JP2002309322A - Method for manufacturing magnesium alloy - Google Patents

Method for manufacturing magnesium alloy

Info

Publication number
JP2002309322A
JP2002309322A JP2001111726A JP2001111726A JP2002309322A JP 2002309322 A JP2002309322 A JP 2002309322A JP 2001111726 A JP2001111726 A JP 2001111726A JP 2001111726 A JP2001111726 A JP 2001111726A JP 2002309322 A JP2002309322 A JP 2002309322A
Authority
JP
Japan
Prior art keywords
magnesium alloy
sio
powder
sic powder
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001111726A
Other languages
Japanese (ja)
Other versions
JP4736222B2 (en
Inventor
Takuya Sakaguchi
琢哉 坂口
Masahiro Kubo
雅洋 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001111726A priority Critical patent/JP4736222B2/en
Publication of JP2002309322A publication Critical patent/JP2002309322A/en
Application granted granted Critical
Publication of JP4736222B2 publication Critical patent/JP4736222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a magnesium alloy in which the occurrence of environmental pollutants can be prevented and cast texture can be fine-grained while maintaining the ductility of the magnesium alloy and improving simultaneously high-temperature strength. SOLUTION: SiC powder having SiO2 film on the surface of powder particles is directly added in an additive quantity of 0.1-10 mass % to the molten magnesium alloy. It is preferable to form the SiO2 film having a thickness of 1-10% of powder particle diameter by heating the SiC powder in the air.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マグネシウム合金
の製造方法に関し、特に、鋳造組織を細粒化できると同
時に高温強度を向上できるマグネシウム合金の製造方法
に関する。
The present invention relates to a method for producing a magnesium alloy, and more particularly, to a method for producing a magnesium alloy capable of improving the high-temperature strength while reducing the size of a cast structure.

【0002】[0002]

【従来の技術】マグネシウム合金の鋳造組織の細粒化
は、合金の機械的性質を向上させる上で極めて重要であ
る。従来から、マグネシウム合金の鋳造組織細粒化の一
般的な方法として、ヘキサクロロエタン(C2Cl6)を
マグネシウム合金溶湯に添加する方法が知られている。
しかし、この方法はヘキサクロロエタンが高温のマグネ
シウム合金溶湯と接触した際に、塩素化炭化水素(CH
C)が発生して環境汚染源となるという問題がある。
2. Description of the Related Art Refining of a cast structure of a magnesium alloy is extremely important in improving mechanical properties of the alloy. Conventionally, a method of adding hexachloroethane (C 2 Cl 6 ) to a molten magnesium alloy has been known as a general method of refining the cast structure of a magnesium alloy.
However, when hexachloroethane comes into contact with a high-temperature magnesium alloy melt, this method produces a chlorinated hydrocarbon (CH).
C) is generated and becomes a source of environmental pollution.

【0003】特開2000-104136号公報には、環境汚染物
質を発生しないマグネシウム合金の細粒化方法として、
BおよびMnをマグネシウム合金溶湯に添加する技術が
提案されている。しかしこの方法では、マグネシウム合
金溶湯中へのMnの添加がAl-Mn合金の形でしかで
きず、不要なAl成分の存在によってマグネシウム合金
の延性が低下する等の問題があった。
Japanese Patent Application Laid-Open No. 2000-104136 discloses a method for refining a magnesium alloy that does not generate environmental pollutants.
A technique of adding B and Mn to a magnesium alloy melt has been proposed. However, in this method, Mn can be added to the molten magnesium alloy only in the form of an Al—Mn alloy, and there is a problem that the ductility of the magnesium alloy is reduced due to the presence of an unnecessary Al component.

【0004】[0004]

【発明が解決しようとする課題】本発明は、環境汚染物
質を発生させず、マグネシウム合金の延性を良好に維持
しつつ、鋳造組織を細粒化できると同時に高温強度を向
上できるマグネシウム合金の製造方法を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to produce a magnesium alloy capable of reducing the size of the cast structure and improving the high-temperature strength while maintaining good ductility of the magnesium alloy without generating environmental pollutants. The aim is to provide a method.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明のマグネシウム合金の製造方法は、粉末粒
子の表面にSiO2被膜を備えたSiC粉末を、0.1
〜10mass%の添加量でマグネシウム合金溶湯に直接添
加することを特徴とする。SiC粉末を大気中で加熱す
ることにより粉末粒径の1〜10%の厚さの前記SiO
2被膜を形成することが望ましい。
In order to achieve the above object, a method of manufacturing a magnesium alloy according to the present invention comprises the steps of: preparing a SiC powder having a SiO 2 coating on the surface of powder particles;
It is characterized in that it is added directly to the magnesium alloy melt at an addition amount of 10 to 10 mass%. By heating the SiC powder in the atmosphere, the SiO 2 having a thickness of 1 to 10% of the particle size of the powder is heated.
2 It is desirable to form a coating.

【0006】[0006]

【発明の実施の形態】粉末粒子の表面をSiO2で被覆
したSiC粉末(以下「SiO2被覆SiC粉末」と略
称する)をマグネシウム合金溶湯に添加することによ
り、マグネシウム合金の鋳造組織が細粒化すると同時に
高温強度が向上する機構は以下のように考えられる。
BEST MODE FOR CARRYING OUT THE INVENTION By adding SiC powder in which the surface of powder particles is coated with SiO 2 (hereinafter abbreviated as “SiO 2 coated SiC powder”) to a molten magnesium alloy, the cast structure of the magnesium alloy becomes finer. The mechanism by which the high-temperature strength is simultaneously improved is considered as follows.

【0007】Mg合金溶湯にSiO2被覆SiC粉末を
添加すると、まず粉末粒子表面のSiO2とMgが下記
(1)の発熱反応をする。その結果、粉末粒子表面が85
0℃以上の高温になるため、MgとSiCが下記(2)の
ように反応することが可能になり、Mg2Si金属間化
合物と遊離Cとが生成する。ここで生成したMg2Si
金属間化合物により高温強度が向上する。
When SiO 2 -coated SiC powder is added to a molten Mg alloy, first, SiO 2 and Mg on the surface of the powder particles become
The exothermic reaction of (1) occurs. As a result, the powder particle surface becomes 85
Since the temperature becomes 0 ° C. or higher, Mg and SiC can react as shown in the following (2), and Mg 2 Si intermetallic compound and free C are generated. Mg 2 Si generated here
High temperature strength is improved by the intermetallic compound.

【0008】一方、遊離Cは、下記(3)のように、Mg
合金中に一般的に含まれているAl、Mn等の炭化物形
成元素と反応してAl43、Mn2C等の微細な金属炭
化物粒子を形成する。これらの金属炭化物はMg合金溶
湯中で安定であり、凝固殻として作用するためMg合金
の鋳造組織が細粒化する。
[0008] On the other hand, free C is, as shown in the following (3), Mg
It reacts with carbide forming elements such as Al and Mn generally contained in the alloy to form fine metal carbide particles such as Al 4 C 3 and Mn 2 C. These metal carbides are stable in the molten Mg alloy and act as solidified shells, so that the cast structure of the Mg alloy is refined.

【0009】 (1) 2Mg+SiO2→2MgO+Si (発熱反応) (2) 2Mg+SiC→Mg2Si+C (3) 3C+4Al(またはMn等)→Al43(または
Mn2C等)
(1) 2Mg + SiO 2 → 2MgO + Si (exothermic reaction) (2) 2Mg + SiC → Mg 2 Si + C (3) 3C + 4Al (or Mn, etc.) → Al 4 C 3 (or Mn 2 C, etc.)

【0010】本発明においては、SiO2被覆SiC粉
末をMg合金溶湯に対して0.1〜10mass%の添加量
で添加する。0.1mass%未満では細粒化効果が得られ
ず、10mass%を超えるとMg合金溶湯の粘性が高くな
り過ぎて鋳造が不可能になる。
In the present invention, the SiO 2 -coated SiC powder is added to the molten Mg alloy in an amount of 0.1 to 10 mass%. If it is less than 0.1 mass%, the effect of grain refinement cannot be obtained. If it exceeds 10 mass%, the viscosity of the molten Mg alloy becomes too high to make casting impossible.

【0011】本発明の望ましい態様においては、SiO
2被覆の厚さはSiC粒径の1〜10%である。1%未
満では、MgとSiO2との反応による発熱量が少ない
ためMgとSiCとの反応が起き難く、10%を超える
とMgとSiO2とがテルミット反応を起こし易くなる
ため、Mg合金溶湯が爆発する危険がある。
[0011] In a preferred embodiment of the present invention, SiO 2
2 The thickness of the coating is 1-10% of the SiC particle size. In less than 1%, Mg and SiO 2 Reaction of Mg and SiC is difficult to occur because a small amount of heat generated by the, for exceeds 10% Mg and the SiO 2 becomes susceptible to thermite reaction, Mg alloy melt Danger of explosion.

【0012】[0012]

【実施例】下記の手順および条件により、SiO2被覆
SiC粉末をAZ91Dマグネシウム合金溶湯に直接添
加した後に鋳造することにより、マグネシウム合金を製
造した。
EXAMPLE A magnesium alloy was produced by directly adding a SiO 2 -coated SiC powder to a molten AZ91D magnesium alloy and casting it according to the following procedure and conditions.

【0013】〔SiO2被膜の形成〕粉末粒径10μm
のSiC粉末を大気中で加熱することにより、粉末粒子
表面にSiO2被膜を形成した。まず加熱温度および加
熱時間に対する被膜厚さの変化を調べた。図1および図
2に、それぞれ加熱温度および加熱時間に対する被膜厚
さの変化をグラフおよび表で示す。同様の予備実験を種
々行い、それらの結果に基づいて、粒径の1〜10%の
被膜厚さになる温度・時間の範囲を求めた。
[Formation of SiO 2 film] Powder particle size 10 μm
Was heated in the air to form a SiO 2 coating on the surface of the powder particles. First, the change in the coating thickness with respect to the heating temperature and the heating time was examined. FIGS. 1 and 2 show the change in the coating thickness with respect to the heating temperature and the heating time in the form of a graph and a table, respectively. Various similar preliminary experiments were conducted, and based on the results, the range of the temperature and the time at which the coating thickness was 1 to 10% of the particle size was obtained.

【0014】本実施例では、1500℃×1時間の加熱
を行い、SiC粉末粒子の表面に厚さ411nmのSi
2被膜を形成した。この被膜厚さは、SiC粒径10
000nm(=10μm)の4.1%である。加熱前お
よび加熱後の粉末についてX線回折を行った結果、加熱
前にはSiCの回折ピークのみが認められたのに対し
て、加熱後にはSiCピークに加えてSiO2の回折ピ
ークが明瞭に認められた。これにより、被膜組成がSi
2であることが確認された。
In this embodiment, heating is performed at 1500 ° C. × 1 hour, and a 411 nm thick Si
An O 2 coating was formed. The thickness of this coating is 10%.
It is 4.1% of 000 nm (= 10 μm). X-ray diffraction was performed on the powder before and after heating. As a result, only the diffraction peak of SiC was observed before heating, whereas the diffraction peak of SiO 2 was clearly observed in addition to the SiC peak after heating. Admitted. As a result, the coating composition becomes Si
O 2 was confirmed.

【0015】〔マグネシウム合金溶湯への添加〕SF6
ガス雰囲気中にて、700℃に保持したAZ91Dマグ
ネシウム合金溶湯に、上記にて準備したSiO2被覆S
iC粉末を種々の添加量で添加し、攪拌して溶湯中に均
一に分散させた後、金型(JIS4号舟型)中に鋳造し
た。
[Addition to molten magnesium alloy] SF 6
The AZ91D magnesium alloy melt maintained at 700 ° C. in a gas atmosphere is coated with the SiO 2 coating S prepared above.
The iC powder was added in various addition amounts, stirred and uniformly dispersed in the molten metal, and then cast into a mold (JIS No. 4 boat type).

【0016】〔結晶粒径の測定〕上記鋳造されたマグネ
シウム合金の鋳造組織を顕微鏡観察して結晶粒径を求め
た。図3に、典型的な観察例として、SiO2被覆Si
C粉末を1mass%添加した場合の鋳造組織を示す。図4
に、比較として、無添加の場合の鋳造組織を示す。図5
に、SiO2被覆SiC粉末の添加量と結晶粒径との関
係をグラフおよび表で示す。
[Measurement of Crystal Grain Size] The microstructure of the above cast magnesium alloy was observed under a microscope to determine the crystal grain size. FIG. 3 shows a typical observation example of SiO 2 coated Si
The casting structure when 1 mass% of C powder is added is shown. FIG.
The casting structure in the case of no addition is shown for comparison. FIG.
The graph and table show the relationship between the amount of added SiO 2 -coated SiC powder and the crystal grain size.

【0017】図5に示したように、SiO2被覆SiC
粉末の添加量が0〜0.05mass%の範囲では結晶粒径
が200〜180μmと粗大であるが、添加量が0.1
mass%以上になると80〜50μmと顕著に細粒化す
る。同図には、添加量0.5mass%までの結果を示した
が、添加量が更に多くなっても細粒化の程度は徐々に進
行するが顕著に進行することはない。
As shown in FIG. 5, SiO 2 coated SiC
When the addition amount of the powder is in the range of 0 to 0.05 mass%, the crystal grain size is as coarse as 200 to 180 μm.
When the content is more than mass%, the particles are remarkably reduced to 80 to 50 μm. The figure shows the results up to the addition amount of 0.5 mass%. However, even if the addition amount is further increased, the degree of grain refinement gradually progresses, but does not remarkably progress.

【0018】〔高温強度の測定〕 (1)高温硬さの測定 上記鋳造されたマグネシウム合金の150℃における高
温硬さを測定した。図6にSiO2被覆SiC粉末の添
加量と高温硬さとの関係をグラフおよび表で示す。図6
に示したように、150℃高温硬さはSiO2被覆Si
C粉末の添加量の増加に伴い単調に増加する。特に、図
示した添加量4mass%までの範囲では、マグネシウム合
金マトリクス中の硬質分散相であるSiO2被覆SiC
粉末の添加量に対して、硬さが概ね直線関係にあること
が観察される。
[Measurement of High-Temperature Strength] (1) Measurement of High-Temperature Hardness The high-temperature hardness of the cast magnesium alloy at 150 ° C. was measured. FIG. 6 is a graph and a table showing the relationship between the added amount of the SiO 2 -coated SiC powder and the high-temperature hardness. FIG.
As shown in the above, the 150 ° C. high temperature hardness is SiO 2 coated Si
It increases monotonically as the amount of C powder added increases. In particular, in the range of up to 4 mass% shown in the figure, SiO 2 -coated SiC which is a hard dispersed phase in a magnesium alloy matrix is used.
It is observed that the hardness has a substantially linear relationship with the amount of powder added.

【0019】このようにSiO2被覆SiC粉末の添加
によって高温硬さが増加するのは、基本的には前述のよ
うにMg2Si金属間化合物が生成していることによ
る。図7に、SiO2被覆SiC粉末を1mass%添加し
たマグネシウム合金鋳造組織の顕微鏡写真を示す。同図
中で、地の色と同等の灰色に見える塊状の粒子は、Mg
Si金属間化合物を核に形成されたと考えらるMg-S
i-Al-O系4元化合物であり、Mg2Si金属間化合
物と同様に高温強度の向上に寄与する。
The increase in the high-temperature hardness by the addition of the SiO 2 -coated SiC powder is basically due to the formation of the Mg 2 Si intermetallic compound as described above. FIG. 7 shows a micrograph of a magnesium alloy casting structure to which 1 mass% of SiO 2 -coated SiC powder was added. In the figure, the massive particles that look gray, which is the same as the ground color, are Mg
Mg-S presumably formed with Si intermetallic compound as nucleus
It is an i-Al-O-based quaternary compound and contributes to improvement in high-temperature strength similarly to the Mg 2 Si intermetallic compound.

【0020】(2)高温軸力保持率の測定 SiO2被覆SiC粉末を1mass%添加したマグネシウ
ム合金について、初期荷重64MPa、試験温度150
℃にて、負荷開始からの経過時間に対して軸力保持率を
測定した。比較として、無添加のマグネシウム合金につ
いても同様に測定した。図8に測定結果をグラフおよび
表で示す。
(2) Measurement of high-temperature axial force retention For a magnesium alloy to which 1 mass% of SiO 2 -coated SiC powder was added, an initial load of 64 MPa and a test temperature of 150 were used.
At ℃, the axial force retention was measured with respect to the elapsed time from the start of loading. For comparison, the same measurement was performed for an unadded magnesium alloy. FIG. 8 shows the measurement results as a graph and a table.

【0021】図8に示したように、軸力保持率は時間経
過に伴って低下し、無添加の比較例の場合には100時
間経過した時点で軸力保持率が0になった。これに対し
て、本発明によりSiO2被覆SiC粉末を1mass%添
加した場合には、100時間経過した時点では軸力保持
率はまだ20%を維持しており、0にまで低下するのに
経過時間300時間を要した。このようにSiO2被覆
SiC粉末の添加により軸力保持特性が大幅に向上す
る。
As shown in FIG. 8, the axial force retention decreased with the passage of time, and in the case of the non-added comparative example, the axial force retention became zero after 100 hours. On the other hand, when 1 mass% of the SiO 2 -coated SiC powder was added according to the present invention, the retention of the axial force was still maintained at 20% at the time of 100 hours, and the axial force retention decreased to 0. It took 300 hours. As described above, the addition of the SiO 2 -coated SiC powder significantly improves the axial force retention characteristics.

【0022】[0022]

【発明の効果】以上説明したように、本発明により、環
境汚染物質を発生させず、マグネシウム合金の延性を良
好に維持しつつ、鋳造組織を細粒化できると同時に高温
強度を向上できるマグネシウム合金の製造方法が提供さ
れる。
As described above, according to the present invention, it is possible to reduce the size of the cast structure and improve the high-temperature strength while maintaining good ductility of the magnesium alloy without generating environmental pollutants. Is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、SiC粉末の加熱温度と、粉末粒子表
面に形成されたSiO2被膜の厚さとの関係を示すグラ
フおよび表である。
FIG. 1 is a graph and a table showing the relationship between the heating temperature of SiC powder and the thickness of a SiO 2 coating formed on the surface of powder particles.

【図2】図2は、SiC粉末の加熱時間と、粉末粒子表
面に形成されたSiO2被膜の厚さとの関係を示すグラ
フおよび表である。
FIG. 2 is a graph and a table showing the relationship between the heating time of a SiC powder and the thickness of a SiO 2 coating formed on the surface of a powder particle.

【図3】図3は、本発明によりSiO2被覆SiC粉末
を添加して製造したマグネシウム合金の鋳造組織を示す
顕微鏡写真である。
FIG. 3 is a micrograph showing a casting structure of a magnesium alloy manufactured by adding a SiO 2 -coated SiC powder according to the present invention.

【図4】図4は、比較例として無添加で製造したマグネ
シウム合金の鋳造組織を示す顕微鏡写真である。
FIG. 4 is a micrograph showing a casting structure of a magnesium alloy manufactured without addition as a comparative example.

【図5】図5は、SiO2被覆SiC粉末の添加量とマ
グネシウム合金の結晶粒径との関係を示すグラフおよび
表である。
FIG. 5 is a graph and a table showing the relationship between the amount of added SiO 2 -coated SiC powder and the crystal grain size of a magnesium alloy.

【図6】図6は、SiO2被覆SiC粉末の添加量と高
温硬さとの関係を示すグラフおよび表である。
FIG. 6 is a graph and a table showing the relationship between the amount of added SiO 2 -coated SiC powder and the high-temperature hardness.

【図7】図7は、本発明によりSiO2被覆SiC粉末
を添加して製造したマグネシウム合金の鋳造組織中の析
出化合物を示す顕微鏡写真である。
FIG. 7 is a micrograph showing precipitated compounds in a cast structure of a magnesium alloy manufactured by adding a SiO 2 -coated SiC powder according to the present invention.

【図8】図8は、本発明によりSiO2被覆SiC粉末
を添加して製造したマグネシウム合金と、比較例として
無添加で製造したマグネシウム合金とについて、高温で
の軸力保持率を時間経過に対して示すグラフおよび表で
ある。
FIG. 8 shows the retention of axial force at high temperature over time for a magnesium alloy manufactured by adding a SiO 2 -coated SiC powder according to the present invention and a magnesium alloy manufactured without addition as a comparative example. 3 is a graph and a table shown for FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粉末粒子の表面にSiO2被膜を備えた
SiC粉末を、0.1〜10mass%の添加量でマグネシ
ウム合金溶湯に直接添加することを特徴とするマグネシ
ウム合金の製造方法。
1. A method for producing a magnesium alloy, wherein SiC powder having a SiO 2 coating on the surface of powder particles is directly added to a molten magnesium alloy in an amount of 0.1 to 10 mass%.
【請求項2】 SiC粉末を大気中で加熱することによ
り粉末粒径の1〜10%の厚さの前記SiO2被膜を形
成することを特徴とする請求項1記載のマグネシウム合
金の製造方法。
2. The method for producing a magnesium alloy according to claim 1, wherein said SiO 2 coating having a thickness of 1 to 10% of the powder particle size is formed by heating SiC powder in the air.
JP2001111726A 2001-04-10 2001-04-10 Method for producing magnesium alloy Expired - Fee Related JP4736222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001111726A JP4736222B2 (en) 2001-04-10 2001-04-10 Method for producing magnesium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001111726A JP4736222B2 (en) 2001-04-10 2001-04-10 Method for producing magnesium alloy

Publications (2)

Publication Number Publication Date
JP2002309322A true JP2002309322A (en) 2002-10-23
JP4736222B2 JP4736222B2 (en) 2011-07-27

Family

ID=18963279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001111726A Expired - Fee Related JP4736222B2 (en) 2001-04-10 2001-04-10 Method for producing magnesium alloy

Country Status (1)

Country Link
JP (1) JP4736222B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161484A2 (en) * 2011-05-20 2012-11-29 한국생산기술연구원 Magnesium-based alloy produced using a silicon compound and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161484A2 (en) * 2011-05-20 2012-11-29 한국생산기술연구원 Magnesium-based alloy produced using a silicon compound and method for producing same
WO2012161484A3 (en) * 2011-05-20 2013-01-17 한국생산기술연구원 Magnesium-based alloy produced using a silicon compound and method for producing same
US9447482B2 (en) 2011-05-20 2016-09-20 Korea Institute Of Industrial Technology Magnesium-based alloy produced using a silicon compound and method for producing same

Also Published As

Publication number Publication date
JP4736222B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP4001579B2 (en) High strength aluminum alloy for high temperature applications
JP2691221B2 (en) Method for forming metal-second phase composite
JP4974591B2 (en) Graphite spheroidizing agent and method for producing spheroidal graphite cast iron using the same
JP5427815B2 (en) Magnesium alloy and manufacturing method thereof
EP2481822B1 (en) Magnesium-aluminum based alloy with grain refiner
JP2013528699A (en) Aluminum die casting alloy
JPH0718364A (en) Heat resistant magnesium alloy
JPH05271825A (en) Method for casting oxidation resistant alloy
CA3162766C (en) Powder aluminium material
JP2007500793A (en) High strength heat resistant tough aluminum alloy castings
Belov et al. Effect of 0.3% Sc on microstructure, phase composition and hardening of Al-Ca-Si eutectic alloys
JP2007527952A5 (en)
JP4341438B2 (en) Aluminum alloy excellent in wear resistance and sliding member using the same alloy
WO2021147397A1 (en) Cast magnesium alloy and preparation method therefor
JP4736222B2 (en) Method for producing magnesium alloy
JP2001342528A (en) Grain refiner for magnesium alloy, production process for the same and grain refining process using the same
JP4872314B2 (en) Particle reinforced aluminum alloy composite and method for producing the same
JP3084512B2 (en) Intermetallic compound reinforced magnesium-based composite material and method for producing the same
JP2003129161A (en) Heat resistant magnesium alloy
JPH09225623A (en) Method for improving environmental resistance of investment cast cemented carbide article
RU2549040C2 (en) Magnesium alloy suitable to be used at high temperature, and method for its obtaining
CN113249601A (en) Alloying method for inducing icosahedron quasicrystal phase in-situ self-generated strengthening cast aluminum-lithium alloy
KR101388922B1 (en) Aluminum alloys including Fe-Mn solid solution and method of manufacturing the same
JP3128041B2 (en) Cylinder block and its manufacturing method
AU2004201727B8 (en) Method for grain refinement of magnesium alloy castings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees