JP4736392B2 - Method for producing aldehyde - Google Patents

Method for producing aldehyde Download PDF

Info

Publication number
JP4736392B2
JP4736392B2 JP2004300351A JP2004300351A JP4736392B2 JP 4736392 B2 JP4736392 B2 JP 4736392B2 JP 2004300351 A JP2004300351 A JP 2004300351A JP 2004300351 A JP2004300351 A JP 2004300351A JP 4736392 B2 JP4736392 B2 JP 4736392B2
Authority
JP
Japan
Prior art keywords
aldehyde
reaction solution
distillation
containing reaction
hydroformylation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004300351A
Other languages
Japanese (ja)
Other versions
JP2006111570A (en
Inventor
淳浩 安達
弘貴 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004300351A priority Critical patent/JP4736392B2/en
Publication of JP2006111570A publication Critical patent/JP2006111570A/en
Application granted granted Critical
Publication of JP4736392B2 publication Critical patent/JP4736392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はアルデヒドの製造方法に関する。   The present invention relates to a method for producing an aldehyde.

オレフィン系不飽和化合物を原料とするアルデヒドの製造は、工業的に大規模に実施されている。具体的には、オレフィン系不飽和炭化水素をロジウム触媒の存在下、一酸化炭素および水素と反応(ヒドロホルミル化反応)させて、対応する直鎖状および分岐状アルデヒドを含有するヒドロホルミル化反応液を得る。通常この反応液から触媒を回収し、触媒を除去したアルデヒド含有反応液を蒸留して直鎖状アルデヒドと分岐状アルデヒドとに分離している。   Production of aldehydes using olefinic unsaturated compounds as raw materials has been carried out industrially on a large scale. Specifically, an olefinic unsaturated hydrocarbon is reacted with carbon monoxide and hydrogen (hydroformylation reaction) in the presence of a rhodium catalyst to produce a hydroformylation reaction liquid containing the corresponding linear and branched aldehydes. obtain. Usually, the catalyst is recovered from this reaction solution, and the aldehyde-containing reaction solution from which the catalyst has been removed is distilled to separate it into a linear aldehyde and a branched aldehyde.

一般的に、アルデヒド含有反応液を蒸留して直鎖状アルデヒドと分岐状アルデヒドに分離する際、それらの沸点が非常に近いこともあり、極めてエネルギー消費量の大きいプロセスになっている。例えば、特表2002−540181号公報(特許文献1)には、直鎖状アルデヒドと分岐状アルデヒドに分離する際の蒸気消費量の削減方法として、ある条件下において2塔の蒸留塔で分離する方法が開示されている。また特公平7−39365号公報(特許文献2)には、ある条件下において1塔の蒸留塔で分離する方法が開示されている。しかしながら、これらの方法では、直鎖状アルデヒドと分岐状アルデヒドに分離する際の蒸気消費量を抑制する効果は十分でなかった。
特表2002−540181号公報 特公平7−39365号公報
In general, when an aldehyde-containing reaction solution is distilled to separate a linear aldehyde and a branched aldehyde, their boiling points are very close to each other, and the process is very energy consuming. For example, in Japanese Translation of PCT International Application No. 2002-540181 (Patent Document 1), as a method for reducing the amount of steam consumed when separating into linear aldehydes and branched aldehydes, separation is performed with two distillation columns under certain conditions. A method is disclosed. Japanese Examined Patent Publication No. 7-39365 (Patent Document 2) discloses a method of separation in a single distillation column under certain conditions. However, in these methods, the effect of suppressing the steam consumption when separating into a linear aldehyde and a branched aldehyde was not sufficient.
JP-T-2002-540181 Japanese Examined Patent Publication No. 7-39365

本発明の課題は、直鎖状アルデヒドと分岐状アルデヒドに分離する際の蒸気消費量を抑制できるアルデヒドの製造方法を提供することである。   The subject of this invention is providing the manufacturing method of the aldehyde which can suppress the steam consumption at the time of isolate | separating into a linear aldehyde and a branched aldehyde.

本発明者等は上記課題を解決すべく鋭意検討した結果、蒸留塔に供するアルデヒド含有反応液中にアルコールが存在しており、該アルコールの濃度を低減することにより上記課題を解決できることを見出し、本発明を完成するに至った。即ち本発明の要旨は、下記(1)〜(3)に存する。   As a result of intensive studies to solve the above problems, the present inventors have found that alcohol is present in the aldehyde-containing reaction solution to be used in the distillation column, and that the above problems can be solved by reducing the concentration of the alcohol, The present invention has been completed. That is, the gist of the present invention resides in the following (1) to (3).

(1) オレフィン系不飽和化合物を1t/h以上の流量で反応器に流入させ、ヒドロホルミル化反応させてアルデヒド含有反応液を得、得られたアルデヒド含有反応液を蒸留塔にて精製してアルデヒドを得る方法において、蒸留塔に供するアルデヒド含有反応液中のアルコール濃度を200ppm以下とすることを特徴とするアルデヒドの製造方法。
(2) オレフィン系不飽和化合物をヒドロホルミル化反応させてアルデヒド含有反応液を得るヒドロホルミル化工程と、得られたアルデヒド含有反応液を蒸留塔にて精製してアルデヒドを得る蒸留工程との間に、アルデヒド含有反応液からアルコールを除去する工程を設け上記(1)に記載のアルデヒドの製造方法。
(3) 原料としてのオレフィン系不飽和化合物から、炭素数n−1(nは製品としてのアルデヒドの炭素数)以外のオレフィン系不飽和化合物を除去する工程を有する上記(1)又は(2)に記載のアルデヒドの製造方法。
(1) An olefinic unsaturated compound is allowed to flow into a reactor at a flow rate of 1 t / h or more, and hydroformylation reaction is performed to obtain an aldehyde-containing reaction solution. a method of obtaining, aldehyde production method, which comprises the alcohol concentration of the aldehyde-containing reaction mixture to be fed to the distillation column and 200ppm or less.
(2) Between the hydroformylation step of obtaining an aldehyde-containing reaction solution by subjecting an olefinically unsaturated compound to a hydroformylation reaction, and the distillation step of purifying the obtained aldehyde-containing reaction solution in a distillation column to obtain an aldehyde. method for producing an aldehyde according to the above which Ru is provided a step of removing alcohol from an aldehyde-containing reaction solution (1).
(3) Said (1) or (2) which has the process of removing olefinic unsaturated compounds other than carbon number n-1 (n is carbon number of the aldehyde as a product) from the olefinic unsaturated compound as a raw material. A method for producing an aldehyde as described in 1. above.

本発明により、直鎖状アルデヒドと分岐状アルデヒドに分離する際の蒸気消費量を抑制できるアルデヒドの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION By this invention, the manufacturing method of the aldehyde which can suppress the steam consumption at the time of isolate | separating into a linear aldehyde and a branched aldehyde can be provided.

以下本発明を詳細に説明する。
本発明のアルコールの製造方法は、オレフィン系不飽和化合物を1t/h以上で反応器に流入させ、ヒドロホルミル化反応させてアルデヒド含有反応液を得、得られたアルデヒド含有反応液を蒸留塔にて精製してアルデヒドを得る方法において、蒸留塔に供するアルデヒド含有反応液中のアルコール濃度を200ppm以下とすることを特徴とする。
The present invention will be described in detail below.
In the method for producing an alcohol of the present invention, an olefinically unsaturated compound is allowed to flow into a reactor at 1 t / h or more to cause a hydroformylation reaction to obtain an aldehyde-containing reaction solution, and the obtained aldehyde-containing reaction solution is obtained in a distillation column. In the method of obtaining aldehyde by purification, the alcohol concentration in the aldehyde-containing reaction solution to be used in the distillation tower is 200 ppm or less.

本発明で用いるオレフィン系不飽和化合物としては、例えば炭素数2〜4のオレフィン系不飽和炭化水素が挙げられ、具体的には、エチレン、プロピレン、1−ブテン、2−ブテン、イソブチレンなどが挙げられ、特に好ましくはプロピレンである。
本発明においては、オレフィン系不飽和化合物を1t/h以上で反応器流入させることを必須としているが、この「1t/h以上」という数値事態に特別な臨界的意義があるわけではなく、本発明が工業化レベルでの実施を意図していることを示すための数値である。
本発明におけるアルデヒドは、原料のオレフィン系不飽和化合物のヒドロホルミル化反応により得られるアルデヒドであり、炭素数n−1(nは原料オレフィンの炭素数であり、例えば4以上の整数である)のオレフィン系不飽和化合物のヒドロホルミル化反応により炭素数nのアルデヒドが得られる。特に、プロピレンのヒドロホルミル化反応によるブチルアルデヒドが好ましい。
Examples of the olefinic unsaturated compound used in the present invention include olefinic unsaturated hydrocarbons having 2 to 4 carbon atoms, and specific examples include ethylene, propylene, 1-butene, 2-butene, and isobutylene. Particularly preferred is propylene.
In the present invention, it is essential that the olefinically unsaturated compound is allowed to flow into the reactor at 1 t / h or more. However, this numerical situation of “1 t / h or more” has no special critical significance. It is a numerical value indicating that the invention is intended to be implemented at the industrialization level.
The aldehyde in the present invention is an aldehyde obtained by a hydroformylation reaction of a raw material olefinic unsaturated compound, and is an olefin having a carbon number of n-1 (n is the carbon number of the raw material olefin, for example, an integer of 4 or more). An aldehyde having n carbon atoms is obtained by a hydroformylation reaction of an unsaturated compound. In particular, butyraldehyde obtained by hydroformylation of propylene is preferable.

ヒドロホルミル反応で用いられる触媒としては、この用途に用いることが知られている触媒であれば特に限定されるものではなく、例えば、Co、Rh、Ir、Pd、Pt、OsまたはRuなどの第八金属(本発明において第八金属とは、1983年の周期律表における族金属であり、現在の周期律表における8〜10族の金属である)の触媒であり、好ましくは、Co、Ru、Rh、Pd、Ptであり、より好ましくは、Co、Rh、特にRhであり、特にロジウム単独、あるいはロジウムと錯塩形成性配位子との組み合わせが用いられる。   The catalyst used in the hydroformyl reaction is not particularly limited as long as it is a catalyst known to be used in this application. For example, an eighth catalyst such as Co, Rh, Ir, Pd, Pt, Os or Ru is used. A metal (in the present invention, an eighth metal is a group metal in the periodic table of 1983 and a metal of group 8 to 10 in the current periodic table), preferably Co, Ru, Rh, Pd, and Pt, more preferably Co, Rh, and particularly Rh. In particular, rhodium alone or a combination of rhodium and a complex-forming ligand is used.

錯塩形成性配位子としては、通常、有機リン化合物が使用され、例えば、第3級アルキルまたはアリールホスフィン、第3級アルキル又はアリールホスファイトが用いられる。ホスフィン化合物としては、たとえば、トリメチルホスフィン、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィンなどのトリアルキルホスフィン;トリフェニルホスフィン、トリトリルホスフィンなどのトリアリールホスフィン;ジフェニルプロピルホスフィン、フェニルジプロピルホスフィンなどの第3級アルキルアリールホスフィンなどが挙げられる。ホスファイト化合物としては、たとえば、トリエチルホスファイト、トリフェニルホスファイトなどが挙げられる。また、トリフェニルホスフィントリスルホン酸、トリフェニルホスフィンモノスルホン酸などの親水性の置換基を有するホスフィンあるいはホスファイトおよびその塩なども用いることができる。但し本発明においては、これら有機リン化合物の種類は、何ら限定されるものではない。   As the complex salt-forming ligand, an organic phosphorus compound is usually used, for example, tertiary alkyl or aryl phosphine, tertiary alkyl or aryl phosphite. Examples of the phosphine compound include trialkylphosphine such as trimethylphosphine, triethylphosphine, tripropylphosphine, tributylphosphine, and trioctylphosphine; triarylphosphine such as triphenylphosphine and tritolylphosphine; diphenylpropylphosphine, phenyldipropylphosphine And tertiary alkylaryl phosphine. Examples of the phosphite compound include triethyl phosphite and triphenyl phosphite. Further, phosphines or phosphites having a hydrophilic substituent such as triphenylphosphine trisulfonic acid and triphenylphosphine monosulfonic acid, and salts thereof can also be used. However, in the present invention, the types of these organic phosphorus compounds are not limited at all.

ヒドロホルミル化反応に用いる触媒の量は、ヒドロホルミル化反応液中のロジウム濃度(金属換算)が通常100wtppm以上、好ましくは200wtppm以上であり、通常1000wtppm以下、好ましくは500wtppm以下、特に好ましくは350wtppm以下である。触媒量が少なすぎると所望の反応成績が得られず、多すぎると触媒ロスの増加など経済的に不利になる。   The amount of catalyst used in the hydroformylation reaction is such that the rhodium concentration in the hydroformylation reaction solution (metal conversion) is usually 100 wtppm or more, preferably 200 wtppm or more, usually 1000 wtppm or less, preferably 500 wtppm or less, particularly preferably 350 wtppm or less. . If the amount of the catalyst is too small, the desired reaction results cannot be obtained, and if it is too large, it is economically disadvantageous such as an increase in catalyst loss.

ヒドロホルミル化反応は、通常原料オレフィン系不飽和化合物と反応により生成するアルデヒドに対して不活性な溶媒の存在下に行われる。溶媒としては、ベンゼン、トルエン、キシレンなどの芳香族化合物ヘキサン、オクタン、シクロヘキサン等の脂肪族炭化水素、ブタノール、オクタノール、ポリエチレングリコール等のアルコール、トリグライム等のエーテル、ジオクチルフタレート等のエステルなどが挙げられる。また、反応で生成するアルデヒドや、その三量体や四量体などのアルデヒド縮合物を用いることもできる。さらに、原料オレフィンに対応するパラフィンを用いることもできる。例えば、プロピレンのヒドロホルミル化であれば、トルエンやブチルアルデヒド、またはこれらと反応により副生した高沸点物質との混合物を用いることができる。   The hydroformylation reaction is usually performed in the presence of a solvent inert to the aldehyde produced by the reaction with the raw material olefinic unsaturated compound. Examples of the solvent include aromatic compounds such as benzene, toluene and xylene, aliphatic hydrocarbons such as hexane, octane and cyclohexane, alcohols such as butanol, octanol and polyethylene glycol, ethers such as triglyme, esters such as dioctyl phthalate, and the like. . Moreover, the aldehyde produced | generated by reaction and aldehyde condensates, such as its trimer and a tetramer, can also be used. Furthermore, paraffin corresponding to the raw material olefin can also be used. For example, in the case of hydroformylation of propylene, toluene, butyraldehyde, or a mixture of these with a high-boiling substance by-produced by the reaction can be used.

ヒドロホルミル化反応は水素、一酸化炭素及びオレフィン系不飽和化合物の分圧の合計が、500kg/cmG未満、特に200kg/cmG未満で行うことが好ましい。圧力の下限は、所期の反応速度を達成するのに必要な分圧により限定される。具体的には、大気圧以上が好ましい。
ヒドロホルミル化反応における一酸化炭素分圧は、好ましくは0.1〜100kg/cm、より好ましくは1〜7kg/cmである。一酸化炭素分圧が低すぎると反応停止に至り、高すぎると反応速度の低下につながる。
The hydroformylation reaction is preferably carried out at a total partial pressure of hydrogen, carbon monoxide and olefinically unsaturated compound of less than 500 kg / cm 2 G, particularly less than 200 kg / cm 2 G. The lower limit of pressure is limited by the partial pressure required to achieve the desired reaction rate. Specifically, atmospheric pressure or higher is preferable.
The carbon monoxide partial pressure in the hydroformylation reaction is preferably 0.1 to 100 kg / cm 2 , more preferably 1 to 7 kg / cm 2 . If the carbon monoxide partial pressure is too low, the reaction is stopped, and if it is too high, the reaction rate decreases.

水素分圧は、好ましくは0.1〜100kg/cm、より好ましくは1〜8kg/cmである。水素分圧が低すぎると反応停止に至り、高すぎると原料オレフィンのパラフィン化が増加する。
一般に、水素と一酸化炭素のモル比(H:CO)は1:10〜10:1、特に5:1〜1:5が好ましい。ヒドロホルミル化反応では、オレフィンと水素、一酸化炭素が等モル反応するため、水素と一酸化炭素のモル比が1:1から大きく外れると、未反応原料ガスの増加につながる。
The hydrogen partial pressure is preferably 0.1 to 100 kg / cm 2 , more preferably 1 to 8 kg / cm 2 . If the hydrogen partial pressure is too low, the reaction will be terminated, and if it is too high, the paraffinization of the raw material olefin will increase.
In general, the molar ratio of hydrogen to carbon monoxide (H 2 : CO) is preferably 1:10 to 10: 1, more preferably 5: 1 to 1: 5. In the hydroformylation reaction, the olefin, hydrogen, and carbon monoxide react in an equimolar amount. Therefore, if the molar ratio of hydrogen to carbon monoxide deviates significantly from 1: 1, the unreacted raw material gas increases.

反応温度は、常温〜150℃、特に50℃〜120℃が好ましい。温度が高すぎると、触媒活性が低下するおそれがある。
ヒドロホルミル化反応は従来公知の方法により行うことができるが、通常連続式の反応器に原料であるオレフィン系不飽和炭化水素、水素、一酸化炭素及び触媒液を連続的に供給し、反応液を連続的に抜き出すことにより行われる。反応型式は触媒液が生成物と共に反応器外に排出される触媒液循環型であってもよいし、触媒液を反応器内に閉じ込めたまま、生成物をガスで留出させる、いわゆるガスストリッピング型であっても良い。
The reaction temperature is preferably from room temperature to 150 ° C, particularly from 50 ° C to 120 ° C. If the temperature is too high, the catalytic activity may decrease.
The hydroformylation reaction can be carried out by a conventionally known method. Usually, the raw material olefinic unsaturated hydrocarbon, hydrogen, carbon monoxide and a catalyst solution are continuously supplied to a continuous reactor, and the reaction solution is supplied. This is done by continuously extracting. The reaction type may be a catalyst solution circulation type in which the catalyst solution is discharged out of the reactor together with the product, or a so-called gas strike in which the product is distilled with gas while the catalyst solution is confined in the reactor. A ripping type may also be used.

反応器から流出するガス・液混合物、またはガスストリップ型の場合、ガス状生成物は必要に応じて冷却され、次いで未反応オレフィンを含む流れと、その他の流れ、すなわちアルデヒド含有反応液を含む流れとに分離される。分離方法はオレフィンの沸点によっても異なるが、従来公知の、ガスによるストリッピングあるいは蒸留などの方法によって行われる。分離された未反応オレフィンの一部または全部を反応器へリサイクルすることもできる。   In the case of a gas / liquid mixture or gas strip type leaving the reactor, the gaseous product is cooled if necessary, then a stream containing unreacted olefin and another stream, ie a stream containing an aldehyde-containing reaction liquid. And separated. The separation method varies depending on the boiling point of the olefin, but is performed by a conventionally known method such as gas stripping or distillation. Part or all of the separated unreacted olefin can be recycled to the reactor.

アルデヒド含有反応液を含む流れは、アルデヒド含有反応液とその他の成分との分離を蒸留などの公知の方法によって行い、触媒液循環型のようにその他の成分に触媒を含む場合は触媒液として反応器へリサイクルすることもできる。
上記方法にて取り出されたアルデヒド含有反応液を蒸留して、直鎖状アルデヒドと分岐状アルデヒドに分離する方法としては、従来より公知の方法を用いることができる。
The flow containing the aldehyde-containing reaction solution is separated from the aldehyde-containing reaction solution and other components by a known method such as distillation, and when the catalyst contains other components as in the catalyst solution circulation type, it reacts as a catalyst solution. It can also be recycled into a container.
As a method for distilling the aldehyde-containing reaction liquid taken out by the above method and separating it into a linear aldehyde and a branched aldehyde, conventionally known methods can be used.

蒸留塔にはトレイ塔あるいは充填塔を使用することができる。トレイ塔の理論段は通常40〜200段が好ましい。充填塔の充填物の充填長は15〜100mが好ましい。蒸留塔の塔頂圧力には特に制限はないが、真空圧力にすると約20〜30℃の冷却水を使う塔頂コンデンサにおいて未凝縮によるアルデヒド損失が生じてしまうので、大気圧以上が望ましい。この場合、分岐鎖アルデヒドと直鎖アルデヒドとの分離においては、低圧ほど比揮発度が大きくなり必要な理論段数は少なくてすむので大気圧が最も望ましい。但し設備コストを考慮すると、加圧することによって塔頂温度を上げ、その結果冷却水との温度差を大きくとることによる塔頂コンデンサの伝熱面積削減が図れるので、1.0kg/cmG程度の加圧なら分離悪化に伴う若干の必要理論段数の増加はあるものの設備コストとしてはさほど増加せず、経済的に成り立つ。したがって、塔頂圧力としては、0.001〜1.0kg/cmGがよい。また、蒸留塔の塔内温度としては、脂肪族アルデヒドの炭素数、塔頂圧力、及び蒸留塔の種類等により決まる塔底圧力により変化するが、塔頂部で約62℃〜約115℃、塔底部で約76℃〜約145℃である。 A tray column or a packed column can be used as the distillation column. The theoretical stage of the tray tower is usually preferably 40 to 200. The packed length of the packed column is preferably 15 to 100 m. The top pressure of the distillation column is not particularly limited. However, when the vacuum pressure is set, aldehyde loss due to non-condensation occurs in the top condenser using cooling water of about 20 to 30 ° C., so that the atmospheric pressure or higher is desirable. In this case, in the separation of the branched chain aldehyde and the straight chain aldehyde, atmospheric pressure is most desirable because the lower the pressure, the higher the relative volatility and the smaller the number of required theoretical plates. However, considering the equipment cost, the tower top temperature is raised by pressurization, and as a result, the heat transfer area of the tower top condenser can be reduced by taking a large temperature difference from the cooling water, so about 1.0 kg / cm 2 G Although there is a slight increase in the number of theoretical plates required due to the deterioration of separation, the equipment cost does not increase so much and it is economically feasible. Therefore, the tower top pressure is preferably 0.001 to 1.0 kg / cm 2 G. The temperature in the distillation column varies depending on the column pressure determined by the number of carbons of the aliphatic aldehyde, the column top pressure, the type of the distillation column, etc., and is about 62 ° C. to about 115 ° C. at the column top. About 76 ° C. to about 145 ° C. at the bottom.

蒸留は単一の蒸留塔で行っても複数の蒸留塔を用いて行ってもよい。単一の蒸留塔で蒸留を行う場合、塔頂またはアルデヒド含有反応液を供給した段より上の位置から分岐状アルデヒドを得ることができ、塔底またはアルデヒド含有反応液を供給した段より下の位置から直鎖状アルデヒドを得ることができる。また、塔頂から分岐状アルデヒド、側流から直鎖状アルデヒド、塔底から直鎖状アルデヒドと高沸点物質の混合物を缶出することもできる。   Distillation may be performed using a single distillation column or a plurality of distillation columns. When distillation is performed in a single distillation column, a branched aldehyde can be obtained from the top of the column or from a position above the stage to which the aldehyde-containing reaction solution is supplied, and the bottom of the column or from the position to which the aldehyde-containing reaction solution is supplied. A linear aldehyde can be obtained from the position. It is also possible to take out a branched aldehyde from the tower top, a linear aldehyde from the side stream, and a mixture of the linear aldehyde and the high-boiling substance from the tower bottom.

複数の蒸留塔を用いる場合、例えば、第1塔の塔底から高沸点物質を缶出し、塔頂からの留出液を第2塔に供給し、第2塔の塔底から直鎖状アルデヒドを、塔頂から分岐状アルデヒドを得る方法、第1塔の塔頂から低沸点物質を留出し、塔低からの缶出液を第2塔に供給し、第2塔の塔底から直鎖状アルデヒドを、塔頂から分岐状アルデヒドを得る方法、第1塔の塔頂から分岐状アルデヒドを得て、塔底からの缶出液を第2塔に供給し、第2塔の塔頂から直鎖状アルデヒドを得る方法などが挙げられる。   When using a plurality of distillation towers, for example, high boiling point substances are removed from the bottom of the first tower, the distillate from the top of the tower is supplied to the second tower, and linear aldehyde is fed from the bottom of the second tower. , A method for obtaining a branched aldehyde from the top of the column, distilling a low-boiling substance from the top of the first column, supplying the bottoms from the low column to the second column, and straight chain from the bottom of the second column A branched aldehyde from the top of the tower, a branched aldehyde is obtained from the top of the first tower, the bottoms from the bottom of the tower are fed to the second tower, and Examples include a method for obtaining a linear aldehyde.

本発明においては、直鎖状アルデヒドと分岐鎖状アルデヒドを分離する蒸留工程(どの蒸留工程か明記要)において、蒸留塔に供するアルデヒド含有反応液中のアルコール濃度を200ppm以下、好ましくは100ppm以下、より好ましくは20ppm以下とする。アルコール濃度が高いと直鎖状アルデヒドと分岐状アルデヒドを蒸留分離する際の蒸気消費量が増える。該アルコール濃度は低い程よいが、通常は10ppb以上である。   In the present invention, in the distillation step for separating the linear aldehyde and the branched aldehyde (necessary to specify which distillation step), the alcohol concentration in the aldehyde-containing reaction solution supplied to the distillation tower is 200 ppm or less, preferably 100 ppm or less, More preferably, it is 20 ppm or less. When the alcohol concentration is high, the amount of steam consumed when the linear aldehyde and the branched aldehyde are separated by distillation increases. The alcohol concentration is preferably as low as possible, but is usually 10 ppb or more.

なお、本発明におけるアルデヒド含有反応液中のアルコールとは、特に限定されないが、具体的にはメタノール、エタノール、プロパノール等が挙げられる。
蒸留等に供するアルデヒド含有反応液中のアルコール濃度を200ppm以下にする方法としては、(i)オレフィン系不飽和化合物をヒドロホルミル化反応させてアルデヒド含有反応液を得るヒドロホルミル化工程と、得られたアルデヒド含有反応液を蒸留塔にて精製してアルデヒドを得る蒸留工程との間に、アルデヒド含有反応液からアルコールを除去する工程を設ける方法、(ii)原料としてのオレフィン系不飽和化合物から、炭素数n−1(nは製品としてのアルデヒドの炭素数)以外のオレフィン系不飽和化合物を除去する工程を設ける方法、(iii)ヒドロホルミル化触媒調整用の溶剤、あるいはヒドロホルミル化触媒を回収する系の溶剤にアルコールを使用しないこと、上記溶媒に使用されるアルコールがヒドロホルミル化反応系にフィードされる量を減らすこと等が挙げられる。
In addition, although it does not specifically limit with alcohol in the aldehyde containing reaction liquid in this invention, Specifically, methanol, ethanol, propanol, etc. are mentioned.
As a method of setting the alcohol concentration in the aldehyde-containing reaction solution to be used for distillation or the like to 200 ppm or less, (i) a hydroformylation step for obtaining an aldehyde-containing reaction solution by hydroformylating an olefinic unsaturated compound, and the obtained aldehyde A method of providing a step of removing alcohol from the aldehyde-containing reaction solution between the distillation step of purifying the reaction solution in a distillation column and obtaining an aldehyde, (ii) carbon number from the olefinic unsaturated compound as a raw material a method of providing a step of removing olefinic unsaturated compounds other than n-1 (where n is the number of carbon atoms of the aldehyde as a product), (iii) a solvent for adjusting a hydroformylation catalyst, or a solvent for recovering a hydroformylation catalyst That the alcohol used in the above solvent is hydroformyl Like reducing the amount being fed are exemplified in the reaction system.

(i)オレフィン系不飽和化合物をヒドロホルミル化反応させてアルデヒド含有反応液を得るヒドロホルミル化工程と、得られたアルデヒド含有反応液を蒸留塔にて精製してアルデヒドを得る蒸留工程との間に、アルデヒド含有反応液からアルコールを除去する工程を設ける場合、例えば、アルコールは一般的な蒸留によって分離することができる。アルデヒド含有反応液に含まれるアルコールが、アルデヒド含有反応液に対して軽沸成分であれば、蒸留塔の塔頂からその他の軽沸成分と共に分離することができる。アルコールがアルデヒド含有反応液に対して高沸成分であれば、蒸留塔の塔底からその他の高沸成分と共に分離することができる。また、アルコールがアルデヒド含有反応液と共沸組成を形成する場合は、操作圧力の最適点を見出すなどが必要となる。   (I) Between a hydroformylation step for obtaining an aldehyde-containing reaction solution by hydroformylating an olefinically unsaturated compound and a distillation step for obtaining an aldehyde by purifying the obtained aldehyde-containing reaction solution in a distillation column, When providing the process of removing alcohol from an aldehyde containing reaction liquid, alcohol can be isolate | separated by general distillation, for example. If the alcohol contained in the aldehyde-containing reaction solution is a light-boiling component relative to the aldehyde-containing reaction solution, it can be separated from the top of the distillation tower together with other light-boiling components. If the alcohol is a high boiling component with respect to the aldehyde-containing reaction solution, it can be separated from the bottom of the distillation column together with other high boiling components. In addition, when the alcohol forms an azeotropic composition with the aldehyde-containing reaction solution, it is necessary to find the optimum point of the operating pressure.

(ii)原料としてのオレフィン系不飽和化合物から、炭素数n−1(nは製品としてのアルデヒドの炭素数)以外のオレフィン系不飽和化合物を除去する工程を設ける場合、例えば、一般的な蒸留による方法、あるいは水添反応でパラフィンに変える方法あるいは蒸留と水添反応を組み合わせる方法などを用いることができる。蒸留条件について特に制限はないが、原料オレフィンが液化ガスなので、一般的には加圧化で蒸留は行われる。その圧力は1MPaA以上であることが望ましい。また、不純物のオレフィンを選択的に部分水素化する触媒は周期表第八金属の遷移金属であり、Ni、Pd、Ptなどが使用されるが、特にNi、Pdが好ましい。蒸留と水添反応を組み合わせる場合、その順序に制約はなく、蒸留で精製したオレフィンを水添させて不純物オレフィンを除去しても、不純物オレフィンを水添させた後に蒸留で精製しても良い。   (Ii) When providing a step of removing olefinic unsaturated compounds other than carbon number n-1 (n is the number of carbons of the aldehyde as a product) from the olefinic unsaturated compound as a raw material, for example, general distillation Or a method of changing to paraffin by hydrogenation reaction, a method of combining distillation and hydrogenation reaction, or the like. Although there are no particular restrictions on the distillation conditions, since the raw material olefin is a liquefied gas, distillation is generally performed by pressurization. The pressure is desirably 1 MPaA or more. The catalyst for selectively partially hydrogenating the olefin as an impurity is a transition metal of the eighth metal of the periodic table, and Ni, Pd, Pt, etc. are used, and Ni and Pd are particularly preferable. When the distillation and the hydrogenation reaction are combined, the order is not limited, and the olefin purified by distillation may be hydrogenated to remove the impurity olefin, or the impurity olefin may be hydrogenated and then purified by distillation.

(iii)ヒドロホルミル化触媒調整用の溶剤、あるいはヒドロホルミル化触媒を回収する系の溶剤にアルコールを使用しない場合、例えばヒドロホルミル化触媒調整用の溶剤でアルコールに代わる溶剤として、特開平8−10624号公報ではギ酸、酢酸、プロピオン酸等の脂肪酸、テトラヒドロフラン、ジオキサン等の環状エーテル、プロピオラクトン、γ-ブチロラクトン等のラクトン、アセトン、メチルエチルケトン等の低級アルキルケトン、エチルアミン、プロピオアミン等のアミン、アセトアルデヒド等のアルデヒドが挙げられている。また、上記以外に特開平10−291996号公報では、ヘキサン、ヘプタン等の脂肪族飽和炭化水素類、ベンゼン、トルエン、キシレンのような芳香族炭化水素類、ヘキセン、オクテン、ノネン等の脂肪族不飽和炭化水素類、酢酸エチルなどのエステル類、およびそれらの混合物を挙げている。また、ヒドロホルミル化触媒を回収する系の溶剤でアルコールに代わる溶剤として、例えば特開2001−114794号公報では、アセトニトリル、N−メチルピペリドン、ジエチルエーテル等の極性化合物、ペンタン、ヘキサン、ヘプタン、オクタン等の無極性化合物を挙げている。触媒調整用に使用するアルコールの量を減らす方法としては、例えばヒドロホルミル化触媒中の触媒濃度を上げる方法がある。これにより、同じ触媒量をオキソ反応系内にフィードしても、同伴するアルコールの量を減らすことができる。   (Iii) In the case where no alcohol is used as a solvent for adjusting the hydroformylation catalyst or a solvent for recovering the hydroformylation catalyst, for example, a solvent for adjusting the hydroformylation catalyst that replaces the alcohol is disclosed in JP-A-8-10624. In, fatty acids such as formic acid, acetic acid and propionic acid, cyclic ethers such as tetrahydrofuran and dioxane, lactones such as propiolactone and γ-butyrolactone, lower alkyl ketones such as acetone and methyl ethyl ketone, amines such as ethylamine and propioamine, and aldehydes such as acetaldehyde Is listed. In addition to the above, JP-A-10-291996 discloses aliphatic saturated hydrocarbons such as hexane and heptane, aromatic hydrocarbons such as benzene, toluene and xylene, and aliphatic non-carbon such as hexene, octene and nonene. Listed are saturated hydrocarbons, esters such as ethyl acetate, and mixtures thereof. Further, as a solvent for recovering the hydroformylation catalyst instead of alcohol, for example, in JP 2001-114794 A, polar compounds such as acetonitrile, N-methylpiperidone, diethyl ether, pentane, hexane, heptane, octane, etc. Lists nonpolar compounds. As a method of reducing the amount of alcohol used for catalyst preparation, for example, there is a method of increasing the catalyst concentration in the hydroformylation catalyst. Thereby, even if the same catalyst amount is fed into the oxo reaction system, the amount of accompanying alcohol can be reduced.

アルコールが含まれるとなぜ必要蒸気量が増加するのか理論的にはわかっていないが、実際の蒸留塔の運転でフィード中にアルコールが存在すると必要蒸気量が増加することに気付き、発明に至った。   It is not theoretically known why the required amount of steam increases when alcohol is included, but in the actual operation of the distillation tower, the presence of alcohol in the feed increases the required amount of steam, leading to the invention. .

以下実施例により、本発明をより詳細に説明するが、本発明は下記実施例に何ら限定されるものではない。
<ヒドロホルミル化反応>
7.0t/hのプロピレンを完全混合槽型の反応器にフィードしてヒドロホルミル化反応を行った。またH/CO=1の合成ガスを反応器へフィードして反応圧力を保つようにした。反応条件は温度100℃、圧力17kg/cmG、Rh濃度330mg/L、トリフェニルホスフィン濃度21wt%とした。生成したヒドロホルミル化反応液は蒸留塔で触媒液とアルデヒド含有反応液に分離された。アルデヒド含有反応液中のブチルアルデヒドとイソブチルアルデヒドの比は10であった。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
<Hydroformylation reaction>
A hydroformylation reaction was carried out by feeding 7.0 t / h of propylene to a fully mixed tank reactor. Further, synthesis gas of H 2 / CO = 1 was fed to the reactor so as to keep the reaction pressure. The reaction conditions were a temperature of 100 ° C., a pressure of 17 kg / cm 2 G, an Rh concentration of 330 mg / L, and a triphenylphosphine concentration of 21 wt%. The produced hydroformylation reaction solution was separated into a catalyst solution and an aldehyde-containing reaction solution in a distillation column. The ratio of butyraldehyde to isobutyraldehyde in the aldehyde-containing reaction solution was 10.

比較例1
Rh濃度が10wt%(Rh金属換算)の酢酸Rh4kgをメタノール1140Lで希釈して触媒液を調整した。ヒドロホルミル化反応の触媒濃度が一定となるように、触媒液を反応系内へフィードした。ヒドロホルミル化反応で得られたアルデヒド含有反応液を精製してアルデヒドを得るために、実段75段のトレイを持つ蒸留塔にフィードした。フィードしたアルデヒド含有反応液中のメタノール濃度は300ppmであった。蒸留塔の塔頂圧力を常圧、塔頂温度を67℃、塔底温度を90℃、外部還流比を53とした。
Comparative Example 1
A catalyst solution was prepared by diluting 4 kg of Rh acetate having an Rh concentration of 10 wt% (in terms of Rh metal) with 1140 L of methanol. The catalyst solution was fed into the reaction system so that the catalyst concentration in the hydroformylation reaction was constant. In order to purify the aldehyde-containing reaction solution obtained by the hydroformylation reaction to obtain an aldehyde, it was fed to a distillation column having a tray having 75 stages. The methanol concentration in the fed aldehyde-containing reaction solution was 300 ppm. The top pressure of the distillation column was normal pressure, the top temperature was 67 ° C., the bottom temperature was 90 ° C., and the external reflux ratio was 53.

実施例1
Rh濃度が10wt%(Rh金属換算)の酢酸Rh60kgをメタノール1140Lで希釈して触媒液を調整した以外は、比較例1と同様にした。この時、蒸留塔にフィードしたアルデヒド含有反応液中のメタノール濃度は19ppmであった。
実施例2
Rh濃度が10wt%(Rh金属換算)の酢酸Rh12kgをメタノール1140Lで希釈し触媒液を調整した以外は、比較例1と同様にした。この時、蒸留塔にフィードしたアルデヒド含有反応液中のメタノール濃度は95ppmであった。
Example 1
Comparative Example 1 was performed except that a catalyst solution was prepared by diluting 60 kg of acetic acid Rh having a Rh concentration of 10 wt% (in terms of Rh metal) with 1140 L of methanol. At this time, the methanol concentration in the aldehyde-containing reaction solution fed to the distillation column was 19 ppm.
Example 2
Comparative Example 1 was performed except that a catalyst solution was prepared by diluting 12 kg of acetic acid Rh having a Rh concentration of 10 wt% (in terms of Rh metal) with 1140 L of methanol. At this time, the methanol concentration in the aldehyde-containing reaction solution fed to the distillation column was 95 ppm.

Figure 0004736392
Figure 0004736392

Claims (3)

オレフィン系不飽和化合物を1t/h以上の流量で反応器に流入させ、ヒドロホルミル化反応させてアルデヒド含有反応液を得、得られたアルデヒド含有反応液を蒸留塔にて精製してアルデヒドを得る方法において、蒸留塔に供するアルデヒド含有反応液中のアルコール濃度を200ppm以下とすることを特徴とするアルデヒドの製造方法。 A method of obtaining an aldehyde by flowing an olefinically unsaturated compound into a reactor at a flow rate of 1 t / h or more , causing a hydroformylation reaction to obtain an aldehyde-containing reaction solution, and purifying the obtained aldehyde-containing reaction solution in a distillation column. The method for producing an aldehyde according to claim 1, wherein the alcohol concentration in the aldehyde-containing reaction solution supplied to the distillation tower is 200 ppm or less. オレフィン系不飽和化合物をヒドロホルミル化反応させてアルデヒド含有反応液を得るヒドロホルミル化工程と、得られたアルデヒド含有反応液を蒸留塔にて精製してアルデヒドを得る蒸留工程との間に、アルデヒド含有反応液からアルコールを除去する工程を設け請求項1に記載のアルデヒドの製造方法。 An aldehyde-containing reaction between a hydroformylation step in which an olefinic unsaturated compound is hydroformylated to obtain an aldehyde-containing reaction solution and a distillation step in which the obtained aldehyde-containing reaction solution is purified by a distillation tower to obtain an aldehyde method for producing aldehydes according to claim 1, Ru provided a step of removing alcohol from the liquid. 原料としてのオレフィン系不飽和化合物から、炭素数n−1(nは製品としてのアルデヒドの炭素数)以外のオレフィン系不飽和化合物を除去する工程を有する請求項1又は2に記載のアルデヒドの製造方法。 From olefinically unsaturated compound as starting material, the production of aldehydes according to claim 1 or 2 comprising a step of removing the olefinically unsaturated compound other than (the number of carbon atoms of the aldehyde as a product n) number n-1 carbon Method.
JP2004300351A 2004-10-14 2004-10-14 Method for producing aldehyde Active JP4736392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004300351A JP4736392B2 (en) 2004-10-14 2004-10-14 Method for producing aldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004300351A JP4736392B2 (en) 2004-10-14 2004-10-14 Method for producing aldehyde

Publications (2)

Publication Number Publication Date
JP2006111570A JP2006111570A (en) 2006-04-27
JP4736392B2 true JP4736392B2 (en) 2011-07-27

Family

ID=36380383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004300351A Active JP4736392B2 (en) 2004-10-14 2004-10-14 Method for producing aldehyde

Country Status (1)

Country Link
JP (1) JP4736392B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2928855A1 (en) * 2012-12-06 2015-10-14 Dow Technology Investments LLC Hydroformylation process
CN106362766B (en) * 2016-08-04 2018-11-20 中国科学技术大学先进技术研究院 A kind of Rh/CoO nanocatalyst and preparation method thereof, application

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1090823A (en) * 1976-04-08 1980-12-02 Everard A.V. Brewester Cyclic hydroformylation process
NO163690C (en) * 1984-06-18 1990-07-04 Air Prod & Chem PROCEDURE FOR PREPARING TWO QUALITIES OF PROPYL.
JP4122528B2 (en) * 1995-02-02 2008-07-23 三菱化学株式会社 Method for recovering active ingredients from off-gas
JPH10291996A (en) * 1997-04-22 1998-11-04 Mitsubishi Chem Corp Preparation of rhodium complex solution
DE19914259A1 (en) * 1999-03-29 2000-10-05 Basf Ag Process for the separation by distillation of a liquid crude aldehyde mixture
DE10006489A1 (en) * 2000-02-14 2001-08-16 Basf Ag Process for working up a liquid hydroformylation discharge
DE10013253A1 (en) * 2000-03-17 2001-09-20 Basf Ag Production of propene and hexene from butenes in a raffinate II C4 fraction comprises reaction with ethene on a Group VIb, VIIb or VIII metal metathesis catalyst
DE10031519A1 (en) * 2000-06-28 2002-01-10 Basf Ag Process for the hydroformylation of olefins having 2 to 8 carbon atoms, I

Also Published As

Publication number Publication date
JP2006111570A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
EP1732871B1 (en) Process for hydroformylation of propylene
US9695098B2 (en) Hydroformylation process
CN111989308B (en) Process for preparing n-butanol, isobutanol and 2-alkyl alkanol feedstock
GB1582010A (en) Cyclic hudroformylation process
CN109071396B (en) Process for separating linear and branched aldehydes
EP3374340B1 (en) Process for producing aldehydes
JPS6322534A (en) Manufacture and collection of aldehydes
EP0959063B1 (en) Process for producing alcohols
KR20120004401A (en) Method for producing aldehydes
JP4736392B2 (en) Method for producing aldehyde
RU2751511C2 (en) Methods for converting olefins into alcohols, esters, or combinations thereof
JP3517950B2 (en) Method for producing aldehydes
JP2841689B2 (en) Purification method of valeraldehyde
JP3864617B2 (en) Method for producing alcohol
JP4003361B2 (en) Method for producing alcohol
JPH08169858A (en) Production of branched chain aldehyde
TW202406888A (en) Method and apparatus for production of alcohols
JP4779294B2 (en) Method for producing alcohol
EA041813B1 (en) METHOD FOR PRODUCING A FLOW OF NORMAL BUTANOL, ISOBUTANOL AND 2-ALKYLALKANOL
JP2005306807A (en) Method for producing aldehyde

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Ref document number: 4736392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350