JP4736525B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4736525B2
JP4736525B2 JP2005134126A JP2005134126A JP4736525B2 JP 4736525 B2 JP4736525 B2 JP 4736525B2 JP 2005134126 A JP2005134126 A JP 2005134126A JP 2005134126 A JP2005134126 A JP 2005134126A JP 4736525 B2 JP4736525 B2 JP 4736525B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
active material
material layer
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005134126A
Other languages
Japanese (ja)
Other versions
JP2006310222A (en
Inventor
通 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005134126A priority Critical patent/JP4736525B2/en
Publication of JP2006310222A publication Critical patent/JP2006310222A/en
Application granted granted Critical
Publication of JP4736525B2 publication Critical patent/JP4736525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

この発明は、非水電解質二次電池、例えば捲回電極体を扁平上に作製し、アルミラミネート外装材により密封されたポリマーリチウム二次電池に関する。   The present invention relates to a nonaqueous electrolyte secondary battery, for example, a polymer lithium secondary battery in which a wound electrode body is produced on a flat surface and sealed with an aluminum laminate exterior material.

近年、ノート型パーソナルコンピュータ、携帯電話、PDA(Personal Digital Assistants)等の携帯型電子機器が普及し、電源として高電圧、高エネルギー密度、軽量といった利点を有するリチウムイオン電池が広く使用されている。   In recent years, portable electronic devices such as notebook personal computers, mobile phones, and PDAs (Personal Digital Assistants) have become widespread, and lithium ion batteries having advantages such as high voltage, high energy density, and light weight are widely used as power sources.

さらに、液系電解液を用いた場合に問題となる液漏れ対策として、例えば電解質として、ポリマーに非水電解液を含浸させてなるゲル状高分子膜を用いたもの、或いは全固体状の電解質を用いた、ポリマーリチウム二次電池が実用化されている。   Furthermore, as a countermeasure against liquid leakage that becomes a problem when using a liquid electrolyte, for example, an electrolyte that uses a gel polymer film in which a polymer is impregnated with a nonaqueous electrolyte, or an all-solid electrolyte A polymer lithium secondary battery using the above has been put into practical use.

下記特許文献1に記載されているように、従来のポリマーリチウム二次電池は、捲回電極体を扁平状に作製し、アルミラミネート外装材を打ち出し成形して作成した凹部に上記捲回電極体を挿入し、上記外装材の未加工部分を上記凹部上部に折り返して凹部の外周部分を熱融着することで作製される。捲回電極体は、内周側および外周側に片面集電体露出部を有し、かつ正極および負極端部の集電体露出部に配置された正極および負極リードを絶縁材で被覆し、正極および負極リードに対向する電極上に絶縁材が設けられる。絶縁材を設けることで、経年変化や外部から押圧力が印加されたことに起因した正極と負極との接触による電気的短絡を防止するものである。   As described in Patent Document 1 below, the conventional polymer lithium secondary battery has a wound electrode body formed into a flat shape, and the wound electrode body is formed in a recess formed by stamping and forming an aluminum laminate exterior material. Is inserted, the raw part of the exterior material is folded back to the upper part of the concave part, and the outer peripheral part of the concave part is heat-sealed. The wound electrode body has a single-sided current collector exposed portion on the inner peripheral side and the outer peripheral side, and covers the positive electrode and the negative electrode lead disposed on the current collector exposed portion at the positive electrode and negative electrode end portions with an insulating material, An insulating material is provided on the electrodes facing the positive and negative electrode leads. By providing the insulating material, an electrical short circuit due to contact between the positive electrode and the negative electrode due to secular change or application of a pressing force from the outside is prevented.

ここで、帯状の正極、帯状の負極とが電解質およびセパレータを介在して積層され、長手方向に捲回されると共に、正極および負極からそれぞれ正極および負極リードが導出されているものを捲回電極体と称する。   Here, a belt-like positive electrode and a belt-like negative electrode are laminated with an electrolyte and a separator interposed therebetween, wound in the longitudinal direction, and a positive electrode and a negative electrode lead are respectively led out from the positive electrode and the negative electrode. Called the body.

特開2001−266946号公報JP 2001-266946 A

しかしながら、従来のポリマーリチウム二次電池は、電極の捲回開始、捲回終了の位置によっては、電池の厚さのばらつきが生じ、かつ効率よく電池容量を得ることができず、体積エネルギー密度が低くなる問題点があった。   However, in the conventional polymer lithium secondary battery, depending on the electrode winding start and winding end positions, the battery thickness varies, and the battery capacity cannot be obtained efficiently, and the volume energy density is low. There was a problem of lowering.

したがって、この発明の目的は、電極の捲回開始位置、捲回終了位置を規定することで、電池の厚さのばらつきを抑え、かつ効率良く電池容量を得ることで、体積エネルギー密度の高い非水電解質二次電池を提供することにある。   Therefore, an object of the present invention is to define the winding start position and winding end position of the electrode, thereby suppressing variation in battery thickness and obtaining battery capacity efficiently, so that the volume energy density is high. The object is to provide a water electrolyte secondary battery.

上述した課題を解決するために、この発明は、
正極と負極とがセパレータおよび電解質を介在して捲回され、最外周に正極が位置する扁平形状の捲回電極体を有し、
捲回電極体の厚み方向の断面形状を厚み方向において、2分割して一方の側および他方の側を規定し、
断面形状は、
第1の円弧部と、第2の円弧部と、第1の円弧部の一端である折り返し開始点および第2の円弧部の一端である折り返し終了点を結ぶ辺と、第1の円弧部の他端である折り返し終了点および第2の円弧部の他端である折り返し開始点を結ぶ辺とからなり、
正極が正極集電体と、正極活物質層とからなり、且つ正極集電体の少なくとも片面が露出するように正極活物質層が設けられ、
負極が負極集電体と、負極活物質層とからなり、且つ負極集電体の少なくとも片面が露出するように負極活物質層が設けられ、
上記捲回電極体の上記第1の円弧部および上記第2の円弧部以外の平坦な領域、且つ捲回電極体の最外周側に、正極リードおよび負極リードが並行して設けられ、
正極リードおよび負極リードと、捲回開始側の正極活物質層塗布端部および負極活物質層塗布端部とが一方の側に位置し、
捲回開始側の正極活物質層塗布端部が正極リードの第1の円弧部側のエッジと、負極リードの第2の円弧部側のエッジとで挟まれた範囲内に位置し、
捲回終了側の正極活物質層塗布端部および負極活物質層塗布端部が第1の円弧部内に位置する非水電解質二次電池である。
In order to solve the above-described problems, the present invention provides:
The positive electrode and the negative electrode are wound with a separator and an electrolyte interposed therebetween, and have a flat wound electrode body in which the positive electrode is positioned on the outermost periphery,
The cross-sectional shape in the thickness direction of the wound electrode body is divided into two in the thickness direction to define one side and the other side,
The cross-sectional shape is
A first arc portion, a second arc portion, a side connecting a folding start point which is one end of the first arc portion and a folding end point which is one end of the second arc portion, and the first arc portion The other end of the second arcuate part and the side connecting the return start point that is the other end of the second arc portion,
The positive electrode comprises a positive electrode current collector and a positive electrode active material layer, and the positive electrode active material layer is provided so that at least one surface of the positive electrode current collector is exposed;
The negative electrode comprises a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer is provided so that at least one surface of the negative electrode current collector is exposed;
A positive electrode lead and a negative electrode lead are provided in parallel on a flat region other than the first arc portion and the second arc portion of the wound electrode body, and on the outermost peripheral side of the wound electrode body,
The positive electrode lead and the negative electrode lead, and the positive electrode active material layer application end and the negative electrode active material layer application end on the winding start side are located on one side,
The winding active side positive electrode active material layer application end is located within the range sandwiched between the first arc portion side edge of the positive electrode lead and the second arc portion side edge of the negative electrode lead,
The non-aqueous electrolyte secondary battery has a positive electrode active material layer application end and a negative electrode active material layer application end on the winding end side located in the first arc portion.

この発明は、
正極と負極とがセパレータおよび電解質を介在して捲回され、最外周に正極が位置する扁平形状の捲回電極体を有し、
捲回電極体の厚み方向の断面形状を厚み方向において、2分割して一方の側および他方の側を規定し、
断面形状は、
第1の円弧部と、第2の円弧部と、第1の円弧部の一端である折り返し開始点および第2の円弧部の一端である折り返し終了点を結ぶ辺と、第1の円弧部の他端である折り返し終了点および第2の円弧部の他端である折り返し開始点を結ぶ辺とからなり、
正極が正極集電体と、正極活物質層とからなり、且つ正極集電体の少なくとも片面が露出するように正極活物質層が設けられ、
負極が負極集電体と、負極活物質層とからなり、且つ負極集電体の少なくとも片面が露出するように負極活物質層が設けられ、
上記捲回電極体の上記第1の円弧部および上記第2の円弧部以外の平坦な領域、且つ捲回電極体の最外周側に、正極リードおよび負極リードが並行して設けられ、
捲回開始側の正極活物質層塗布端部および負極活物質層塗布端部が一方の側に位置し、正極リードおよび負極リードが他方の側に位置し、
捲回開始側の正極活物質層塗布端部が正極リードの第1の円弧部側のエッジと、第2の円弧部の折り返し開始点とで挟まれた範囲内に位置し、
捲回終了側の正極活物質層塗布端部および負極活物質層塗布端部が捲回終了側の第1の円弧部内に位置する水電解質二次電池である。
This invention
The positive electrode and the negative electrode are wound with a separator and an electrolyte interposed therebetween, and have a flat wound electrode body in which the positive electrode is positioned on the outermost periphery,
The cross-sectional shape in the thickness direction of the wound electrode body is divided into two in the thickness direction to define one side and the other side,
The cross-sectional shape is
A first arc portion, a second arc portion, a side connecting a folding start point which is one end of the first arc portion and a folding end point which is one end of the second arc portion, and the first arc portion The other end of the second arcuate part and the side connecting the return start point that is the other end of the second arc portion,
The positive electrode comprises a positive electrode current collector and a positive electrode active material layer, and the positive electrode active material layer is provided so that at least one surface of the positive electrode current collector is exposed;
The negative electrode comprises a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer is provided so that at least one surface of the negative electrode current collector is exposed;
A positive electrode lead and a negative electrode lead are provided in parallel on a flat region other than the first arc portion and the second arc portion of the wound electrode body , and on the outermost peripheral side of the wound electrode body,
The positive electrode active material layer application end and the negative electrode active material layer application end on the winding start side are located on one side, the positive electrode lead and the negative electrode lead are located on the other side,
The positive electrode active material layer application end on the winding start side is located within a range sandwiched between the edge on the first arc portion side of the positive electrode lead and the folding start point of the second arc portion,
Winding a positive electrode active material layer non-aqueous electrolyte secondary battery that is located within the first arcuate portion in the coating end portion and the end-side anode active material layer coating end wound end side.

この発明によれば、電極の捲回開始位置、捲回終了位置を規定することによって、電池の厚さのばらつきを抑え、かつ効率良く電池容量を得ることで、体積エネルギー密度を高めることができる。   According to the present invention, by defining the winding start position and winding end position of the electrode, it is possible to increase the volume energy density by suppressing variations in battery thickness and efficiently obtaining the battery capacity. .

以下、この発明の実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、この発明の一実施形態に係る捲回電極体10の断面図である。図1に示すように、捲回電極体10は、正極集電体1の両面に正極活物質層3が設けられた正極と、負極集電体4の両面に負極活物質層5が設けられた負極とを、セパレータ9を介して多数回捲回して形成される。   FIG. 1 is a cross-sectional view of a wound electrode body 10 according to an embodiment of the present invention. As shown in FIG. 1, the wound electrode body 10 includes a positive electrode in which a positive electrode active material layer 3 is provided on both surfaces of a positive electrode current collector 1, and a negative electrode active material layer 5 in both surfaces of a negative electrode current collector 4. The negative electrode is wound many times through the separator 9.

正極活物質層3は、正極集電体1の片面が露出するように設けられる。負極活物資層5は、負極集電体4の片面が露出するように設けられる。正極は、捲回電極体10の最外周に位置する。負極の端部には、負極リード7が設けられる。正極の所定の位置に、正極リード2が設けられる。正極リード2、負極リード7は、捲回電極体10の最外周側に、並行して設けられる。正極リード2と負極リード7が最外周に並行して設けられることによって、リードを折り曲げるための空間を不要とすることができ、体積エネルギー密度を高めることができる。   The positive electrode active material layer 3 is provided so that one surface of the positive electrode current collector 1 is exposed. The negative electrode active material layer 5 is provided so that one surface of the negative electrode current collector 4 is exposed. The positive electrode is located on the outermost periphery of the wound electrode body 10. A negative electrode lead 7 is provided at the end of the negative electrode. A positive electrode lead 2 is provided at a predetermined position of the positive electrode. The positive electrode lead 2 and the negative electrode lead 7 are provided in parallel on the outermost peripheral side of the wound electrode body 10. By providing the positive electrode lead 2 and the negative electrode lead 7 in parallel with the outermost periphery, a space for bending the lead can be eliminated, and the volume energy density can be increased.

捲回電極体10の断面形状は、第1の円弧部26aと第2の円弧部26dと辺と辺とからなる。第1の円弧部26aは、捲回終了側の電極の折り返し開始点26bから折り返し終了点26cで結ばれた範囲である。第2の円弧部26dは、捲回開始側の電極の折り返し開始点26eから折り返し終了点26fで結ばれた範囲である。一の辺は、第1の円弧部26aの折り返し開始点26bと、第2の円弧部26dの折り返し終了点26fとで結ばれた範囲である。他の辺は、第1の円弧部26aの折り返し終了点26cと、第2の円弧部26dの折り返し開始点26eとで結ばれた範囲である。   The cross-sectional shape of the wound electrode body 10 includes a first arc portion 26a, a second arc portion 26d, sides, and sides. The first arc portion 26a is a range connected from the folding start point 26b of the winding end electrode to the folding end point 26c. The second arc portion 26d is a range connected from the folding start point 26e of the winding start side electrode to the folding end point 26f. One side is a range connected by a folding start point 26b of the first arc portion 26a and a folding end point 26f of the second arc portion 26d. The other side is a range connected by the folding end point 26c of the first arc portion 26a and the folding start point 26e of the second arc portion 26d.

捲回電極体10は、中央線25によって、厚み方向に2つに分割され、一方の側と他方の側が規定される。捲回開始側の正極活物質層塗布端部21および負極活物質層塗布端部22と、正極リード2および負極リード7とが一方の側に位置する。捲回開始側の正極活物質層塗布端部21が正極リード2の第1の円弧部26a側のエッジと、負極リード7の第2の円弧部26d側のエッジとで挟まれた範囲内に位置する。捲回終了側の正極活物質層塗布端部23および負極活物質層塗布端部24が第1の円弧部26a内に位置する。   The wound electrode body 10 is divided into two in the thickness direction by the center line 25, and one side and the other side are defined. The positive electrode active material layer application end portion 21 and the negative electrode active material layer application end portion 22 on the winding start side, and the positive electrode lead 2 and the negative electrode lead 7 are located on one side. The positive electrode active material layer application end portion 21 on the winding start side is within a range sandwiched between the edge on the first arc portion 26 a side of the positive electrode lead 2 and the edge on the second arc portion 26 d side of the negative electrode lead 7. To position. The positive electrode active material layer application end 23 and the negative electrode active material layer application end 24 on the winding end side are located in the first arc portion 26a.

ここで、正極活物質層塗布端部とは、正極集電体1が露出している部分と正極活物質層3との境界部をいう。負極活物質層塗布端部とは、負極集電体4が露出している部分と負極活物質層5との境界部をいう。   Here, the positive electrode active material layer application end portion refers to a boundary portion between the portion where the positive electrode current collector 1 is exposed and the positive electrode active material layer 3. The negative electrode active material layer application end portion refers to a boundary portion between the portion where the negative electrode current collector 4 is exposed and the negative electrode active material layer 5.

正極上には、絶縁材6が負極の端部に対抗する位置に設けられている。絶縁材6は、電気的短絡を防止する機能を有する。捲回終了側の正極活物質層塗布端部23からは、正極集電体1が伸長されている。負極の端部には、負極リード7が例えばスポットまたは超音波溶接により接合される。捲回電極体10の最外周には、負極リード7と並行して、正極リード2が例えばスポット溶接または超音波溶接により接合される。   On the positive electrode, the insulating material 6 is provided at a position facing the end of the negative electrode. The insulating material 6 has a function of preventing an electrical short circuit. The positive electrode current collector 1 is extended from the winding end side positive electrode active material layer application end portion 23. The negative electrode lead 7 is joined to the end portion of the negative electrode by, for example, spot or ultrasonic welding. The positive electrode lead 2 is joined to the outermost periphery of the wound electrode body 10 in parallel with the negative electrode lead 7 by, for example, spot welding or ultrasonic welding.

正極リード2および負極リード7としては、電気化学的および化学的に安定であり、導通がとれるものであれば金属でなくともよい。正極リード2としては、アルミニウム(Al)等が挙げられる。負極リード7としては、例えば銅(Cu)、ニッケル(Ni)等が挙げられる。   The positive electrode lead 2 and the negative electrode lead 7 may not be metal as long as they are electrochemically and chemically stable and can conduct electricity. Examples of the positive electrode lead 2 include aluminum (Al). Examples of the negative electrode lead 7 include copper (Cu) and nickel (Ni).

負極リード7に捲回開始側の正極活物質層塗布端部21が重なってしまうと、正極リード2上の電池厚さは、正極リード2に重なった正極分厚さが増してしまい、厚さのばらつきが生じ、体積エネルギー密度が低いものとなってしまう。   When the positive electrode active material layer coating end portion 21 on the winding start side overlaps the negative electrode lead 7, the battery thickness on the positive electrode lead 2 increases as the thickness of the positive electrode overlapped with the positive electrode lead 2 increases. Variation occurs and the volume energy density is low.

したがって、図1に示すように、捲回開始側の正極活物質層塗布端部21が正極リード2の第1の円弧部26a側のエッジと負極リード7の第2の円弧部26d側のエッジとで挟まれた範囲内に位置し、捲回終了側の正極活物質層塗布端部23および負極活物質層塗布端部24が第1の円弧部26a内に位置するように構成する。この構成によって、電池厚さのばらつきを抑え、かつ効率良く電池容量を得ることができ、体積エネルギー密度を高めることができる。   Therefore, as shown in FIG. 1, the positive electrode active material layer coating end portion 21 on the winding start side is the edge on the first arc portion 26 a side of the positive electrode lead 2 and the edge on the second arc portion 26 d side of the negative electrode lead 7. The positive electrode active material layer application end 23 and the negative electrode active material layer application end 24 on the winding end side are positioned in the first arc portion 26a. With this configuration, variation in battery thickness can be suppressed, battery capacity can be obtained efficiently, and volume energy density can be increased.

[正極]
正極は、帯状の正極集電体1と、この正極集電体1の両面に形成された正極活物質層3とから構成される。正極集電体1は、例えば金属箔、金属からなる網状物である。この金属としては、例えば、ステンレス、銅、ニッケル、アルミニウム等が挙げられ、特にアルミニウムが好ましい。正極活物質層3は、例えば、正極活物質、導電剤および結着剤(バインダー)から構成される。
[Positive electrode]
The positive electrode includes a strip-shaped positive electrode current collector 1 and a positive electrode active material layer 3 formed on both surfaces of the positive electrode current collector 1. The positive electrode current collector 1 is a net-like material made of, for example, metal foil or metal. Examples of the metal include stainless steel, copper, nickel, and aluminum, and aluminum is particularly preferable. The positive electrode active material layer 3 is composed of, for example, a positive electrode active material, a conductive agent, and a binder (binder).

[正極活物質]
正極活物質としては、リチウムイオンをドープ・脱ドープ可能な遷移金属酸化物等、公知の正極材料を用いることができる。また、電池の種類に応じて、金属酸化物、金属硫化物または特定のポリマーを用いることができる。
[Positive electrode active material]
As the positive electrode active material, a known positive electrode material such as a transition metal oxide that can be doped / undoped with lithium ions can be used. Moreover, a metal oxide, a metal sulfide, or a specific polymer can be used according to the kind of battery.

具体的には、正極活物質としては、例えば、TiS2、MoS2、V25等のリチウムを含有しない金属硫化物あるいは酸化物を用いることができる。また、LiXMO2(式中、Mは一種以上の遷移金属を表し、Xは電池の充放電状態によって異なり、通常0.05≦X≦1.10である)を主体とするリチウム複合酸化物等を用いることができる。リチウム複合酸化物を構成する遷移金属Mとしては、Co、Ni、Mnなどが好ましい。リチウム複合酸化物の具体例としては、LiCoO2、LiNiO2、LiXNiYCo1-Y2(式中、X、Y、は電池の充放電状態によって異なり、通常0<X≦1.2、0.7<Y<1.02である)、スピネル型構造を有するリチウムマンガン複合酸化物等を挙げることができる。リチウム複合酸化物は、高電圧を発生でき、エネルギー密度的に優れた正極活物質である。なお、正極1には、これらの正極活物質の複数種を混合して用いることができる。 Specifically, as the positive electrode active material, for example, a metal sulfide or oxide containing no lithium such as TiS 2 , MoS 2 , V 2 O 5 can be used. Further, lithium complex oxidation mainly composed of Li X MO 2 (wherein M represents one or more transition metals, X varies depending on the charge / discharge state of the battery, and is generally 0.05 ≦ X ≦ 1.10.) A thing etc. can be used. As the transition metal M constituting the lithium composite oxide, Co, Ni, Mn and the like are preferable. Specific examples of the lithium composite oxide include LiCoO 2 , LiNiO 2 , Li X Ni Y Co 1-Y O 2 (where X and Y vary depending on the charge / discharge state of the battery, and generally 0 <X ≦ 1. 2, 0.7 <Y <1.02, and a lithium manganese composite oxide having a spinel structure. The lithium composite oxide is a positive electrode active material that can generate a high voltage and is excellent in energy density. The positive electrode 1 can be used by mixing a plurality of these positive electrode active materials.

結着剤としては、通常この種の電池に使用されている公知の結着剤を用いることができる。結着剤としては、例えば、ポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTEF)等のフッ素系樹脂を挙げることができる。   As the binder, a known binder usually used for this type of battery can be used. Examples of the binder include fluorine resins such as polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), and polytetrafluoroethylene (PTEF).

また、正極活物質層3としては、必要に応じて導電剤を含有するようにしてもよい。導電剤としては、活物質に適量混合して導電性を付与できるものであれば特に限定されず、例えば、グラファイト、カーボンブラック等の炭素粉末を用いることができる。   Moreover, as the positive electrode active material layer 3, you may make it contain a electrically conductive agent as needed. The conductive agent is not particularly limited as long as an appropriate amount can be mixed with the active material to impart conductivity, and for example, carbon powder such as graphite and carbon black can be used.

正極活物質層3の形成方法としては、例えば、粉体状の正極活物質を結着剤(バインダー)とともに溶剤と混合し、必要に応じてボールミル、サンドミル、二軸混練機等により分散塗料化した後、正極集電体上に塗布して乾燥する方法が好適に用いられる。用いられる溶剤の種類は、正極集電体1に対して不活性であり、かつバインダーを溶解できる限り、特に限定されず、例えばN−メチル−2−ピロリドン等の一般に使用される無機、有機溶剤の何れも使用できる。   As a method of forming the positive electrode active material layer 3, for example, a powdered positive electrode active material is mixed with a solvent together with a binder (binder), and if necessary, a dispersion paint is formed by a ball mill, a sand mill, a biaxial kneader or the like. After that, a method of coating on the positive electrode current collector and drying is preferably used. The type of the solvent used is not particularly limited as long as it is inactive to the positive electrode current collector 1 and can dissolve the binder. For example, commonly used inorganic and organic solvents such as N-methyl-2-pyrrolidone Any of these can be used.

塗布装置は、特に限定されるものではないが、例えばスライドコーティングやエクストルージョン型のダイコーティング、リバースロール、グラビア、ナイフコーター、キスコーター、マイクログラビア、ロッドコーター、ブレードコーター等を挙げることができる。乾燥方法は特に制限されず、例えば放置乾燥、送風乾燥機、温風乾燥機、赤外線加熱機、遠赤外線加熱機等を挙げることができる。   The coating apparatus is not particularly limited, and examples thereof include slide coating, extrusion type die coating, reverse roll, gravure, knife coater, kiss coater, micro gravure, rod coater, blade coater and the like. The drying method is not particularly limited, and examples thereof include standing drying, a blast dryer, a hot air dryer, an infrared heater, and a far infrared heater.

[負極]
負極は、帯状の負極集電体4と、この負極集電体4の両面に形成された負極活物質層5とから構成される。負極集電体4は、例えば金属箔、金属からなる網状物である。この金属としては、例えばステンレス、銅、ニッケル、アルミニウム等が挙げられ、特に銅が好ましい。負極活物質層5は、例えば負極活物質、導電剤および結着剤(バインダー)から構成される。
[Negative electrode]
The negative electrode includes a strip-shaped negative electrode current collector 4 and negative electrode active material layers 5 formed on both surfaces of the negative electrode current collector 4. The negative electrode current collector 4 is a network made of metal foil or metal, for example. Examples of the metal include stainless steel, copper, nickel, and aluminum. Copper is particularly preferable. The negative electrode active material layer 5 is composed of, for example, a negative electrode active material, a conductive agent, and a binder (binder).

負極活物質としては、対リチウム金属2.0V以下の電位で電気化学的にリチウムをドープ脱ドープする材料であればいずれも用いることができる。   As the negative electrode active material, any material can be used as long as it is electrochemically doped and dedoped with lithium at a potential of lithium metal of 2.0 V or less.

炭素材料は例えばリチウムを吸蔵および離脱することが可能であると共に、充放電時に伴う結晶構造の変化が非常に少なく、良好なサイクル特性を得ることができるので、負極活物質として好ましい。このような炭素材料としては、黒鉛,難黒鉛化性炭素あるいは易黒鉛化性炭素などが挙げられ、特に黒鉛は、電気化学当量が大きく、高いエネルギー密度を得ることができ好ましい。   A carbon material is preferable as a negative electrode active material because it can occlude and release lithium, for example, and has very little change in crystal structure accompanying charge / discharge and can provide good cycle characteristics. Examples of such a carbon material include graphite, non-graphitizable carbon, and graphitizable carbon. Graphite is particularly preferable because it has a high electrochemical equivalent and can provide a high energy density.

黒鉛としては、例えば、真密度が2.10g/cm3以上、(002)面の面間隔が0.340nm未満のものが好ましく、真密度が2.18g/cm3以上、(002)面の面間隔が0.335nm以上0.337nm以下のものであればより好ましい。難黒鉛化性炭素としては、例えば、(002)面の面間隔が0.37nm以上、真密度が1.70g/cm3未満であり、空気中での示差熱分析(differential thermal analysis ;DTA)において700℃以上に発熱ピークを示さないものが好ましい。 The graphite preferably has, for example, a true density of 2.10 g / cm 3 or more and a (002) plane spacing of less than 0.340 nm, a true density of 2.18 g / cm 3 or more, and a (002) plane. It is more preferable if the surface spacing is not less than 0.335 nm and not more than 0.337 nm. As the non-graphitizable carbon, for example, the (002) plane spacing is 0.37 nm or more, the true density is less than 1.70 g / cm 3 , and differential thermal analysis (DTA) in air. In which no exothermic peak is exhibited at 700 ° C. or higher.

具体的には、例えば、難黒鉛化性炭素、人造黒鉛、天然黒鉛、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭、カーボンブラック類等の炭素質材料を使用できる。   Specifically, for example, non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, organic polymer compounds A carbonaceous material such as a fired body (a product obtained by firing and carbonizing a phenol resin, a furan resin or the like at an appropriate temperature), carbon fiber, activated carbon, or carbon black can be used.

また、リチウムと合金を形成可能な金属およびその合金や金属間化合物も使用できる。酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズ等の比較的電位が卑な電位でリチウムをドープ脱ドープする酸化物やその他窒化物なども同様に用いることができる。   Further, a metal capable of forming an alloy with lithium, an alloy thereof, or an intermetallic compound can also be used. Oxides such as iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, tin oxide, etc. that dope and undope lithium with a relatively low potential, and other nitrides can be used as well.

結着剤としては、例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVdF)、ポリエチレンなどを用いることができる。   As the binder, for example, polytetrafluoroethylene, polyvinylidene fluoride (PVdF), polyethylene, or the like can be used.

導電剤としては、例えばグラファイト、カーボンブラック等の炭素粉末を用いることができる。   As the conductive agent, for example, carbon powder such as graphite and carbon black can be used.

上述の負極および正極の作製方法は、問わない。材料に公知の結着剤、導電性材料等を添加し溶剤を加えて塗布する方法、材料に公知の結着剤等を添加し加熱して塗布する方法、材料単独あるいは導電性材料さらには結着剤と混合して成型等の処理を施して成型体電極を作成する方法が採られるが、これらに限定されるものではない。   The manufacturing method of the above-mentioned negative electrode and positive electrode is not ask | required. A method of adding a known binder, conductive material, etc. to the material and adding a solvent, a method of adding a known binder, etc. to the material and applying it by heating, a material alone or a conductive material, Although the method of mixing with an adhesive agent and performing a process such as molding to form a molded body electrode is adopted, it is not limited thereto.

例えば、結着剤、有機溶剤等と混合されスラリー状にされた後、集電体上に塗布、乾燥して電極を製造できる。または、結着剤の有無にかかわらず、活物質に熱を加えたまま加圧成型することにより強度を有した電極を作成することも可能である。   For example, an electrode can be produced by mixing with a binder, an organic solvent, etc. to form a slurry, and applying and drying on a current collector. Alternatively, regardless of the presence or absence of the binder, it is also possible to produce a strong electrode by pressure molding while applying heat to the active material.

[電解質]
電解質としては、有機高分子に非水溶媒と電解質塩を含浸させたゲル状電解質、電解質塩を含有させた固体電解質、を好適に用いることができる。
[Electrolytes]
As the electrolyte, a gel electrolyte obtained by impregnating an organic polymer with a nonaqueous solvent and an electrolyte salt, and a solid electrolyte containing an electrolyte salt can be suitably used.

[ゲル状電解質]
ゲル状電解質のマトリクスとしては、非水電解液を吸収してゲル化するものであれば種々の高分子を利用できる。例えば、ポリ(ビニリデンフルオライド)やポリ(ビニリデンフルオライド-co-ヘキサフルオロプロピレン)などのフッ素系高分子、ポリ(エチレンオキサイド)や同架橋体などのエーテル系高分子、また、ポリ(アクリロニトリル)等を使用できる。ゲル状電解質は、特に酸化還元安定性から、フッ素系高分子を用いることが望ましい。電解質塩を含有させることによりイオン導電性を付与する。
[Gel electrolyte]
As the gel electrolyte matrix, various polymers can be used as long as they absorb the non-aqueous electrolyte and gel. For example, fluorine-based polymers such as poly (vinylidene fluoride) and poly (vinylidene fluoride-co-hexafluoropropylene), ether-based polymers such as poly (ethylene oxide) and crosslinked products, and poly (acrylonitrile) Etc. can be used. As the gel electrolyte, it is desirable to use a fluorine-based polymer particularly from the viewpoint of redox stability. By containing an electrolyte salt, ionic conductivity is imparted.

[固体電解質]
固体電解質としては、リチウムイオン導電性を有する材料であれば無機固体電解質、高分子固体電解質いずれも使用できる。無機固体電解質として、窒化リチウム、ヨウ化リチウムが挙げられる。高分子固体電解質は、電解質塩とそれを溶解する高分子化合物からなる。高分子化合物は、ポリ(エチレンオキサイド)や同架橋体などのエーテル系高分子、ポリ(メタクリレート)エステル系、アクリレート系などを単独あるいは分子中に共重合し又は混合して用いることができる。
[Solid electrolyte]
As the solid electrolyte, any inorganic solid electrolyte or polymer solid electrolyte can be used as long as the material has lithium ion conductivity. Examples of the inorganic solid electrolyte include lithium nitride and lithium iodide. The polymer solid electrolyte is composed of an electrolyte salt and a polymer compound that dissolves the electrolyte salt. As the polymer compound, an ether polymer such as poly (ethylene oxide) or a crosslinked product thereof, a poly (methacrylate) ester compound, an acrylate compound, or the like can be used alone or copolymerized or mixed in the molecule.

電解質中で使用される、電解質塩は、この種の電池に用いられるものであれば、いずれも使用可能である。例示するならば、LiClO4、LiAsF6、LiPF6、LiBF4、LiB(C654、LiCH3SO3、LiCF3SO3、LiCl、LiBr等を挙げることができる。 Any electrolyte salt used in the electrolyte can be used as long as it is used in this type of battery. Illustrative examples include LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiCl, LiBr and the like.

[セパレータ]
セパレータ9としては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系微多孔膜などを好適に用いることができる。
[Separator]
As the separator 9, for example, a polyolefin microporous film such as polyethylene or polypropylene can be suitably used.

[絶縁材]
絶縁材6としての保護テープは、絶縁性があり、かつ薄く、十分な強度を有するものを用いることができる。例えば、保護テープは、PET(ポリエチレンテレフタレート)製のものが好適に使用される。
[Insulating material]
The protective tape as the insulating material 6 can be an insulating material that is thin and thin and has sufficient strength. For example, a protective tape made of PET (polyethylene terephthalate) is preferably used.

捲回電極体10を例えば扁平状に作製し、例えばアルミラミネートからなる外装材34を打ち出し成形して作製した凹部に、正極リード2および負極リード7が外装材34から露出するように上記捲回電極体10を挿入し、外装材34の未加工部分を凹部上部に折り返して凹部の外周部を熱融着することで、捲回電極体10を密封し、この発明の一実施形態に係るポリマーリチウム二次電池が作製される。   The wound electrode body 10 is manufactured in a flat shape, for example, and the winding is performed so that the positive electrode lead 2 and the negative electrode lead 7 are exposed from the outer material 34 in a recess formed by stamping and forming an outer material 34 made of, for example, aluminum laminate. The electrode body 10 is inserted, the unprocessed portion of the exterior material 34 is folded back to the upper part of the concave portion, and the outer peripheral portion of the concave portion is heat-sealed to seal the wound electrode body 10, and the polymer according to one embodiment of the present invention A lithium secondary battery is produced.

図2は、この発明の一実施形態に係るポリマーリチウム二次電池の構成を示した模式図である。図3に詳細に示すように、この電池は捲回電極体10が外装材34としてのラミネートフィルムに形成された凹部に収容されて外装されており、電池素子10の周辺部が例えば熱融着によって、封止されている。捲回電極体10からは正極と接続された正極リード2および負極と接続された負極リード7が導出されており、正極リード2および負極リード7には、外装材34との接着性を向上させるために、樹脂片であるシーラント33aおよび33bが被覆されている。   FIG. 2 is a schematic diagram showing the configuration of a polymer lithium secondary battery according to an embodiment of the present invention. As shown in detail in FIG. 3, this battery has a wound electrode body 10 housed in a recess formed in a laminate film as an exterior material 34, and the periphery of the battery element 10 is, for example, heat-sealed. It is sealed by. From the wound electrode body 10, the positive electrode lead 2 connected to the positive electrode and the negative electrode lead 7 connected to the negative electrode are led out, and the positive electrode lead 2 and the negative electrode lead 7 are improved in adhesion to the exterior material 34. Therefore, sealants 33a and 33b, which are resin pieces, are covered.

この発明の一実施形態では、ポリマーリチウム二次電池は、最外周側に正極リード2および負極リード7が並行して設けられ、捲回開始側の正極活物質層塗布端部21および負極活物質層塗布端部22と、正極リード2および負極リード7とが一方の側に位置するように構成する。   In one embodiment of the present invention, the polymer lithium secondary battery has a positive electrode lead 2 and a negative electrode lead 7 provided in parallel on the outermost peripheral side, and a positive electrode active material layer coating end portion 21 on the winding start side and a negative electrode active material The layer application end 22 and the positive electrode lead 2 and the negative electrode lead 7 are configured to be positioned on one side.

このような構成のポリマーリチウム二次電池において、捲回開始側の正極活物質層塗布端部21が正極リード2の第1の円弧部26a側のエッジと、負極リード7の第2の円弧部26d側のエッジとで挟まれた範囲内に位置し、捲回終了側の正極活物質層塗布端部23および負極活物質層塗布端部24が第1の円弧部26a内に位置するように構成する。   In the polymer lithium secondary battery having such a configuration, the positive electrode active material layer application end portion 21 on the winding start side has the edge on the first arc portion 26 a side of the positive electrode lead 2 and the second arc portion of the negative electrode lead 7. The positive electrode active material layer application end 23 and the negative electrode active material layer application end 24 on the winding end side are located within the first arc portion 26a. Constitute.

この構成によって、厚さのばらつきを抑え、かつ効率良く電池容量を得ることで、エネルギー密度の高いポリマーリチウム二次電池を安定して提供できる。   With this configuration, it is possible to stably provide a polymer lithium secondary battery with high energy density by suppressing variation in thickness and efficiently obtaining battery capacity.

図4は、この発明の他の実施形態に係る捲回電極体の断面図である。図4に示すように、この捲回電極体10は、捲回開始側の正極活物質層塗布端部21および負極活物質層塗布端部22が一方の側に位置し、正極リード2および負極リード7が他方の側に位置する。捲回終了側の正極活物質層塗布端部23および負極活物質層塗布端部24は、第1の円弧部26a内に位置する。捲回開始側の正極活物質層塗布端部21は、正極リード2の第1の円弧部26a側のエッジと第2の円弧部26dの電極の折り返し開始点26eとで挟まれた範囲内に位置する。なお、上記構成以外は、上述したこの発明の一実施形態に係るポリマーリチウム二次電池と同様であるので、説明を省略する。   FIG. 4 is a cross-sectional view of a wound electrode body according to another embodiment of the present invention. As shown in FIG. 4, the wound electrode body 10 has a positive electrode active material layer application end portion 21 and a negative electrode active material layer application end portion 22 on one side, which are on the winding start side. Lead 7 is located on the other side. The positive electrode active material layer application end portion 23 and the negative electrode active material layer application end portion 24 on the winding end side are located in the first arc portion 26a. The positive electrode active material layer application end portion 21 on the winding start side is within a range sandwiched between the edge on the first arc portion 26a side of the positive electrode lead 2 and the folding start point 26e of the electrode of the second arc portion 26d. To position. In addition, since it is the same as that of the polymer lithium secondary battery which concerns on one Embodiment of this invention mentioned above except the said structure, description is abbreviate | omitted.

この発明の他の実施形態では、ポリマーリチウム二次電池は、最外周側に正極リード2および負極リード7が並行して設けられ、捲回開始側の正極活物質層塗布端部21および負極活物質層塗布端部22が一方の側に位置し、正極リード2および負極リード7が他方の側に位置するように構成する。   In another embodiment of the present invention, the polymer lithium secondary battery is provided with the positive electrode lead 2 and the negative electrode lead 7 in parallel on the outermost peripheral side, and the positive electrode active material layer coating end 21 and the negative electrode active side on the winding start side. The material layer application end 22 is positioned on one side, and the positive electrode lead 2 and the negative electrode lead 7 are positioned on the other side.

このような構成のポリマーリチウム二次電池において、捲回終了側の正極活物質層塗布端部23および負極活物質層塗布端部24が第1の円弧部26a内に位置し、捲回開始側の正極活物質層塗布端部21が正極リード2の第1の円弧部26a側のエッジと、第2の円弧部26dの折り返し開始点26eとで挟まれた範囲内に位置するように構成する。   In the polymer lithium secondary battery having such a configuration, the positive electrode active material layer coating end portion 23 and the negative electrode active material layer coating end portion 24 on the winding end side are located in the first arc portion 26a, and the winding start side The positive electrode active material layer application end portion 21 of the positive electrode lead 2 is configured to be located within the range sandwiched between the edge on the first arc portion 26a side of the positive electrode lead 2 and the folding start point 26e of the second arc portion 26d. .

この構成によって、厚さのばらつきを抑え、かつ効率良く電池容量を得ることで、エネルギー密度の高いポリマーリチウム二次電池を安定して提供できる。   With this configuration, it is possible to stably provide a polymer lithium secondary battery with high energy density by suppressing variation in thickness and efficiently obtaining battery capacity.

以下、実施例によりこの発明を具体的に説明するが、この発明は、これらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited only to these examples.

<実施例1>
図1に示す捲回電極体10を以下に述べる手法により作製した。まず、図5に示す正極および負極を作製した。図5Aに示す正極は、正極集電体1の両面にそれぞれの長さの異なる正極活物質層3が正極集電体1の片面が露出するように形成され、正極集電体1の露出部の所定位置には、正極リード2が設けられている。具体的には、正極活物質として、まず炭酸リチウム(Li2CO3)と炭酸コバルト(CoCO3)とを、Li2CO3:CoCO3=0.5:1(モル比)の割合で混合し、空気中において900℃で5時間焼成して、正極活物質としてのリチウム・コバルト複合酸化物(LiCoO2)を得た。次いで、このリチウム・コバルト複合酸化物91質量部と、導電剤であるグラファイト6質量部と、結着剤であるポリフッ化ビニリデン3質量部とを混合して正極合剤を調整したのち、溶剤であるN−メチル−2−ピロリドンに分散させて正極合剤スラリーを作製した。続いて、正極合剤スラリーを厚さ12μmのアルミニウム箔よりなる正極集電体1に均一塗布し乾燥させたのち圧縮成型して正極活物質層3を形成した。正極活物質層3は、正極集電体の片面が露出部(以下、片面露出部と称する)を有するように、両面の正極活物質層3の長さがそれぞれ異なるように塗布した。片面露出部側の正極集電体1の一端には、幅4mm、厚さ70μmの正極リード2をスポット溶接によって、接合した。ここで、実施例1においては、正極の厚さを122μmとし、第1の正極塗布長Xは381mm、第2の正極塗布長Yは309mm、第1の正極塗布端から正極リード2間の長さZは25mmとした。
<Example 1>
The wound electrode body 10 shown in FIG. 1 was produced by the method described below. First, the positive electrode and negative electrode shown in FIG. 5 were produced. In the positive electrode shown in FIG. 5A, positive electrode active material layers 3 having different lengths are formed on both surfaces of the positive electrode current collector 1 so that one surface of the positive electrode current collector 1 is exposed. A positive electrode lead 2 is provided at a predetermined position. Specifically, as the positive electrode active material, first, lithium carbonate (Li 2 CO 3 ) and cobalt carbonate (CoCO 3 ) are mixed at a ratio of Li 2 CO 3 : CoCO 3 = 0.5: 1 (molar ratio). , calcined 5 hours at 900 ° C. in air to obtain lithium cobalt complex oxide as a positive electrode active material (LiCoO 2). Next, 91 parts by mass of this lithium / cobalt composite oxide, 6 parts by mass of graphite as a conductive agent, and 3 parts by mass of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture, A positive electrode mixture slurry was prepared by dispersing in some N-methyl-2-pyrrolidone. Subsequently, the positive electrode mixture slurry was uniformly applied to the positive electrode current collector 1 made of an aluminum foil having a thickness of 12 μm, dried, and then compression molded to form the positive electrode active material layer 3. The positive electrode active material layer 3 was applied such that the lengths of the positive electrode active material layers 3 on both sides were different so that one side of the positive electrode current collector had an exposed portion (hereinafter referred to as a single side exposed portion). A positive electrode lead 2 having a width of 4 mm and a thickness of 70 μm was joined to one end of the positive electrode current collector 1 on the one-side exposed portion side by spot welding. Here, in Example 1, the thickness of the positive electrode is 122 μm, the first positive electrode application length X is 381 mm, the second positive electrode application length Y is 309 mm, and the length between the first positive electrode application end and the positive electrode lead 2. The thickness Z was 25 mm.

図5Bに示す負極は、負極集電体4の両面にそれぞれの長さが異なる負極活物質層5が、負極集電体4の片面が露出するように形成され、負極集電体4の端部には、負極リード7が設けられている。具体的には、負極活物質として平均粒径25μmの黒鉛粉末を用意し、この黒鉛粉末90質量部と、結着材であるポリフッ化ビニリデン10質量部とを混合して負極合剤を調製した。次いで、この負極合剤を溶剤であるN−メチル−2−ピロリドンに分散して負極合剤スラリーとし、厚さ8μmの銅箔よりなる負極集電体4の両面に均一に塗布して乾燥させ、ロールプレス機で圧縮成型して負極活物質層5を作製した。負極活物質層5は、負極集電体4の片面が露出部を有するように、両面の負極活物質層5の長さがそれぞれ異なるように塗布した。片面露出部側の負極集電体4の一端には、幅4mm、厚さ70μmの負極リード7をスポット溶接によって、接合した。ここで、実施例1においては、負極の厚さは108μmとし、第1の負極塗布長Xは385mm、第2の負極塗布長Yは323mm、第1の負極塗布端から負極リード7間の長さZは3mmとした。   In the negative electrode shown in FIG. 5B, negative electrode active material layers 5 having different lengths are formed on both surfaces of the negative electrode current collector 4 so that one surface of the negative electrode current collector 4 is exposed. The part is provided with a negative electrode lead 7. Specifically, a graphite powder having an average particle size of 25 μm was prepared as a negative electrode active material, and 90 parts by mass of the graphite powder and 10 parts by mass of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture. . Next, the negative electrode mixture is dispersed in N-methyl-2-pyrrolidone as a solvent to form a negative electrode mixture slurry, which is uniformly applied to both surfaces of the negative electrode current collector 4 made of a copper foil having a thickness of 8 μm and dried. The negative electrode active material layer 5 was produced by compression molding with a roll press. The negative electrode active material layer 5 was applied so that the lengths of the negative electrode active material layers 5 on both sides were different so that one side of the negative electrode current collector 4 had an exposed portion. A negative electrode lead 7 having a width of 4 mm and a thickness of 70 μm was joined to one end of the negative electrode current collector 4 on one side exposed portion side by spot welding. Here, in Example 1, the thickness of the negative electrode is 108 μm, the first negative electrode coating length X is 385 mm, the second negative electrode coating length Y is 323 mm, and the length between the first negative electrode coating end and the negative electrode lead 7. The thickness Z was 3 mm.

次いで、ポリフッ化ビニリデン(PVDF)とヘキサフルオロプロピレン(HFP)とをPVDF:HFP=93:7の質量比でブロック共重合させた共重合体を、プロピレンカーボネート(PC)と、エチレンカーボネート(EC)との混合溶媒(PC:EC=50:50)に、電解質塩として1.0mol/LのLiPF6を溶解させた電解液に混合溶解させたゾル状の電解質を得た。次いで、負極活物質層5の表面に対して、このゾル状の電解質を塗布し、これを冷却硬化させたゲル電解質層8をさらに積層形成した。 Subsequently, a copolymer obtained by block copolymerization of polyvinylidene fluoride (PVDF) and hexafluoropropylene (HFP) at a mass ratio of PVDF: HFP = 93: 7, propylene carbonate (PC) and ethylene carbonate (EC) In a mixed solvent (PC: EC = 50: 50), an electrolyte solution in which 1.0 mol / L LiPF 6 was dissolved as an electrolyte salt was mixed and dissolved to obtain a sol electrolyte. Next, the sol-like electrolyte was applied to the surface of the negative electrode active material layer 5, and a gel electrolyte layer 8 obtained by cooling and curing the electrolyte was further laminated.

このようにして正極、負極、ゲル電解質層8を作製し、これらをポリエチレンからなるセパレータ9を介して重ね、図示しない捲回用の治具を用いて捲回することで、捲回電極体10を作製した。正極リード2および負極リード7が対向する集電体露出部には、絶縁材6としてのPET製の保護テープを貼着した。ここで、実施例1においては、図1に示すように、捲回開始側の正極活物質層塗布端部21と、正極リード2および負極リード7とが一方の側に位置し、捲回開始側の正極活物質層塗布端部21が正極リード2の第1の円弧部26a側のエッジと、負極リード7の第2の円弧部26d側のエッジとで挟まれた範囲内に位置し、捲回終了側の正極活物質層塗布端部23および負極活物質層塗布端部24が第1の円弧部26a内に位置するように選んだ。   In this way, the positive electrode, the negative electrode, and the gel electrolyte layer 8 are produced, and these are stacked with a separator 9 made of polyethylene, and wound using a winding jig (not shown), whereby the wound electrode body 10 is obtained. Was made. A PET protective tape as the insulating material 6 was attached to the current collector exposed portion where the positive electrode lead 2 and the negative electrode lead 7 face each other. Here, in Example 1, as shown in FIG. 1, the positive electrode active material layer coating end portion 21 on the winding start side, the positive electrode lead 2 and the negative electrode lead 7 are positioned on one side, and winding starts. The positive electrode active material layer application end 21 on the side is located within a range sandwiched between the edge on the first arc portion 26a side of the positive electrode lead 2 and the edge on the second arc portion 26d side of the negative electrode lead 7, The positive electrode active material layer coating end portion 23 and the negative electrode active material layer coating end portion 24 on the winding end side were selected so as to be located in the first arc portion 26a.

次に、ナイロンフィルムと、アルミニウム箔と、ポリエチレンフィルムとが順次積層されたアルミラミネート外装材34を打ち出し成形することで凹部を作成し、上記捲回電極体10をこの凹部に挿入し、外装材34の未加工部分を凹部上部に折り返し、凹部の外周部分を熱溶着し密封することで、幅35mm、高さ62mmのポリマーリチウム二次電池を作製した。   Next, a concave portion is formed by stamping and forming an aluminum laminate outer packaging material 34 in which a nylon film, an aluminum foil, and a polyethylene film are sequentially laminated, and the wound electrode body 10 is inserted into the concave portion. 34 raw parts were folded back to the upper part of the concave part, and the outer peripheral part of the concave part was thermally welded and sealed to produce a polymer lithium secondary battery having a width of 35 mm and a height of 62 mm.

<実施例2>
正極の厚さは109μm、負極の厚さは96μmとした。第1の正極塗布長Xは424mm、第2の正極塗布長Yは354mm、第1の正極塗布端から正極リード間の長さZは25mmとした。第1の負極塗布長Xは429mm、第2の負極塗布長Yは396mm、第1の負極塗布端から負極リード間の長さZは3mmとした。図4に示すように、捲回開始側の正極活物質層塗布端部21および負極活物質層塗布端部24が一方の側に位置し、正極リード2および負極リード7が他方の側に位置し、捲回開始側の正極活物質層塗布端部21が正極リード2の第1の円弧部26a側のエッジと、第2の円弧部26dの折り返し開始点26eとで挟まれた範囲内の位置となるように選んだ。これ以外は、実施例1と同様とし、ポリマーリチウム二次電池を作製した。
<Example 2>
The thickness of the positive electrode was 109 μm, and the thickness of the negative electrode was 96 μm. The first positive electrode coating length X was 424 mm, the second positive electrode coating length Y was 354 mm, and the length Z between the first positive electrode coating end and the positive electrode lead was 25 mm. The first negative electrode coating length X was 429 mm, the second negative electrode coating length Y was 396 mm, and the length Z between the first negative electrode coating end and the negative electrode lead was 3 mm. As shown in FIG. 4, the positive electrode active material layer application end 21 and the negative electrode active material layer application end 24 on the winding start side are located on one side, and the positive electrode lead 2 and the negative electrode lead 7 are located on the other side. In addition, the positive electrode active material layer coating end portion 21 on the winding start side is within a range sandwiched between the edge on the first arc portion 26a side of the positive electrode lead 2 and the folding start point 26e of the second arc portion 26d. I chose to be in position. Except this, it carried out similarly to Example 1, and produced the polymer lithium secondary battery.

<比較例1>
第1の正極塗布長Xは385mm、第2の正極塗布長Yは313mm、第1の正極塗布端から正極リード間の長さZは25mmとした。第1の負極塗布長Xは389mm、第2の負極塗布長Yは327mm、第1の負極塗布端から負極リード間の長さZは3mmとした。図6に示すように、捲回開始側の正極活物質層塗布端部21が負極リード7の2つのエッジで挟まれた範囲内に位置するように選んだ。これ以外は、実施例1と同様とし、ポリマーリチウム二次電池を作製した。
<Comparative Example 1>
The first positive electrode coating length X was 385 mm, the second positive electrode coating length Y was 313 mm, and the length Z between the first positive electrode coating end and the positive electrode lead was 25 mm. The first negative electrode coating length X was 389 mm, the second negative electrode coating length Y was 327 mm, and the length Z between the first negative electrode coating end and the negative electrode lead was 3 mm. As shown in FIG. 6, the positive electrode active material layer application end portion 21 on the winding start side is selected so as to be located within a range sandwiched between two edges of the negative electrode lead 7. Except this, it carried out similarly to Example 1, and produced the polymer lithium secondary battery.

<比較例2>
第1の正極塗布長Xは386mm、第2の正極塗布長Yは314mm、第1の正極塗布端から正極リード間の長さZは3mmとした。第1の負極塗布長Xは390mm、第2の負極塗布長Yは328mm、第1の負極塗布端から負極リード間の長さZは3mmとした。図7に示すように、負極活物質層塗布端部24が第1の円弧部26a内に位置せず、正極リード2および負極リード7と同じ一方の側に位置し、第1の円弧部26aの折り返し終了点26cと第2の円弧部26dの折り返し開始点26eとで挟まれた範囲内に位置するように選んだ。これ以外は、実施例1と同様とし、ポリマーリチウム二次電池を作製した。
<Comparative example 2>
The first positive electrode coating length X was 386 mm, the second positive electrode coating length Y was 314 mm, and the length Z between the first positive electrode coating end and the positive electrode lead was 3 mm. The first negative electrode coating length X was 390 mm, the second negative electrode coating length Y was 328 mm, and the length Z between the first negative electrode coating end and the negative electrode lead was 3 mm. As shown in FIG. 7, the negative electrode active material layer application end portion 24 is not located in the first arc portion 26a, but is located on the same side as the positive electrode lead 2 and the negative electrode lead 7, and the first arc portion 26a. The folding end point 26c and the folding start point 26e of the second arc portion 26d are selected so as to be located within a range. Except this, it carried out similarly to Example 1, and produced the polymer lithium secondary battery.

<比較例3>
第1の正極塗布長Xは372mm、第2の正極塗布長Yは300mm、第1の正極塗布端から正極リード間の長さZは34mmとした。第1の負極塗布長Xは376mm、第2の負極塗布長Yは314mm、第1の負極塗布端から負極リード間の長さZは12mmとした。図8に示すように、捲回終了側の正極活物質層塗布端部23および負極活物質層塗布端部24が第1の円弧部26a内に位置せず、捲回終了側の正極活物質層塗布端部23が正極リード2および負極リード7と異なる他方の側に位置し、第1の円弧部26aの折り返し開始点26bと、第2の円弧部26dの折り返し終了点26fとで挟まれた範囲内に位置するように選んだ。これ以外は、実施例1と同様とし、ポリマーリチウム二次電池を作製した。
<Comparative Example 3>
The first positive electrode coating length X was 372 mm, the second positive electrode coating length Y was 300 mm, and the length Z from the first positive electrode coating end to the positive electrode lead was 34 mm. The first negative electrode coating length X was 376 mm, the second negative electrode coating length Y was 314 mm, and the length Z between the first negative electrode coating end and the negative electrode lead was 12 mm. As shown in FIG. 8, the positive electrode active material layer application end 23 and the negative electrode active material layer application end 24 on the winding end side are not located in the first arc portion 26 a, and the positive electrode active material on the winding end side The layer application end portion 23 is located on the other side different from the positive electrode lead 2 and the negative electrode lead 7, and is sandwiched between the folding start point 26b of the first arc portion 26a and the folding end point 26f of the second arc portion 26d. Chosen to be within the range. Except this, it carried out similarly to Example 1, and produced the polymer lithium secondary battery.

<比較例4>
第1の正極塗布長Xは418mm、第2の正極塗布長Yは348mm、第1の正極塗布端から正極リード間の長さZは25mmとした。第1の負極塗布長Xは426mm、第2の負極塗布長Yは393mm、第1の負極塗布端から負極リード間の長さZは3mmとした。図9に示すように、捲回開始側の正極活物質層塗布端部21が一方の側に位置し、正極リード2および負極リード7が他方の側に位置し、捲回開始側の正極活物質層塗布端部21が正極リード2の第1の円弧部26a側のエッジと、負極リード7の第2の円弧部26d側のエッジとで挟まれた範囲内に位置するように選んだ。これ以外は、実施例1と同様とし、ポリマーリチウム二次電池を作製した。
<Comparative example 4>
The first positive electrode coating length X was 418 mm, the second positive electrode coating length Y was 348 mm, and the length Z between the first positive electrode coating end and the positive electrode lead was 25 mm. The first negative electrode coating length X was 426 mm, the second negative electrode coating length Y was 393 mm, and the length Z between the first negative electrode coating end and the negative electrode lead was 3 mm. As shown in FIG. 9, the positive electrode active material layer coating end 21 on the winding start side is located on one side, the positive electrode lead 2 and the negative electrode lead 7 are located on the other side, and the positive electrode active material on the winding start side is located. The material layer application end portion 21 was selected so as to be located within a range sandwiched between the edge of the positive electrode lead 2 on the first arc portion 26 a side and the edge of the negative electrode lead 7 on the second arc portion 26 d side. Except this, it carried out similarly to Example 1, and produced the polymer lithium secondary battery.

<比較例5>
第1の正極塗布長Xは430mm、第2の正極塗布長Yは360mm、第1の正極塗布端から正極リード間の長さZは3mmとした。第1の負極塗布長Xは434mm、第2の負極塗布長Yは402mm、第1の負極塗布端から負極リード間の長さZは3mmとした。図10に示すように、捲回開始側の正極活物質層塗布端部21が一方の側に位置し、正極リード2および負極リード7が他方の側に位置し、捲回開始側の正極活物質層塗布端部21が負極リード7の2つのエッジに挟まれた範囲内に位置し、捲回終了側の正極活物質層塗布端部23および負極活物質層塗布端部24が捲回終了側の第1の円弧部26a内に位置せず、正極リード2および負極リード7と同じ一方の側に位置し、第1の円弧部26aの折り返し終了点26cと、第2の円弧部26dの折り返し開始点26eとで挟まれた範囲内に位置するように選んだ。これ以外は、実施例1と同様とし、ポリマーリチウム二次電池を作製した。
<Comparative Example 5>
The first positive electrode coating length X was 430 mm, the second positive electrode coating length Y was 360 mm, and the length Z between the first positive electrode coating end and the positive electrode lead was 3 mm. The first negative electrode coating length X was 434 mm, the second negative electrode coating length Y was 402 mm, and the length Z between the first negative electrode coating end and the negative electrode lead was 3 mm. As shown in FIG. 10, the positive electrode active material layer coating end portion 21 on the winding start side is positioned on one side, the positive electrode lead 2 and the negative electrode lead 7 are positioned on the other side, and the positive electrode active material on the winding start side is positioned. The material layer application end portion 21 is located within the range sandwiched between the two edges of the negative electrode lead 7, and the positive electrode active material layer application end portion 23 and the negative electrode active material layer application end portion 24 on the winding end side are ended. It is not located in the first arc portion 26a on the side, but is located on the same side as the positive electrode lead 2 and the negative electrode lead 7, and the folding end point 26c of the first arc portion 26a and the second arc portion 26d It selected so that it might be located in the range pinched | interposed with the folding | turning start point 26e. Except this, it carried out similarly to Example 1, and produced the polymer lithium secondary battery.

<比較例6>
第1の正極塗布長Xは415mm、第2の正極塗布長Yは345mm、第1の正極塗布端から正極リード間の長さZは34mmとした。第1の負極塗布長Xは420mm、第2の負極塗布長Yは387mm、第1の負極塗布端から負極リード間の長さZは12mmとした。図11に示すように、捲回開始側の正極活物質層塗布端部21および負極活物質層塗布端部22が一方の側に位置し、正極リード2および負極リード7が他方の側に位置し、捲回終了側の正極活物質層塗布端部23および負極活物質層塗布端部24が捲回終了側の第1の円弧部26a内に位置せず、捲回終了側の正極活物質層塗布端部23が正極リード2および負極リード7と異なる他方の側に位置し、第1の円弧部26aの折り返し開始点26bと、第2の円弧部26dの折り返し終了点26fとで挟まれた範囲内に位置するように選んだ。これ以外は、実施例1と同様とし、ポリマーリチウム二次電池を作製した。
<Comparative Example 6>
The first positive electrode coating length X was 415 mm, the second positive electrode coating length Y was 345 mm, and the length Z between the first positive electrode coating end and the positive electrode lead was 34 mm. The first negative electrode coating length X was 420 mm, the second negative electrode coating length Y was 387 mm, and the length Z between the first negative electrode coating end and the negative electrode lead was 12 mm. As shown in FIG. 11, the positive electrode active material layer application end 21 and the negative electrode active material layer application end 22 on the winding start side are located on one side, and the positive electrode lead 2 and the negative electrode lead 7 are located on the other side. However, the positive electrode active material layer application end portion 23 and the negative electrode active material layer application end portion 24 on the winding end side are not positioned within the first arc portion 26a on the winding end side, and the positive electrode active material on the winding end side The layer application end portion 23 is located on the other side different from the positive electrode lead 2 and the negative electrode lead 7, and is sandwiched between the folding start point 26b of the first arc portion 26a and the folding end point 26f of the second arc portion 26d. Chosen to be within the range. Except this, it carried out similarly to Example 1, and produced the polymer lithium secondary battery.

作製したポリマーリチウム二次電池を23℃雰囲気0.2C定電流放電にて、電池容量を測定した。さらに、正極リード上、負極リード上の電池厚さ、体積エネルギー密度を測定した。   The produced polymer lithium secondary battery was measured for battery capacity at 23 ° C. atmosphere and 0.2 C constant current discharge. Furthermore, the battery thickness and volume energy density on the positive electrode lead and the negative electrode lead were measured.

下記表1は、実施例1、比較例1〜3に係るこれらの測定結果をまとめたものである。なお、実施例1、比較例1〜3は、捲回開始側の正極活物質層塗布端部21および負極活物質層塗布端部22と、正極リード2および負極リード7とが一方の側に位置するものである。   Table 1 below summarizes these measurement results according to Example 1 and Comparative Examples 1 to 3. In Example 1 and Comparative Examples 1 to 3, the positive electrode active material layer application end 21 and the negative electrode active material layer application end 22 on the winding start side, and the positive electrode lead 2 and the negative electrode lead 7 are on one side. It is what is located.

Figure 0004736525
Figure 0004736525

比較例1は、捲回開始側の正極活物質層塗布端部21が負極リード7の2つのエッジで挟まれた範囲内に位置する点で、実施例1と異なる。したがって、表1に示すように、正極リード2上の電池の厚さは3.68mm、負極リード7上の電池の厚さは3.78mmとなり、負極リード7上の電池の厚さは、正極リード2上より厚く、電池の厚さにばらつきが生じた。この結果、体積エネルギー密度は、実施例1と比較して、低いものとなった。   Comparative Example 1 is different from Example 1 in that the positive electrode active material layer coating end portion 21 on the winding start side is located within a range sandwiched between two edges of the negative electrode lead 7. Therefore, as shown in Table 1, the thickness of the battery on the positive electrode lead 2 is 3.68 mm, the thickness of the battery on the negative electrode lead 7 is 3.78 mm, and the thickness of the battery on the negative electrode lead 7 is It was thicker than the lead 2 and the battery thickness varied. As a result, the volume energy density was low as compared with Example 1.

比較例2は、捲回終了側の正極活物質層塗布端部23および負極活物質層塗布端部24が第1の円弧部26a内に位置せず、負極活物質層塗布端部24が正極リード2と負極リード7に挟まれた範囲に位置し、正極リード2に負極が余分に重なる点で実施例1と異なる。したがって、表1に示すように、正極リード2上の電池の厚さは3.78mm、負極リード7上の電池の厚さは3.68mmとなり、正極リード2上の電池の厚さが負極リード7上の電池の厚さより大きく、電池の厚さにばらつきが生じた。この結果、体積エネルギー密度は、実施例1と比較して、低いものとなった。   In Comparative Example 2, the positive electrode active material layer application end portion 23 and the negative electrode active material layer application end portion 24 on the winding end side are not located in the first arc portion 26a, and the negative electrode active material layer application end portion 24 is the positive electrode. It is located in the range sandwiched between the lead 2 and the negative electrode lead 7, and differs from the first embodiment in that the negative electrode overlaps the positive electrode lead 2 excessively. Therefore, as shown in Table 1, the thickness of the battery on the positive electrode lead 2 is 3.78 mm, the thickness of the battery on the negative electrode lead 7 is 3.68 mm, and the thickness of the battery on the positive electrode lead 2 is the negative electrode lead. 7 was larger than the thickness of the battery above 7, and the thickness of the battery varied. As a result, the volume energy density was low as compared with Example 1.

比較例3は、電極長が実施例1と比較して短く、捲回終了側の正極活物質層塗布端部23および負極活物質層塗布端部24が第1の円弧部26a内に位置せず、正極リード2および負極リード7とは異なる他方の側に位置し、正極活物質層塗布端部23が第1の円弧部26aの折り返し開始点26bと第2の円弧部26dの折り返し終了点26fとで挟まれた範囲内に位置する点で、実施例1と異なる。したがって、電池の厚さは、実施例1と同様のものであるが、電極長が短いため、捲回終了側の正極活物質層塗布端部23および負極活物質層塗布端部24が第1の円弧部26a内に位置していないので、効率良く電池容量を得ることができなかった。この結果、表1に示すように、実施例1と比較して、電池容量が小さく、体積エネルギー密度は、低いものとなった。   In Comparative Example 3, the electrode length is shorter than that in Example 1, and the positive electrode active material layer application end portion 23 and the negative electrode active material layer application end portion 24 on the winding end side are positioned in the first arc portion 26a. First, the positive electrode active material layer coating end 23 is located on the other side different from the positive electrode lead 2 and the negative electrode lead 7, and the folding start point 26 b of the first arc portion 26 a and the folding end point of the second arc portion 26 d. The second embodiment is different from the first embodiment in that it is located within a range sandwiched by 26f. Therefore, the thickness of the battery is the same as in Example 1, but the electrode length is short, so the positive electrode active material layer application end 23 and the negative electrode active material layer application end 24 on the winding end side are the first. Therefore, the battery capacity could not be obtained efficiently. As a result, as shown in Table 1, compared with Example 1, the battery capacity was small and the volume energy density was low.

以上の結果より、以下のことがわかった。実施例1のように、最外周側に正極リード2および負極リード7が並行して設けられ、捲回開始側の正極活物質層塗布端部21と、正極リード2および負極リード7とが同じ側に位置するポリマーリチウム二次電池においては、捲回開始側の正極活物質層塗布端部21が正極リード2の第1の円弧部26a側のエッジと、負極リード2の第2の円弧部26d側のエッジとで挟まれた範囲に位置し、捲回終了側の正極活物質層塗布端部23および負極活物質層塗布端部24が第1の円弧部26a内に位置するような構成とする。この構成によって、電池のばらつきを抑え、かつ電池容量を効率良く得ることができ、体積エネルギー密度を高めることができる。   From the above results, the following was found. As in Example 1, the positive electrode lead 2 and the negative electrode lead 7 are provided in parallel on the outermost peripheral side, and the positive electrode active material layer application end portion 21 on the winding start side is the same as the positive electrode lead 2 and the negative electrode lead 7. In the polymer lithium secondary battery located on the side, the positive electrode active material layer coating end portion 21 on the winding start side has the edge on the first arc portion 26 a side of the positive electrode lead 2 and the second arc portion of the negative electrode lead 2. A configuration in which the positive electrode active material layer coating end portion 23 and the negative electrode active material layer coating end portion 24 on the winding end side are positioned in the first arc portion 26a, which is located in a range sandwiched between the edges on the 26d side. And With this configuration, battery variation can be suppressed, battery capacity can be obtained efficiently, and volume energy density can be increased.

下記の表2は、実施例2、比較例4〜6に係る、上記の測定結果をまとめたものである。なお、実施例2、比較例4〜6は、捲回開始側の正極活物質層塗布端部21および負極活物質層塗布端部22が一方の側、正極リード2および負極リード7が他方の側に位置するものである。   Table 2 below summarizes the measurement results according to Example 2 and Comparative Examples 4 to 6. In Example 2, Comparative Examples 4 to 6, the positive electrode active material layer application end 21 and the negative electrode active material layer application end 22 on the winding start side are on one side, and the positive electrode lead 2 and the negative electrode lead 7 are on the other side. It is located on the side.

Figure 0004736525
Figure 0004736525

比較例4は、捲回開始側の正極活物質層塗布端部21が、正極リード2の第1の円弧部26a側のエッジと、負極リード7の第2の円弧部26d側のエッジとで挟まれた範囲内に位置する点で、実施例2と異なる。したがって、表2に示すように、正極リード2上の電池の厚さは、3.55mm、負極リード7上の電池の厚さは、3.66mmとなり、正極リード2上の厚さは、正極の厚さ分薄く、電池の厚さのばらつきが生じた。この結果、表2に示すように、体積エネルギー密度は、実施例2と比較して、低いものとなった。   In Comparative Example 4, the positive electrode active material layer coating end portion 21 on the winding start side is composed of an edge on the first arc portion 26 a side of the positive electrode lead 2 and an edge on the second arc portion 26 d side of the negative electrode lead 7. The second embodiment is different from the second embodiment in that it is located within the sandwiched range. Therefore, as shown in Table 2, the thickness of the battery on the positive electrode lead 2 is 3.55 mm, the thickness of the battery on the negative electrode lead 7 is 3.66 mm, and the thickness on the positive electrode lead 2 is positive. As a result, the battery thickness varied. As a result, as shown in Table 2, the volume energy density was lower than that in Example 2.

比較例5は、捲回終了側の正極活物質層塗布端部23および負極活物質層塗布端部24が第1の円弧部26a内に位置せず、正極リード2の第1の円弧部26a側のエッジと、負極リード7の第2の円弧部26d側のエッジとで挟まれた範囲内に位置する点で、実施例2と異なる。したがって、表2に示すように、正極リード2上の電池の厚さは、3.76mm、負極リード7上の電池の厚さは3.65mmとなり、正極リード2上の電池厚さは、負極リード7上より厚く、電池の厚さのばらつきが生じた。この結果、実施例2と比較して、測定した電池容量が大きいものであったが、体積エネルギー密度は、低いものとなった。   In Comparative Example 5, the positive electrode active material layer coating end portion 23 and the negative electrode active material layer coating end portion 24 on the winding end side are not positioned within the first arc portion 26 a, and the first arc portion 26 a of the positive electrode lead 2 is used. The second embodiment is different from the second embodiment in that it is located within a range sandwiched between the edge on the side and the edge on the second arc portion 26d side of the negative electrode lead 7. Therefore, as shown in Table 2, the battery thickness on the positive electrode lead 2 is 3.76 mm, the battery thickness on the negative electrode lead 7 is 3.65 mm, and the battery thickness on the positive electrode lead 2 is The thickness of the battery was thicker than that on the lead 7, resulting in variations in battery thickness. As a result, compared with Example 2, the measured battery capacity was large, but the volume energy density was low.

比較例6は、電極長が実施例1と比較して短く、捲回終了側の正極活物質層塗布端部23および負極活物質層塗布端部24が第1の円弧部26a内に位置せず、正極リード2および負極リード7と異なる他方の側に位置し、正極活物質層塗布端部23が第1の円弧部26aの折り返し開始点26bと、第2の円弧部26dの折り返し終了点26fとで挟まれた範囲内に位置する点で、実施例2と異なる。したがって、実施例2と厚さが同じであるが、電極長が実施例1と比較して短く、効率良く電池容量を得ることができなかった。この結果、表2に示すように、実施例2と比較して、電池容量が小さく、体積エネルギー密度は、低いものとなった。   In Comparative Example 6, the electrode length is shorter than that in Example 1, and the positive electrode active material layer application end 23 and the negative electrode active material layer application end 24 on the winding end side are positioned in the first arc portion 26a. The positive electrode active material layer coating end 23 is located on the other side different from the positive electrode lead 2 and the negative electrode lead 7, and the folding end point 26 b of the first arc portion 26 a and the folding end point of the second arc portion 26 d The second embodiment is different from the second embodiment in that it is located within a range sandwiched by 26f. Therefore, although the thickness was the same as that of Example 2, the electrode length was shorter than that of Example 1, and the battery capacity could not be obtained efficiently. As a result, as shown in Table 2, compared with Example 2, the battery capacity was small and the volume energy density was low.

以上の結果より、以下のことがわかった。実施例2のように、最外周側に正極リード2および負極リード7が並行して設けられ、捲回開始側の正極活物質層塗布端部21および負極活物質層塗布端部22と、正極リード2および負極リード7とが異なる側に位置するポリマーリチウム二次電池においては、捲回開始側の正極活物質層塗布端部21が、正極リード2の第1の円弧部26a側のエッジと、第2の円弧部26dの折り返し開始点26eとで挟まれた範囲内に位置し、捲回終了側の正極活物質層塗布端部23および負極活物質層塗布端部24が第1の円弧部26a内に位置するような構成とする。この構成とすることで、電池の厚さのばらつきを抑え、かつ効率良く電池容量を得ることができ、体積エネルギー密度を高めることができる。   From the above results, the following was found. As in Example 2, the positive electrode lead 2 and the negative electrode lead 7 are provided in parallel on the outermost peripheral side, the positive electrode active material layer application end portion 21 and the negative electrode active material layer application end portion 22 on the winding start side, and the positive electrode In a polymer lithium secondary battery in which the lead 2 and the negative electrode lead 7 are located on different sides, the positive electrode active material layer application end portion 21 on the winding start side has an edge on the first arc portion 26 a side of the positive electrode lead 2. The positive electrode active material layer application end portion 23 and the negative electrode active material layer application end portion 24 on the winding end side are located within a range sandwiched by the folding start point 26e of the second arc portion 26d. The configuration is such that it is located within the portion 26a. With this configuration, variation in battery thickness can be suppressed, battery capacity can be obtained efficiently, and volume energy density can be increased.

この発明は、上述したこの発明の実施形態に限定されるものでは無く、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。例えば、本発明の適用できる電池の形状は、扁平形状に限られず、角形、円筒形にも適用可能である。   The present invention is not limited to the above-described embodiments of the present invention, and various modifications and applications are possible without departing from the spirit of the present invention. For example, the shape of the battery to which the present invention can be applied is not limited to a flat shape, and can be applied to a square shape and a cylindrical shape.

この発明の一実施形態に係る捲回型電極体の断面図である。It is sectional drawing of the wound type electrode body which concerns on one Embodiment of this invention. この発明の一実施形態に係るポリマーリチウム二次電池の構成を示した模式図である。It is the schematic diagram which showed the structure of the polymer lithium secondary battery which concerns on one Embodiment of this invention. この発明の一実施形態に係るポリマーリチウム二次電池の構成を詳細に示した模式図である。It is the schematic diagram which showed the structure of the polymer lithium secondary battery which concerns on one Embodiment of this invention in detail. この発明の他の実施形態に係る捲回型電極体の断面図である。It is sectional drawing of the wound type electrode body which concerns on other embodiment of this invention. この発明の一実施形態に係る正極および負極の断面図である。It is sectional drawing of the positive electrode and negative electrode which concern on one Embodiment of this invention. 比較例に係る捲回型電極体の断面図である。It is sectional drawing of the wound type electrode body which concerns on a comparative example. 比較例に係る捲回型電極体の断面図である。It is sectional drawing of the wound type electrode body which concerns on a comparative example. 比較例に係る捲回型電極体の断面図である。It is sectional drawing of the wound type electrode body which concerns on a comparative example. 比較例に係る捲回型電極体の断面図である。It is sectional drawing of the wound type electrode body which concerns on a comparative example. 比較例に係る捲回型電極体の断面図である。It is sectional drawing of the wound type electrode body which concerns on a comparative example. 比較例に係る捲回型電極体の断面図である。It is sectional drawing of the wound type electrode body which concerns on a comparative example.

符号の説明Explanation of symbols

1・・・正極集電体
2・・・正極リード
3・・・正極活物質層
4・・・負極集電体
5・・・負極活物質層
6・・・絶縁材
7・・・負極リード
8・・・ゲル電解質層
9・・・セパレータ
10・・・捲回電極体
21,23・・・正極活物質層塗布端部
22,24・・・負極活物質層塗布端部
25・・・中央線
26a・・・第1の円弧部
26b,26e・・・折り返し開始点
26c,26f・・・折り返し終了点
26d・・・第2の円弧部
34・・・外装材
DESCRIPTION OF SYMBOLS 1 ... Positive electrode collector 2 ... Positive electrode lead 3 ... Positive electrode active material layer 4 ... Negative electrode collector 5 ... Negative electrode active material layer 6 ... Insulating material 7 ... Negative electrode lead DESCRIPTION OF SYMBOLS 8 ... Gel electrolyte layer 9 ... Separator 10 ... Winding electrode body 21,23 ... Positive electrode active material layer application end part 22, 24 ... Negative electrode active material layer application end part 25 ... Center line 26a ... first arc portion 26b, 26e ... folding start point 26c, 26f ... folding end point 26d ... second arc portion 34 ... exterior material

Claims (6)

正極と負極とがセパレータおよび電解質を介在して捲回され、最外周に上記正極が位置する扁平形状の捲回電極体を有し、
上記捲回電極体の厚み方向の断面形状を厚み方向において、2分割して一方の側および他方の側を規定し、
上記断面形状は、
第1の円弧部と、第2の円弧部と、上記第1の円弧部の一端である折り返し開始点および上記第2の円弧部の一端である折り返し終了点を結ぶ辺と、上記第1の円弧部の他端である折り返し終了点および上記第2の円弧部の他端である折り返し開始点を結ぶ辺とからなり、
上記正極が正極集電体と、正極活物質層とからなり、且つ上記正極集電体の少なくとも片面が露出するように上記正極活物質層が設けられ、
上記負極が負極集電体と、負極活物質層とからなり、且つ上記負極集電体の少なくとも片面が露出するように上記負極活物質層が設けられ、
上記捲回電極体の上記第1の円弧部および上記第2の円弧部以外の平坦な領域、且つ上記捲回電極体の最外周側に、正極リードおよび負極リードが並行して設けられ、
上記正極リードおよび上記負極リードと、捲回開始側の正極活物質層塗布端部および負極活物質層塗布端部とが上記一方の側に位置し、
捲回開始側の上記正極活物質層塗布端部が上記正極リードの上記第1の円弧部側のエッジと、上記負極リードの上記第2の円弧部側のエッジとで挟まれた範囲内に位置し、
捲回終了側の上記正極活物質層塗布端部および上記負極活物質層塗布端部が第1の円弧部内に位置する非水電解質二次電池。
The positive electrode and the negative electrode are wound with a separator and an electrolyte interposed therebetween, and have a flat wound electrode body in which the positive electrode is positioned on the outermost periphery,
The cross-sectional shape in the thickness direction of the wound electrode body is divided into two in the thickness direction to define one side and the other side,
The cross-sectional shape is
A first arc part, a second arc part, a side connecting a folding start point which is one end of the first arc part and a folding end point which is one end of the second arc part, and the first arc part It consists of a side that connects a folding end point that is the other end of the arc portion and a folding start point that is the other end of the second arc portion,
The positive electrode comprises a positive electrode current collector and a positive electrode active material layer, and the positive electrode active material layer is provided so that at least one surface of the positive electrode current collector is exposed;
The negative electrode is composed of a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer is provided so that at least one surface of the negative electrode current collector is exposed,
A positive electrode lead and a negative electrode lead are provided in parallel on a flat region other than the first arc portion and the second arc portion of the wound electrode body, and on the outermost peripheral side of the wound electrode body,
The positive electrode lead and the negative electrode lead, and the positive electrode active material layer application end and the negative electrode active material layer application end on the winding start side are located on the one side,
The positive electrode active material layer coating end on the winding start side is within a range sandwiched between the edge on the first arc portion side of the positive electrode lead and the edge on the second arc portion side of the negative electrode lead. Position to,
The nonaqueous electrolyte secondary battery in which the positive electrode active material layer application end and the negative electrode active material layer application end on the winding end side are located in a first arc portion.
請求項1において、
上記正極集電体および上記負極集電体の露出部が絶縁材にて被覆された非水電解質二次電池。
In claim 1,
A nonaqueous electrolyte secondary battery in which exposed portions of the positive electrode current collector and the negative electrode current collector are covered with an insulating material.
請求項1において、
上記捲回電極体が外装材によって、被覆され、
上記正極リードおよび上記負極リードが上記外装材から露出している非水電解質二次電池。
In claim 1,
The wound electrode body is covered with an exterior material,
A non-aqueous electrolyte secondary battery in which the positive electrode lead and the negative electrode lead are exposed from the exterior material.
正極と負極とがセパレータおよび電解質を介在して捲回され、最外周に上記正極が位置する扁平形状の捲回電極体を有し、
上記捲回電極体の厚み方向の断面形状を厚み方向において、2分割して一方の側および他方の側を規定し、
上記断面形状は、
第1の円弧部と、第2の円弧部と、上記第1の円弧部の一端である折り返し開始点および上記第2の円弧部の一端である折り返し終了点を結ぶ辺と、上記第1の円弧部の他端である折り返し終了点および上記第2の円弧部の他端である折り返し開始点を結ぶ辺とからなり、
上記正極が正極集電体と、正極活物質層とからなり、且つ上記正極集電体の少なくとも片面が露出するように上記正極活物質層が設けられ、
上記負極が負極集電体と、負極活物質層とからなり、且つ上記負極集電体の少なくとも片面が露出するように上記負極活物質層が設けられ、
上記捲回電極体の上記第1の円弧部および上記第2の円弧部以外の平坦な領域、且つ上記捲回電極体の最外周側に、正極リードおよび負極リードが並行して設けられ、
捲回開始側の正極活物質層塗布端部および負極活物質層塗布端部が上記一方の側に位置し、上記正極リードおよび上記負極リードが上記他方の側に位置し、
捲回開始側の上記正極活物質層塗布端部が上記正極リードの第1の円弧部側のエッジと、上記第2の円弧部の折り返し開始点とで挟まれた範囲内に位置し、
捲回終了側の正極活物質層塗布端部および負極活物質層塗布端部が捲回終了側の第1の円弧部内に位置する非水電解質二次電池。
The positive electrode and the negative electrode are wound with a separator and an electrolyte interposed therebetween, and have a flat wound electrode body in which the positive electrode is positioned on the outermost periphery,
The cross-sectional shape in the thickness direction of the wound electrode body is divided into two in the thickness direction to define one side and the other side,
The cross-sectional shape is
A first arc part, a second arc part, a side connecting a folding start point which is one end of the first arc part and a folding end point which is one end of the second arc part, and the first arc part It consists of a side that connects a folding end point that is the other end of the arc portion and a folding start point that is the other end of the second arc portion,
The positive electrode comprises a positive electrode current collector and a positive electrode active material layer, and the positive electrode active material layer is provided so that at least one surface of the positive electrode current collector is exposed;
The negative electrode is composed of a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer is provided so that at least one surface of the negative electrode current collector is exposed,
A positive electrode lead and a negative electrode lead are provided in parallel on a flat region other than the first arc portion and the second arc portion of the wound electrode body, and on the outermost peripheral side of the wound electrode body,
The positive electrode active material layer application end and the negative electrode active material layer application end on the winding start side are located on the one side, the positive electrode lead and the negative electrode lead are located on the other side,
The positive electrode active material layer application end on the winding start side is located within a range sandwiched between the edge on the first arc portion side of the positive electrode lead and the folding start point of the second arc portion,
A non-aqueous electrolyte secondary battery in which a winding end side positive electrode active material layer application end and a negative electrode active material layer application end are located within a first arc portion on the winding end side.
請求項4において、
上記正極集電体および上記負極集電体の露出部が絶縁材にて被覆された非水電解質二次電池。
In claim 4,
A nonaqueous electrolyte secondary battery in which exposed portions of the positive electrode current collector and the negative electrode current collector are covered with an insulating material.
請求項4において、
上記捲回電極体が外装材によって、被覆され、
上記正極リードおよび上記負極リードが上記外装材から露出している非水電解質二次電池。
In claim 4,
The wound electrode body is covered with an exterior material,
A non-aqueous electrolyte secondary battery in which the positive electrode lead and the negative electrode lead are exposed from the exterior material.
JP2005134126A 2005-05-02 2005-05-02 Nonaqueous electrolyte secondary battery Active JP4736525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005134126A JP4736525B2 (en) 2005-05-02 2005-05-02 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005134126A JP4736525B2 (en) 2005-05-02 2005-05-02 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2006310222A JP2006310222A (en) 2006-11-09
JP4736525B2 true JP4736525B2 (en) 2011-07-27

Family

ID=37476866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005134126A Active JP4736525B2 (en) 2005-05-02 2005-05-02 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4736525B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4057402A4 (en) * 2019-11-08 2024-08-14 Lg Energy Solution Ltd Electrode assembly and secondary battery including same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204781A (en) * 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd Manufacturing method of flat rectangular secondary battery, manufacturing method of flat electrode body, and manufacturing device of flat electrode body
WO2011096032A1 (en) 2010-02-03 2011-08-11 パナソニック株式会社 Power source
JP5676620B2 (en) * 2010-08-23 2015-02-25 エルジー・ケム・リミテッド Improved structure jelly roll and secondary battery including the same
JP2015035250A (en) * 2011-11-30 2015-02-19 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2013201094A (en) * 2012-03-26 2013-10-03 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP6103342B2 (en) * 2012-09-13 2017-03-29 株式会社Gsユアサ Electricity storage element
CN107293805B (en) * 2016-03-31 2023-02-28 宁德新能源科技有限公司 Winding type battery cell and winding needle
US20200076005A1 (en) * 2016-12-05 2020-03-05 Sanyo Electric Co., Ltd. Cylindrical nonaqueous electrolyte secondary battery
CN107171028A (en) * 2017-07-07 2017-09-15 安普瑞斯(无锡)有限公司 A kind of takeup type battery core and battery
CN110190316B (en) * 2019-05-17 2024-05-10 宁德时代新能源科技股份有限公司 Secondary battery
JP7306069B2 (en) * 2019-05-31 2023-07-11 株式会社村田製作所 battery
CN114175336A (en) * 2019-07-31 2022-03-11 株式会社村田制作所 Secondary battery
US20240055669A1 (en) * 2020-12-23 2024-02-15 Panasonic Energy Co., Ltd. Nonaqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266927A (en) * 2000-03-23 2001-09-28 Nec Mobile Energy Kk Wound battery
JP2001266946A (en) * 2000-03-23 2001-09-28 Sony Corp Lithium ion battery and its manufacturing method
JP2003051339A (en) * 2001-08-06 2003-02-21 Sony Corp Nonaqueous electrolyte battery and manufacturing method therefor
JP2003272598A (en) * 2002-03-13 2003-09-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2004356047A (en) * 2003-05-30 2004-12-16 Canon Inc Lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266927A (en) * 2000-03-23 2001-09-28 Nec Mobile Energy Kk Wound battery
JP2001266946A (en) * 2000-03-23 2001-09-28 Sony Corp Lithium ion battery and its manufacturing method
JP2003051339A (en) * 2001-08-06 2003-02-21 Sony Corp Nonaqueous electrolyte battery and manufacturing method therefor
JP2003272598A (en) * 2002-03-13 2003-09-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2004356047A (en) * 2003-05-30 2004-12-16 Canon Inc Lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4057402A4 (en) * 2019-11-08 2024-08-14 Lg Energy Solution Ltd Electrode assembly and secondary battery including same

Also Published As

Publication number Publication date
JP2006310222A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP4736525B2 (en) Nonaqueous electrolyte secondary battery
KR101579400B1 (en) Spirally wound non-aqueous electrolyte secondary battery
US7651820B2 (en) Gel electrolyte and gel electrolyte battery
CN1193453C (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5760593B2 (en) Method for producing active material, electrode and lithium ion secondary battery
JP2001236947A (en) Electrode, battery, and their manufacturing method
JP2009129553A (en) Battery
JP2001313075A (en) Gel-like electrolyte and gel-like electrolyte cell
JP2002008723A (en) Gel-like electrolyte and nonaqueous electrolyte battery
JP2006260904A (en) Winding type battery and its manufacturing method
JP2008066040A (en) Battery and its manufacturing method
CN1319906A (en) Solid electrolyte cell
KR100712156B1 (en) Solid Electrolyte Cell
JP4385418B2 (en) Gel electrolyte secondary battery
JP2000149905A (en) Solid electrolyte battery
JP2004087325A (en) Nonaqueous electrolytic solution battery
JP4945074B2 (en) Nonaqueous electrolyte secondary battery
JPH11185773A (en) Gelled electrolyte cell
JP4055234B2 (en) Solid electrolyte battery
JP4560851B2 (en) Method for producing solid electrolyte battery
JP6714342B2 (en) Battery module
JP2005078963A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP4967215B2 (en) Nonaqueous electrolyte secondary battery
JP2006147276A (en) Nonaqueous electrolyte secondary battery
JP2004014248A (en) Nonaqueous electrolytic solution battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R151 Written notification of patent or utility model registration

Ref document number: 4736525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250