JP4736222B2 - Method for producing magnesium alloy - Google Patents

Method for producing magnesium alloy Download PDF

Info

Publication number
JP4736222B2
JP4736222B2 JP2001111726A JP2001111726A JP4736222B2 JP 4736222 B2 JP4736222 B2 JP 4736222B2 JP 2001111726 A JP2001111726 A JP 2001111726A JP 2001111726 A JP2001111726 A JP 2001111726A JP 4736222 B2 JP4736222 B2 JP 4736222B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
sio
sic powder
powder
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001111726A
Other languages
Japanese (ja)
Other versions
JP2002309322A (en
Inventor
琢哉 坂口
雅洋 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001111726A priority Critical patent/JP4736222B2/en
Publication of JP2002309322A publication Critical patent/JP2002309322A/en
Application granted granted Critical
Publication of JP4736222B2 publication Critical patent/JP4736222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Mold Materials And Core Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マグネシウム合金の製造方法に関し、特に、鋳造組織を細粒化できると同時に高温強度を向上できるマグネシウム合金の製造方法に関する。
【0002】
【従来の技術】
マグネシウム合金の鋳造組織の細粒化は、合金の機械的性質を向上させる上で極めて重要である。
従来から、マグネシウム合金の鋳造組織細粒化の一般的な方法として、ヘキサクロロエタン(C2Cl6)をマグネシウム合金溶湯に添加する方法が知られている。しかし、この方法はヘキサクロロエタンが高温のマグネシウム合金溶湯と接触した際に、塩素化炭化水素(CHC)が発生して環境汚染源となるという問題がある。
【0003】
特開2000-104136号公報には、環境汚染物質を発生しないマグネシウム合金の細粒化方法として、BおよびMnをマグネシウム合金溶湯に添加する技術が提案されている。しかしこの方法では、マグネシウム合金溶湯中へのMnの添加がAl-Mn合金の形でしかできず、不要なAl成分の存在によってマグネシウム合金の延性が低下する等の問題があった。
【0004】
【発明が解決しようとする課題】
本発明は、環境汚染物質を発生させず、マグネシウム合金の延性を良好に維持しつつ、鋳造組織を細粒化できると同時に高温強度を向上できるマグネシウム合金の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記の目的を達成するために、本発明のマグネシウム合金の製造方法は、粉末粒子の表面にSiO2被膜を備えたSiC粉末を、0.1〜10mass%の添加量でマグネシウム合金溶湯に直接添加することを特徴とする。
SiC粉末を大気中で加熱することにより粉末粒径の1〜10%の厚さの前記SiO2被膜を形成することが望ましい。
【0006】
【発明の実施の形態】
粉末粒子の表面をSiO2で被覆したSiC粉末(以下「SiO2被覆SiC粉末」と略称する)をマグネシウム合金溶湯に添加することにより、マグネシウム合金の鋳造組織が細粒化すると同時に高温強度が向上する機構は以下のように考えられる。
【0007】
Mg合金溶湯にSiO2被覆SiC粉末を添加すると、まず粉末粒子表面のSiO2とMgが下記(1)の発熱反応をする。
その結果、粉末粒子表面が850℃以上の高温になるため、MgとSiCが下記(2)のように反応することが可能になり、Mg2Si金属間化合物と遊離Cとが生成する。ここで生成したMg2Si金属間化合物により高温強度が向上する。
【0008】
一方、遊離Cは、下記(3)のように、Mg合金中に一般的に含まれているAl、Mn等の炭化物形成元素と反応してAl43、Mn2C等の微細な金属炭化物粒子を形成する。これらの金属炭化物はMg合金溶湯中で安定であり、凝固殻として作用するためMg合金の鋳造組織が細粒化する。
【0009】
(1) 2Mg+SiO2→2MgO+Si (発熱反応)
(2) 2Mg+SiC→Mg2Si+C
(3) 3C+4Al(またはMn等)→Al43(またはMn2C等)
【0010】
本発明においては、SiO2被覆SiC粉末をMg合金溶湯に対して0.1〜10mass%の添加量で添加する。0.1mass%未満では細粒化効果が得られず、10mass%を超えるとMg合金溶湯の粘性が高くなり過ぎて鋳造が不可能になる。
【0011】
本発明の望ましい態様においては、SiO2被覆の厚さはSiC粒径の1〜10%である。1%未満では、MgとSiO2との反応による発熱量が少ないためMgとSiCとの反応が起き難く、10%を超えるとMgとSiO2とがテルミット反応を起こし易くなるため、Mg合金溶湯が爆発する危険がある。
【0012】
【実施例】
下記の手順および条件により、SiO2被覆SiC粉末をAZ91Dマグネシウム合金溶湯に直接添加した後に鋳造することにより、マグネシウム合金を製造した。
【0013】
〔SiO2被膜の形成〕
粉末粒径10μmのSiC粉末を大気中で加熱することにより、粉末粒子表面にSiO2被膜を形成した。まず加熱温度および加熱時間に対する被膜厚さの変化を調べた。図1および図2に、それぞれ加熱温度および加熱時間に対する被膜厚さの変化をグラフおよび表で示す。同様の予備実験を種々行い、それらの結果に基づいて、粒径の1〜10%の被膜厚さになる温度・時間の範囲を求めた。
【0014】
本実施例では、1500℃×1時間の加熱を行い、SiC粉末粒子の表面に厚さ411nmのSiO2被膜を形成した。この被膜厚さは、SiC粒径10000nm(=10μm)の4.1%である。
加熱前および加熱後の粉末についてX線回折を行った結果、加熱前にはSiCの回折ピークのみが認められたのに対して、加熱後にはSiCピークに加えてSiO2の回折ピークが明瞭に認められた。これにより、被膜組成がSiO2であることが確認された。
【0015】
〔マグネシウム合金溶湯への添加〕
SF6ガス雰囲気中にて、700℃に保持したAZ91Dマグネシウム合金溶湯に、上記にて準備したSiO2被覆SiC粉末を種々の添加量で添加し、攪拌して溶湯中に均一に分散させた後、金型(JIS4号舟型)中に鋳造した。
【0016】
〔結晶粒径の測定〕
上記鋳造されたマグネシウム合金の鋳造組織を顕微鏡観察して結晶粒径を求めた。図3に、典型的な観察例として、SiO2被覆SiC粉末を1mass%添加した場合の鋳造組織を示す。図4に、比較として、無添加の場合の鋳造組織を示す。図5に、SiO2被覆SiC粉末の添加量と結晶粒径との関係をグラフおよび表で示す。
【0017】
図5に示したように、SiO2被覆SiC粉末の添加量が0〜0.05mass%の範囲では結晶粒径が200〜180μmと粗大であるが、添加量が0.1mass%以上になると80〜50μmと顕著に細粒化する。同図には、添加量0.5mass%までの結果を示したが、添加量が更に多くなっても細粒化の程度は徐々に進行するが顕著に進行することはない。
【0018】
〔高温強度の測定〕
(1)高温硬さの測定
上記鋳造されたマグネシウム合金の150℃における高温硬さを測定した。図6にSiO2被覆SiC粉末の添加量と高温硬さとの関係をグラフおよび表で示す。
図6に示したように、150℃高温硬さはSiO2被覆SiC粉末の添加量の増加に伴い単調に増加する。特に、図示した添加量4mass%までの範囲では、マグネシウム合金マトリクス中の硬質分散相であるSiO2被覆SiC粉末の添加量に対して、硬さが概ね直線関係にあることが観察される。
【0019】
このようにSiO2被覆SiC粉末の添加によって高温硬さが増加するのは、基本的には前述のようにMg2Si金属間化合物が生成していることによる。図7に、SiO2被覆SiC粉末を1mass%添加したマグネシウム合金鋳造組織の顕微鏡写真を示す。同図中で、地の色と同等の灰色に見える塊状の粒子は、MgSi金属間化合物を核に形成されたと考えらるMg-Si-Al-O系4元化合物であり、Mg2Si金属間化合物と同様に高温強度の向上に寄与する。
【0020】
(2)高温軸力保持率の測定
SiO2被覆SiC粉末を1mass%添加したマグネシウム合金について、初期荷重64MPa、試験温度150℃にて、負荷開始からの経過時間に対して軸力保持率を測定した。比較として、無添加のマグネシウム合金についても同様に測定した。図8に測定結果をグラフおよび表で示す。
【0021】
図8に示したように、軸力保持率は時間経過に伴って低下し、無添加の比較例の場合には100時間経過した時点で軸力保持率が0になった。これに対して、本発明によりSiO2被覆SiC粉末を1mass%添加した場合には、100時間経過した時点では軸力保持率はまだ20%を維持しており、0にまで低下するのに経過時間300時間を要した。このようにSiO2被覆SiC粉末の添加により軸力保持特性が大幅に向上する。
【0022】
【発明の効果】
以上説明したように、本発明により、環境汚染物質を発生させず、マグネシウム合金の延性を良好に維持しつつ、鋳造組織を細粒化できると同時に高温強度を向上できるマグネシウム合金の製造方法が提供される。
【図面の簡単な説明】
【図1】図1は、SiC粉末の加熱温度と、粉末粒子表面に形成されたSiO2被膜の厚さとの関係を示すグラフおよび表である。
【図2】図2は、SiC粉末の加熱時間と、粉末粒子表面に形成されたSiO2被膜の厚さとの関係を示すグラフおよび表である。
【図3】図3は、本発明によりSiO2被覆SiC粉末を添加して製造したマグネシウム合金の鋳造組織を示す顕微鏡写真である。
【図4】図4は、比較例として無添加で製造したマグネシウム合金の鋳造組織を示す顕微鏡写真である。
【図5】図5は、SiO2被覆SiC粉末の添加量とマグネシウム合金の結晶粒径との関係を示すグラフおよび表である。
【図6】図6は、SiO2被覆SiC粉末の添加量と高温硬さとの関係を示すグラフおよび表である。
【図7】図7は、本発明によりSiO2被覆SiC粉末を添加して製造したマグネシウム合金の鋳造組織中の析出化合物を示す顕微鏡写真である。
【図8】図8は、本発明によりSiO2被覆SiC粉末を添加して製造したマグネシウム合金と、比較例として無添加で製造したマグネシウム合金とについて、高温での軸力保持率を時間経過に対して示すグラフおよび表である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a magnesium alloy, and more particularly to a method for producing a magnesium alloy that can refine a cast structure and improve high-temperature strength at the same time.
[0002]
[Prior art]
Refinement of the cast structure of magnesium alloy is extremely important in improving the mechanical properties of the alloy.
Conventionally, a method of adding hexachloroethane (C 2 Cl 6 ) to a molten magnesium alloy is known as a general method for refining a cast alloy of a magnesium alloy. However, this method has a problem that chlorinated hydrocarbons (CHC) are generated when hexachloroethane comes into contact with the molten magnesium alloy at a high temperature and become a source of environmental pollution.
[0003]
Japanese Patent Application Laid-Open No. 2000-104136 proposes a technique of adding B and Mn to a molten magnesium alloy as a method for refining a magnesium alloy that does not generate environmental pollutants. However, this method has a problem that the addition of Mn into the molten magnesium alloy can be performed only in the form of an Al—Mn alloy, and the ductility of the magnesium alloy is lowered due to the presence of an unnecessary Al component.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a magnesium alloy capable of reducing the cast structure and improving the high-temperature strength while maintaining good ductility of the magnesium alloy without generating environmental pollutants. .
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the method for producing a magnesium alloy according to the present invention directly adds SiC powder having a SiO 2 coating on the surface of powder particles to a molten magnesium alloy in an addition amount of 0.1 to 10 mass%. It is characterized by doing.
It is desirable to form the SiO 2 coating having a thickness of 1 to 10% of the powder particle size by heating SiC powder in the air.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
By adding SiC powder coated with SiO 2 on the surface of the powder particles (hereinafter abbreviated as “SiO 2 coated SiC powder”) to the molten magnesium alloy, the cast structure of the magnesium alloy becomes finer and at the same time the high-temperature strength is improved. The mechanism to perform is considered as follows.
[0007]
When SiO 2 -coated SiC powder is added to the molten Mg alloy, first, SiO 2 and Mg on the surface of the powder particles undergo an exothermic reaction (1) below.
As a result, the powder particle surface becomes a high temperature of 850 ° C. or higher, so that Mg and SiC can react as shown in (2) below, and an Mg 2 Si intermetallic compound and free C are generated. The high temperature strength is improved by the Mg 2 Si intermetallic compound produced here.
[0008]
On the other hand, free C reacts with carbide-forming elements such as Al and Mn that are generally contained in Mg alloys as shown in (3) below, so that fine metals such as Al 4 C 3 and Mn 2 C can be obtained. Form carbide particles. Since these metal carbides are stable in the molten Mg alloy and act as a solidified shell, the cast structure of the Mg alloy becomes finer.
[0009]
(1) 2Mg + SiO 2 → 2MgO + Si (exothermic reaction)
(2) 2Mg + SiC → Mg 2 Si + C
(3) 3C + 4Al (or Mn etc.) → Al 4 C 3 (or Mn 2 C etc.)
[0010]
In the present invention, the SiO 2 -coated SiC powder is added in an amount of 0.1 to 10 mass% with respect to the molten Mg alloy. If it is less than 0.1 mass%, the effect of refining cannot be obtained, and if it exceeds 10 mass%, the viscosity of the molten Mg alloy becomes so high that casting becomes impossible.
[0011]
In a preferred embodiment of the present invention, the thickness of the SiO 2 coating is 1-10% of SiC particle size. If it is less than 1%, the calorific value due to the reaction between Mg and SiO 2 is small, so that the reaction between Mg and SiC hardly occurs, and if it exceeds 10%, the thermite reaction easily occurs between Mg and SiO 2. There is a risk of explosion.
[0012]
【Example】
According to the following procedure and conditions, the SiO 2 coated SiC powder was directly added to the molten AZ91D magnesium alloy and then cast to produce a magnesium alloy.
[0013]
[Formation of SiO 2 coating]
By heating SiC powder having a powder particle size of 10 μm in the air, a SiO 2 coating was formed on the surface of the powder particles. First, changes in the film thickness with respect to the heating temperature and the heating time were examined. FIG. 1 and FIG. 2 are graphs and tables showing changes in film thickness with respect to heating temperature and heating time, respectively. Various similar preliminary experiments were conducted, and based on the results, a range of temperature and time at which the film thickness was 1 to 10% of the particle diameter was obtained.
[0014]
In this example, heating was performed at 1500 ° C. for 1 hour to form a 411 nm thick SiO 2 film on the surface of the SiC powder particles. This film thickness is 4.1% with a SiC particle size of 10000 nm (= 10 μm).
As a result of performing X-ray diffraction on the powder before heating and after heating, only the diffraction peak of SiC was observed before heating, whereas the diffraction peak of SiO 2 was clearly added in addition to the SiC peak after heating. Admitted. This confirmed that the coating composition was SiO 2 .
[0015]
[Addition to magnesium alloy melt]
After adding the SiO 2 -coated SiC powder prepared above in various addition amounts to the AZ91D magnesium alloy molten metal maintained at 700 ° C. in an SF 6 gas atmosphere, and stirring and uniformly dispersing in the molten metal , And cast into a mold (JIS No. 4 boat type).
[0016]
(Measurement of crystal grain size)
The crystal grain size was determined by microscopic observation of the cast structure of the cast magnesium alloy. FIG. 3 shows a cast structure in the case where 1 mass% of SiO 2 -coated SiC powder is added as a typical observation example. FIG. 4 shows a cast structure in the case of no addition as a comparison. FIG. 5 is a graph and a table showing the relationship between the addition amount of the SiO 2 -coated SiC powder and the crystal grain size.
[0017]
As shown in FIG. 5, when the addition amount of the SiO 2 -coated SiC powder is in the range of 0 to 0.05 mass%, the crystal grain size is as coarse as 200 to 180 μm, but when the addition amount is 0.1 mass% or more, it is 80 It is remarkably fined to ˜50 μm. Although the results up to the addition amount of 0.5 mass% are shown in the figure, the degree of atomization gradually progresses but does not progress significantly even if the addition amount is further increased.
[0018]
[Measurement of high-temperature strength]
(1) Measurement of high-temperature hardness The high-temperature hardness at 150 ° C of the cast magnesium alloy was measured. FIG. 6 is a graph and a table showing the relationship between the addition amount of the SiO 2 -coated SiC powder and the high temperature hardness.
As shown in FIG. 6, the 150 ° C. high temperature hardness increases monotonically with the increase in the amount of SiO 2 -coated SiC powder added. In particular, in the range up to the added amount of 4 mass% shown in the figure, it is observed that the hardness is generally linearly related to the added amount of the SiO 2 -coated SiC powder that is the hard dispersed phase in the magnesium alloy matrix.
[0019]
The reason why the high temperature hardness is increased by the addition of the SiO 2 coated SiC powder is basically due to the formation of the Mg 2 Si intermetallic compound as described above. FIG. 7 shows a micrograph of a magnesium alloy cast structure to which 1 mass% of SiO 2 -coated SiC powder is added. In the figure, the massive particles that appear gray like the ground color are Mg—Si—Al—O quaternary compounds that are thought to be formed with MgSi intermetallic compounds as nuclei, and Mg 2 Si metal. Like the intermetallic compound, it contributes to the improvement of high temperature strength.
[0020]
(2) Measurement of high-temperature axial force retention rate With respect to a magnesium alloy to which 1 mass% of SiO 2 -coated SiC powder was added, the axial force retention rate was measured with respect to the elapsed time from the start of load at an initial load of 64 MPa and a test temperature of 150 ° C. did. For comparison, the same measurement was performed for an additive-free magnesium alloy. FIG. 8 shows the measurement results in a graph and a table.
[0021]
As shown in FIG. 8, the axial force retention rate decreased with time, and in the case of the additive-free comparative example, the axial force retention rate became zero after 100 hours. On the other hand, when 1 mass% of SiO 2 -coated SiC powder is added according to the present invention, the axial force retention rate is still maintained at 20% when 100 hours have elapsed, and it has been reduced to zero. It took 300 hours. Thus, the axial force retention characteristics are greatly improved by the addition of the SiO 2 -coated SiC powder.
[0022]
【The invention's effect】
As described above, according to the present invention, there is provided a method for producing a magnesium alloy capable of reducing the cast structure and improving the high-temperature strength while maintaining good ductility of the magnesium alloy without generating environmental pollutants. Is done.
[Brief description of the drawings]
FIG. 1 is a graph and a table showing the relationship between the heating temperature of SiC powder and the thickness of a SiO 2 film formed on the surface of powder particles.
FIG. 2 is a graph and a table showing the relationship between the heating time of SiC powder and the thickness of the SiO 2 film formed on the surface of the powder particles.
FIG. 3 is a photomicrograph showing the cast structure of a magnesium alloy produced by adding SiO 2 coated SiC powder according to the present invention.
FIG. 4 is a photomicrograph showing the cast structure of a magnesium alloy produced as a comparative example without addition.
FIG. 5 is a graph and table showing the relationship between the addition amount of SiO 2 -coated SiC powder and the crystal grain size of the magnesium alloy.
FIG. 6 is a graph and table showing the relationship between the addition amount of SiO 2 -coated SiC powder and high-temperature hardness.
FIG. 7 is a photomicrograph showing a precipitated compound in a cast structure of a magnesium alloy produced by adding SiO 2 coated SiC powder according to the present invention.
FIG. 8 is a graph showing the axial force retention at high temperatures over time for a magnesium alloy produced by adding SiO 2 -coated SiC powder according to the present invention and a magnesium alloy produced without addition as a comparative example. It is the graph and table | surface shown with respect to it.

Claims (2)

粉末粒子の表面にSiO2被膜を備えたSiC粉末を、0.1〜10mass%の添加量でマグネシウム合金溶湯に直接添加することを特徴とするマグネシウム合金の製造方法。SiC powder with a SiO 2 film on the surface of the powder particles, a manufacturing method of a magnesium alloy, comprising adding directly to the molten magnesium alloy by the addition of 0.1~10mass%. SiC粉末を大気中で加熱することにより粉末粒径の1〜10%の厚さの前記SiO2被膜を形成することを特徴とする請求項1記載のマグネシウム合金の製造方法。 2. The method for producing a magnesium alloy according to claim 1, wherein the SiO 2 film having a thickness of 1 to 10% of the particle diameter of the powder is formed by heating SiC powder in the air.
JP2001111726A 2001-04-10 2001-04-10 Method for producing magnesium alloy Expired - Fee Related JP4736222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001111726A JP4736222B2 (en) 2001-04-10 2001-04-10 Method for producing magnesium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001111726A JP4736222B2 (en) 2001-04-10 2001-04-10 Method for producing magnesium alloy

Publications (2)

Publication Number Publication Date
JP2002309322A JP2002309322A (en) 2002-10-23
JP4736222B2 true JP4736222B2 (en) 2011-07-27

Family

ID=18963279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001111726A Expired - Fee Related JP4736222B2 (en) 2001-04-10 2001-04-10 Method for producing magnesium alloy

Country Status (1)

Country Link
JP (1) JP4736222B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101335010B1 (en) 2011-05-20 2013-12-02 한국생산기술연구원 Magnesium alloy and manufacturing method thereof using silicon oxide

Also Published As

Publication number Publication date
JP2002309322A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
JP4001579B2 (en) High strength aluminum alloy for high temperature applications
JP2691221B2 (en) Method for forming metal-second phase composite
EP0253497B1 (en) Composites having an intermetallic containing matrix
US4916029A (en) Composites having an intermetallic containing matrix
CN104073699A (en) Al-Si-Cu-Mg cast aluminum alloy and preparation method thereof
JP2013528699A (en) Aluminum die casting alloy
CN109487107B (en) Composite modifier for cast aluminum alloy with iron-rich phase modification and modification method thereof
JP5076354B2 (en) Particle reinforced aluminum alloy composite and method for producing the same
Belov et al. Effect of 0.3% Sc on microstructure, phase composition and hardening of Al-Ca-Si eutectic alloys
JP2007527952A5 (en)
JP2000104136A (en) Magnesium alloy having fine crystal grain and its production
Sanin et al. Centrifugal Metallothermic SHS of Cast Co–Cr–Fe–Ni–Mn–(Х) Alloys
JP2743720B2 (en) Method for producing TiB2 dispersed TiAl-based composite material
JP4736222B2 (en) Method for producing magnesium alloy
JP2001342528A (en) Grain refiner for magnesium alloy, production process for the same and grain refining process using the same
JP4872314B2 (en) Particle reinforced aluminum alloy composite and method for producing the same
CA3162766C (en) Powder aluminium material
CN114277277A (en) AlN/Al particle reinforced magnesium-aluminum rare earth based composite material and preparation method thereof
JPH09157829A (en) Surface nitriding treatment for aluminum material and assistant for nitriding treatment
JP3793780B2 (en) Crystal refinement material for magnesium alloy, magnesium alloy material for casting, casting, and method for producing the same
KR101388922B1 (en) Aluminum alloys including Fe-Mn solid solution and method of manufacturing the same
JP3128041B2 (en) Cylinder block and its manufacturing method
JP2002309333A (en) Aluminum alloy, aluminum alloy for plain bearing and plain bearing
JP3415345B2 (en) Heat-resistant fatigue aluminum alloy and method for producing the same
JP3867908B2 (en) Heat-resistant fatigued aluminum alloy casting and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees