JP4736893B2 - Method for producing oil-in-water emulsion - Google Patents

Method for producing oil-in-water emulsion Download PDF

Info

Publication number
JP4736893B2
JP4736893B2 JP2006090269A JP2006090269A JP4736893B2 JP 4736893 B2 JP4736893 B2 JP 4736893B2 JP 2006090269 A JP2006090269 A JP 2006090269A JP 2006090269 A JP2006090269 A JP 2006090269A JP 4736893 B2 JP4736893 B2 JP 4736893B2
Authority
JP
Japan
Prior art keywords
oil
emulsion
water emulsion
particle size
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006090269A
Other languages
Japanese (ja)
Other versions
JP2006304782A (en
Inventor
俊輔 久多里
崇至 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2006090269A priority Critical patent/JP4736893B2/en
Publication of JP2006304782A publication Critical patent/JP2006304782A/en
Application granted granted Critical
Publication of JP4736893B2 publication Critical patent/JP4736893B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Dairy Products (AREA)
  • Edible Oils And Fats (AREA)

Description

本発明は、例えば、ケーキやデザート等の製造に使用されるホイップクリーム、練り込み用クリームのような、ミセル状蛋白質を含有する水中油型乳化物の製造方法に関する。   The present invention relates to a method for producing an oil-in-water emulsion containing a micellar protein such as whipped cream and cream for kneading used in the production of cakes, desserts and the like.

ケーキやデザートの製造に使用されるホイップクリームや練り込み用クリームに代表されるミセル状蛋白質を含有する水中油型乳化物は、通常、複数の乳化剤や蛋白溶融塩のような無機化合物を添加し、予備乳化、均質化、殺菌、均質化、冷却、エージングの工程を経て製造される。水中油型乳化物は、油滴の粒径が大きいと、保存中や輸送中に油水分離が起こりやすく(以下、「クリーミング」という。)、保存安定性に問題がある。そこで、前記均質化処理により、最終メジアン径が5.0μm以下となるように油滴の粒径を小さくすることで、クリーミングを防止し、長期保存安定性を確保している。   Oil-in-water emulsions containing micellar proteins such as whipped creams and creams used in the manufacture of cakes and desserts usually contain multiple emulsifiers and inorganic compounds such as protein melts. , Pre-emulsification, homogenization, sterilization, homogenization, cooling, and aging. In the oil-in-water emulsion, when the particle size of oil droplets is large, oil-water separation is likely to occur during storage or transportation (hereinafter referred to as “creaming”), and there is a problem in storage stability. Therefore, by the homogenization process, the particle size of the oil droplet is reduced so that the final median diameter is 5.0 μm or less, thereby preventing creaming and ensuring long-term storage stability.

前記のような油滴を小さくするための水中油型乳化物の均質化処理には、高圧ホモジナイザーが用いられる場合が多い。しかし、前記クリーム等の、ミセル状蛋白質を含有する水中油型乳化物を、高圧ホモジナイザーによって均質化処理して油滴の粒径を一度にあまりに小さくすると、ミセル状蛋白質が油滴(脂肪球)の乳化に影響を及ぼし、均質化処理直後に油滴が凝集し、乳化物の増粘が起こるという問題があり、良好な乳化物を得ることは困難であった。このため、ミセル状蛋白質を含有し、油滴の最終メジアン径が5.0μm以下と小さく、保存安定性のよい水中油型乳化物を製造するには、前記のような乳化剤や蛋白溶融塩、pH調整剤を添加することが必要とされている。   A high-pressure homogenizer is often used for the homogenization treatment of the oil-in-water emulsion for reducing the oil droplets as described above. However, if the oil-in-water emulsion containing micellar protein, such as the above cream, is homogenized by a high-pressure homogenizer and the particle size of the oil droplets is made too small at once, the micellar protein becomes oil droplets (fat globules) It has been difficult to obtain a good emulsion because the oil droplets aggregated immediately after the homogenization treatment and the viscosity of the emulsion increased. Therefore, in order to produce an oil-in-water emulsion containing a micellar protein and having a final median diameter of oil droplets as small as 5.0 μm or less and having good storage stability, There is a need to add pH adjusters.

前記乳化剤としては、例えば蔗糖脂肪酸エステル、レシチン、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、有機酸脂肪酸エステル等が使用されている。また、前記蛋白溶融塩としては、リン酸塩やクエン酸塩等が使用されている。更に、前記pH調整剤としては、コハク酸、乳酸、リン酸、クエン酸、炭酸、酢酸等の酸やこれらの酸の塩類が使用されている。しかし、これらの乳化剤や蛋白溶融塩等の使用は、それら自体の味による風味の損失といった欠点や、昨今の食品に対する安全意識の高まりによる嫌悪感があることから、これらを添加しない水中油型乳化物が切望されている。   Examples of the emulsifier include sucrose fatty acid ester, lecithin, glycerin fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester, and organic acid fatty acid ester. As the protein molten salt, phosphate, citrate and the like are used. Further, as the pH adjuster, acids such as succinic acid, lactic acid, phosphoric acid, citric acid, carbonic acid and acetic acid and salts of these acids are used. However, the use of these emulsifiers and protein molten salts has disadvantages such as loss of flavor due to their own taste, and aversion due to the recent increase in safety awareness of foods. Things are longing for.

また、乳等省令により「生乳、牛乳または、特別牛乳から乳脂肪分以外の成分を取り除いたもの」として定義されるクリーム(以下、「フレッシュクリーム」という。)は、通常、加温、分離、殺菌、均質化、冷却、エージング、充填の各工程を経て製造される。フレッシュクリームの油滴(脂肪球)の粒径はメジアン径3μm程度であるが、このフレッシュクリームの場合も、保存中や輸送中のクリーミングを防止して長期保存安定性を確保し、また固化を抑制するためには、更に脂肪球の粒径を小さくすることが望ましい。しかし、フレッシュクリームの場合には、前記のような定義があるため、乳化剤等の添加剤は一切使用することができない。このため、フレッシュクリームの均質化に際しては、低圧力で処理され、結局、脂肪球の粒径を十分に小さくすることはできない。このように低圧力で均質化され、脂肪球の粒径が大きいフレッシュクリームは、保存中や輸送中にクリーミングを起こし、表層が固化しやすい性質を持っている。そのため、賞味期限が短く設定されている。   In addition, a cream (hereinafter referred to as “fresh cream”) defined as “raw milk, milk or special milk from which components other than milk fat have been removed” by a ministerial ordinance such as milk is usually heated, separated, Manufactured through sterilization, homogenization, cooling, aging and filling processes. Fresh cream oil droplets (fat spheres) have a median diameter of about 3 μm. In the case of this fresh cream, creaming during storage and transportation is prevented to ensure long-term storage stability and solidification. In order to suppress this, it is desirable to further reduce the particle size of the fat globules. However, in the case of fresh cream, since there is the definition as described above, additives such as emulsifiers cannot be used at all. For this reason, when homogenizing the fresh cream, it is processed at a low pressure, and the particle diameter of the fat globules cannot be reduced sufficiently. Such a fresh cream that is homogenized at a low pressure and has a large fat globule particle size has the property of causing creaming during storage and transportation, and the surface layer is easily solidified. Therefore, the expiration date is set short.

乳化剤や蛋白溶融塩等を使用していない水中油型乳化物に関しては、カルシウム含量を低減させた乳成分を使用する方法(特許文献1)がある。しかし、この方法では、乳成分中のカルシウムを低減させるためにイオン交換カラムや電気透析装置等を利用しなければならず、工業的生産において効率的でなく、実施が容易ではないといった欠点があった。また、卵黄油とカゼインの金属塩を併用する方法(特許文献2)や糖アルコールを使用する方法(特許文献3)がある。しかし、卵黄油・カゼインの金属塩・糖アルコールには、それぞれ特有の風味を有しており、それを使用した乳化物の風味も大きく影響されてしまうといった欠点があった。また、これらの方法は、前記フレッシュクリームには適用できない。
特開2000−333602号公報 特開平11−89531号公報 特開平10−304821号公報
Regarding an oil-in-water emulsion that does not use an emulsifier, a protein molten salt, or the like, there is a method of using a milk component with a reduced calcium content (Patent Document 1). However, this method requires the use of an ion exchange column, an electrodialyzer, or the like in order to reduce calcium in milk components, which is not efficient in industrial production and is not easy to implement. It was. In addition, there are a method of using egg yolk oil and a metal salt of casein in combination (Patent Document 2) and a method of using sugar alcohol (Patent Document 3). However, the egg yolk oil, the metal salt of casein, and the sugar alcohol each have a unique flavor, and the flavor of the emulsion using the same is greatly affected. Moreover, these methods cannot be applied to the fresh cream.
JP 2000-333602 A JP-A-11-89531 Japanese Patent Laid-Open No. 10-304821

本発明は、上記のような水中油型乳化物の製造における問題に鑑み、ミセル状蛋白質を含有し、油滴のメジアン径が5.0μm以下であって、長期保存安定性を有し、風味にも優れた水中油型乳化物を、リン酸塩やクエン酸塩等の蛋白溶融塩、乳化剤及びpH調整剤等を使用せずとも製造可能とし、また前記乳化剤等の添加剤を使用することのできないフレッシュクリームにおいても、そのような添加剤を使用せずとも、脂肪球の粒径をより小さくすることで、その保存安定性を向上させ、もって賞味期限の長いフレッシュクリームの製造を可能する、水中油型乳化物の製造方法を提供することを目的とする。   In view of the problems in the production of an oil-in-water emulsion as described above, the present invention contains a micellar protein, the median diameter of oil droplets is 5.0 μm or less, has long-term storage stability, and flavor. Oil-in-water emulsions that are also excellent without the use of protein melt salts such as phosphates and citrates, emulsifiers and pH adjusters, and the use of additives such as the above-mentioned emulsifiers Even in the case of fresh cream that cannot be used, the storage stability is improved by making the particle size of the fat globules smaller without using such additives, thereby enabling the production of fresh cream with a long shelf life. An object of the present invention is to provide a method for producing an oil-in-water emulsion.

上記の目的を達成してなる、本発明に係る水中油型乳化物の製造方法は、ミセル状蛋白質を含有し、油滴のメジアン径が0.3〜5.0μmであり、油脂含量が20〜60重量%の水中油型乳化物の製造方法であって、乳化剤、蛋白溶融塩及びpH調整剤を添加せず、処理直後に油滴の凝集、乳化物の増粘現象が起こらない、又は処理直後に凝集、増粘現象が起こったとしても、次の処理が実施できる程度の粘度となる圧力設定で、原料となる水中油型乳化物に対して、複数回、均質化処理を繰り返すことにより、原料となる水中油型乳化物に含まれる油滴のメジアン径を段階的に小さくしてゆき、該油滴の最終メジアン径を0.3〜5.0μmの範囲の所望の粒径とすることを特徴とする。 The method for producing an oil-in-water emulsion according to the present invention, which achieves the above object, contains a micellar protein, the median diameter of oil droplets is 0.3 to 5.0 μm, and the fat content is 20 A method for producing an oil-in-water emulsion of ˜60% by weight without adding an emulsifier, a protein molten salt and a pH adjuster, and agglomeration of oil droplets and a thickening phenomenon of the emulsion do not occur immediately after the treatment, or Even if agglomeration or thickening phenomenon occurs immediately after the treatment, the homogenization treatment is repeated multiple times for the oil-in-water emulsion used as a raw material at a pressure setting that allows the next treatment to be performed. Thus, the median diameter of the oil droplets contained in the oil-in-water emulsion as a raw material is gradually reduced, and the final median diameter of the oil droplets is set to a desired particle size in the range of 0.3 to 5.0 μm. It is characterized by doing.

前記の場合、油滴のメジアン径が所望の粒径になるまで、圧力設定を順次増大して均質化処理を繰り返すことが好ましい。   In the above case, it is preferable to repeat the homogenization by sequentially increasing the pressure setting until the median diameter of the oil droplets reaches a desired particle diameter.

本発明で水中油型乳化物を製造する際の原料としては、必須成分として、少なくとも油脂及びミセル状蛋白と水を予備乳化して調製した水中油型乳化物や、フレッシュクリームを用いることができる。   As a raw material when producing an oil-in-water emulsion in the present invention, an oil-in-water emulsion prepared by pre-emulsifying at least oil and micellar protein and water or a fresh cream can be used as an essential component. .

原料となる水中油型乳化物が、フレッシュクリームである場合には、油滴(脂肪球)の最終メジアン径が3.0μm以下になるまで均質化処理を繰り返すことが好ましい。   When the oil-in-water emulsion used as a raw material is a fresh cream, it is preferable to repeat the homogenization treatment until the final median diameter of oil droplets (fatty spheres) is 3.0 μm or less.

以上にしてなる本発明の水中油型乳化物の製造方法によれば、リン酸塩やクエン酸塩等の蛋白溶融塩、乳化剤及びpH調整剤等を使用しなくても、油滴の最終メジアン径が0.3〜5.0μmでミセル状蛋白質を含有する水中油型乳化物を製造することができ、長期保存安定性を有し、かつ風味のよい水中油型乳化物が得られる。   According to the method for producing an oil-in-water emulsion of the present invention as described above, the final median of oil droplets can be obtained without using protein molten salts such as phosphates and citrates, emulsifiers and pH adjusters. An oil-in-water emulsion having a diameter of 0.3 to 5.0 μm and containing a micellar protein can be produced, and an oil-in-water emulsion having a long-term storage stability and a good flavor is obtained.

また、フレッシュクリームを原料とした場合にも、油滴(脂肪球)の最終メジアン径を従来に較べて小さくすることができ、保存安定性に優れ、従来に較べて賞味期限の長いフレッシュクリームを製造することができる。   In addition, when fresh cream is used as a raw material, the final median diameter of oil droplets (fat globules) can be reduced compared to conventional products, and it has excellent storage stability and has a longer shelf life than conventional products. Can be manufactured.

本発明においては、前記のような乳化剤や蛋白溶融塩、pH調整剤の添加を排除するものではない。しかし前記のように、本発明によれば、これら添加剤を使用せずとも水中油型乳化物やフレッシュクリームの油滴や脂肪球を段階的に小さくすることで長期保存安定性を確保することができる。従って、これら風味に影響を与える添加剤を全く使用しないことが、得られる水中油型乳化物やフレッシュクリームの風味の点でも好ましい態様である。   In the present invention, addition of the above-mentioned emulsifier, protein molten salt, and pH adjuster is not excluded. However, as described above, according to the present invention, long-term storage stability can be ensured by gradually reducing oil droplets and fat globules of oil-in-water emulsions and fresh creams without using these additives. Can do. Therefore, it is a preferable aspect not to use any additive that affects the flavor from the viewpoint of the flavor of the resulting oil-in-water emulsion or fresh cream.

以下、本発明につき、さらに詳細に説明する。
本発明における水中油型乳化物とは、水中に油滴が分散するO/W型のエマルションであり、必須成分としては、油脂、水、蛋白が挙げられる。他の成分については、何ら限定されない。また、乳等省令により「生乳、牛乳または、特別牛乳から乳脂肪分以外の成分を取り除いたもの」と定義されるフレッシュクリームも、本発明における水中油型乳化物に含まれる。
Hereinafter, the present invention will be described in more detail.
The oil-in-water emulsion in the present invention is an O / W emulsion in which oil droplets are dispersed in water, and essential components include fats and oils, water, and protein. The other components are not limited at all. In addition, a fresh cream defined as “raw milk, milk, or special milk from which components other than milk fat have been removed” according to a ministerial ordinance such as milk is also included in the oil-in-water emulsion of the present invention.

従って、本発明の水中油型乳化物の製造方法における原料乳化物としては、少なくとも油脂及びミセル状蛋白と水を予備乳化して調製した水中油型乳化物や、フレッシュクリームが挙げられる。   Accordingly, examples of the raw material emulsion in the method for producing an oil-in-water emulsion of the present invention include an oil-in-water emulsion prepared by pre-emulsifying at least oil and fat and micellar protein and water, and a fresh cream.

前記油脂としては、食用であれば特に限定されず、例えば、ナタネ油、大豆油、ヒマワリ種子油、綿実油、落花生油、米糠油、コーン油、サフラワー油、オリーブ油、カポック油、胡麻油、月見草油、パーム油、シア脂、サル脂、カカオ脂、ヤシ油、パーム核油等の植物性油脂並びに乳脂、牛脂、豚脂、魚油、鯨油等の動物性油脂が挙げられ、これらの油脂類の単独または混合油あるいはそれらの硬化、分別、エステル交換等を施した加工油脂等を使用できる。   The oil and fat is not particularly limited as long as it is edible, for example, rapeseed oil, soybean oil, sunflower seed oil, cottonseed oil, peanut oil, rice bran oil, corn oil, safflower oil, olive oil, kapok oil, sesame oil, evening primrose oil Plant oils such as palm oil, shea fat, monkey fat, cacao butter, coconut oil, palm kernel oil, and animal fats such as milk fat, beef tallow, pork fat, fish oil, whale oil, etc. Alternatively, mixed oils or processed oils and fats that have been cured, fractionated, transesterified, or the like can be used.

油脂の含量は、水中油型乳化物全体中20〜60重量%が好ましく、30〜50重量%がより好ましい。油脂が20重量%よりも少なければ、高圧力で高圧ホモジナイザー処理を施しても、油滴の凝集、乳化物の増粘現象自体が起こらない場合が多いので、本発明を実施することの効果が顕著でない。また、油脂が60重量%よりも多いと、本発明の段階的に油滴のメジアン径を小さくする方法を用いても、油滴の凝集、乳化物の増粘現象が起こるおそれがあり、最終メジアン径が小さくならない場合がある。   The content of fat / oil is preferably 20 to 60% by weight, more preferably 30 to 50% by weight, based on the whole oil-in-water emulsion. If the fat or oil is less than 20% by weight, even if a high pressure homogenizer treatment is performed at a high pressure, there are many cases where the aggregation of oil droplets and the thickening phenomenon of the emulsion itself do not occur. Not noticeable. Further, if the fat and oil is more than 60% by weight, there is a possibility that the aggregation of the oil droplets and the thickening phenomenon of the emulsion may occur even if the method of decreasing the median diameter of the oil droplets step by step of the present invention is used. The median diameter may not be reduced.

ミセル状の蛋白質とは、単体の蛋白分子が何らかの作用により結合しあい、通常の蛋白質の大きさよりも大きいものを指す。例えば、カゼイン蛋白とリン酸塩架橋により構成されるカゼインミセルなどが挙げられる。これらのミセル状の蛋白を含む粉体としては、脱脂粉乳、全脂粉乳、クリームパウダー、バターミルクパウダー、ミルクプロテインコンセントレート、乳脂肪球皮膜蛋白などが挙げられる。また、フレッシュクリームはミセル状蛋白を含有する水中油型乳化物である。また、本発明では、水中油型乳化物中に、前記ミセル状の蛋白質以外の蛋白を添加することも可能であり、それらの蛋白については、何ら限定するものではない。   A micellar protein refers to a protein larger than the size of a normal protein, in which single protein molecules are bound together by some action. For example, casein micelles composed of casein protein and phosphate crosslinks can be mentioned. Examples of powders containing these micellar proteins include skim milk powder, whole milk powder, cream powder, buttermilk powder, milk protein concentrate, milk fat globule membrane protein, and the like. Fresh cream is an oil-in-water emulsion containing micellar protein. Moreover, in this invention, it is also possible to add proteins other than the said micelle-like protein in an oil-in-water emulsion, and these proteins are not limited at all.

本発明の水中油型乳化物の製造方法において原料乳化物として用いられる水中油型乳化物としては、前記のような油脂、ミセル状蛋白を必須成分として含有し、水とともに予備乳化して調製した水中油型乳化物やフレッシュクリームを使用できる。前記予備乳化の方法は特に限定されず、例えば、食用油脂からなる油相部と、ミセル状蛋白を溶解した水相部とを予備乳化槽で混合した後、ホモミキサーで予備乳化することで調製できる。   The oil-in-water emulsion used as a raw material emulsion in the method for producing an oil-in-water emulsion of the present invention contains the above fats and micelles as essential components and was prepared by pre-emulsification with water. Oil-in-water emulsions and fresh creams can be used. The preliminary emulsification method is not particularly limited. For example, the preliminarily emulsified with a homomixer is prepared by mixing an oil phase portion made of edible oil and fat and an aqueous phase portion in which micellar protein is dissolved in a pre-emulsification tank. it can.

本発明の製造方法では、前記のような原料となる水中油型乳化物に含まれる油滴のメジアン径を段階的に小さくしてゆくが、油滴の最終メジアン径を0.3〜5.0μmにまで小さくすることが好ましい。更には、油滴の最終メジアン径は0.3〜4.0μmとすることがより好ましく、0.3〜3.0μmが更に好ましく、0.3〜2.5μmが最も好ましい。0.3μmよりも小さい油滴は、ミセル状蛋白質と同等の大きさになってしまうことから、実質上作製不可能である。5.0μmより大きければ、本発明の手段を用いなくても油滴の凝集、増粘現象が起こらない場合もあり、本発明を実施する効果が顕著でないうえに、油滴が大きいとクリーミングが起こりやすく、長期保存安定性を確保することが困難である。油滴のメジアン径がより好ましい範囲であるほど、クリーミングが容易に起こらなくなり、長期保存安定性を確保できる。また、フレッシュクリームの場合には、通常、その油滴(脂肪球)は5.0μmよりも小さいが、本発明によれば、これを更に小さくして、クリーミングの発生を防止して長期保存安定性を確保し、また固化を抑制することで、従来に較べて、賞味期限の長いフレッシュクリームを提供することができる。   In the production method of the present invention, the median diameter of the oil droplets contained in the oil-in-water emulsion as a raw material as described above is gradually reduced, but the final median diameter of the oil droplets is 0.3 to 5. It is preferable to reduce it to 0 μm. Furthermore, the final median diameter of the oil droplets is more preferably 0.3 to 4.0 μm, further preferably 0.3 to 3.0 μm, and most preferably 0.3 to 2.5 μm. Oil droplets smaller than 0.3 μm are substantially impossible to produce because they have the same size as micellar proteins. If it is larger than 5.0 μm, the aggregation and thickening phenomenon of oil droplets may not occur without using the means of the present invention, and the effect of carrying out the present invention is not remarkable, and if the oil droplets are large, creaming may occur. It is easy to occur and it is difficult to ensure long-term storage stability. As the median diameter of the oil droplets is in a more preferable range, creaming does not easily occur and long-term storage stability can be ensured. In the case of fresh cream, the oil droplets (fatty spheres) are usually smaller than 5.0 μm, but according to the present invention, the oil droplets (fat spheres) are further reduced to prevent the occurrence of creaming and stable for long term storage By ensuring the property and suppressing the solidification, it is possible to provide a fresh cream having a long shelf life as compared with the past.

尚、本発明でいう油滴のメジアン径とは、レーザ回折/散乱式粒度分布測定装置LA−920((株)掘場製作所)で測定した、体積基準での積算分布曲線の50%に相当する粒子径である。   In addition, the median diameter of the oil droplet referred to in the present invention corresponds to 50% of a volume-based integrated distribution curve measured with a laser diffraction / scattering particle size distribution measuring device LA-920 (manufactured by Co., Ltd.). The particle size to be used.

本発明の水中油型乳化物の製造方法において、油滴の粒径(メジアン径)を段階的に小さくする方法としては、特に限定されず、高圧ホモジナイザーにより複数回均質化処理を実施する方法や、他の微細化、均質化方法と高圧ホモジナイザーでの均質化処理を併用する方法がある。例えば、他の微細化、均質化方法により予め微細化した後、高圧ホモジナイザーで1回あるいは、複数回処理することや、高圧ホモジナイザーにより1回あるいは、複数回処理を行った後、他の微細化、均質化方法により処理を行うことなどが挙げられる。   In the method for producing an oil-in-water emulsion of the present invention, the method for gradually reducing the particle size (median diameter) of oil droplets is not particularly limited, and a method of performing homogenization treatment multiple times with a high-pressure homogenizer, In addition, there is a method in which other refinement and homogenization methods and a homogenization treatment with a high-pressure homogenizer are used in combination. For example, after miniaturization by other miniaturization and homogenization methods, processing once or multiple times with a high-pressure homogenizer, or after processing once or multiple times with a high-pressure homogenizer, other miniaturization And performing the treatment by a homogenization method.

前記高圧ホモジナイザー処理による均質化とは、乳化物に対して、高圧に加圧し、スリット(隙間)を抜ける際のせん断力を利用して油滴を小さく粉砕し、分散・乳化させることをいう。高圧ホモジナイザー処理をおこなう装置としては、例えば、ホモゲナイザーHV−A((株)イズミフードマシナリ製)、ホモゲナイザーH−20型(三和機械(株)製)などが挙げられる。   The homogenization by the high-pressure homogenizer treatment means that the emulsion is pressurized to a high pressure, and the oil droplets are pulverized to be dispersed and emulsified using a shearing force when passing through a slit (gap). Examples of the apparatus for performing the high-pressure homogenizer treatment include a homogenizer HV-A (manufactured by Izumi Food Machinery Co., Ltd.), a homogenizer H-20 type (manufactured by Sanwa Machinery Co., Ltd.), and the like.

高圧ホモジナイザーの圧力設定としては、処理直後に油滴の凝集、乳化物の増粘現象が起こらない程度にすることが望ましく、それは、処理前後の急激なメジアン径の変化が起こりにくい条件と言える。メジアン径が小さくなるにつれて、設定圧を大きくしても前記凝集、増粘現象は起こり難くなり、メジアン径を所望の大きさにすることができる。仮に処理直後に凝集、増粘現象が起こったとしても、次の処理が実施できる程度の粘度であれば問題はない。その場合、次の処理は、前の処理の設定圧と同じ、もしくは、低下させることで、凝集した油滴がほぐされ、乳化物の粘度が低下し、メジアン径は、前記凝集、増粘現象を起こす前よりも小さくなる。   The pressure setting of the high-pressure homogenizer is preferably set to a level that does not cause the aggregation of oil droplets and the thickening phenomenon of the emulsion immediately after the treatment, which can be said to be a condition in which a sudden change in the median diameter before and after the treatment hardly occurs. As the median diameter decreases, the aggregation and thickening phenomenon hardly occur even when the set pressure is increased, and the median diameter can be set to a desired size. Even if aggregation or thickening occurs immediately after the treatment, there is no problem as long as the viscosity is such that the next treatment can be performed. In that case, the next treatment is the same as or lowering the set pressure of the previous treatment, so that the agglomerated oil droplets are loosened, the viscosity of the emulsion is lowered, and the median diameter is the agglomeration and thickening phenomenon. Smaller than before waking up.

均質化処理を複数回繰り返す実施方法としては、高圧ホモジナイザーを複数台つらねて処理する方法、異なる設定圧力の高圧ホモジナイザーを複数台つらねて処理する方法や、一度処理した乳化物を高圧ホモジナイザーの前にフィードバックし、乳化物を循環させる方法などがある。さらに、循環させながら段階的に設定圧を上昇させていく方法なども例示できる。   Examples of the method of repeating the homogenization treatment multiple times include the method of processing multiple high-pressure homogenizers, the method of processing multiple high-pressure homogenizers with different set pressures, and the emulsion once processed before the high-pressure homogenizer. There is a method of feeding back and circulating the emulsion. Furthermore, a method of increasing the set pressure stepwise while circulating can be exemplified.

前記高圧ホモジナイザー処理以外の他の微細化、均質化方法としては、何ら限定するものではない。例えば、TKホモミキサー(特殊機化工業(株))、ウルトラディスパーサー(ヒスコトロン((株)日音医理科器械製作所))、クレアミックス(エム・テクニック(株))、フィルミックス(特殊機化工業(株))、インライン型ミキサー(Silverson Machines,Inc)等の乳化・微細化機で処理する方法、乳化・分散作用を持つ殺菌装置(例えば、蒸気吹き込み直接加熱方式)で処理する方法、噴射による物理的作用による方法、超音波による乳化方法、断続振とう法、コロイドミルによる乳化方法などが挙げられる。   Other than the high-pressure homogenizer treatment, there is no limitation on the method of miniaturization and homogenization. For example, TK Homomixer (Special Machine Industries Co., Ltd.), Ultra Disperser (Hiscotron (Nihon Medical Science Instrument Co., Ltd.)), Claremix (M Technique Co., Ltd.), Philmix (Special Machine) Kogyo Co., Ltd., in-line mixers (Silverson Machines, Inc) and other emulsification / miniaturization methods, emulsification / dispersion sterilizers (eg, steam blown direct heating method), jetting Examples include a method based on a physical action, an ultrasonic emulsification method, an intermittent shaking method, and a colloid mill emulsification method.

なお、本発明方法により製造する水中油型乳化物の殺菌、滅菌処理については、原料乳化物を均質化した後に、殺菌、滅菌処理を実施してもよいし、また、予め殺菌、滅菌処理した後に、均質化処理を実施しても良い。この場合の殺菌、滅菌処理方法は、特に限定されるものではない。例えば、直接加熱殺菌(インジェクション式、インフュージョン式)、間接加熱殺菌(プレート式、チューブラー式、シェル&チューブ式、表面掻き取り式)、内部加熱殺菌(通電式、マイクロ波式、高周波式、遠赤外線式)、過熱水蒸気殺菌、レトルト殺菌、紫外線殺菌、高圧殺菌、電解磁場殺菌、放射線殺菌、化学的殺菌など、種々の方法で行うことができる。また、それらを組み合わせた方法でも行うことができる。   As for the sterilization and sterilization treatment of the oil-in-water emulsion produced by the method of the present invention, the raw material emulsion may be homogenized and then sterilization and sterilization treatment may be performed, or sterilization and sterilization treatment may be performed in advance. Later, a homogenization process may be performed. In this case, sterilization and sterilization methods are not particularly limited. For example, direct heat sterilization (injection type, infusion type), indirect heat sterilization (plate type, tubular type, shell & tube type, surface scraping type), internal heat sterilization (energization type, microwave type, high frequency type, Far-infrared type), superheated steam sterilization, retort sterilization, ultraviolet sterilization, high-pressure sterilization, electrolytic magnetic field sterilization, radiation sterilization, chemical sterilization, and the like. Moreover, it can carry out also by the method which combined them.

本発明の方法により製造される水中油型乳化物は、例えば、ホイップ用クリーム、コーヒー用クリーム、アイスクリーム、ソフトクリーム用プレミックス、パン、菓子、ハム、ソーセージ、食肉、魚肉、その他加工食品等の練り込み用油脂、マヨネーズ、ドレッシング、チーズ様食品、フラワーペースト、フィリング、トッピング、サンド、スプレッド等の用途に用いられる。   The oil-in-water emulsion produced by the method of the present invention is, for example, whipped cream, coffee cream, ice cream, soft cream premix, bread, confectionery, ham, sausage, meat, fish meat, other processed foods, etc. It is used for oils and fats for kneading, mayonnaise, dressing, cheese-like food, flour paste, filling, topping, sand, spread and the like.

以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
硬化菜種油(上昇融点22.0℃)35重量部、硬化パーム油(上昇融点36℃)5重量部を65℃に温調調合し、油相部とした。一方、脱脂粉乳5重量部を60℃の水55重量部に溶解し、水相部とした。前記油相と水相を予備乳化槽60℃で混合し、TKホモミキサー(特殊機化工業(株)製 M−A)により7000rpmで予備乳化した。この予備乳化液の油滴メジアン径を初期粒径とし、レーザ回折/散乱式粒度分布測定装置((株)掘場製作所、以下、同様)で測定したところ、21.1μmであった。この予備乳化液をホモゲナイザー((株)イズミフードマシナリ製 HV−A、以下、単に、ホモゲナイザーという。)を用いて、圧力条件1Mpa、4Mpaで各1回ずつ高圧ホモジナイザー処理し、乳化物を得た。この乳化物を中間乳化液とし、その油滴メジアン径を中間粒径としてレーザ回折/散乱式粒度分布測定装置で測定したところ、6.8μmであった。この中間乳化液をホモゲナイザーを用いて、圧力条件3Mpaで高圧ホモジナイザー処理した。その後、プレート熱交換殺菌機にて130℃、30秒殺菌した後、冷却プレートにて5℃まで冷却し、試料1を得た。試料1の油滴メジアン径をレーザ回折/散乱式粒度分布測定装置で測定したところ、4.0μmであった。この油滴メジアン径を最終粒径とした。試料1は、増粘せず良好な液状の乳化物であった。
Example 1
An oil phase part was prepared by temperature-adjusting 35 parts by weight of hardened rapeseed oil (rising melting point 22.0 ° C) and 5 parts by weight of hardened palm oil (rising melting point 36 ° C) to 65 ° C. On the other hand, 5 parts by weight of skim milk powder was dissolved in 55 parts by weight of water at 60 ° C. to obtain an aqueous phase part. The oil phase and the aqueous phase were mixed in a pre-emulsification tank at 60 ° C., and pre-emulsified at 7000 rpm with a TK homomixer (M-A manufactured by Tokushu Kika Kogyo Co., Ltd.). The oil droplet median diameter of the pre-emulsified liquid was taken as the initial particle diameter and measured with a laser diffraction / scattering type particle size distribution measuring apparatus (manufactured by Co., Ltd., hereinafter the same), and was 21.1 μm. This pre-emulsified solution was subjected to a high-pressure homogenizer treatment once each under a pressure condition of 1 Mpa and 4 Mpa using a homogenizer (HV-A manufactured by Izumi Food Machinery Co., Ltd., hereinafter simply referred to as a homogenizer) to obtain an emulsion. . This emulsion was used as an intermediate emulsion, and the oil droplet median diameter was set as an intermediate particle diameter, which was measured by a laser diffraction / scattering type particle size distribution analyzer. This intermediate emulsion was subjected to a high-pressure homogenizer treatment using a homogenizer under a pressure condition of 3 Mpa. Then, after sterilizing for 30 seconds at 130 ° C. with a plate heat exchange sterilizer, the sample was cooled to 5 ° C. with a cooling plate to obtain Sample 1. The oil droplet median diameter of Sample 1 was measured with a laser diffraction / scattering particle size distribution analyzer and found to be 4.0 μm. The oil droplet median diameter was defined as the final particle diameter. Sample 1 was a good liquid emulsion without thickening.

(実施例2)
実施例1と同様にして作製した予備乳化液(初期粒径21.1μm)を、ホモゲナイザーを用いて、圧力条件1Mpa、4Mpa、3Mpaで各1回処理し、中間粒径4.0μmの中間乳化液を得た。この中間乳化液をホモゲナイザーを用いて、圧力条件8Mpaで処理した後、実施例1と同様に殺菌処理、冷却して試料2を得た。最終粒径は、3.8μmであった。試料2も増粘せず良好な液状の乳化物であった。
(Example 2)
The pre-emulsified solution (initial particle size 21.1 μm) prepared in the same manner as in Example 1 was treated once under a pressure condition of 1 Mpa, 4 Mpa, and 3 Mpa using a homogenizer to obtain an intermediate emulsion having an intermediate particle size of 4.0 μm. A liquid was obtained. This intermediate emulsion was treated with a homogenizer under a pressure condition of 8 Mpa, then sterilized and cooled in the same manner as in Example 1 to obtain Sample 2. The final particle size was 3.8 μm. Sample 2 was also a good liquid emulsion without thickening.

(比較例1)
実施例1と同様にして作製した予備乳化液(初期粒径21.1μm)を、中間乳化液(中間粒径も21.1μm)とした。中間乳化液に対し、ホモゲナイザーを用いて、圧力条件1Mpaで処理した後、実施例1と同様に殺菌処理、冷却して試料3を得た。最終粒径は、10.3μmであった。試料3も、増粘せず良好な液状の乳化物であった。しかし、この試料3について、2週間、4℃で保存し、クリーミングを調べたところ、上部にクリーム層が形成されており、良好な結果ではなかった(比較例1−1)。そこで、粒径を前記最終粒径(10.3μm)より小さくしようとして、中間乳化液に対し、圧力条件を前記1Mpaよりも高くして高圧ホモジナイザー処理したところ、油滴が凝集し、増粘してしまい、乳化不安定な乳化物になった(比較例1−2)。
(Comparative Example 1)
A preliminary emulsion (initial particle size 21.1 μm) prepared in the same manner as in Example 1 was used as an intermediate emulsion (intermediate particle size 21.1 μm). The intermediate emulsion was treated under a pressure condition of 1 Mpa using a homogenizer, then sterilized and cooled in the same manner as in Example 1 to obtain Sample 3. The final particle size was 10.3 μm. Sample 3 was also a good liquid emulsion without thickening. However, the sample 3 was stored at 4 ° C. for 2 weeks and examined for creaming. As a result, a cream layer was formed on the upper part, and the result was not good (Comparative Example 1-1). Therefore, when trying to make the particle size smaller than the final particle size (10.3 μm) and subjecting the intermediate emulsion to a high pressure homogenizer treatment with a pressure condition higher than 1 Mpa, oil droplets aggregate and thicken. Thus, an emulsified unstable emulsion was obtained (Comparative Example 1-2).

(比較例2)
実施例1と同様にして作製した予備乳化液(初期粒径21.1μm)をホモゲナイザーを用いて、圧力条件1Mpaで1回処理し、中間粒径9.3μmの中間乳化液を得た。この中間乳化液をホモゲナイザーを用いて、圧力条件4Mpaで処理した後、実施例1と同様に殺菌処理、冷却して試料4を得た。最終粒径は、6.5μmであった。試料4も、増粘せず良好な液状の乳化物であった。しかし、この試料4について、比較例1と同様にしてクリーミングを調べたところ、上部にクリーム層が形成されており良好な結果ではなかった(比較例2−1)。そこで、粒径を前記最終粒径(6.5μm)より小さくしようとして、中間乳化液に対し、圧力条件を前記4Mpaよりも高くして高圧ホモジナイザー処理したところ、油滴が凝集し、増粘してしまい、乳化不安定な乳化物になった(比較例2−2)。
(Comparative Example 2)
A preliminary emulsion (initial particle size 21.1 μm) prepared in the same manner as in Example 1 was treated once with a homogenizer at a pressure of 1 Mpa to obtain an intermediate emulsion having an intermediate particle size of 9.3 μm. This intermediate emulsion was treated with a homogenizer under a pressure condition of 4 Mpa, then sterilized and cooled in the same manner as in Example 1 to obtain Sample 4. The final particle size was 6.5 μm. Sample 4 was also a good liquid emulsion without thickening. However, when this sample 4 was examined for creaming in the same manner as in Comparative Example 1, a cream layer was formed on the upper portion, which was not a good result (Comparative Example 2-1). Then, when trying to make the particle size smaller than the final particle size (6.5 μm), the intermediate emulsion was subjected to a high pressure homogenizer treatment with a pressure condition higher than 4 Mpa, and oil droplets aggregated and increased in viscosity. Thus, an emulsified unstable emulsion was obtained (Comparative Example 2-2).

(実施例3)
脱脂粉乳を、バターミルクパウダーに変更した以外は実施例1と同様にして予備乳化液を作製した(初期粒径18.8μm)。この予備乳化液をホモゲナイザーを用いて、圧力条件0Mpa(バルブを全開放)で8回処理し、中間粒径5.2μmの中間乳化液を得た。この中間乳化液を更にホモゲナイザーを用いて、圧力条件0Mpa(バルブを全開放)で処理した後、実施例1と同様に殺菌処理、冷却して試料5を得た。最終粒径は、4.8μmであった。試料5も増粘せず良好な液状の乳化物であった。
(Example 3)
A preliminary emulsified liquid was prepared in the same manner as in Example 1 except that the skim milk powder was changed to buttermilk powder (initial particle size: 18.8 μm). This preliminary emulsified liquid was treated 8 times under a pressure condition of 0 Mpa (valve fully opened) using a homogenizer to obtain an intermediate emulsified liquid having an intermediate particle diameter of 5.2 μm. This intermediate emulsion was further treated with a homogenizer under a pressure condition of 0 Mpa (valve fully opened), then sterilized and cooled in the same manner as in Example 1 to obtain Sample 5. The final particle size was 4.8 μm. Sample 5 was also a good liquid emulsion without thickening.

(実施例4)
実施例3と同様にして予備乳化液を作製した(初期粒径18.8μm)。この予備乳化液をホモゲナイザーを用いて、圧力条件0Mpa(バルブを全開放)で9回処理し、中間粒径4.8μmの中間乳化液を得た。この中間乳化液をホモゲナイザーを用いて、圧力条件1Mpaで処理した後、実施例1と同様に殺菌処理、冷却して試料6を得た。最終粒径は、3.8μmであった。試料6も増粘せず良好な液状の乳化物であった。
Example 4
A preliminary emulsion was prepared in the same manner as in Example 3 (initial particle size: 18.8 μm). This preliminary emulsified liquid was treated 9 times under a pressure condition of 0 Mpa (valve fully opened) using a homogenizer to obtain an intermediate emulsified liquid having an intermediate particle diameter of 4.8 μm. This intermediate emulsion was treated with a homogenizer at a pressure condition of 1 Mpa, then sterilized and cooled in the same manner as in Example 1 to obtain Sample 6. The final particle size was 3.8 μm. Sample 6 was also a good liquid emulsion without thickening.

(実施例5)
実施例3と同様にして予備乳化液を作製した(初期粒径18.8μm)。この予備乳化液をホモゲナイザーを用いて、圧力条件0Mpa(バルブを全開放)で9回処理した後、圧力条件1Mpaで1回処理し、中間粒径3.2μmの中間乳化液を得た。この中間乳化液をホモゲナイザーを用いて、圧力条件3Mpaで処理した後、実施例1と同様に殺菌処理、冷却して試料7を得た。最終粒径は、3.1μmであった。試料7も増粘せず良好な液状の乳化物であった。
(Example 5)
A preliminary emulsion was prepared in the same manner as in Example 3 (initial particle size: 18.8 μm). This preliminary emulsified liquid was treated 9 times under a pressure condition of 0 Mpa (valve fully opened) using a homogenizer, and then treated once under a pressure condition of 1 Mpa to obtain an intermediate emulsion having an intermediate particle diameter of 3.2 μm. This intermediate emulsion was treated with a homogenizer under a pressure condition of 3 Mpa, then sterilized and cooled in the same manner as in Example 1 to obtain Sample 7. The final particle size was 3.1 μm. Sample 7 was also a good liquid emulsion without thickening.

(実施例6)
実施例3と同様にして予備乳化液を作製した(初期粒径18.8μm)。この予備乳化液をホモゲナイザーを用いて、圧力条件0Mpa(バルブを全開放)で9回、1Mpaで1回、3Mpaで1回処理し、中間粒径2.96μmの中間乳化液を得た。この中間乳化液をホモゲナイザーを用いて、圧力条件4Mpaで処理した後、実施例1と同様に殺菌処理、冷却して試料8を得た。最終粒径は、2.82μmであった。試料8も増粘せず良好な液状の乳化物であった。また、試料8について、比較例1と同様にしてクリーミングを調べたところ、上部にクリーム層が形成されておらず、良好な結果を得た。
(Example 6)
A preliminary emulsion was prepared in the same manner as in Example 3 (initial particle size: 18.8 μm). This preliminary emulsified liquid was treated 9 times under a pressure condition of 0 Mpa (valve fully opened), once at 1 Mpa, once at 3 Mpa using a homogenizer to obtain an intermediate emulsion having an intermediate particle diameter of 2.96 μm. This intermediate emulsion was treated with a homogenizer under a pressure condition of 4 Mpa, then sterilized and cooled in the same manner as in Example 1 to obtain Sample 8. The final particle size was 2.82 μm. Sample 8 was also a good liquid emulsion without thickening. Moreover, when creaming was investigated about the sample 8 like the comparative example 1, the cream layer was not formed in the upper part but the favorable result was obtained.

(比較例3)
実施例3と同様にして予備乳化液を作製した(初期粒径18.8μm)。その予備乳化液を中間乳化液(中間粒径18.8μm)とした。中間乳化液をホモゲナイザーを用いて、圧力条件0Mpa(バルブを全開放)で処理した後、実施例1と同様に殺菌処理、冷却して試料9を得た。最終粒径は、10.6μmであった。試料9も、増粘せず良好な液状の乳化物であった。しかし、この試料9について、比較例1と同様にしてクリーミングを調べたところ、上部にクリーム層が形成されており、良好な結果ではなかった(比較例3−1)。そこで、粒径を前記最終粒径(10.6μm)より小さくしようとして、中間乳化液に対し、圧力条件を前記0Mpaよりも高くして高圧ホモジナイザー処理したところ、油滴が凝集し、増粘してしまい、乳化不安定な乳化物になった(比較例3−2)。
(Comparative Example 3)
A preliminary emulsion was prepared in the same manner as in Example 3 (initial particle size: 18.8 μm). The preliminary emulsion was defined as an intermediate emulsion (intermediate particle size: 18.8 μm). The intermediate emulsion was treated with a homogenizer under a pressure condition of 0 Mpa (valve fully opened), then sterilized and cooled in the same manner as in Example 1 to obtain Sample 9. The final particle size was 10.6 μm. Sample 9 was also a good liquid emulsion without thickening. However, this sample 9 was examined for creaming in the same manner as in Comparative Example 1. As a result, a cream layer was formed on the upper portion, and the result was not satisfactory (Comparative Example 3-1). Therefore, when an attempt was made to make the particle size smaller than the final particle size (10.6 μm), the intermediate emulsion was subjected to a high pressure homogenizer treatment with a pressure condition higher than 0 Mpa, and oil droplets aggregated and increased in viscosity. Thus, an emulsified unstable emulsion was obtained (Comparative Example 3-2).

(比較例4)
実施例3と同様にして予備乳化液を作製した(初期粒径18.8μm)。この予備乳化液をホモゲナイザーを用いて、圧力条件0Mpa(バルブを全開放)で処理し、中間粒径10.6μmの中間乳化液を得た。この中間乳化液をホモゲナイザーを用いて、圧力条件0Mpa(バルブを全開放)で処理した後、実施例1と同様に殺菌処理、冷却して試料10を得た。最終粒径は8.0μmであった。試料10も、増粘せず良好な液状の乳化物であった。しかし、この試料9について、比較例1と同様にしてクリーミング)を調べたところ、上部にクリーム層が形成されており、良好な結果ではなかった(比較例4−1)。そこで、粒径を前記最終粒径(8.0μm)より小さくしようとして、中間乳化液に対し、圧力条件を前記0Mpaよりも高くして高圧ホモジナイザー処理すると、油滴が凝集し、増粘してしまい、乳化不安定な乳化物になった(比較例4−2)。
(Comparative Example 4)
A preliminary emulsion was prepared in the same manner as in Example 3 (initial particle size: 18.8 μm). This preliminary emulsion was treated with a homogenizer at a pressure condition of 0 Mpa (valve fully opened) to obtain an intermediate emulsion having an intermediate particle size of 10.6 μm. This intermediate emulsion was treated with a homogenizer under a pressure condition of 0 Mpa (valve fully opened), then sterilized and cooled in the same manner as in Example 1 to obtain Sample 10. The final particle size was 8.0 μm. Sample 10 was also a good liquid emulsion without thickening. However, this sample 9 was examined for creaming in the same manner as in Comparative Example 1. As a result, a cream layer was formed on the upper portion, and the result was not satisfactory (Comparative Example 4-1). Therefore, when trying to make the particle size smaller than the final particle size (8.0 μm), and the high pressure homogenizer treatment is performed on the intermediate emulsion with the pressure condition higher than 0 Mpa, oil droplets aggregate and thicken. As a result, the emulsion became unstable (Comparative Example 4-2).

(実施例7)
実施例1と同様にして作製した予備乳化液(初期粒径24.3μm)を圧力条件2Mpaのホモゲナイザーを用いて、10分間循環処理し、この中間粒径3.2μmの中間乳化液を得た。中間乳化液を圧力条件4Mpaのホモゲナイザーを用いて、16分間循環処理した後、実施例1と同様に殺菌処理、冷却して試料11を得た。最終粒径は、2.2μmであった。試料11も増粘せず良好な液状の乳化物であった。また、試料11について、比較例1と同様にしてクリーミングを調べたところ、上部にクリーム層が形成されておらず、良好な結果を得た。
(Example 7)
A preliminary emulsion (initial particle size 24.3 μm) prepared in the same manner as in Example 1 was circulated for 10 minutes using a homogenizer with a pressure condition of 2 Mpa to obtain an intermediate emulsion having an intermediate particle size of 3.2 μm. . The intermediate emulsion was circulated for 16 minutes using a homogenizer with a pressure condition of 4 Mpa, then sterilized and cooled in the same manner as in Example 1 to obtain Sample 11. The final particle size was 2.2 μm. Sample 11 was also a good liquid emulsion without thickening. Moreover, when creaming was investigated about the sample 11 like the comparative example 1, the cream layer was not formed in the upper part but the favorable result was obtained.

(実施例8)
配合の油相部を硬化菜種油(上昇融点22.0℃)35重量部、硬化パーム油(上昇融点36℃)5重量部とし、水相部を脱脂粉乳15重量部、水45重量部に変更した以外は実施例1と同様にして予備乳化液を作製した(初期粒径25.4μm)。この予備乳化液をホモゲナイザーを用いて、圧力条件0Mpa(バルブを全開放)で2回、1Mpaで2回処理し、中間粒径5.8μmの中間乳化液を得た。この中間乳化液を更にホモゲナイザーを用いて、圧力条件2Mpaで2回処理した後、実施例1と同様に殺菌処理、冷却して試料12を得た。最終粒径は、3.5μmであった。試料12も増粘せず良好な液状の乳化物であった。
(Example 8)
The oil phase part of the blend is 35 parts by weight of hardened rapeseed oil (rising melting point 22.0 ° C) and 5 parts by weight of hardened palm oil (rising melting point 36 ° C), and the aqueous phase part is changed to 15 parts by weight of skim milk powder and 45 parts by weight of water. A preliminary emulsion was prepared in the same manner as in Example 1 except that the initial particle size was 25.4 μm. This preliminary emulsion was treated twice with a homogenizer under pressure conditions of 0 Mpa (valve fully opened) and twice at 1 Mpa to obtain an intermediate emulsion having an intermediate particle size of 5.8 μm. This intermediate emulsion was further treated twice under a pressure condition of 2 Mpa using a homogenizer, then sterilized and cooled in the same manner as in Example 1 to obtain Sample 12. The final particle size was 3.5 μm. Sample 12 was also a good liquid emulsion without thickening.

(実施例9)
実施例8と同様にして予備乳化液を作製した(初期粒径25.4μm)。この予備乳化液をホモゲナイザーを用いて、圧力条件0Mpa(バルブを全開放)で2回、1Mpaで2回、2Mpaで2回、4Mpaで2回、6Mpaで2回、8Mpaで2回、10Mpaで2回、12Mpaで2回、15Mpaで2回処理し、中間粒径1.5μmの中間乳化液を得た。その中間乳化液を更にホモゲナイザーを用いて、圧力条件20Mpaで2回処理した後、実施例1と同様に殺菌処理、冷却して試料13を得た。最終粒径は、1.3μmであった。試料13も増粘せず良好な液状の乳化物であった。また、試料13について、比較例1と同様にしてクリーミングを調べたところ、上部にクリーム層が形成されておらず、良好な結果を得た。
Example 9
A preliminary emulsion was prepared in the same manner as in Example 8 (initial particle size: 25.4 μm). Using a homogenizer, this pre-emulsified solution was subjected to pressure conditions of 0 Mpa (valve fully opened) twice, 1 Mpa twice, 2 Mpa twice, 4 Mpa twice, 6 Mpa twice, 8 Mpa twice, 8 Mpa twice, and 10 Mpa. This was treated twice, twice at 12 Mpa, and twice at 15 Mpa to obtain an intermediate emulsion having an intermediate particle size of 1.5 μm. The intermediate emulsion was further treated twice under a pressure condition of 20 Mpa using a homogenizer, and then sterilized and cooled in the same manner as in Example 1 to obtain Sample 13. The final particle size was 1.3 μm. Sample 13 was also a good liquid emulsion without thickening. Moreover, when creaming was investigated about the sample 13 like the comparative example 1, the cream layer was not formed in the upper part but the favorable result was obtained.

(実施例10)
フレッシュクリーム(油分47重量%、初期粒径3.2μm)を60℃に温調した後、圧力条件3Mpaのホモゲナイザーを用いて、8分間循環処理し、中間粒径1.9μmの中間乳化液を得た。この中間乳化液を更に圧力条件4Mpaのホモゲナイザーを用いて、1分間循環処理した。その後、実施例1と同様に殺菌処理、冷却して試料14を得た。最終粒径は、1.7μmであった。試料14も増粘せず良好な液状の乳化物であった。また、試料14について、比較例1と同様にしてクリーミングを調べたところ、上部にクリーム層が形成されておらず、良好な結果を得た。
(Example 10)
After fresh cream (oil content 47% by weight, initial particle size 3.2 μm) was adjusted to 60 ° C., it was circulated for 8 minutes using a homogenizer with a pressure condition of 3 Mpa to obtain an intermediate emulsion having an intermediate particle size of 1.9 μm. Obtained. This intermediate emulsion was further circulated for 1 minute using a homogenizer with a pressure condition of 4 Mpa. Thereafter, the sample 14 was obtained by sterilization and cooling in the same manner as in Example 1. The final particle size was 1.7 μm. Sample 14 was also a good liquid emulsion without thickening. Moreover, when the creaming was investigated about the sample 14 like the comparative example 1, the cream layer was not formed in the upper part but the favorable result was obtained.

(実施例11)
フレッシュクリーム(油分47重量%、初期粒径3.2μm)を60℃に温調した後、圧力条件3Mpaのホモゲナイザーを用いて、8分間循環処理した。その後、圧力条件4Mpaで1分間循環処理し、中間粒径1.7μmの中間乳化液を得た。その中間乳化液を更に圧力条件5Mpaのホモゲナイザーを用いて、1分間循環処理した。その後、実施例1と同様に殺菌処理、冷却して試料15を得た。最終粒径は、1.5μmであった。試料15も増粘せず良好な液状の乳化物であった。また、試料15について、比較例1と同様にしてクリーミングを調べたところ、上部にクリーム層が形成されておらず、良好な結果を得た。
(Example 11)
Fresh cream (oil content 47% by weight, initial particle size 3.2 μm) was temperature-controlled at 60 ° C., and then circulated for 8 minutes using a homogenizer under pressure conditions of 3 Mpa. Thereafter, the mixture was circulated for 1 minute under a pressure condition of 4 Mpa to obtain an intermediate emulsion having an intermediate particle size of 1.7 μm. The intermediate emulsion was further circulated for 1 minute using a homogenizer with a pressure condition of 5 Mpa. Thereafter, the sample 15 was obtained by sterilization and cooling in the same manner as in Example 1. The final particle size was 1.5 μm. Sample 15 was also a good liquid emulsion without thickening. Moreover, when creaming was investigated about the sample 15 like the comparative example 1, the cream layer was not formed in the upper part but the favorable result was obtained.

(比較例5)
フレッシュクリーム(油分47重量%、初期粒径3.2μm)を60℃に温調した後、一回の処理で粒径を小さくしようと試み、ホモゲナイザーを用いて、圧力条件8Mpaで1回処理した(試料16)。結果、処理直後に乳脂肪が凝集し、増粘した。粒径を測定したところ、初期粒径よりも大きい最終粒径7.9μmであった。
(Comparative Example 5)
A fresh cream (47% oil content, initial particle size 3.2 μm) was temperature-controlled at 60 ° C., then tried to reduce the particle size by a single treatment, and treated once with a homogenizer at a pressure of 8 Mpa. (Sample 16). As a result, milk fat aggregated and thickened immediately after the treatment. When the particle size was measured, the final particle size was 7.9 μm larger than the initial particle size.

(実施例12)
フレッシュクリーム(油分35重量%、初期粒径3.8μm)を60℃に温調した後、圧力条件2Mpaのホモゲナイザーを用いて、10分間循環処理し、その後、3Mpa、4Mpa、5Mpaで各10分間循環処理し、中間粒径1.0μmの中間乳化液を得た。この中間乳化液を更に圧力条件6Mpaのホモゲナイザーを用いて、10分間循環処理した。その後、実施例1と同様に殺菌処理、冷却して試料17を得た。最終粒径は、0.9μmであった。試料17も増粘せず良好な液状の乳化物であった。また、試料17について、比較例1と同様にしてクリーミングを調べたところ、上部にクリーム層が形成されておらず、良好な結果を得た。
(Example 12)
Fresh cream (oil content 35% by weight, initial particle size 3.8 μm) was adjusted to 60 ° C. and then circulated for 10 minutes using a homogenizer with a pressure condition of 2 Mpa, and then 10 minutes each at 3 Mpa, 4 Mpa, and 5 Mpa. Circulation was performed to obtain an intermediate emulsion having an intermediate particle size of 1.0 μm. This intermediate emulsion was further circulated for 10 minutes using a homogenizer with a pressure condition of 6 Mpa. Thereafter, the sample 17 was obtained by sterilization and cooling in the same manner as in Example 1. The final particle size was 0.9 μm. Sample 17 was also a good liquid emulsion without thickening. Moreover, when the creaming was investigated about the sample 17 like the comparative example 1, the cream layer was not formed in the upper part but the favorable result was obtained.

(実施例13)
フレッシュクリーム(油分35重量%、初期粒径3.8μm)を60℃に温調した後、圧力条件2Mpaで3回、3Mpaで3回、4Mpaで3回、5Mpaで3回処理し、中間粒径1.2μmの中間乳化液を得た。この中間乳化液を更に圧力条件6Mpaで3回処理した。その後、実施例1と同様に殺菌処理、冷却して試料18を得た。最終粒径は、0.9μmであった。試料18も増粘せず良好な液状の乳化物であった。また、試料18について、比較例1と同様にしてクリーミングを調べたところ、上層にクリーム層が形成されておらず、良好な結果を得た。
(Example 13)
Fresh cream (oil content 35% by weight, initial particle size 3.8 μm) was heated to 60 ° C., then treated with pressure conditions 2 Mpa 3 times, 3 Mpa 3 times, 4 Mpa 3 times, 5 Mpa 3 times, An intermediate emulsion having a diameter of 1.2 μm was obtained. This intermediate emulsion was further processed three times under a pressure condition of 6 Mpa. Thereafter, the sample 18 was obtained by sterilization and cooling in the same manner as in Example 1. The final particle size was 0.9 μm. Sample 18 was also a good liquid emulsion without thickening. Moreover, when the creaming was investigated about the sample 18 like the comparative example 1, the cream layer was not formed in the upper layer, but the favorable result was obtained.

(比較例6)
フレッシュクリーム(油分35%、初期粒径3.8μm)を60℃に温調した後、一回の処理で粒径を小さくしようと試み、ホモゲナイザーを用いて、圧力条件6Mpaで1回処理した(試料19)。結果、処理直後に乳脂肪が凝集し、増粘した。粒径を測定したところ、初期粒径よりも大きい最終粒径16.5μmであった。
(Comparative Example 6)
After temperature control of fresh cream (oil content 35%, initial particle size 3.8 μm) to 60 ° C., an attempt was made to reduce the particle size by one treatment, and treatment was performed once at a pressure condition of 6 Mpa using a homogenizer ( Sample 19). As a result, milk fat aggregated and thickened immediately after the treatment. When the particle size was measured, the final particle size was 16.5 μm larger than the initial particle size.

以上の実施例及び比較例(試料1〜19)の処理条件、初期粒径、中間粒径、長期保存安定性の評価を表1〜表4に示す。   Tables 1 to 4 show the evaluation of the processing conditions, initial particle diameter, intermediate particle diameter, and long-term storage stability of the above Examples and Comparative Examples (Samples 1 to 19).

Figure 0004736893
Figure 0004736893

Figure 0004736893
Figure 0004736893

Figure 0004736893
Figure 0004736893

Figure 0004736893
Figure 0004736893

表1〜表4から分かるように、原料となる水中油型乳化物(予備乳化液)やフレッシュクリームに対して、均質化処理を複数回繰り返し行い、油滴の粒径を段階的に小さくすることで、乳化剤、蛋白溶融塩及びpH調整剤を添加しなくとも、油滴が凝集して乳化物が増粘するといったことはなく、油滴の粒径を5.0μm以下とし、またフレッシュクリームにおいては、脂肪球の粒径を更に小さくすることができる。従って、本発明によれば、保存安定性及び風味に優れた水中油型乳化物を製造することができ、またフレッシュクリームの賞味期限を延長することができる。

As can be seen from Tables 1 to 4, the oil-in-water emulsion (preliminary emulsified liquid) and fresh cream used as raw materials are repeatedly homogenized several times, and the particle size of the oil droplets is reduced stepwise. Therefore, even without adding an emulsifier, a protein molten salt, and a pH adjuster, the oil droplets do not aggregate and the emulsion does not thicken, and the oil droplets have a particle size of 5.0 μm or less. In, the particle size of fat globules can be further reduced. Therefore, according to the present invention, an oil-in-water emulsion excellent in storage stability and flavor can be produced, and the shelf life of fresh cream can be extended.

Claims (5)

ミセル状蛋白質を含有し、油滴のメジアン径が0.3〜5.0μmであり、油脂含量が20〜60重量%の水中油型乳化物の製造方法であって、乳化剤、蛋白溶融塩及びpH調整剤を添加せず、処理直後に油滴の凝集、乳化物の増粘現象が起こらない、又は処理直後に凝集、増粘現象が起こったとしても、次の処理が実施できる程度の粘度となる圧力設定で、原料となる水中油型乳化物に対して、複数回、均質化処理を繰り返すことにより、原料となる水中油型乳化物に含まれる油滴のメジアン径を段階的に小さくしてゆき、該油滴の最終メジアン径を0.3〜5.0μmの範囲の所望の粒径とすることを特徴とする水中油型乳化物の製造方法。 A method for producing an oil-in-water emulsion containing a micellar protein, having a median diameter of oil droplets of 0.3 to 5.0 μm and a fat content of 20 to 60% by weight, comprising an emulsifier, a protein molten salt, and Without adding a pH adjuster, oil droplet aggregation or emulsion thickening phenomenon does not occur immediately after processing, or even if aggregation or thickening phenomenon occurs immediately after processing, the viscosity is such that the next processing can be performed. By repeating the homogenization process multiple times for the oil-in-water emulsion used as the raw material at the pressure setting, the median diameter of the oil droplets contained in the oil-in-water emulsion used as the raw material is reduced stepwise. Then, the final median diameter of the oil droplets is set to a desired particle diameter in the range of 0.3 to 5.0 μm. 油滴のメジアン径が所望の粒径になるまで、圧力設定を順次増大して均質化処理を繰り返す請求項記載の水中油型乳化物の製造方法。 Up oil droplets having a median diameter to the desired size, the production method according to claim 1 oil-in-water emulsion according repeating successively increased by homogenization pressure setting. 原料となる水中油型乳化物が、必須成分として少なくとも油脂及びミセル状蛋白を含有し、水で予備乳化して調製した水中油型乳化物である請求項1又は2に記載の水中油型乳化物の製造方法。 The oil-in-water emulsion according to claim 1 or 2 , wherein the oil-in-water emulsion as a raw material is an oil-in-water emulsion prepared by pre-emulsification with water, containing at least oil and micellar protein as essential components. Manufacturing method. 原料となる水中油型乳化物が、フレッシュクリームである請求項1又は2に記載の水中油型乳化物の製造方法。 The method for producing an oil-in-water emulsion according to claim 1 or 2 , wherein the oil-in-water emulsion as a raw material is a fresh cream. 油滴の最終メジアン径が3.0μm以下になるまで均質化処理を繰り返す請求項記載の水中油型乳化物の製造方法。 The method for producing an oil-in-water emulsion according to claim 4, wherein the homogenization treatment is repeated until the final median diameter of the oil droplets is 3.0 µm or less.
JP2006090269A 2005-03-30 2006-03-29 Method for producing oil-in-water emulsion Expired - Fee Related JP4736893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090269A JP4736893B2 (en) 2005-03-30 2006-03-29 Method for producing oil-in-water emulsion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005096661 2005-03-30
JP2005096661 2005-03-30
JP2006090269A JP4736893B2 (en) 2005-03-30 2006-03-29 Method for producing oil-in-water emulsion

Publications (2)

Publication Number Publication Date
JP2006304782A JP2006304782A (en) 2006-11-09
JP4736893B2 true JP4736893B2 (en) 2011-07-27

Family

ID=37472392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090269A Expired - Fee Related JP4736893B2 (en) 2005-03-30 2006-03-29 Method for producing oil-in-water emulsion

Country Status (1)

Country Link
JP (1) JP4736893B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022266632A1 (en) * 2021-06-16 2022-12-22 Cargill, Incorporated A viscous composition, food composition, and preparation method and use thereof

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173095A (en) * 2007-01-22 2008-07-31 Kaneka Corp Acidic oil-in-water type emulsified oil and fat composition
JP5398178B2 (en) * 2007-06-14 2014-01-29 株式会社カネカ Oil-in-water emulsified oil and fat composition or method for producing the same
WO2009034818A1 (en) * 2007-09-10 2009-03-19 Fuji Oil Company, Limited Foaming oil-in-water type emulsion
JP5470801B2 (en) * 2007-10-26 2014-04-16 株式会社カネカ Method for producing oil-in-water emulsified oil / fat composition
JP2009254353A (en) * 2008-03-19 2009-11-05 Kaneka Corp New fresh cream and method for producing the same
JP2009278969A (en) * 2008-04-25 2009-12-03 Kaneka Corp Foamable oil-in-water type emulsion
JP5942489B2 (en) * 2012-03-06 2016-06-29 不二製油株式会社 Production method of oil-in-water emulsion
JP2014068605A (en) * 2012-09-28 2014-04-21 Morinaga Milk Ind Co Ltd Manufacturing method of whip cream
JP5941428B2 (en) * 2013-03-28 2016-06-29 森永乳業株式会社 Cream for whipping and method for producing the same
JP6628606B2 (en) * 2013-08-12 2020-01-08 株式会社カネカ Whipped compound cream containing fresh cream
JP6588728B2 (en) * 2015-04-28 2019-10-09 株式会社カネカ Foamable oil-in-water emulsion and whipped cream
JP6717577B2 (en) * 2015-07-30 2020-07-01 株式会社Adeka Emulsifying material for oil-in-water emulsified fats
JP6767139B2 (en) * 2016-03-18 2020-10-14 雪印メグミルク株式会社 Milk fat cream and its manufacturing method
EA037099B1 (en) * 2016-04-21 2021-02-05 Юнилевер Н.В. Process for making a nanoemulsion composition of oils
JP7175088B2 (en) * 2017-03-01 2022-11-18 株式会社明治 Fresh cream and its manufacturing method
JP7117115B2 (en) * 2017-03-13 2022-08-12 株式会社明治 Method for producing foamable oil-in-water emulsion
WO2018168930A1 (en) * 2017-03-14 2018-09-20 雪印メグミルク株式会社 Milk fat cream and method for producing same
JP7057806B2 (en) * 2020-07-28 2022-04-20 雪印メグミルク株式会社 Milk fat cream and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256716A (en) * 1995-03-23 1996-10-08 Kao Corp Oil-in-water type emulsion for low-oil whipping cream and its production
JP2000175621A (en) * 1998-12-15 2000-06-27 Takasago Internatl Corp Fresh cream emulsion having excellent heat stability and its production
JP2000333602A (en) * 1999-05-26 2000-12-05 Snow Brand Milk Prod Co Ltd Oil-in-water type emulsified oil and fat composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256716A (en) * 1995-03-23 1996-10-08 Kao Corp Oil-in-water type emulsion for low-oil whipping cream and its production
JP2000175621A (en) * 1998-12-15 2000-06-27 Takasago Internatl Corp Fresh cream emulsion having excellent heat stability and its production
JP2000333602A (en) * 1999-05-26 2000-12-05 Snow Brand Milk Prod Co Ltd Oil-in-water type emulsified oil and fat composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022266632A1 (en) * 2021-06-16 2022-12-22 Cargill, Incorporated A viscous composition, food composition, and preparation method and use thereof

Also Published As

Publication number Publication date
JP2006304782A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP4736893B2 (en) Method for producing oil-in-water emulsion
JP6083384B2 (en) Foamable oil-in-water emulsified oil composition
JP4211868B2 (en) Foamable oil-in-water emulsion
WO2014017525A1 (en) Low-fat or fat-free air bubble-containing emulsion
SK14652000A3 (en) Process for preparing a spread
JP2007259784A (en) Frozen dessert containing bean curd puree
US3490919A (en) Fatty emulsions and their preparation
JP6628606B2 (en) Whipped compound cream containing fresh cream
JP2009278969A (en) Foamable oil-in-water type emulsion
JP4357636B2 (en) Oil-in-water emulsified oil and fat composition
JP6717577B2 (en) Emulsifying material for oil-in-water emulsified fats
JP5893349B2 (en) Oil-in-water emulsified oil / fat composition for producing cream for beverage and method for producing the same
JP6192266B2 (en) Acidic whipped cream
JP2003024017A (en) Oil-in-water type emulsion fat composition
JP4539389B2 (en) Water-in-oil emulsified oil and fat composition and method for producing the same
JPH07177858A (en) Production of oil-in-water type emulsion
JP2004290104A (en) Acid emulsified food
WO2017017945A1 (en) Method for producing low-fat spread
JPH02182149A (en) Cream, product made by churning milk therefrom, and making thereof
JP6644289B1 (en) Method for producing low trans fatty acid butter-like food and low trans fatty acid butter-like food
JP2020078262A (en) Method of producing low-fat, plastic, water-in-oil type emulsion fat composition
JP2021000077A (en) Method for producing low trans-fatty acid butter-like food product and low trans-fatty acid butter-like food product
JP3879378B2 (en) Method for producing egg yolk-containing liquid and oil-in-water emulsion
JPS6359840A (en) Compounded emulsion and production thereof
JP2004267147A (en) Processed milk and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Ref document number: 4736893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees