006512837A JP4739190B2 JP 4739190 B2 JP4739190 B2 JP 4739190B2 JP 2006512837 A JP2006512837 A JP 2006512837A JP 2006512837 A JP2006512837 A JP 2006512837A JP 4739190 B2 JP4739190 B2 JP 4739190B2
Authority
JP
Japan
Prior art keywords
light
substrate
optical information
receiving end
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006512837A
Other languages
English (en)
Other versions
JPWO2005106433A1 (ja
Inventor
昌久 野口
健 月井
秀二 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Precision System Science Co Ltd
Furukawa Electric Advanced Engr Co Ltd
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Precision System Science Co Ltd
Furukawa Electric Advanced Engr Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Precision System Science Co Ltd, Furukawa Electric Advanced Engr Co Ltd filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2006512837A priority Critical patent/JP4739190B2/ja
Publication of JPWO2005106433A1 publication Critical patent/JPWO2005106433A1/ja
Application granted granted Critical
Publication of JP4739190B2 publication Critical patent/JP4739190B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6419Excitation at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6421Measuring at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は、光情報読取装置に関する。特に本発明は、種々の生体物質の構造、性質を解析し、または生体物質の有無を検査するために、生体物質と結合した光標識要素等からの光情報を読み取るための光情報読取装置に関する。
従来、既知の化学構造をもつ生体物質が予め定められた複数の位置に配列して固定されたDNAチップ等の基体を用いる解析方法がさかんに用いられている。該解析方法では、蛍光物質等で標識化された未知の化学構造をもつ目的生体物質が懸濁する溶液と前記DNAチップ等の基体とを接触させることによって、目的生体物質と既知の生体物質とを結合反応させて、その標識物質の検出位置から目的生体物質の化学構造を解析するものである。解析を行うためには、DNAチップ等の基体上に固定された生体物質に結合した分子量レベルの蛍光物質等の標識物質の微弱な発光を確実に捉える必要があった。
そのために、受光した微弱な光を光電子増倍管(PMT)によって増倍して、情報処理可能な電気信号に変換する必要があった(外国特許文献1、2)。
米国特許第5445994号公報 米国特許第5744305号公報
ところで、近年、DNAの塩基配列や、たんぱく質等の生体物質の構造の決定や解析のために、多数種類の目的生体物質を識別可能とする標識化の必要がますます高まっている。多数種類の目的生体物質を標識化するには、標識化に適した物質の種類が限定されていることを考慮すると、複数の異なる種類の標識物質を用いるだけでなく、その量比(質量比、分子量比)をも指定して標識化する方法が開示されている(町田雅之氏等、国際公開WO00/5357)。このような量比を用いて標識化を行う場合には、測定対象からの光の量は、目的生体物質の種類が異なれば異なることになり、受光される光の量はある広い範囲に分布することになる。また、量比を用いずに標識化を行う場合であっても、前記DNAチップ上の生体物質の量、それに結合する標識化された目的生体物質の量、その目的生体物質を標識化する標識物質の量は、統計的誤差の範囲で定められるものであって、必ずしも常に一定量に定めることができず、予測できない光量が受光される場合がある。
しかし、光電子増倍管の電気信号への変換可能な容量は限りがあり、その受け入れ可能な光量の範囲(レンジ)を広く取ると、その増倍率は低く抑えざるを得ず、高感度で電気信号を得ることができないおそれがあるという問題点を有していた。また、測定をしようとする対象には、その発光等の光標識要素のDNAチップ上の固定位置を知る必要があるため、基体自体を測定する必要があり、必ずしも光標識要素に限られるものではない。光標識要素以外については、発光するものではないため、受光する光量はそれ程変化するものではないが、明らかに受光すべき光の波長の範囲は異なる。
このように、DNAチップを用いて目的生体物質の正確で精密な解析を行うには、発光強度、発光量、反射量、発光波長、反射波長、対象の大きさ、測定精度、測定目的が定まっているレンジの狭い測定対象と、これらが広い範囲にわたる測定対象があり、それらを区別して扱う必要があるという問題点を有していた。
そこで、本発明は、以上の問題点を解決するためになされたものであり、その第1の目的は、基体上に固定された多数種類の光標識要素について、その光量の比をも標識化に用いるような場合であって、その測定対象からの光量または波長の幅が広い範囲にわたる場合であっても、高感度で精度良く確実に識別することができる光情報読取装置を提供することである。
第2の目的は、基体についての各生体物質の固定位置において、スポッティングの大きさや生体物質の濃度差がある場合のような、基体、生体物質の固定、および発光強度等の標識の程度に関する厳格な規格化がされていない場合であっても、基体を用いた精密な検査等の各種処理を柔軟に行うことができて、使用可能な基体や、使用可能な標識物質の種類を増加させ、製造または検査の手間やコストを削減することができる光情報読取装置を提供することである。
第3の目的は、励起用光の照射に伴う受光への悪影響を抑制して、確実で、信頼性の高い読取りを行うことができる光情報読取装置を提供することである。
第4の目的は、処理目的に応じて柔軟に対応することができる柔軟性または多様性のある光情報読取装置を提供することである。
本発明は、以上の問題点を解決するためになされたものであり、第1の発明は、複数種類の光標識要素の有無もしくは程度の組合せによって標識化された1または2以上の生体物質を1または2以上の異なる固定位置に固定した基体と、前記基体からの光を受光可能な1または2以上の受光端部と、前記基体の特定の測定対象については、前記受光端部で受光した光を、該測定対象に応じて定まる異なった各特性により光電変換する光電素子によって変換した電気信号に基づいて光情報を得る光情報測定部と、前記基体と受光端部とを相対的に動かして、前記基体を走査する走査部とを有するとともに、前記光情報測定部は光導波路を有する光情報読取装置である。
ここで、「光標識要素」は、発光、反射、散乱または吸光等によって、該光標識要素と結合している固体または物質を標識化することができる要素をいう。例えば、発光によるものとしては、蛍光物質、燐光物質、化学発光物質等による発光物質がある。反射によるものとしては、例えば、金属表面を利用した反射率の高い物質であり、吸光を利用するものとしては、例えば、染料、顔料等がある。
「基体」は、その構造が既知のまたは未知の各種の生体物質が、予め定められた位置に固定された固体であって、その固体上の位置を測定することによって、その生体物質を特定することができるものをいう。特に、前記生体物質と結合する可能性がある目的生体物質を光標識要素と結合させて標識化したものを溶液中に懸濁させたものに前記基体を接触させた後洗浄し、前記目的生体物質が前記基体の生体物質と結合しているか否か、結合しているならば、その基体上の位置はどこかを、前記光標識要素を検出することによって測定するために用いる。基体についての形状の限定はないが、プレート状のDNAチップ、薄膜状のもの、紐状、糸状のものを含む。生体物質とは、例えば、DNA、RNA、mRNA、オリゴヌクレオチド、ヌクレオチド等の遺伝物質、蛋白質、アミノ酸、抗原、抗体、糖鎖等である。
「測定対象」は、光情報を得るために測定する対象であって、例えば、固定位置を検出するために必要となる基体自体、該基体に固定されている各生体物質、光標識要素、基体上の位置の基準となるマーカーである。または光標識要素中の特定の標識物質である。
「特定の測定対象」とは、前記基体に関する複数の測定対象のうち、少なくとも1の測定対象であって、その特定対象の光量が、広い範囲にわたって分布するような測定対象である。そのような測定対象とは、例えば、複数種類の光標識要素の量比を異ならせることによって標識化に用いるような光標識要素であり、その光標識要素から得られる光量が、基体上の各位置で必ずしも一定ではないような対象である。
「特定の測定対象に応じて」とは、例えば、その測定対象の発光強度、反射光強度、発光波長、反射光波長、吸光波長、吸光強度、発光寿命、発光タイミング、測定対象の大きさ、測定対象の形状、測定対象の測定精度の必要性、測定目的を考慮することである。
「異なった特性により光電変換する光電素子」とは、1の光電素子または同一種類の複数の光電素子について、複数の特性を設定することができる場合と、異なる種類の異なる特性を持つ複数の光電素子を用いる場合とがある。「光電素子」は、光電効果を応用した電子素子をいい、例えば、光電管、光電子増倍管、光伝導セル、フォト・ダイオード、フォト・トランジスタがある。光電素子は、一般にその入力する光の強度がある範囲の場合にのみ、それに応じた所定の大きさの電気信号を出力する。「特性」とは、受光した光を電気信号に変換する場合の、入力した光の強度と出力する電気信号の強度との間の関数関係をいう。該光電素子は後述する照射部に対する受光部に相当する。
「光導波路」は、光を一定領域に閉じ込めて伝送する回路または線路をいい、光ファイバのみならず、プレート状導波路、薄膜導波路を含む。「受光端部」とは、前記基体等の測定対象からの光が入射する部分をいう。例えば、光ファイバの端部または端面、またはレンズ等の光学系を有するヘッドがこれに相当する。
第1の発明によれば、特定の測定対象ついては、その測定対象に応じた異なる特性をもつ光電素子を設け、この測定対象については、前記受光端部によって受光した光を各特性によって電気信号に変換して光情報を得ている。したがって、測定対象からの光の光量または波長が広い範囲にわたって分布する場合であっても、複数の特性を用いて光電変換する光電素子によって変換された電気信号のうち、入力した光量に応じた所定の関数関係に基づく電気信号を得ることによって、入力した光量を求めることができる。したがって、広い範囲にわたって、その測定対象に関する光情報を、高感度で精度良く確実に得ることができる。
また、基体についての各生体物質の固定位置において、その測定対象の大きさや生体物質の濃度差があるような、基体等に関する厳密な規格化がされていない場合であっても、基体を用いた精密な検査等の各種処理を柔軟に行うことができ、使用可能な基体や、使用可能な標識物質の種類を増加させ、製造または検査の手間やコストを削減することができる。したがって、処理目的に応じて柔軟に対応することができる柔軟性または多様性のある光情報読取装置を提供することができるという利点がある。
第2の発明は、前記光電素子は、前記基体の特定の測定対象に応じた相異なる増倍率が設定された複数の光電子増倍管であり、前記光情報測定部は、1の受光端部からの光のうち前記測定対象に応じた波長領域を持つ光を抽出して前記各光電子増倍管に分配する光分配部を有する光情報読取装置である。
「光分配部」としては、例えば、受光端部からの光のうち該当する波長帯の光をのみ透過させるフィルターと、フィルターを透過した光を複数の分岐路に分岐させる分岐部とを設けたものがある。
第2の発明によれば、相異なる増倍率が設定された複数の光電子増倍管を用いたものである。これによって、特定の測定対象、例えば、量比の相違によって標識化に用いられている蛍光物質等について、種々の増倍率をもつ光電子増倍管を設けることで、測定対象の光量の範囲を広げ、広い範囲で高感度の測定を行うことができる。
第3の発明は、前記光情報測定部は、前記受光端部と前記光導波路を介して着脱自在に接続するコネクタと、前記測定対象に応じた波長領域を抽出する光抽出部とを有し、前記光電素子は、前記基体の測定対象に応じた増倍率が設定された1または2以上の光電子増倍管である光情報読取装置である。
第3の発明によれば、該光情報測定部は、前記受光端部と前記光導波路を介して着脱自在に設けられている。したがって、前記光導波路を介して受光端部と差し替えることによって、装置規模を増加させることなく、種々の測定対象について測定を行うように増設することができる。また、測定対象の増加に応じて、柔軟に対応することができる。
第4の発明は、前記光標識要素は、励起用光を照射することによって発光するものを含み、前記光情報測定部は、前記励起用光を前記基体に照射する照射部を有する光情報読取装置である。
ここで、光標識要素としては、蛍光物質、燐光物質を考慮している。
第4の発明によれば、励起用光を照射可能とすることによって、光標識要素が蛍光物質や燐光物質である場合にも対応することができる。
第5の発明は、前記受光端部の前記基体に対する受光方向および開口角は、前記照射部の前記基体に対する照射方向および照射角、および前記基体の形状に基いて定まる前記励起用光の入射および反射経路外で、前記受光端部が前記基体からの光を受光するように定めた光情報読取装置である。
第5の発明によれば、励起用光が直接または間接的に前記受光端部に受光されることがないので、信頼性の高い測定を行うことができる。
第6の発明は、前記光情報測定部は、前記受光端部が受光した前記測定対象として前記基体上の前記光標識要素および前記基体自体の双方からの光に基づいて、前記基体の形状を認識する光情報読取装置である。
第6の発明によれば、前記測定対象として、単に光標識要素だけを選ぶのではなく、基体自体をも測定対象とした。これによって、測定された光標識要素の位置の特定を確実に行うことができる。
第7の発明は、前記基体、または、前記受光端部が、基体の中心を通る軸に対して相対的に回転し、かつ、その軸方向に相対的に移動することで、前記光情報測定部が測定すべき測定領域を螺旋状に走査して、光情報を得る光情報読取装置である。
第7の発明によれば、基体または受光端部が基体の中心を通る軸に対して、相対的に回転し、かつその軸方向に相対的に移動することで、測定領域を螺旋状に走査するようにしている。したがって、基体に配列されている生体物質の固定位置が、3次元的なものであっても、各固定位置を確実に網羅するように、走査することができる。
第8の発明は、前記走査部は指定された基体の形状に基づいて、基体を走査するとともに、前記光情報測定部は、指定された基体の形状に基づいて前記光情報を得る光情報読取装置である。
第8の発明によれば、基体の形状に基づいて走査を行うようにしているので、該基体に固定されている生体物質の固定位置を確実に通るように走査することができる。したがって、各生体物質の位置を確実かつ容易に特定することができる。また、第8の発明によれば、基体の形状を認識する必要がないので、形状の認識処理を省き、容易かつ高速に処理を行うことができる。
第9の発明は、前記走査部は、前記基体上に設定した所定経路に沿って走査し、前記光情報測定部は、その走査した前記光標識要素をその走査の順番に基づいて光情報を得る光情報読取装置である。
ここで、「所定経路」としては、例えば、前記基体上の各固定位置を網羅するように予め設定した経路であって、一直線状、多直線状、曲線状、螺旋状、ジグザグ状、渦巻き状等がある。
第9の発明によれば、基体の所定経路、例えば、基体上の各固定位置を順番に網羅するような経路に沿って走査することで、基体上の座標位置を測定せずに、生体物質の固定位置の順番に基づいて特定することができるので、解析がより一層容易となる。
第10の発明は、前記走査部は、前記基体のもつ固有振動数と前記受光端部のもつ固有振動数に基づいた振動を、前記基体または受光端部の一方に加えて、その一方を他方に追従させて、その両者の振動数の差が所定値以下とする連動部を有する光情報読取装置である。
第10の発明によれば、走査部に、基体の固有振動数と前記受光端部の持つ固有振動数に基づいた振動を、前記基体または受光端部の一方に加えて、その一方を他方に追従させることによって、その両者の振動数の差を所定値以下にする連動部を設けることで、受光端部と基体との間の振動による相対的なぶれをなくし、基体の測定対象について正確な位置を測定することができる。
第11の発明は、前記連動部は、前記基体と前記受光端部とを接触する位置決め用部品を有する光情報読取装置である。
ここで、「接触」は、直接、基体と受光端部とに接触する場合と、間接的に基体と受光端部とに接触する場合がある。このような場合として、基体が容器に固定された状態で収容されている場合に、該容器と受光端部とに接触する場合がある。
第11の発明によれば、前記連動部として位置決め用部品を設けたことで、前記基体と受光端部とを直接的または間接的に接触させて相対的なぶれをなくし、正確な位置や形状を測定することができる。
第12の発明は、前記位置決め用部品は、回転体を有する光情報読取装置である。
第12の発明によれば、第11の発明と同様の効果を生ずる。特に、第12の発明によれば、前記基体と直接的または間接的に接触する際に、接触する物同士の摩擦を軽減し、滑らかに走査することができる。
第13の発明は、前記光情報測定部は、前記基体と前記生体物質の光標識要素を個別に測定する光情報読取装置である。
ここで、「個別」にした理由は、該基体自体からの光、例えば反射光と、光標識要素からの光、例えば蛍光のように、一般に光量や光の強度が異なるので、それぞれに合った別個の光電素子によって受光することで、より明瞭に光情報を得ることができるからである。
第13の発明によれば、基体自体と、光標識要素とを個別に測定対象として測定することによって、基体の性質や形状と光標識要素の性質や大きさに応じた各々最適な特性をもつ光電素子を用いて測定することができるので、正確な光情報を得ることができる。
第14の発明は、前記照射部の光軸と、基体上の測定位置の法線とのなす照射角が、前記受光端部の基体上の測定位置に対する開口角よりも大きい光情報読取装置である。
第14の発明によれば、励起用光が直接または間接的に前記受光端部に受光されることがないので、信頼性の高い測定を行うことができる。
第15の発明は、前記基体を液体とともに収容する容器を有し、前記受光端部による前記基体からの光の受光は、前記基体が液体とともに前記容器に収容された状態で行われる光情報読取装置である。
ここで、「容器」は、流体を貯留することが可能なものをいい、通常の容器の他、該容器に流体の入出口または液通路が設けられたもの、例えばピペットチップをも含む。
第15の発明によれば、受光端部による基体からの光の受光を、基体が液体とともに容器に収容された状態で行うことによって、基体の処理から測定までを同一の容器で行うことが可能となり、処理を一貫して自動化することができる。また、液体中の基体を測定するため、基体に付着した液滴による測定結果の修正や液滴の除去処理を行う必要がなく、高い信頼性の測定結果を容易に得ることができる。
第16の発明は、前記光情報測定部と前記光標識要素または基体との間の光は前記容器を透過せずに伝達される光情報読取装置である。
第16の発明によれば、光標識要素または基体等の測定対象との間の光は、前記容器を透過せずに伝達されるようにしているので、容器の壁面による光の減衰、屈折、歪みまたは壁面の疵や汚れを考慮する必要がないので、信頼性の高い測定結果を容易に得ることができる。
第17の発明は、前記照射部は、前記受光端部の光学系を用いて光を照射する光情報読取装置である。
第17の発明によれば、照射部は、受光端部と同一の光学系を用いて光を照射するので、部品点数を削減し、製造コストを削減することができる。
第18の発明は、前記基体上の各生体物質の固定位置は、所定の位置的な規則で配置されている光情報読取装置である。
ここで、「位置的な規則」とは、例えば、マトリクス状、等間隔、同心円状、等角度等である。
第18の発明によれば、前記基体上の各生体物質の固定位置は、所定の位置的な規則で配置されているので、基準点からの距離等を測定することで、光標識要素による発光等の位置を測定することができる。
第19の発明は、前記光情報測定部の前記光導波路は前記受光端部との間で光を伝導する光ファイバであるを光情報読取装置である。
第19の発明によれば、受光端部からの光を光ファイバを用いて導光するようにしているので、基体または光標識要素からの光を、その強度を殆ど失わずに伝達することができ、確実に光情報を得ることができる。
第20の発明は、前記受光端部は前記容器を貫いて、その容器内またはその容器の内壁面に達するように設けた光情報読取装置である。
第20の発明によれば、前記基体からの光は前記容器を透過して受光するのではなく、該容器を貫いて設けた前記受光端部によって受光するようにしているので、容器を透過する際の光の減衰、屈折、歪みまたは汚れによる影響を受けることがなく、信頼性の高い測定を行うことができる。
本発明の実施の形態に係る光情報読取装置の全体図である。 本発明の実施の形態に係る光情報読取部を示す側面図である。 本発明の実施の形態に係る第1の光学系装置を用いた光学系を示す概念図である。 本発明の実施の形態に係る第2の光学系装置を用いた光学系を示す概念図である。 本発明の実施の形態に係る第3の光学系装置を用いた光学系を示す概念図である。 本発明の実施の形態に係る光測定の流れ図及び測定結果を示す図である。 本発明の実施の形態に係る基体と受光端部との関係を示す概念図である。
以下、本発明の実施の形態を具体的に説明する。
〔実施例1〕
図1は、本発明の実施例1に係る光情報読取装置1の全体を示す正面図である。
該光情報読取装置1は、大きくは、光情報を得ようとする対象である基体を収容することが可能な透光性または半透光性の素材、例えば、ガラス、アクリル樹脂、ポリエチレン、ポリプロピレン等によって形成された容器としての複数連(例えば6本が、図面に垂直方向に並んでいる)のピペットチップ2(図上1本のみが示されている)と、光情報を読み取るための光情報読取部3と、前記基体を走査して、基体からの光情報を得るために前記ピペットチップ2をその軸線のまわりに回転させる回転走査部、また前記ピペットチップ2を測定するため、さらに基体を処理するために上下方向または水平方向に移動させるZ軸移動部またはXY軸移動部(図示せず)、さらには、前記ピペットチップ2内の圧力を調節する圧力調節部が設けられている機構部4とを有している。
前記基体は、その表面の予め定められた位置に、予め定めた種類の生体物質が固定されたものであり、その生体物質の固定位置のいずれか(1または2以上)においては、所定の光標識要素で標識化された目的生体物質が結合可能なものである。その基体の形状は、例えば、図3に示すように、コア12に巻装された紐状である。
該ピペットチップ2は、前記基体を収容可能な太径部13と、太径部13の下側で該太径部13と連通する細径部14とからなり、該太径部13の上側は、該細径部14を通して液を吸引吐出するための圧力調節部のノズル5に着脱自在に装着されている。
前記機構部4は、前記光情報読取部3の上側に設けられ、その境界には、作業用プレート6が設けられている。該作業用プレート6には、前記ピペットチップ2が貫通可能な孔部7が設けられており、該ピペットチップ2に収容された基体を測定する場合には、該孔部7を貫通させて前記ピペットチップ2を光情報読取部3内に位置するように、ピペットチップ2を下降させることができる。
前記作業用プレート6上には、前記基体の処理に用いるための種々の試薬を収容した容器(図示せず)や、未使用のピペットチップ2を、ノズル5の先端を該ピペットチップ2を挿入することによって自動的に前記ノズル5に装着可能となる状態で、太径部13を上側にして収容するチップ収容部等が設けられている。また、該作業用プレート6には、前記ノズル5から自動的に脱着した使用済みのピペットチップ2を収容する使用済みチップ排出部を設けても良い。
前記光情報読取部3は、該作業用プレート6の下側に、その全体が外部からの光を遮蔽することができる遮光性の筐体8内に格納された状態で設けられている。
前記機構部4の全体は、外部から監視可能となるような窓をもったカバー9で覆われている。該機構部4には、前記ピペットチップ2自体を上下方向に移動させるための機構として、該ピペットチップ2および該ピペットチップが装着されているノズル5を支持する支持部50と、該支持部50と連結するスライダ51と、該スライダ51、従って、前記支持部50をZ軸方向に沿って移動可能に案内する棒状のガイド部材52とを有している。該ガイド部材52は、前記ピペットチップ2、ノズル5及び前記支持部50をXY軸方向に沿って移動するためのXY軸移動部(図示せず)に上側から吊り下げられるように設けられている。
前記スライダ51には、連結棒53が設けられており、ボール螺子54に螺合するナット部55と連結している。該ボール螺子54は、結合部56を介してモータ57の軸と結合し、該モータ57によって回転駆動され、これによって、前記ナット部55、従って、それに連結するピペットチップ2を上下動させる。これらの支持部50、スライダ51、ガイド部材52、ボール螺子54等は前記Z軸移動部に相当する。
前記支持部50には、前記ノズル5と連通するシリンダ(図示せず)が設けられている。前記ノズル5は、該シリンダに対して回転可能に接続されている。該支持部50には、ガイド部材58が固定して設けられ、該シリンダ内においてプランジャ(図示せず)をZ軸方向に沿って摺動させるためのスライダ59がZ軸方向に沿って摺動可能となるように案内している。なお、該スライダ59をZ軸方向に駆動するためのボール螺子機構等(図示せず)は、前記支持部50に設けられている。ここで、前記ノズル5、シリンダ、プランジャ、スライダ59等は、前記圧力調節部に相当する。
図1において、符号60は、前記ノズル5、従って、ピペットチップ2をその軸心に沿って回転させるためのモータであり、モータ60の回転軸に設けられた歯付プーリ(図示せず)等により、該回転を前記ノズル5の歯付プーリ61に伝達する。モータ60および該モータ60で駆動される回転機構は、ブラケット62を介して前記支持部50に取付けられている。これらのモータ60、歯付プーリ61、ブラケット62等は、前記回転走査部に相当する。該回転走査部と前記Z軸移動部を合わせたものが走査部に相当する。
さらに、機構部4には、前記作業用プレート6上に設けた容器(図示せず)内に収容された液体の蒸発を防止するために容器の開口を覆う薄いフィルムを穿孔するための穿孔用ピン63であって、前記シリンダ内のプランジャと連動する軸64によって、ノズル5の軸方向に上下動可能なものである。
図中、符号65は、電源回路であり、符号66は、該電源回路65に空気を送るファン部66であり、符号67は、電源回路65に導入された空気を外部に排気するためのダクトである。
図2に基づいて、前記光情報読取部3について説明する。
該光情報読取部3は、該光情報読取部3の機構的な部分である光情報読取用機構部43と、光学的部分である光学系収容部97とを有している。
該光情報読取用機構部43は、前記機構部4の前記Z軸移動部によって、前記6連のノズル5に着脱自在に装着された6連の各ピペットチップ2を、所定の高さ位置において回転可能に受け止める機構と、受け止められたピペットチップ2に収容された基体からの光情報を得るための測定のための機構とに分けることができる。
前記各ピペットチップ2を回転可能に受け止める部分は、前記ピペットチップ2の太径部13と細径部14との中間にある錐状部68の部分の外周面と接触して、該ピペットチップ2の回転軸線が動かないように保持する受止め用管69と、該管69の外側面に取り付けて設けた軸受70を有する6連の軸受部71を有している。6連の各軸受部71は、シャフト72に沿ってZ軸方向にスライド可能なスライダ73と連結している。該スライダ73は、前記スライダ73の下方に前記シャフト72を囲むように設けた圧縮ばね74によって上方向に付勢された状態で弾性的に支持されている。なお、圧縮ばね74の下方には、前記シャフト72を固定する土台部75が設けられている。前記スライダ73には、光遮断板76を設け、前記土台部75に固定して設けたセンサ用ブラケット78に受光素子及び発光素子からなるマイクロフォトセンサ77を取り付けている。前記受光素子と発光素子との間を前記光遮断板76が遮断し、または遮断しないことによって、前記軸受部71の位置、すなわち、ピペットチップ2の位置を、光情報を読み取り可能な位置に設定することができる。
前記各ピペットチップ2の各太径部13に収容された各基体11についての光情報を得るために、収容されている該各基体11及び各基体11上の所定位置からの光を受光可能となるように焦点距離が調節されたレンズ等の光学系装置を内蔵するヘッド80が、その端面が該太径部13から所定距離を隔てて設けられている。該ヘッド80には、その前方に向かってアーム79が突出し、そのアーム79の先端には、前記ピペットチップ2の前記太径部13の側面に接触する位置決め用ローラ81が回転可能に支持されて、ヘッド80とピペットチップ2との間の前記所定距離を維持するとともに、前記ピペットチップ2の軸心のまわりの回転による振動を該ヘッドに伝達することができる。該ヘッド80の後方には、コネクタ82を介して光ファイバ16が着脱自在に接続している。
ここで、前記ヘッド80は、前記受光端部15に相当する。前記ヘッド80は、前記ピペットチップ2の軸心を含みまたは軸心に平行な垂直平面内でのヘッド80の角度(仰角または伏角)を調節可能とするために、ゴニオステージ83に取り付けられている。該角度は、調節ネジ84によって調節可能である。前記ヘッド80および該ゴニオステージ83は、XY軸直動部85に取り付けられている。該XY軸直動部85は、X軸方向(図面の表裏方向)及びY軸方向(図面の左右方向)の何れにも微小距離移動可能とするものである。該XY軸直動部85は、固定部と、該固定部に対してY軸方向に微小距離滑らかに動く可動部とからなるY軸直動部86と、該Y軸直動部86の固定部が取り付けられ該固定部に対してX軸方向に微小距離滑らかに動く可動部とからなるX軸直動部87とを有するものである。なお、符号88,89は、ストッパであって、各可動部の移動を各固定部と係合することで停止させるものである。前記XY軸直動部85のY軸直動部86の可動部には、前記ゴニオステージ83およびファイバ支持用ブラケット90が取付けられており、該ファイバ支持用ブラケット90の一端には、光ファイバ16を上下から柔軟に押える押部91が設けられている。
前記XY軸直動部85の全体は、前記ヘッド80を6連のピペットチップ2の全てを測定可能とするように、6連のピペットチップ2の配列方向であるX軸に沿って移動可能とするX軸直動部92の可動部に固定されている。該X軸直動部92の可動部には、X軸方向の位置決めを行うための光遮断板93が、マイクロフォトセンサ94の受光素子と発光素子の間を遮断可能となるように設けられている。なお、該X軸直動部92の固定部は、装置の基底プレート95に固定されている。該X軸直動部92は、モータ96によってX軸方向に駆動されることになる。
前記光学系収容部97には、第1の光学系装置18および第2(3)の光学系装置44(45)を有し、該光学系装置18は、コネクタ17を介して前記光ファイバ16と着脱自在に接続されている。ここで、該光学系装置18,44,45と前記光ファイバ16とをあわせたものは前記光情報測定部に相当する。該光ファイバ16は、前記光導波路に相当する。また、前記ピペットチップ2、受光端部15、光情報読取用機構部43及び光情報測定部、情報処理装置40、入力・表示部41、および出力部42は、光情報読取部3に相当する。
続いて、該光情報読取装置1の光学系について、図3、図4、図5に基づいて説明する。
本実施の形態にあっては、前記光標識要素として、第1の蛍光物質Cy5と、第2の蛍光物質Cy3を用いて、その量比を異ならせることによって目的生体物質の標識化を行い、該目的生体物質が前記基体上に固定された生体物質と結合して、基体上に前記光標識要素が存在するときに、その基体上の光標識要素から光情報を読み取る場合について説明する。
図3に示すブロック図に基づいて、本実施の形態に係る光情報読取装置1に第1の光学系装置18を用いた場合の光情報読取のための光学系について説明する。該光学系装置18は、前記測定対象として、第1の蛍光物質Cy5と、第2の蛍光物質Cy3とを特定した場合に用いるものである。該光情報読取装置1は、6連のピペットチップ2の1について、その太径部13内に、樹脂製の円柱状のコア12の表面に螺旋状に巻装されたナイロン製の紐状の基体11と、前記基体11からの光を受光可能な位置に設けた1の前記受光端部15と、受光した前記光以外の外部からの光を遮断する収容部18aに、前記受光端部15が受光した光を取り入れて光情報を得るための種々の光学系部品を収容した前記光学系装置18と、前記基体11に対する前記受光端部15の位置を相対的に変更するための前記光情報読取用機構部43と、前記機構部4と、前記光学系装置18、前記光情報読取用機構部43および機構部4からの電気信号に基づいて光情報を得ならびにこれらの装置に指示を与える前記情報処理装置40と、該情報処理装置40に対して種々のデータを入力し、指示を行いまたは該指示情報や光情報を表示させる、液晶ディスプレイ、キーボード、マウス等からなる入力・表示部41と、前記情報処理装置40の処理結果を出力するプリンタ、通信部、CDドライバ、フレキシブルディスクドライバ等の出力部42を有する。
前記受光端部15は、前記収容部18aの壁部に設けられたコネクタ17と光ファイバ16を介して接続されている。該光学系装置18には、前記光電素子に相当する4台の光電子増倍管19,20,21,22が設けられている。ここで、前記光電子増倍管19と光電子増倍管21は、1の特定の測定対象である光標識要素の第1の蛍光物質Cy5を測定するためのものであり、該測定対象に応じて、各光電子増倍管19,21の特性としての増倍率が異なるように設定する。
また、前記光電子増倍管20と、光電子増倍管22は、他の特定の測定対象である光標識要素の第2の蛍光物質Cy3を測定するためのものであり、該測定対象に応じて、各光電子増倍管20,22の特性としての増倍率が異なるように設定する。
前記光学系装置18には、さらに、前記基体照射部として、532nmのレーザ光源23と、635nmのレーザ光源24を有し、前記受光端部15の光学系を介して、前記基体11の各固定位置に照射される。ここで、前記レーザ光源23は、第2の蛍光物質Cy3(最大吸収で550nmの励起用光、50%の吸収では、514−565nmの励起用光)を励起するためのものである。また、前記レーザ光源24は、第1の蛍光物質Cy5(最大吸収で649nmの励起用光、50%の吸収では、629−669nmの励起用光)を励起するためのものである。その他、該光学系装置18には、複数のレンズ25,32,33,37,38を設けている。さらに、560nm以上の光を透過させ、560nm未満の光を反射させる二色性ロングパスフィルタ26と、610nm以上の光を透過させ、610nm未満の光を反射させる二色性ロングパスフィルタ27と、650nm以上の光を透過させ、650nm未満の光を反射させる二色性ロングパスフィルタ28とを有している。さらに、695nmを中心に55nmの全幅の光を透過する695/55バンドパスフィルタ29、660nm以上の光を透過させるロングパスフィルタ30と、580/30バンドパスフィルタ34と、560nm以上の光を透過させるロングパスフィルタ35と、ミラー39と、ハーフミラー31,36とを有している。ここで、695/55バンドパスフィルタ29においては、全バンド幅が55nmでその中心の波長が695nmであることを示し、580/30バンドパスフィルタ34は、全バンド幅が30nmでその中心の波長が580nmであることを示している。
前記光電子増倍管19および光電子増倍管21は、コネクタ17を通して受光した光のうち、レンズ25、二色性ロングパスフィルタ26、二色性ロングパスフィルタ27、二色性ロングパスフィルタ28および695/55バンドパスフィルタ29,ロングパスフィルタ30を透過した光、すなわち、677.5nm以上で722.5nm未満の光が入力することになる。前記第1の蛍光物質Cy5の波長(最大の吸収の場合の蛍光波長が670nmで、50%の吸収では655−692nm)は一部この範囲内に含まれるので、特定の測定対象として該第1の蛍光物質からの蛍光は、前記光電子増倍管19及び光電子増倍管21の双方に届けられることになる。
一方、前記光電子増倍管20及び光電子増倍管22は、コネクタ17を通して受光した光のうち、レンズ25、二色性ロングパスフィルタ26を透過し、二色性ロングパスフィルタ27で反射し、580/30バンドパスフィルタ34および560nm以上の光を透過するロングパスフィルタ35を透過した光、すなわち、565nm以上595nm未満の光が入力することになる。前記第2の蛍光物質Cy3の波長(最大の吸収の場合の蛍光波長が570nmで、50%の吸収では556−588nm)は、この範囲内に含まれるので、特定の測定対象として、前記第2の蛍光物質からの蛍光は、前記光電子増倍管20および光電子増倍管22の双方に届けられることになる。
また、前記レーザ光源23からの波長532nmのレーザ光は、前記二色性ロングパスフィルタ26で反射して、前記コネクタ17を介して前記受光端部15から前記基体11を照射して前記第2の蛍光物質を励起させ、前記レーザ光源24からの波長635nmのレーザ光は、前記二色性ロングパスフィルタ28で反射して、前記コネクタ17を介して前記受光端部15から前記基体11を照射して前記第1の蛍光物質を励起させる。
なお、前記情報処理装置40には、前記光電子増倍管19,20,21,22からの電気信号をA/D変換器によって変換した信号が入力し、また、前記入力・表示部41からの指示がD/A変換器で変換された信号を送出する。また、該情報処理装置40は、前記入力・表示部41からの指示に基づいて前記レーザ光原23,24に対してレーザ光の出力の指示信号を送出する。さらに、該情報処理装置40は、前記機構部4の圧力調節手段、Z軸移動部、およびXY軸移動部、走査部および前記光情報読取用機構部43のX軸直動部92等について、前記入力・表示部41からの指示に基づいて、制御することができる。また、前記機構部4または前記光情報読取用機構部43からの信号を受け取ることによって発光位置、固定位置、基体の形状、走査距離、走査位置、固定位置等の情報を得ることができる。
続いて、図4に基づいて、本実施の形態に係る第2の光学系装置44を用いた光学系について説明する。
本実施の形態にあっては、前記光標識要素としての第1の蛍光物質Cy5を特定の測定対象とする一方、第2の蛍光物質と、基体11自体とを他の測定対象とするものである。
なお、図3と同一のものは同一の符号を用い説明を省略する。
本実施の形態に係る第2の光学系装置44の光学系部品は、図3の第1の光学系装置18の光学系部品と異なり、前記第2の蛍光物質からの蛍光は、光電子増倍管22に入力させ、前記基体11自体からの光は、光電子増倍管20に入力させるようにしたものである。そのため、前記光電子増倍管20と光電子増倍管22とに受光した光を分岐するハーフミラー36は、580/30バンドパスフィルタ34およびロングパスフィルタ35を受光した光が透過する前に設けている。これによって、光電子増倍管20へ入力する光は、二色性ロングパスフィルタ26を透過しかつ二色性ロングパスフィルタ27で反射した光、すなわち、波長としては575nm以上で595nm未満の光である。該光電子増倍管20が測定しようとする測定対象は、前記レーザ光源23から出力した532nmのレーザ光が前記基体11によって反射した光を入力することによって該基体11自体についての光情報を得るものである。一般には、前記基体11に照射された532nmのレーザ光によって、該基体11からは、その材質に応じた光が出射され、通常は、入射波と同一の波長をもつ532nmの反射波である。該反射光は、二色性ロングパスフィルタ26,27によって遮断されることになるが100パーセント遮断されるわけではない。本実施の形態では、この遮断されずにフィルタ26を透過しかつフィルタ27で反射した光を利用して、前記光電子増倍管20によって前記基体11の光情報を得るものである。
さらに、前記光電子増倍管22へ入力する光については、該光電子増倍管22の前に、580/30バンドパスフィルタ34およびロングパスフィルタ35を設け、これらのフィルタ34、35を透過した光が前記光電子増倍管22へ入力するようにしている。これらのフィルタ34,35を透過する光の波長の範囲は、575nm以上で595nm未満であり、このフィルタ34,35によって、前記二色性ロングパスフィルタ26を透過し、かつ前記二色性ロングパスフィルタ27で反射した前記532nmの前記基体11による反射光を遮断して、余分なレーザ反射光の該光電子増倍管22への入力を制限することができる。
図5に基づいて、本実施の形態に係る第3の光学系装置45を用いた光情報読取装置1について説明する。
なお、図3または図4と同一のものは同一の符号を用い説明を省略する。
本実施の形態にあっては、前記光標識要素としての第1の蛍光物質Cy5と、基体11自体を他の測定対象とする場合である。
本実施の形態に係る第3の光学系装置45の光学系部品は、図3または図4の第1,2の光学系装置18、44の光学系部品と異なり、前記二色性ロングパスフィルタ26,27を除去することによって、光電子増倍管20,22、およびレーザ光源23を用いないようにしたものである。また、ハーフミラー31とレンズ32との間に、695/55バンドパスフィルタ29、660nm以上の光を透過させるロングパスフィルタ30を用いることによって、650nm以上の光を透過させ、650nm未満の光を反射させる二色性ロングパスフィルタ28を透過した光について、さらに677.5nm以上で722.5nm未満の光に絞り込んで、第1の蛍光物質の蛍光を取り入れるとともに、前記レーザ光源24から照射された635nmが前記基体11の表面に照射されて、該基体11から出射した光(例えば、同一波長の反射光)であって、前記二色性ロングパスフィルタ28を透過した光の前記光電子増倍管19への入力を制限するものである。また、基体11からの出射光(例えば、同一波長の反射光)で、前記二色性ロングパスフィルタ28を透過した光の一部については、前記ハーフミラー31を介して前記光電子増倍管21に入力することになる。該出射光は、測定対象としての基体11自体の光情報を得るために利用することができる。
また、その際、前記光電子増倍管19の特性としての2種類の異なる増倍率を設定可能な装置であって、その増倍率の変更のたびに、前記第1の蛍光物質から電気信号を得るようにするならば、1の光電子増倍管19によって、特定した測定対象としての第1の蛍光物質についての電気信号を得ることができる。
さらに、前記ハーフミラー31をさらに除去し、また、前記695/55バンドパスフィルタ29および前記ロングパスフィルタ30を着脱自在に設けるようにすれば、該フィルタ29,30の対を脱着した場合には、基体11自体を測定対象とし、前記フィルタ29,30を装着した場合には、第1の蛍光物質を測定対象とした場合に、1の前記光電子増倍管19によって対応することができる。
以上説明した各フィルタは、各測定対象、例えば、第1の蛍光物質、第2の蛍光物質及び基体11自体に対する光抽出部に相当する。
続いて、本実施の形態に係る光情報読取装置1の動作について以下に説明する。
検査の内容に応じた構造が既知の予め定めた種類の生体物質を、予め紐状の前記基体11の予め定めた位置に固定して配列しておく。例えば、18種類の生物から抽出された18種類の未知の塩基配列をもつ18種類の目的生体物質の塩基配列を決定する検査の場合には、前記基体11には、前記生体物質として、例えば、一定の長さで種々の塩基配列をもつ既知のオリゴヌクレオチドを前記基体11に固定しておく。
このようにして生体物質が配列された前記基体11を、6個の前記ピペットチップ2の各々に前記紐状の基体11を巻装したコア12を該ピペットチップ2内で固定した状態で収容した後、6個の該ピペットチップ2を6連の前記ノズル5の各先端部に嵌合させて装着する。一方、前記作業用プレート6上には、複数の6連のカセット状容器やマイクロプレートを用意しておき、前記18種類の目的生体物質であって、前記第1の蛍光物質Cy5と第2の蛍光物質Cy3、さらに必要ならば別種類の蛍光物質を用いて、同一のピペットチップ2について重複しないようにして、所定の量比を持つように結合して18種類を識別可能なように標識化したものを各容器に3種類ずつ含有するように懸濁した溶液を収容しておく。なお、各容器の開口は、フィルムで被覆しておいて、前記穿孔用ピン63で穿孔するようにしても良い。また、該溶液には、前記溶液中の目的生体物質と基体11上に固定した生体物質とのリガーゼによる結合を促進するのに適当な試薬が混合されている。その他の容器には、洗浄液や測定用液等を収容しておく。
次に、機構部4に設けたXY軸移動部(図示せず)によって、前記ノズル5に装着した該ピペットチップ2を移動させて、6連のピペットチップ2を6連の容器位置にまで移動させ、Z軸移動部によってピペットチップ2の先端を容器内に挿入して、標識化した前記目的生体物質が懸濁する溶液を前記圧力調節手段を用いて吸引して、前記ピペットチップ2の太径部13内に収容された基体11上の生体物質と接触させて反応を促す。所定時間経過後、前記太径部13にまで吸引させた前記溶液を前記容器内に吐出した後、前記Z軸移動部及びXY軸移動部によって、洗浄液が収容された容器位置にまで6連の前記ピペットチップ2を移動させて、洗浄液の吸引吐出を繰り返すことにより、前記基体11に結合していない目的生体物質を除去する。
次に、前記ピペットチップ2を前記測定用液が収容されている容器にまで移動させ、該ピペットチップ2内に測定用液を吸引する。ここで、測定用液とは、前記透光性のあるピペットチップ2の外部から、基体11を光学的に測定する場合に、該基体11と該基体11が収容されているピペットチップ2との間に該液で満たすことによって、水滴や泡を除去し、また、ピペットチップ2との間の屈折率の差異を最小にして、ピペットチップ2とその内部空間との間の光の屈折や反射等による光情報の不明瞭化を防止することができる。
該ピペットチップ2は、前記XY軸移動部によって、前記作業用プレート6の孔部7の位置にまで移動させた後、Z軸移動部によって、6連の該ピペットチップ2は、該孔部7を貫通して前記筐体8内に挿入するように一斉に下降させる。
すると、図2に示すように、6連の該ピペットチップ2の各細径部14は、前記軸受部71の前記受止め用管69に挿入され、前記受止め用管69とピペットチップ2の軸心が一致した状態で、該ピペットチップ2の錐状部68の外周と接触する。その際、6連の前記ピペットチップ2のうちの1のピペットチップ2について、前記ヘッド80に設けられた位置決め用ローラ81が該ピペットチップ2の太径部13の側面に接触した状態で、前記ヘッド80の受光側の端面のうちの受光端部分が、該ピペットチップ2に収容されている基体11が巻装されている部分の下端の直ぐ下に位置するまで、前記Z軸移動部によって、該ピペットチップ2を下降させる。その状態は、前記マイクロフォトセンサ77が前記光遮断板76によって遮られることによって検知される。
次に、前記ヘッド80の角度(仰角または伏角)の調節を前記調節ネジ84によって手動で行い、軸心からX方向またはY方向への調節を、前記XY軸直動部85を手動で調節する。その際、該ヘッド80の前記基体11に対する受光方向および開口角は、該ヘッド80の前記基体11に対する照射方向および照射角、および前記基体11の形状に基づいて定まる励起用光の入射および反射経路外で、受光するようにする。そのためには、前記ヘッド80の水平面内で基体11の法線方向に対して所定角度(例えば、開口角度以上の角度)をなすように設定する。
次に、前記機構部4の回転走査部によって、該当するピペットチップ2を回転させながら、前記Z軸移動部によって、同時に、該ピペットチップ2を徐々に下降させることで走査が行われ、同時に、前記ヘッド80によって、前記基体11からの光を受光し、または該基体11に対してレーザ光を照射することになる。その際、該ヘッド80と前記ピペットチップ2の太径部13とは、前記位置決め用ローラ81によって接触しているので、該ピペットチップ2の微妙な動きが前記ヘッド80に伝達されて、ピペットチップ2と前記ヘッド80とが連動することになり、ヘッド80と基体11との間の相対的な位置ずれを最小限な状態で走査されることなる。すなわち、前記基体11を収容したピペットチップ2の固有振動数と前記ヘッド80の持つ固有振動数に基づいた振動については、その一方を他方に追従させることによって、その両者の振動数の差を所定値以下にすることができる。その光情報については、前記コネクタ82を経て、前記光ファイバ16によって、前記第1の光学系装置18、または前記第2(3)の光学系装置44(45)に入力されることになる。
1のピペットチップ2についての光学測定が終了すると、前記X軸直動部92を用いて、前記ヘッド80等を、X軸に沿って6連のピペットチップ2が配列されているうちの次のピペットチップ2の位置にまで移動させて、同様な処理を6連のピペットチップ2の全てについて行うことになる。
次に、前記光情報読取装置1に前記第2の光学系装置44を用いた場合について、光情報の処理について図4および図6に基づいて説明する。
前記走査部によって、前記ピペットチップ2を回転させながら下降させることによって、前記ヘッド80が、前記基体11にほぼ沿って相対的に動くことになる。その際、前記レーザ光源23からは、532nmを中心の波長とする励起用のレーザ光が前記ヘッド80を通して照射され、前記レーザ光源24からは、635nmを中心の波長とする励起用のレーザ光が前記ヘッド80を通して照射される。
該励起用光が照射されると、前記基体11に前記第1の蛍光物質または第2の蛍光物質があった場合には、励起された蛍光が前記ヘッド80を有する受光端部15、光ファイバ16、及びコネクタ17を介して前記光学系装置44内に入力する。また、該蛍光物質がない場合においても、該励起用光は前記基体11で反射した光も前記受光端部15及び光ファイバ16等を介して前記光学系装置44内に入力する。これらの光のうち、第1の蛍光物質Cy5による蛍光(例えば、最大吸収で649nm,50%の吸収で629−669nm)の一部の波長領域については、前記二色性ロングパスフィルタ26,27,28を透過する。これらの透過範囲が、650nm以上であって、前記蛍光の波長領域の一部と重なるからである。本光学系装置44においては、さらに695/55バンドパスフィルタ29、ロングパスフィルタ30を設けている。該フィルタ29,30による波長範囲は、667.5nm以上722.5nm未満の範囲であるので、前記二色性ロングパスフィルタ26,27,28を透過した蛍光の波長領域をさらに絞り込むことができるが、このフィルタ29,30によって、前記光電子増倍管19,21へ入力しようとする、光量をも制限することができる。特に、前記レーザ光源24から前記基体11に照射されて、反射して前記二色性ロングパスフィルタ26,27,28を透過した635nmの漏れた励起用光の入力を該フィルタ29,30によって制限することができる。
これによって、特定した測定対象である第1の蛍光物質Cy5からの蛍光については、光電子増倍管19,21の双方に入力させることができる。その際、光電子増倍管19、21の各特性、すなわち増倍率を異ならせることによって、該第1の蛍光物質の光量が様々であっても、そのどちらかの光電子増倍管19,21で、飽和することなく増幅して該当する電気信号を出力することができる。
一方、第2の蛍光物質Cy3については、特定した測定対象ではなく、通常の測定対象であり、1の光電子増倍管22によって測定される。フィルタ34,35は、前記レーザ光源23から前記基体11に照射されて反射した532nmの励起用光が、前記光電子増倍管22に入力する光量を制限することができる。
さらに、本実施の形態に係る第2の光学系装置44にあっては、基体11自体を測定対象として測定する。該測定対象については、前記レーザ光源23から出力された523nmの励起用光が基体11で反射して、前記フィルタ26を透過し、フィルタ27で反射した、波長560nm以上で、610nm未満の波長の光を前記光電子増倍管20に入力させて電気信号に変換する。
続いて、該光学系装置44で得られた受光した光を変換した各電気信号の処理について説明する。図6(a)に示すように、ステップS1で、前記光学系装置44が受光した光を前記各光電子増倍管19,20,21,22で電気信号に変換する。
ステップS2で、該各光電子増倍管19,20,21,22で変換した電気信号は、AD変換器(図示せず)によってディジタル信号に変換され、ステップS3で、該ディジタル信号は、特定した測定対象の前記情報処理装置40のメモリ領域に一旦格納する。
ステップS4で、前記情報処理装置40は、前記メモリから前記電気信号のレベル、該電気信号が出力された光電子増倍管19,20,21,22の識別情報、電気信号の取得時間、および前記走査部からの信号に基づく走査位置情報に基づいて、演算によりその標識位置および基体11の形状を特定する。
ステップS5で、前記標識位置及び基体11の形状に基づいて、前記基体11に関するデータに基づいて基体11に関する光情報を得る。図6(b)には、このようにして得られた光情報を示す。ここで、符号98は基体11を示し、符号99は、基体11の基準位置を示すマーカーであり、符号100は、第1の蛍光物質からなる光標識要素を示すものである。なお、走査の所定経路が、前記基体11に沿って行われていると判断した場合には、光標識要素が結合している生体物質の特定を、その走査の順番に基づいて得ることが可能である。
図7は、他の実施の形態に係る光情報読取装置における基体11と受光端部101との関係を示す。
該光情報読取装置においては、光ファイバを有する前記受光端部101の先端部102が、前記基体11を収容する容器103の壁部を貫通して、該容器103の内部に設けられているものである。この例では、前記受光端部101は、静止している該容器103に固定されている。前記基体11は、コア104に巻装されており、該コア104は同心に設けられた回転移動軸105に取り付けられている。該回転移動軸105は、該軸心の周りに回転しながら、上下方向に沿って移動することになる。本実施の形態においては、該回転移動軸105が前記走査部に相当する。
この場合には、前記受光端部は101は、前記容器103の内部に設けられているので、該容器103の壁部を通さずに済むので、基体11からの光をより明瞭に得ることができる。
以上説明した実施の形態は、本発明をより良く理解させるために具体的に説明したものであって、別形態を制限するものではない。したがって、発明の主旨を変更しない範囲で変更可能である。例えば、前記ノズル従って、ピペットチップの本数は、6の場合に限られず、その他の本数、例えば、1、2、3、4、5、7、8等であっても良い。また、使用した光電子増倍管についても説明した個数に限られるものではない。また、光標識要素として、特定の蛍光物質についてのみ説明したが、その他の蛍光物質、例えば、FITC(フルオレッセイン イソチオシアネート)、ローダミン、イソチオシアネート、IRD40、(Cy3若しくはCy5)等の有機物質またはユウロピウム錯体等の長寿命の蛍光を発する無機物質であっても良い。また、光標識要素は、蛍光の場合のみならず、燐光、化学発光の場合等であっても良い。
また、以上説明した3種類の前記光学系装置は、各々別個に設けたように説明したが、1種類の光学系装置を用いて、前記光学系部品を外部から除去、装着または移動可能に設けることによって他種類の光学系装置を実現するようにしても良い。さらに、受光端部を複数個設け、各受光端部ごとに異なる光学系装置を対応させるようにしても良い。
また、基体は、紐状の場合のみを説明したが、他の形状、例えば、プレート状、薄膜状であっても良い。以上の例では、生体物質として、オリゴヌクレオチドについてのみ説明したが、この場合に限られず、例えば、他の遺伝物質のみならず、免疫物質や、アミノ酸、蛋白質、糖鎖等であっても良い。
また、以上の各構成要素、部品、装置等、例えば、ノズル、ピペットチップ、受光端部、光電子増倍管、レンズ、フィルタ、機構部、光情報読取部等は、適当に変形または変更しながら任意に組み合わせることができる。
本発明は、遺伝物質、免疫物質、タンパク質、アミノ酸、ホルモン、脂肪、糖鎖等の生体物質に関する検査、解析、分析が要求される分野、例えば、工学分野、食品、農産、畜産、水産加工等の分野、製薬、生化学、衛生、保健、免疫、疾病、医療の分野、化学若しくは生物学等の分野等、あらゆる分野に関係するものである。
符号の説明
1 光情報読取装置
2 ピペットチップ
3 光情報読取部
4 機構部
5 ノズル
6 作業用プレート
7 孔部
8 筐体
11 基体
12,104 コア
13 太径部
15,101 受光端部(ヘッド80)
16 光ファイバ(光情報測定部)
18,44,45 第1、2、3の光学系装置(光情報測定部)
43 光情報読取用機構部
50 支持部

Claims (20)

  1. 複数種類の光標識要素の有無もしくは程度の組合せによって標識化された1または2以上の生体物質を1または2以上の異なる固定位置に固定した基体と、
    前記基体からの光を受光可能な1または2以上の受光端部と、
    前記基体の特定の測定対象については、前記受光端部で受光した光を、該測定対象に応じて定まる異なった各特性により光電変換する光電素子によって変換した電気信号に基づいて光情報を得る光情報測定部と、
    前記基体と受光端部とを相対的に動かして、前記基体を走査する走査部とを有するとともに、
    前記光情報測定部は相異なる各特性を持つ複数の光電素子と、前記受光端部からの光のうち前記測定対象に応じた波長領域をもつ光を抽出して前記各光電素子に分配する光分配部と、光導波路と、を有する光情報読取装置。
  2. 前記光電素子は、前記基体の特定の測定対象に応じた相異なる増倍率が設定された複数の光電子増倍管である請求項1に記載の光情報読取装置。
  3. 前記光情報測定部は、前記受光端部と前記光導波路を介して着脱自在に接続するコネクタと、
    前記測定対象に応じた波長領域を抽出する光抽出部とを有し、
    前記光電素子は、前記基体の測定対象に応じた増倍率が設定された2以上の光電子増倍管である請求項1に記載の光情報読取装置。
  4. 前記光標識要素は、励起用光を照射することによって発光するものを含み、前記光情報測定部は、前記励起用光を前記基体に照射する照射部を有する請求項1に記載の光情報読取装置。
  5. 前記受光端部の前記基体に対する受光方向および開口角は、前記照射部の前記基体に対する照射方向および照射角、および前記基体の形状に基いて定まる前記励起用光の入射および反射経路外で、前記受光端部が前記基体からの光を受光するように定めた請求項4に記載の光情報読取装置。
  6. 前記光情報測定部は、前記受光端部が受光した前記測定対象として前記基体上の前記光標識要素および前記基体自体の双方からの光に基づいて、前記基体の形状を認識する請求項1に記載の光情報読取装置。
  7. 前記基体、または、前記受光端部が、基体の中心を通る軸に対して相対的に回転し、かつ、その軸方向に相対的に移動することで、前記光情報測定部が測定すべき測定領域を螺旋状に走査して、光情報を得る請求項1に記載の光情報読取装置。
  8. 前記走査部は指定された基体の形状に基づいて、基体を走査するとともに、前記光情報測定部は、指定された基体の形状に基づいて前記光情報を得る請求項1に記載の光情報読取装置。
  9. 前記走査部は、前記基体上に設定した所定経路に沿って走査し、前記光情報測定部は、その走査した前記光標識要素をその走査の順番に基づいて光情報を得る請求項8に記載の光情報読取装置。
  10. 複数種類の光標識要素の有無もしくは程度の組合せによって標識化された1または2以上の生体物質を1または2以上の異なる固定位置に固定した基体と、
    前記基体からの光を受光可能な1または2以上の受光端部と、
    前記基体の特定の測定対象については、前記受光端部で受光した光を、該測定対象に応じて定まる異なった各特性により光電変換する光電素子によって変換した電気信号に基づいて光情報を得る光情報測定部と、
    前記基体と受光端部とを相対的に動かして、前記基体を走査する走査部とを有するとともに、
    前記光情報測定部は光導波路を有し、
    前記走査部は、前記基体のもつ固有振動数と前記受光端部のもつ固有振動数に基づいた振動を、前記基体または受光端部の一方に加えて、その一方を他方に追従させて、その両者の振動数の差が所定値以下とする連動部を有する光情報読取装置。
  11. 前記連動部は、前記基体と前記受光端部とに接触する位置決め用部品を有する請求0に記載の光情報読取装置。
  12. 前記位置決め用部品は、回転体を有する請求1に記載の光情報読取装置。
  13. 前記光情報測定部は、前記基体と前記生体物質の光標識要素を個別に測定する請求項1に記載の光情報読取装置。
  14. 前記照射部の光軸と、基体上の測定位置の法線とのなす照射角が、前記受光端部の基体上の測定位置に対する開口角よりも大きい請求項4に記載の光情報読取装置。
  15. 前記基体を液体とともに収容する容器を有し、前記受光端部による前記基体からの光の受光は、前記基体が液体とともに前記容器に収容された状態で行われる請求項1に記載の光情報読取装置。
  16. 前記光情報測定部と前記光標識要素または基体との間の光は前記容器を透過せずに伝達される請求5に記載の光情報読取装置。
  17. 前記照射部は、前記受光端部の光学系を用いて光を照射する請求項4に記載の光情報読取装置。
  18. 前記基体上の各生体物質の固定位置は、所定の位置的な規則で配置されている請求項1に記載の光情報読取装置。
  19. 前記光情報測定部の前記光導波路は前記受光端部との間で光を伝導する光ファイバである請求項1に記載の光情報読取装置。
  20. 複数種類の光標識要素の有無もしくは程度の組合せによって標識化された1または2以上の生体物質を1または2以上の異なる固定位置に固定した基体と、
    前記基体からの光を受光可能な1または2以上の受光端部と、
    前記基体の特定の測定対象については、前記受光端部で受光した光を、該測定対象に応じて定まる異なった各特性により光電変換する光電素子によって変換した電気信号に基づいて光情報を得る光情報測定部と、
    前記基体と受光端部とを相対的に動かして、前記基体を走査する走査部とを有するとともに、前記光情報測定部は光導波路を有するとともに、
    前記基体を液体とともに収容する容器を有し、前記受光端部による前記基体からの光の受光は、前記基体が液体とともに前記容器に収容された状態で行われ、
    前記受光端部は前記容器を貫いて、その容器内またはその容器の内壁面に達するように設けた光情報読取装置。
JP2006512837A 2004-04-30 2005-04-28 光情報読取装置 Expired - Fee Related JP4739190B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006512837A JP4739190B2 (ja) 2004-04-30 2005-04-28 光情報読取装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004136239 2004-04-30
JP2004136239 2004-04-30
JP2006512837A JP4739190B2 (ja) 2004-04-30 2005-04-28 光情報読取装置
PCT/JP2005/008155 WO2005106433A1 (ja) 2004-04-30 2005-04-28 光情報読取装置

Publications (2)

Publication Number Publication Date
JPWO2005106433A1 JPWO2005106433A1 (ja) 2008-07-31
JP4739190B2 true JP4739190B2 (ja) 2011-08-03

Family

ID=35241780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006512837A Expired - Fee Related JP4739190B2 (ja) 2004-04-30 2005-04-28 光情報読取装置

Country Status (5)

Country Link
US (1) US7667184B2 (ja)
EP (1) EP1742040A4 (ja)
JP (1) JP4739190B2 (ja)
CN (1) CN100587474C (ja)
WO (1) WO2005106433A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8552336B2 (en) * 2008-12-23 2013-10-08 Triune Ip Llc Micro matrix data marking
US9632102B2 (en) 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis
US8475739B2 (en) 2011-09-25 2013-07-02 Theranos, Inc. Systems and methods for fluid handling
US9664702B2 (en) 2011-09-25 2017-05-30 Theranos, Inc. Fluid handling apparatus and configurations
US20140170735A1 (en) 2011-09-25 2014-06-19 Elizabeth A. Holmes Systems and methods for multi-analysis
US9810704B2 (en) 2013-02-18 2017-11-07 Theranos, Inc. Systems and methods for multi-analysis
US10012664B2 (en) 2011-09-25 2018-07-03 Theranos Ip Company, Llc Systems and methods for fluid and component handling
SG11201500343VA (en) * 2012-07-18 2015-02-27 Theranos Inc High speed, compact centrifuge for use with small sample volumes
WO2020157789A1 (ja) * 2019-01-28 2020-08-06 株式会社島津製作所 分析装置
DE102019106194B4 (de) * 2019-03-12 2020-12-03 Surflay Nanotec Gmbh Vorrichtung zur spektroskopischen Bestimmung der Bindungskinetik eines Analyten

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159407A (ja) * 1993-12-06 1995-06-23 Olympus Optical Co Ltd 光学的免疫測定方法及びこれに用いられる免疫測定装置
JP2001041891A (ja) * 1999-07-30 2001-02-16 Shimadzu Corp 蛍光検出方法及び装置
JP2002243641A (ja) * 2001-02-09 2002-08-28 Inst Of Physical & Chemical Res 生体機能測定装置
JP2003107083A (ja) * 2001-09-28 2003-04-09 Olympus Optical Co Ltd 棒状担体およびこれを具備するシリンダー反応容器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744101A (en) 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
GB2281966B (en) * 1993-09-07 1997-06-04 Biotrace Ltd Bio-luminescence monitoring method
US5445994A (en) 1994-04-11 1995-08-29 Micron Technology, Inc. Method for forming custom planar metal bonding pad connectors for semiconductor dice
US6043506A (en) * 1997-08-13 2000-03-28 Bio-Rad Laboratories, Inc. Multi parameter scanner
JP4415093B2 (ja) 1998-07-22 2010-02-17 独立行政法人産業技術総合研究所 標識化複合体並びにその製造方法及び使用方法
JP3330929B2 (ja) * 1999-01-25 2002-10-07 浜松ホトニクス株式会社 ピペットアダプタ、吸光度測定用ピペット、チップ、吸光度測定装置及び吸光度測定方法
US6583424B2 (en) * 2001-06-25 2003-06-24 Agilent Technologies Inc. Scanning system with calibrated detection and method
US6806460B2 (en) * 2002-05-31 2004-10-19 Agilent Technologies, Inc. Fluorescence detection with increased dynamic range
US7013220B2 (en) * 2002-09-30 2006-03-14 Agilent Technologies, Inc. Biopolymer array scanner with real-time saturation detection
US6853454B1 (en) * 2004-01-15 2005-02-08 Alpha Innotech Corporation Optical analysis systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159407A (ja) * 1993-12-06 1995-06-23 Olympus Optical Co Ltd 光学的免疫測定方法及びこれに用いられる免疫測定装置
JP2001041891A (ja) * 1999-07-30 2001-02-16 Shimadzu Corp 蛍光検出方法及び装置
JP2002243641A (ja) * 2001-02-09 2002-08-28 Inst Of Physical & Chemical Res 生体機能測定装置
JP2003107083A (ja) * 2001-09-28 2003-04-09 Olympus Optical Co Ltd 棒状担体およびこれを具備するシリンダー反応容器

Also Published As

Publication number Publication date
US7667184B2 (en) 2010-02-23
EP1742040A4 (en) 2011-08-17
EP1742040A1 (en) 2007-01-10
CN100587474C (zh) 2010-02-03
US20070278383A1 (en) 2007-12-06
JPWO2005106433A1 (ja) 2008-07-31
CN1977157A (zh) 2007-06-06
WO2005106433A1 (ja) 2005-11-10

Similar Documents

Publication Publication Date Title
JP4739190B2 (ja) 光情報読取装置
JP3429282B2 (ja) 自動化されたシステム、及びサンプルの分析方法
EP1359420B1 (en) Equipment and method for measuring storage reaction
US20050221279A1 (en) Method for creating chemical sensors using contact-based microdispensing technology
US9523640B2 (en) Method of fluorescent measurement of samples, and devices therefrom
CN107923839A (zh) 用于测试装置、具有集成的反应和检测机构的站
CN101287980A (zh) 用于光学分析物质的系统
KR20110126541A (ko) 하나 이상의 재료의 측정을 수행하기 위한 시스템 및 방법
WO2000068668A1 (en) Method and device for fluorescence measurement
EP3779441B1 (en) Automated liquid-phase immunoassay apparatus and method therefor
JP2007285999A (ja) 光測定装置
AU2002336771C1 (en) Imaging of microarrays using fiber optic exciter
JP2006337245A (ja) 蛍光読み取り装置
US10837907B2 (en) Multiple reaction parallel measurement apparatus and method for the same
AU2002336771A1 (en) Imaging of microarrays using fiber optic exciter
JP7206570B2 (ja) 分析装置
CN100414288C (zh) 生物芯片使用的毫米级微型激光诱导荧光检测仪
WO2013031141A1 (ja) 分子検出装置、分子検出方法及び分子検出用カートリッジ
KR102698118B1 (ko) 자성비드를 이용한 액상 면역반응 분석방법
CA2685574A1 (en) Receptacle and method for the detection of fluorescence

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080424

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R150 Certificate of patent or registration of utility model

Ref document number: 4739190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees