JP4735426B2 - Seismic isolation structure and seismic isolation method - Google Patents

Seismic isolation structure and seismic isolation method Download PDF

Info

Publication number
JP4735426B2
JP4735426B2 JP2006156454A JP2006156454A JP4735426B2 JP 4735426 B2 JP4735426 B2 JP 4735426B2 JP 2006156454 A JP2006156454 A JP 2006156454A JP 2006156454 A JP2006156454 A JP 2006156454A JP 4735426 B2 JP4735426 B2 JP 4735426B2
Authority
JP
Japan
Prior art keywords
seismic isolation
hole
isolation structure
rubber
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006156454A
Other languages
Japanese (ja)
Other versions
JP2007321969A (en
Inventor
泰彦 浅岡
圭一 長屋
泰樹 百野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2006156454A priority Critical patent/JP4735426B2/en
Publication of JP2007321969A publication Critical patent/JP2007321969A/en
Application granted granted Critical
Publication of JP4735426B2 publication Critical patent/JP4735426B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、構造物の免震構造及び免震方法に係り、特に免震ゴムに作用する引抜力を緩和する技術に関する。   The present invention relates to a seismic isolation structure and a seismic isolation method for a structure, and more particularly to a technique for alleviating a pulling force acting on a seismic isolation rubber.

従来より、地震時にビルやマンションなどの構造物に生じる揺れを低減するために、非免震構造物(例えば、基礎部)と免震対象物との間に免震ゴムを介装した免震構造が用いられている。このような免震構造に使用される免震ゴムは、一般に、ゴム層と鋼板を交互に積層して接着したものが用いられており、鉛直方向に作用する圧縮力には強固で、水平方向に作用するせん断応力には柔軟な性質を有する。かかる免震ゴムを非免震構造物と免震対象物との間に介装することにより、免震対象物を支持するとともに、地震時には免震対象物への地震力の入力を抑制することができる。   Conventionally, in order to reduce the shaking generated in structures such as buildings and condominiums during earthquakes, seismic isolation rubber has been installed between non-base-isolated structures (for example, the base) and base isolation objects. Structure is used. In general, the seismic isolation rubber used in such a seismic isolation structure is one in which rubber layers and steel plates are alternately laminated and bonded, and is strong against compressive force acting in the vertical direction, and in the horizontal direction. It has a flexible property to the shearing stress that acts on. Supporting the seismic isolation object by interposing such seismic isolation rubber between the non-isolation structure and the seismic isolation object, and suppressing the input of seismic force to the seismic isolation object during an earthquake Can do.

ところで、このような免震構造を備える構造物に対して、大きな地震が発生した場合には、水平方向に変位するだけでなく、免震対象物が揺動するようなロッキングと呼ばれる現象が生じ、これにともなって非免震構造物と免震対象物との間に介される免震ゴム内に、鉛直方向の引抜力が作用することがある。   By the way, when a large earthquake occurs in a structure having such a base-isolated structure, a phenomenon called rocking occurs in which the base-isolated object swings in addition to being displaced in the horizontal direction. Accordingly, a pulling force in the vertical direction may act in the seismic isolation rubber interposed between the non-base isolation structure and the base isolation object.

しかしながら、免震ゴムはこのような引抜力に弱く、ゴム層と鋼板との接着が剥がれるなどの損傷を受けるおそれがあるため、従来より、免震ゴムに作用する鉛直方向の引抜力を軽減する免震構造が提案されている。   However, since the seismic isolation rubber is weak against such a pulling force and may be damaged such as the adhesion between the rubber layer and the steel sheet being peeled off, the vertical pulling force acting on the seismic isolation rubber has been conventionally reduced. Seismic isolation structures have been proposed.

例えば、特許文献1には、免震ゴムの下部フランジ板の下側にガイド部材を設け、このガイド部材を基礎に設けられた開口部に収容することで、このガイド部材が、免震ゴムの水平方向の移動を拘束し、上下方向の移動を許容するようにした免震構造が開示されている。この免震構造によれば、免震ゴムに引抜力が生じても、ガイド部材が基礎の開口部を上下に変位できるために、免震ゴム自体には引抜力がかからないようになっている。
特開2003−194146号公報
For example, in Patent Document 1, a guide member is provided below the lower flange plate of the seismic isolation rubber, and the guide member is accommodated in an opening provided on the basis, so that the guide member is made of the seismic isolation rubber. There is disclosed a seismic isolation structure that restrains horizontal movement and allows vertical movement. According to this seismic isolation structure, even if a pulling force is generated in the seismic isolation rubber, the guide member can be displaced vertically in the opening of the foundation, so that the seismic isolation rubber itself is not subjected to a pulling force.
JP 2003-194146 A

しかしながら、特許文献1に記載される免震構造では、免震ゴムの下部フランジ板の下側にガイド部材を取り付けるために部品コストが増加したり、そのガイド部材を収容する基礎の開口部の施工に手間と時間を要したりするおそれがある。   However, in the seismic isolation structure described in Patent Document 1, the cost of parts increases because the guide member is attached to the lower side of the lower flange plate of the seismic isolation rubber, or the opening of the foundation that accommodates the guide member is installed. May take time and effort.

本発明は上記の点に鑑みてなされたものであり、簡易な構成で、免震ゴムに作用する引抜力を緩和することが可能な免震構造及び免震方法を提供することを目的とする。   This invention is made in view of said point, and it aims at providing the seismic isolation structure and seismic isolation method which can relieve | pulverize the extraction force which acts on a seismic isolation rubber with simple structure. .

上記の目的を達成するため、本発明は、非免震構造物に免震ゴムを介して免震対象物を支持する免震構造であって、
前記免震ゴムの上下何れか一方のフランジ板に貫通孔を形成すると共に、この貫通孔を貫通して前記非免震構造物側又は前記免震対象物側に取り付けられる突起部材を設け
前記突起部材と、前記突起部材に貫通される前記貫通孔とを、前記免震ゴムを取り囲むように複数設け、
前記突起部材は、前記貫通孔との間に隙間が生じるように前記貫通孔よりも小寸法に形成され、
前記突起部材が前記非免震構造物側に取り付けられる場合には、前記突起部材の断面の中心位置が、前記貫通孔の断面の中心位置よりも前記免震ゴム側へ偏心して配置され、
前記突起部材が前記免震対象物側に取り付けられる場合には、前記突起部材の断面の中心位置が、前記貫通孔の断面の中心位置よりも前記免震ゴムと反対側へ偏心して配置されることを特徴とする(第1の発明)。
In order to achieve the above object, the present invention is a seismic isolation structure that supports a base isolation object via a base isolation rubber in a non-base isolation structure,
A through hole is formed in either one of the upper and lower flange plates of the seismic isolation rubber, and a protruding member that is attached to the non-seismic isolation structure side or the seismic isolation object side through the through hole is provided .
A plurality of the projecting member and the through-hole penetrating the projecting member are provided so as to surround the seismic isolation rubber,
The protruding member is formed with a smaller dimension than the through hole so that a gap is formed between the protruding member and the through hole,
When the projecting member is attached to the non-seismic isolation structure side, the center position of the cross section of the projecting member is arranged eccentric to the seismic isolation rubber side than the center position of the cross section of the through hole,
When the projecting member is attached to the seismic isolation object side, the center position of the cross section of the projecting member is arranged eccentric to the opposite side of the seismic isolation rubber from the center position of the cross section of the through hole. (First invention).

本発明による免震構造によれば、免震ゴムの上下何れか一方のフランジ板は、そのフランジ板を貫通する貫通孔に、非免震構造物又は免震対象物側に取り付けられた突起部材を貫通させる構成であるため、免震ゴムと非免震構造物又は免震対象物との間に引抜力が作用した時に、フランジ板が拘束されず非免震構造物又は免震対象物から離間できるので、免震ゴムにかかる引抜力を低減できる。このため、免震ゴムのゴム層と鋼板との接着が剥がれるなどの損傷を防止できる。一方、免震対象物に作用する水平力は、フランジ板の貫通孔の内周と、突起部材とが当接することで、免震ゴムにせん断力として伝達することができるため、その免震性能を維持できる。
また、地震時等の振動によって免震ゴムと非免震構造物又は免震対象物との間に作用する水平方向のせん断力を、複数の突起部材によって分散させて伝達することができるので、個々の突起部材にかかるせん断力を小さくできる。このため、突起部材のせん断耐力を低減することができる。
また、ロッキングが生じたときに、免震ゴムが水平方向に変位して、せん断力の作用する方向に配置される突起部材と貫通孔の内周とが当接して、水平方向のせん断力を非免震構造物又は免震対象物に確実に伝達させつつ、その当接する位置と免震ゴムを挟んで対向する位置の突起部材と貫通孔との隙間を確保して、当接する突起部材と貫通孔との当接位置を支点として、フランジ板の対向位置側を確実に非免震構造物又は免震対象物から離間させることができる。
これにより、免震ゴムによる免震性能を維持できるとともに、免震ゴムに作用する引抜力を効果的に低減できる。さらに、突起部材に作用する力は、主に、貫通孔の内周から水平方向に作用されるせん断力に限定され、軸力は作用しない。すなわち、突起部材に組み合わせ応力が生じないためその設計が容易となる。
According to the seismic isolation structure of the present invention, either the upper or lower flange plate of the seismic isolation rubber has a protruding member attached to the non-base isolation structure or the base isolation object side in a through-hole penetrating the flange plate. Since the pulling force is applied between the seismic isolation rubber and the non-isolated structure or seismic isolation object, the flange plate is not restrained and the seismic isolation structure or seismic isolation object Since it can be separated, the pulling force applied to the seismic isolation rubber can be reduced. For this reason, damage, such as peeling of the adhesion between the rubber layer of the seismic isolation rubber and the steel plate, can be prevented. On the other hand, the horizontal force acting on the seismic isolation object can be transmitted to the seismic isolation rubber as a shearing force by contacting the inner periphery of the through hole of the flange plate and the protruding member. Can be maintained.
In addition, since the horizontal shearing force acting between the base isolation rubber and the non-base isolation structure or the base isolation object due to vibration during an earthquake, etc. can be dispersed and transmitted by a plurality of protruding members, The shearing force applied to each protruding member can be reduced. For this reason, the shear strength of the protruding member can be reduced.
Further, when rocking occurs, the seismic isolation rubber is displaced in the horizontal direction, and the projecting member disposed in the direction in which the shearing force acts and the inner periphery of the through hole come into contact with each other, thereby reducing the horizontal shearing force. A projecting member that is in contact with a non-base isolation structure or a base isolation object while ensuring a gap between the projecting member and the through hole at a position facing the seismic isolation rubber while securely transmitting to the non-seismic isolation structure or seismic isolation object; With the contact position with the through hole as a fulcrum, the opposite position side of the flange plate can be reliably separated from the non-isolation structure or the isolation object.
Thereby, the seismic isolation performance by the seismic isolation rubber can be maintained, and the pulling force acting on the seismic isolation rubber can be effectively reduced. Furthermore, the force acting on the protruding member is mainly limited to the shearing force acting in the horizontal direction from the inner periphery of the through hole, and no axial force acts. That is, since no combined stress is generated in the protruding member, the design becomes easy.

また、免震ゴムの下部フランジ板の下側にガイド部材を取り付けたり、そのガイド部材を収容する開口部も非免震構造物に設けたりする必要もないため、部品コストを軽減できる共に施工に手間と時間も要さない。   In addition, it is not necessary to attach a guide member to the lower side of the lower flange plate of the seismic isolation rubber, or to provide an opening for accommodating the guide member in the non-seismic isolation structure. It does not require time and effort.

また、本発明による免震構造によれば、免震ゴムに交換が必要な場合においても、非免震構造物又は免震対象物に取り付けていた突起部材を取り外し、免震対象物を少しジャッキアップして、免震ゴムを水平方向に引き抜くことができるため、容易に免震ゴムの交換を行える。   Moreover, according to the seismic isolation structure of the present invention, even when the seismic isolation rubber needs to be replaced, the protruding member attached to the non-base isolation structure or the base isolation target is removed, and the base isolation target is slightly jacked. The seismic isolation rubber can be pulled out in the horizontal direction and can be easily replaced.

第2の発明は、第1の発明において、前記突起部材は、前記非免震構造物側又は前記免震対象物側に着脱可能に取り付けられることを特徴とする。   According to a second invention, in the first invention, the protruding member is detachably attached to the non-base isolation structure side or the base isolation object side.

第3の発明は、第1又は2の発明において、前記突起部材と、前記貫通孔の内周との間に摩擦を低減するための摩擦低減材を介在させたことを特徴とする。   A third invention is characterized in that, in the first or second invention, a friction reducing material for reducing friction is interposed between the protruding member and the inner periphery of the through hole.

本発明による免震構造によれば、突起部材と、貫通孔の内周とが接触した場合の摩擦を低減できるため、免震ゴムに作用する引抜力をより効果的に低減できるとともに、突起部材と貫通孔の内周との摩擦による磨耗も防止できる。   According to the seismic isolation structure of the present invention, since the friction when the protruding member contacts the inner periphery of the through hole can be reduced, the pulling force acting on the seismic isolation rubber can be more effectively reduced, and the protruding member It is also possible to prevent wear due to friction between the through hole and the inner periphery of the through hole.

の発明は、第1〜のいずれかの発明において、前記突起部材は、前記貫通孔が形成されたフランジ板が、前記非免震構造物又は前記免震対象物から所定量だけ離間した場合に、当該フランジ板と当接する拡大部を有することを特徴とする。
本発明による免震構造によれば、フランジ板と非免震構造物又は免震対象物との離間変位が突起部材の軸長を越えることによって、フランジ板が突起部材から抜け外れることを確実に防止できる。
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the projecting member has a flange plate in which the through hole is formed spaced apart from the non-base isolation structure or the base isolation target by a predetermined amount. In this case, it has an enlarged portion that comes into contact with the flange plate.
According to the seismic isolation structure of the present invention, it is ensured that the flange plate is detached from the projecting member by the separation displacement between the flange plate and the non-seismic isolation structure or the seismic isolation object exceeding the axial length of the projecting member. Can be prevented.

の発明は、第1〜のいずれかの発明において、前記免震ゴムのフランジ板を前記非免震構造物又は前記免震対象物に向けて付勢する弾性体を設けたことを特徴とする。
本発明による免震構造によれば、弾性体の弾性力を変更することによりフランジ板と非免震構造物又は免震対象物が離間し始める引抜力の大きさを調節できる。
5th invention provided that the elastic body which urges | biases the flange plate of the said seismic isolation rubber toward the said non-seismic isolation structure or the said seismic isolation object in the invention in any one of 1-4. Features.
According to the seismic isolation structure of the present invention, the magnitude of the pulling force at which the flange plate and the non-seismic isolation structure or the seismic isolation object start to be separated can be adjusted by changing the elastic force of the elastic body.

の発明は、第1〜のいずれかの発明において、前記突起部材は、内周側のボルトと外周側の座金とから構成され、前記ボルトは前記非免震構造物又は前記免震対象物に取り付けられていることを特徴とする。 According to a sixth invention, in any one of the first to fifth inventions, the projecting member is composed of an inner peripheral side bolt and an outer peripheral side washer, and the bolt is the non-base isolation structure or the base isolation base. It is attached to the object.

の発明は、第の発明において、前記座金は上下の部材に分割されていることを特徴とする。 According to a seventh invention, in the sixth invention, the washer is divided into upper and lower members.

の発明は、非免震構造物に免震ゴムを介して免震対象物を支持する免震方法であって、前記免震ゴムの上下何れか一方のフランジ板に貫通孔を形成し、突起部材を前記非免震構造物側又は前記免震対象物側にこの貫通孔を貫通して取り付け
前記突起部材と、前記突起部材に貫通される前記貫通孔とを、前記免震ゴムを取り囲むように複数設け、
前記突起部材を、前記貫通孔との間に隙間が生じるように前記貫通孔よりも小寸法に形成し、
前記突起部材を前記非免震構造物側に取り付ける場合には、前記突起部材の断面の中心位置を、前記貫通孔の断面の中心位置よりも前記免震ゴム側へ偏心させて配置し、
前記突起部材を前記免震対象物側に取り付ける場合には、前記突起部材の断面の中心位置を、前記貫通孔の断面の中心位置よりも前記免震ゴムと反対側へ偏心させて配置することを特徴とする。
An eighth invention is a seismic isolation method for supporting a base isolation object via a base isolation rubber on a non-base isolation structure, wherein a through hole is formed in either one of the upper and lower flange plates of the base isolation rubber. The projecting member is attached through the through-hole on the non-base isolation structure side or the base isolation object side ,
A plurality of the projecting member and the through-hole penetrating the projecting member are provided so as to surround the seismic isolation rubber,
Forming the projecting member in a smaller dimension than the through hole so that a gap is formed between the projecting member and the through hole;
When attaching the projecting member to the non-seismic isolation structure side, the center position of the cross section of the projecting member is arranged eccentric to the seismic isolation rubber side than the center position of the cross section of the through hole,
When attaching the projecting member to the seismic isolation object side, the center position of the cross section of the projecting member is arranged eccentric to the opposite side of the seismic isolation rubber from the center position of the cross section of the through hole. It is characterized by.

本発明によれば、簡易な構成で、免震ゴムに作用する引抜力を緩和することが可能な免震構造及び免震方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the seismic isolation structure and seismic isolation method which can relieve | pulverize the extraction force which acts on a seismic isolation rubber with simple structure can be provided.

以下、本発明の好ましい実施形態について図面に基づき詳細に説明する。
図1は、本発明の第一の実施形態に係る免震構造10が適用される免震対象物12の基礎部分を示す正面図である。また、図2は、免震構造10の鉛直断面拡大図である。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a front view showing a basic portion of a seismic isolation object 12 to which a seismic isolation structure 10 according to a first embodiment of the present invention is applied. FIG. 2 is an enlarged vertical cross-sectional view of the seismic isolation structure 10.

図1に示すように、免震構造10は、免震対象物12と基礎部14との間に免震ゴム16を介在して構成されるものである。従って、本実施形態では基礎部14が本発明の非免震構造に相当する。免震ゴム16は、ゴム層と鋼板とを積層してなる積層ゴム16aと、積層ゴム16aの上下に固定された上部フランジ板16b及び下部フランジ板16cとからなり、上部フランジ板16bは免震対象物12の下面に固定される。また下部フランジ板16cは基礎部14の上面に固定されたベース板14aに載置されている。   As shown in FIG. 1, the seismic isolation structure 10 is configured by interposing a seismic isolation rubber 16 between the seismic isolation object 12 and the base portion 14. Therefore, in this embodiment, the base part 14 corresponds to the non-seismic isolation structure of the present invention. The seismic isolation rubber 16 includes a laminated rubber 16a formed by laminating a rubber layer and a steel plate, and an upper flange plate 16b and a lower flange plate 16c fixed above and below the laminated rubber 16a. It is fixed to the lower surface of the object 12. The lower flange plate 16c is placed on a base plate 14a fixed to the upper surface of the base portion 14.

図2に示すように、ベース板14aは、例えば、その下面にスタッドボルト(図示しない)が複数溶接される鋼板であり、これらスタッドボルトがコンクリート等によって構成される基礎部14に埋設されることにより、基礎部14に強固に固定されている。そして、ベース板14aには、後述する突起部材18と螺合するねじ穴14bが所定の位置に複数加工されている。   As shown in FIG. 2, the base plate 14a is, for example, a steel plate in which a plurality of stud bolts (not shown) are welded to the lower surface thereof, and these stud bolts are embedded in the foundation portion 14 made of concrete or the like. Thus, the base portion 14 is firmly fixed. In the base plate 14a, a plurality of screw holes 14b to be screwed with projecting members 18 described later are processed at predetermined positions.

下部フランジ板16cには、その上下面を貫通する貫通孔19が設けられている。この貫通孔19には突起部材18が貫通している。   The lower flange plate 16c is provided with a through hole 19 that penetrates the upper and lower surfaces thereof. The protruding member 18 passes through the through hole 19.

突起部材18は、ねじ穴14bに着脱可能に固定できるように、その下端がねじ構造となっており、下部フランジ板16cの上方から貫通孔19を貫通してベース板14aのねじ穴14bに螺着される。また、貫通孔19への挿入部分である突起部材18の胴部18aの外径は、貫通孔19の内径よりも小さく形成され、一方、突起部材18の先端部18bの外径は、貫通孔19の内径よりも大きく形成されている。これにより、免震ゴム16に引抜力が作用し、下部フランジ板16cが上方へ浮上する場合に、下部フランジ板16cが拘束されず自由に上方に浮上可能であると共に、所定量浮き上がった際に、先端部18bが下部フランジ板16c上面に当接して、それ以上の浮き上がりが阻止されるようになっている。また、突起部材18の胴部18aの外周に摩擦低減材20が設けられている。これにより、突起部材18と貫通孔19とが接触した場合に、その接触摩擦が低減される。摩擦低減材20には、例えば、テフロン(登録商標)などの低摩擦の材料や、ゴムなどの低剛性の材料を用いたり、あるいは、ボールベアリングなどの機構(図示しない)を設けたりしてもよい。なお、摩擦低減材20は省略してもよい。   The projecting member 18 has a screw structure at its lower end so that it can be detachably fixed to the screw hole 14b. Worn. Further, the outer diameter of the body portion 18a of the protruding member 18 that is an insertion portion into the through hole 19 is formed smaller than the inner diameter of the through hole 19, while the outer diameter of the tip end portion 18b of the protruding member 18 is the through hole. It is formed larger than the inner diameter of 19. As a result, when a pulling force acts on the seismic isolation rubber 16 and the lower flange plate 16c is lifted upward, the lower flange plate 16c can be freely lifted upward without being restrained, and when a predetermined amount is lifted. The tip 18b abuts against the upper surface of the lower flange plate 16c, and further lifting is prevented. Further, a friction reducing material 20 is provided on the outer periphery of the body portion 18 a of the protruding member 18. Thereby, when the projection member 18 and the through-hole 19 contact, the contact friction is reduced. The friction reducing material 20 may be made of, for example, a low friction material such as Teflon (registered trademark), a low rigidity material such as rubber, or a mechanism (not shown) such as a ball bearing. Good. The friction reducing material 20 may be omitted.

図3は、図2に示す免震構造10の突起部材18及び貫通孔19の配置を説明するための平面図である。なお、図3の突起部材18及び貫通孔19の水平断面の大きさの差異や設置位置の関係は、実際よりも誇張して示している。   FIG. 3 is a plan view for explaining the arrangement of the protruding members 18 and the through holes 19 of the seismic isolation structure 10 shown in FIG. In addition, the difference in the size of the horizontal cross section of the protruding member 18 and the through hole 19 in FIG. 3 and the relationship between the installation positions are exaggerated from the actual one.

図3に示すように、下部フランジ板16cは、例えば、円盤状に形成されており、貫通孔19とその貫通孔19を貫通してベース板14aに固定される突起部材18とが、積層ゴム16aを取り囲むように複数配置されている。例えば、図3では8組の突起部材18及び貫通孔19が、積層ゴム16aを取り囲むように円形状に等間隔に配置されている。   As shown in FIG. 3, the lower flange plate 16c is formed in, for example, a disk shape, and the through hole 19 and the protruding member 18 that passes through the through hole 19 and is fixed to the base plate 14a are laminated rubber. A plurality are arranged so as to surround 16a. For example, in FIG. 3, eight sets of protruding members 18 and through holes 19 are arranged in a circular shape at equal intervals so as to surround the laminated rubber 16a.

また、突起部材18及び貫通孔19の水平断面は円形であり、突起部材18の中心位置が貫通孔19の中心位置よりも積層ゴム16a側に偏心して配置されている。   Further, the horizontal cross sections of the protrusion member 18 and the through hole 19 are circular, and the center position of the protrusion member 18 is arranged eccentrically to the laminated rubber 16 a side than the center position of the through hole 19.

上記した免震構造10は、先ず、基礎部14のベース板14aに、貫通孔19を形成した下部フランジ板16cを備える免震ゴム16を載置し、その後、下部フランジ板16cの上方から貫通孔19を貫通してベース板14aのねじ穴14bに、突起部材18を螺着することにより施工される。また、免震ゴム16の交換が必要な場合には、前述の逆の手順をとり、ベース板14aに固定される突起部材18を取り外し、免震対象物12を少しジャッキアップすることで、免震ゴム16を水平方向に引き抜く。   In the seismic isolation structure 10 described above, first, the base isolation rubber 16 including the lower flange plate 16c in which the through holes 19 are formed is placed on the base plate 14a of the base portion 14, and then penetrates from above the lower flange plate 16c. Construction is carried out by screwing the protruding member 18 through the hole 19 into the screw hole 14b of the base plate 14a. Further, when the seismic isolation rubber 16 needs to be replaced, the reverse procedure described above is taken, the protruding member 18 fixed to the base plate 14a is removed, and the seismic isolation object 12 is slightly jacked up. Pull out the seismic rubber 16 in the horizontal direction.

図4は、通常の状態からロッキング発生までの免震構造10の動作過程を示す断面図であり、(a)は通常の状態、(b)は水平方向の変位が生じた状態、(c)はロッキングにより免震ゴム16が浮き上がりを生じた状態を示す図である。   FIG. 4 is a cross-sectional view showing the operation process of the seismic isolation structure 10 from the normal state to the occurrence of rocking, where (a) is a normal state, (b) is a state in which a horizontal displacement has occurred, and (c). These are figures which show the state which the seismic isolation rubber 16 produced by rocking | fluctuation.

図4(b)に示すように、下部フランジ板16cがベース板14a上を水平方向に移動して、その移動した先に配置される突起部材18(以下、移動先突起部材18Fという)の外周と、移動先突起部材18Fに貫通される貫通孔19(以下、移動先貫通孔19Fという)の内周とが当接する。これにより、免震ゴム16と基礎部14との間で水平方向の地震力を伝達させることができる。このとき、移動先突起部材18Fから積層ゴム16aを挟んで対向する位置にある突起部材18(以下、対向突起部材18Rという)の中心は、この対向突起部材18Rに貫通される貫通孔19(以下、対向貫通孔19Rという)の中心に近づく方向に移動しているので、対向突起部材18Rの外周は、対向貫通孔19Rの内周と最も間隔を隔てた状態となる。   As shown in FIG. 4 (b), the lower flange plate 16c moves horizontally on the base plate 14a, and the outer periphery of the protruding member 18 (hereinafter referred to as the moving-destination protruding member 18F) disposed at the moved position. And an inner periphery of a through hole 19 (hereinafter referred to as a movement destination through hole 19F) penetrating through the movement destination projection member 18F abuts. Thereby, the horizontal seismic force can be transmitted between the seismic isolation rubber 16 and the base part 14. At this time, the center of the projecting member 18 (hereinafter referred to as an opposing projecting member 18R) that faces the destination projecting member 18F across the laminated rubber 16a is a through-hole 19 (hereinafter referred to as an opposing projecting member 18R). , The outer periphery of the opposing protrusion member 18R is in the state most spaced from the inner periphery of the opposing through hole 19R.

この状態からロッキングが生ずると、図4(c)に示すように、対向貫通孔19Rの位置する側の下部フランジ板16cが、移動先突起部材18Fと移動先貫通孔19Fとの接点を支点として浮き上がる。その際、対向突起部材18Rと対向貫通孔19Rとの間は間隔を保って接触しないため、その間に摩擦は生じず、積層ゴム16aに引抜力が作用しない。そして、対向貫通孔19Rが突起部材18の先端部18bに当接するまで浮き上がると、それ以上の浮き上がりは阻止される。   When locking occurs from this state, as shown in FIG. 4 (c), the lower flange plate 16c on the side where the opposing through hole 19R is located has a contact point between the movement destination projection member 18F and the movement destination through hole 19F as a fulcrum. Float up. At this time, since the opposing projection member 18R and the opposing through hole 19R are not in contact with each other at a distance, no friction is generated therebetween, and no pulling force acts on the laminated rubber 16a. When the opposing through-hole 19R is lifted up until it comes into contact with the tip 18b of the protruding member 18, further lifting is prevented.

なお、免震構造10には、下部フランジ板16cを基礎部14に向けて付勢する皿ばね等の弾性体を設けてもよい。図5は、図2の免震構造10に皿ばね22を設けた例を示す鉛直断面拡大図である。   The seismic isolation structure 10 may be provided with an elastic body such as a disc spring that urges the lower flange plate 16 c toward the base portion 14. FIG. 5 is an enlarged vertical sectional view showing an example in which a disc spring 22 is provided in the seismic isolation structure 10 of FIG.

図5に示すように、皿ばね22は、突起部材18の先端部18bと下部フランジ板16cとの間に装着されている。皿ばね22はその弾性係数が免震ゴム16の弾性係数よりも十分小さくなるように構成されている。かかる皿ばね22は、突起部材18の螺合部のねじ穴14bへの締め込み具合に応じた圧縮変形量により、免震ゴム16の下部フランジ板16cをベース板14aに押さえつける力(つまり、下部フランジ板16cが浮き上がり始める引抜力の大きさ)を調整することができる。なお、弾性体には皿ばね22に限らず、ゴム製部材など弾性を有するものであればよい。   As shown in FIG. 5, the disc spring 22 is mounted between the tip 18b of the protruding member 18 and the lower flange plate 16c. The disc spring 22 is configured such that its elastic coefficient is sufficiently smaller than the elastic coefficient of the seismic isolation rubber 16. The disc spring 22 has a force (that is, a lower portion) that presses the lower flange plate 16c of the seismic isolation rubber 16 against the base plate 14a by the amount of compressive deformation according to the degree of tightening of the protruding portion 18 into the screw hole 14b. The magnitude of the pulling force at which the flange plate 16c starts to float can be adjusted. The elastic body is not limited to the disc spring 22 and may be any elastic member such as a rubber member.

以上説明した第一の実施形態による免震構造10によれば、次の効果が得られる。   According to the seismic isolation structure 10 according to the first embodiment described above, the following effects can be obtained.

(1)免震ゴム16の下部フランジ板16cに設けた貫通孔19に、基礎部14側に固定された突起部材18を貫通させる構成であるため、ロッキングにより免震ゴム16に引抜力が作用したときに、下部フランジ板16cが基礎部14から浮き上がることで、免震ゴム16にかかる引抜力を低減できる。このため、積層ゴム16aのゴム層と鋼板との接着が剥がれるなどの損傷を防止できる。一方、免震対象物12に作用する水平力は、下部フランジ板16cの貫通孔19の内周と、突起部材18とが当接することで免震ゴム16にせん断力として伝達することができるため、その免震性能を維持できる。   (1) Since the protruding member 18 fixed to the base portion 14 side is passed through the through hole 19 provided in the lower flange plate 16c of the seismic isolation rubber 16, a pulling force acts on the seismic isolation rubber 16 by locking. When the lower flange plate 16c is lifted from the base portion 14, the pulling force applied to the seismic isolation rubber 16 can be reduced. For this reason, damage, such as peeling of the adhesion between the rubber layer of the laminated rubber 16a and the steel plate, can be prevented. On the other hand, the horizontal force acting on the seismic isolation object 12 can be transmitted to the seismic isolation rubber 16 as a shearing force when the inner periphery of the through hole 19 of the lower flange plate 16c and the protruding member 18 come into contact with each other. The seismic isolation performance can be maintained.

(2)突起部材18はベース板14aに螺着されることにより、着脱可能に取り付けられているので、免震ゴム16に交換が必要な場合に、この突起部材18を取り外し、免震対象物12を少しジャッキアップして、免震ゴム16を水平方向に引き抜くことができるため、容易に免震ゴム16の交換を行える。   (2) Since the projecting member 18 is detachably attached by being screwed to the base plate 14a, the projecting member 18 is removed when the seismic isolation rubber 16 needs to be replaced. Since the seismic isolation rubber 16 can be pulled out in the horizontal direction by slightly jacking up 12, the seismic isolation rubber 16 can be easily replaced.

(3)突起部材18と貫通孔19の内周との間に摩擦を低減するための摩擦低減材20を介在させた場合には、この間の摩擦を低減できるため、免震ゴム16に作用する引抜力をより効果的に低減できるとともに、突起部材18と貫通孔19の内周との摩擦による磨耗も防止できる。   (3) When the friction reducing material 20 for reducing the friction is interposed between the protruding member 18 and the inner periphery of the through hole 19, the friction during this period can be reduced, so that it acts on the seismic isolation rubber 16. The pulling force can be reduced more effectively, and wear due to friction between the protruding member 18 and the inner periphery of the through hole 19 can be prevented.

(4)突起部材18と、突起部材18に貫通される貫通孔19とを、免震ゴム16を取り囲むように複数設けることにより、地震時等の振動よって免震ゴム16と基礎部14との間に作用する水平方向のせん断力を、複数の突起部材18によって分散させて伝達することができるので、個々の突起部材18にかかるせん断力を小さくできる。このため、突起部材18のせん断耐力を低減することができる。   (4) By providing a plurality of projecting members 18 and through holes 19 penetrating the projecting members 18 so as to surround the seismic isolation rubber 16, the seismic isolation rubber 16 and the base portion 14 are separated by vibration during an earthquake or the like. Since the horizontal shearing force acting between them can be distributed and transmitted by the plurality of projecting members 18, the shearing force applied to each projecting member 18 can be reduced. For this reason, the shear strength of the projection member 18 can be reduced.

(5)突起部材18は、下部フランジ板16cの貫通孔19との間に隙間が生じるように形成され、突起部材18の断面の中心位置が、貫通孔19の断面の中心位置よりも免震ゴム16側に偏心して配置されることにより、図4(c)に示すようにロッキングが生じた場合に、移動先突起部材18Fと移動先貫通孔19Fの内周とが当接して水平方向のせん断力を確実にベース板14aに伝達させつつ、対向突起部材18Rと対向貫通孔19Rとの間に隙間を確保して下部フランジ板16cを確実に浮き上がらせることができる。これにより、免震ゴム16による免震性能を維持できるとともに、積層ゴム16aに引抜力が作用するのをより確実に防止できる。   (5) The projecting member 18 is formed so that a gap is formed between the projecting member 18 and the through hole 19 of the lower flange plate 16 c, and the center position of the cross section of the projecting member 18 is isolated from the center position of the cross section of the through hole 19. By being arranged eccentrically on the rubber 16 side, when locking occurs as shown in FIG. 4 (c), the destination protrusion member 18F and the inner periphery of the destination through hole 19F come into contact with each other in the horizontal direction. While the shearing force is reliably transmitted to the base plate 14a, the lower flange plate 16c can be reliably lifted by ensuring a gap between the opposing protruding member 18R and the opposing through hole 19R. Thereby, while being able to maintain the seismic isolation performance by the seismic isolation rubber 16, it can prevent more reliably that drawing force acts on the laminated rubber 16a.

(6)突起部材18に作用する力は、主に、貫通孔19の内周から水平方向に作用されるせん断力に限定され、軸力は作用しない。すなわち、免震ゴム16に組み合わせ応力が生じないため、その設計が容易となる。   (6) The force acting on the protruding member 18 is mainly limited to the shearing force acting in the horizontal direction from the inner periphery of the through hole 19, and no axial force acts. That is, since no combined stress is generated in the seismic isolation rubber 16, its design is facilitated.

(7)突起部材18の先端部18bは、その外径が貫通孔19の内径よりも大きく形成されることにより、下部フランジ板16cが基礎部14から所定量浮き上がった際に、下部フランジ板16c上面と当接して、それ以上の浮き上がりを阻止するため、下部フランジ板16cが突起部材18から抜け外れるのを確実に防止できる。   (7) The tip 18b of the protruding member 18 is formed so that its outer diameter is larger than the inner diameter of the through-hole 19, so that when the lower flange plate 16c is lifted from the base portion 14 by a predetermined amount, the lower flange plate 16c. Since it abuts against the upper surface and prevents further lifting, it is possible to reliably prevent the lower flange plate 16c from coming off the protruding member 18.

(8)免震構造10に下部フランジ板16cを基礎部14に向けて付勢する皿ばね22を設けた場合には、皿ばね22の弾性力を調節することにより下部フランジ板16cが浮き上がり始める引抜力の大きさを調節できる。さらに、浮き上がりの変位が大きくなる場合に、下部フランジ板16cが突起部材18の先端部18bに当たる際の衝撃を緩和できる。また、浮き上がった下部フランジ板16cがベース板14a上に復帰する際の衝撃も緩和できる。   (8) When the disc spring 22 for biasing the lower flange plate 16c toward the base portion 14 is provided in the seismic isolation structure 10, the lower flange plate 16c starts to rise by adjusting the elastic force of the disc spring 22 The magnitude of the pulling force can be adjusted. Further, when the floating displacement increases, the impact when the lower flange plate 16c hits the tip 18b of the protruding member 18 can be reduced. Further, it is possible to alleviate the impact when the raised lower flange plate 16c returns to the base plate 14a.

なお、免震構造10では、突起部材18は、ねじ穴14bに着脱可能に固定できるように、その下端がねじ構造となるとしたが、これに限らず、突起部材18の外径と、ねじ穴14bの寸法をほぼ同程度に加工して、挿入又は引抜することで着脱可能にしたメタルタッチ構造としてもよい。ただし、突起部材18のねじ構造をメタル構造にした場合、皿ばね22は用いないものとする。   In the seismic isolation structure 10, the lower end of the protruding member 18 has a screw structure so that the protruding member 18 can be detachably fixed to the screw hole 14b. However, the present invention is not limited to this, and the outer diameter of the protruding member 18 and the screw hole are not limited thereto. It is good also as a metal touch structure which processed the dimension of 14b to about the same level, and was made detachable by inserting or extracting. However, when the screw structure of the protruding member 18 is a metal structure, the disc spring 22 is not used.

また、上記実施形態は、免震構造10の突起部材18に代えて、後述する座金181及びボルト182からなる突起部材180を設けた免震構造100としてもよい。図6は、免震構造100の鉛直断面拡大図である。また、図7は、図6の座金181を上下分割した構成を示す鉛直断面拡大図である。   Moreover, the said embodiment is good also as the seismic isolation structure 100 which replaced with the projection member 18 of the seismic isolation structure 10, and provided the projection member 180 which consists of the washer 181 and the bolt 182 which are mentioned later. FIG. 6 is an enlarged vertical cross-sectional view of the seismic isolation structure 100. FIG. 7 is an enlarged vertical cross-sectional view showing a configuration in which the washer 181 of FIG.

図6に示すように、突起部材180は、外周側の座金181と内周側のボルト182とからなり、座金181は、突起部材18と同様に、下部フランジ板16cの貫通孔19への挿入される部分である胴部181aの外径は、貫通孔19の内径よりも小さく形成され、座金181の先端部181bの外径は、貫通孔19の内径よりも大きく形成されている。一方、座金181の下部は、ベース板14aの嵌合穴14cに嵌合するような構成となっており、貫通孔19の内周と座金181とが当接することにより、水平方向のせん断力をベース板14aへと確実に伝達させるようになっている。   As shown in FIG. 6, the protruding member 180 includes an outer washer 181 and an inner peripheral bolt 182, and the washer 181 is inserted into the through hole 19 of the lower flange plate 16 c in the same manner as the protruding member 18. The outer diameter of the body portion 181 a that is the portion to be formed is formed smaller than the inner diameter of the through hole 19, and the outer diameter of the tip portion 181 b of the washer 181 is formed larger than the inner diameter of the through hole 19. On the other hand, the lower portion of the washer 181 is configured to fit into the fitting hole 14c of the base plate 14a, and the inner periphery of the through hole 19 and the washer 181 come into contact with each other, so that a horizontal shearing force is generated. It is ensured to be transmitted to the base plate 14a.

ボルト182は、座金181が上方へ抜け外れないようにするために、座金181の上方から、座金181の円筒軸の中心に設けられた貫通孔19を挿通して、基礎部14に予め埋設されたさや管30に螺着され、座金181と共に基礎部14に固定される。座金181の先端部181bと下部フランジ板16cとの間に皿ばね22が装着される。なお、皿ばね22は省略してもよい。   The bolt 182 is embedded in advance in the base portion 14 through the through hole 19 provided at the center of the cylindrical shaft of the washer 181 from above the washer 181 in order to prevent the washer 181 from coming off upward. It is screwed to the sheath tube 30 and fixed to the base portion 14 together with the washer 181. A disc spring 22 is mounted between the tip 181b of the washer 181 and the lower flange plate 16c. The disc spring 22 may be omitted.

また、図7に示すように、突起部材180を構成する外周側の座金181を、下側のダボピン183と上側の頭部184とに分割し、例えば、ダボピン183は、建築構造用圧延棒鋼(SNR490B)で構成し、頭部184は、機械構造用炭素鋼(S45C)で構成するなどして、ダボピン183と頭部184とを異なる材料で構成してもよい。   Further, as shown in FIG. 7, the outer washer 181 constituting the protruding member 180 is divided into a lower dowel pin 183 and an upper head 184. For example, the dowel pin 183 is a rolled steel bar for building structure ( The dowel pin 183 and the head 184 may be made of different materials, such as SNR 490B), and the head 184 may be made of carbon steel for mechanical structure (S45C).

次に、本発明の第二の実施形態について説明する。
第二の実施形態は、下部フランジ板16cを基礎部14に固定し、免震対象物12が上部フランジ板16bから浮上できる構成としたものである。図8は、第二の実施形態に係る免震構造200の鉛直断面拡大図であり、図9は、免震構造200の突起部材18及び貫通孔19の配置を説明するための平面図である。
Next, a second embodiment of the present invention will be described.
In the second embodiment, the lower flange plate 16c is fixed to the base portion 14, and the seismic isolation object 12 can be lifted from the upper flange plate 16b. FIG. 8 is an enlarged vertical cross-sectional view of the seismic isolation structure 200 according to the second embodiment, and FIG. 9 is a plan view for explaining the arrangement of the protruding members 18 and the through holes 19 of the seismic isolation structure 200. .

この実施形態では、図8に示すように、免震ゴム16の上部フランジ板16bに貫通孔19を設けて、突起部材18を、上部フランジ板16bの貫通孔19を下側から貫通させて、免震対象物12の底部に固定されたベース板12aに着脱可能に固定した構成としている。   In this embodiment, as shown in FIG. 8, a through hole 19 is provided in the upper flange plate 16b of the seismic isolation rubber 16, and the protruding member 18 is passed through the through hole 19 of the upper flange plate 16b from below. The base plate 12a fixed to the bottom of the seismic isolation object 12 is detachably fixed.

ただし、上部フランジ板16bの貫通孔19と突起部材18との配置関係は、免震構造10とは異なり、図8及び図9に示すように、突起部材18の断面の中心位置が、貫通孔19の中心位置よりも積層ゴム16aと反対側に偏心して配置されている。これにより、地震時に免震対象物12が免震構造10上を移動し又は浮き上がることになる。   However, the arrangement relationship between the through hole 19 and the protruding member 18 of the upper flange plate 16b is different from that of the seismic isolation structure 10, and the center position of the cross section of the protruding member 18 is the through hole as shown in FIGS. It is eccentrically arranged on the side opposite to the laminated rubber 16 a from the center position of 19. Thereby, the seismic isolation object 12 moves or floats on the seismic isolation structure 10 at the time of an earthquake.

図10は、通常時からロッキング発生時までの免震構造200の動作過程を示す断面図であり、(a)は通常の状態、(b)は水平方向の変位が生じた状態、(c)はロッキングにより免震対象物12の下面が浮き上がりを生じた状態を示す図である。   10A and 10B are cross-sectional views showing the operation process of the seismic isolation structure 200 from the normal time to the occurrence of rocking, where FIG. 10A is a normal state, FIG. 10B is a state in which a horizontal displacement has occurred, and FIG. These are figures which show the state which the lower surface of the seismic isolation object 12 produced by rocking.

水平方向の変位が生じた状態の図4(b)と図10(b)との動作を比べると、図4(b)では、免震ゴム16側が水平移動したときの移動先突起部材18Fと移動先貫通孔19Fとの当接位置は、移動先貫通孔19Fの内周のうち積層ゴム16a側となるのに対し、図10(b)では、積層ゴム16aと反対側となる。本実施形態では突起部材18と貫通孔19の偏心の向きが第一の実施形態とは逆になっているので、図10(b)に示すように、この時の対向突起部材18Rの中心は、対向貫通孔19Rの中心に近づく方に移動することとなるため、図4(b)と同様に対向突起部材18Rと対向貫通孔19Rの内周とは最も間隔を隔てた状態となる。   Comparing the operations of FIG. 4B and FIG. 10B in a state where the displacement in the horizontal direction has occurred, in FIG. 4B, in FIG. The contact position with the destination through-hole 19F is on the side of the laminated rubber 16a in the inner periphery of the destination through-hole 19F, whereas in FIG. 10B, it is on the side opposite to the laminated rubber 16a. In this embodiment, since the eccentric directions of the protruding member 18 and the through hole 19 are opposite to those in the first embodiment, the center of the opposing protruding member 18R at this time is as shown in FIG. Since it moves toward the center of the opposed through hole 19R, the opposed projecting member 18R and the inner circumference of the opposed through hole 19R are in the most spaced state as in FIG. 4B.

さらに、この状態でロッキングが生じた場合、図10(c)に示すように、移動先突起部材18Fが移動先貫通孔19Fの内周に当接して、水平方向のせん断力を確実に伝達させつつ、対向突起部材18Rと対向貫通孔19Rとの間に隙間を確保して、当接位置を支点として、免震対象物12を確実に浮き上げらせることができる。   Further, when locking occurs in this state, as shown in FIG. 10 (c), the movement-destination projection member 18F comes into contact with the inner periphery of the movement-destination through hole 19F to reliably transmit the horizontal shearing force. On the other hand, it is possible to secure the gap between the opposing protrusion member 18R and the opposing through-hole 19R, and to reliably lift the seismic isolation object 12 with the contact position as a fulcrum.

また、その浮き上がりによって、突起部材18の先端部18bが上部フランジ板16bに当接するまで変位したとしても、上部フランジ板16bがそれ以上の浮き上がりを阻止するため、対向突起部材18Rが対向貫通孔19Rから抜き外れるのを確実に防止できる。   Further, even if the tip 18b of the projection member 18 is displaced until it comes into contact with the upper flange plate 16b due to the lifting, the upper flange plate 16b prevents further lifting, so that the opposing projection member 18R is opposed to the opposing through hole 19R. It can be surely prevented from coming off from.

以上説明した第二の実施形態においても、第一の実施形態の上記(1)〜(8)と同様の効果を得ることができる。   Also in the second embodiment described above, the same effects as the above (1) to (8) of the first embodiment can be obtained.

なお、第二の実施形態による免震構造200を、第一の実施形態で説明した皿ばね22を、突起部材18の先端部18bと上部フランジ板16bとの間に装着する構成としてもよく、また、突起部材18の代わりに、免震対象物12内にさや管30を設置して突起部材180をそのさや管30に固定する構成としてもよい。   The seismic isolation structure 200 according to the second embodiment may be configured such that the disc spring 22 described in the first embodiment is mounted between the distal end portion 18b of the protruding member 18 and the upper flange plate 16b. Moreover, it is good also as a structure which installs the sheath pipe | tube 30 in the seismic isolation object 12 instead of the projection member 18, and fixes the projection member 180 to the sheath pipe | tube 30. FIG.

また、本実施形態に係る第一及び第二の実施形態によれば、免震構造10、100又は200を基礎部14と免震対象物12との間に介装する構成にしたが、これに限らず、構造物の上下層の中間部に介装する構成としてもよい。この場合、免震構造10、100又は200が設けられた位置より上層が免震対象物となり、下層は非免震構造物となる。   Moreover, according to 1st and 2nd embodiment which concerns on this embodiment, it was set as the structure which interposes the base isolation structure 10, 100, or 200 between the base part 14 and the base isolation object 12, It is good also as a structure interposed in the intermediate part of the upper and lower layers of a structure. In this case, the upper layer is a seismic isolation object from the position where the seismic isolation structure 10, 100 or 200 is provided, and the lower layer is a non-seismic isolation structure.

本発明の第一の実施形態に係る免震構造10が適用される免震対象物12の基礎部分を示す正面図である。It is a front view which shows the basic part of the seismic isolation object 12 to which the seismic isolation structure 10 which concerns on 1st embodiment of this invention is applied. 第一の実施形態に係る免震構造10の鉛直断面拡大図である。It is a vertical cross-sectional enlarged view of the seismic isolation structure 10 which concerns on 1st embodiment. 図2に示す免震構造10の突起部材18及び貫通孔19の配置を説明するための平面図である。It is a top view for demonstrating arrangement | positioning of the projection member 18 and the through-hole 19 of the seismic isolation structure 10 shown in FIG. 第一の実施形態に係る、通常の状態からロッキング発生までの免震構造10の動作過程を示す断面図であり、(a)は通常の状態、(b)は水平方向の変位が生じた状態、(c)はロッキングにより免震ゴム16が浮き上がりを生じた状態を示す図である。It is sectional drawing which shows the operation | movement process of the seismic isolation structure 10 based on 1st embodiment from a normal state to rocking | fluctuation generation | occurrence | production, (a) is a normal state, (b) is the state which the horizontal direction displacement produced (C) is a figure which shows the state which the seismic isolation rubber 16 produced by rocking. 図2の免震構造10に皿ばね22を設けた例を示す鉛直断面拡大図である。It is a vertical cross-sectional enlarged view which shows the example which provided the disc spring 22 in the seismic isolation structure 10 of FIG. 第一の実施形態に係る免震構造100の鉛直断面拡大図である。It is a vertical cross-sectional enlarged view of the seismic isolation structure 100 which concerns on 1st embodiment. 図6の座金181を上下分割した構成を示す鉛直断面拡大図である。It is a vertical cross-sectional enlarged view which shows the structure which divided | segmented the washer 181 of FIG. 6 up and down. 第二の実施形態に係る免震構造200の鉛直断面拡大図である。It is a vertical cross-sectional enlarged view of the seismic isolation structure 200 which concerns on 2nd embodiment. 免震構造200の突起部材18及び貫通孔19の配置を説明するための平面図である。4 is a plan view for explaining the arrangement of the protruding members 18 and the through holes 19 of the seismic isolation structure 200. FIG. 通常時からロッキング発生時までの免震構造200の動作過程を示す断面図であり、(a)は通常の状態、(b)は水平方向の変位が生じた状態、(c)はロッキングにより免震対象物12の下面が浮き上がりを生じた状態を示す図である。It is sectional drawing which shows the operation | movement process of the seismic isolation structure 200 from the normal time to the time of rocking | fluctuation, (a) is a normal state, (b) is the state which the horizontal displacement produced, (c) is immunity by rocking. It is a figure which shows the state which produced the lower surface of the seismic object 12.

符号の説明Explanation of symbols

10、100、200 免震構造
12 免震対象物 12a ベース板
14 基礎部 14a ベース板
14b ねじ穴 14c 嵌合穴
16 免震ゴム 16a 積層ゴム
16b 上部フランジ板 16c 下部フランジ板
18 突起部材 18a 突起部材胴部
18b 突起部材先端部 18F 移動先突起部材
18R 対向突起部材 19 貫通孔
19F 移動先貫通孔 19R 対向貫通孔
20 摩擦低減材 22 皿ばね
180 突起部材 181 座金
181a 座金胴部 181b 座金先端部
182 ボルト 183 ダボピン
184 座金頭部
10, 100, 200 Base-isolated structure 12 Base-isolated object 12a Base plate 14 Base portion 14a Base plate 14b Screw hole 14c Fitting hole 16 Base-isolated rubber 16a Laminated rubber 16b Upper flange plate 16c Lower flange plate 18 Projection member 18a Projection member Body 18b Projection member tip 18F Destination projection member 18R Opposing projection member 19 Through hole 19F Destination through hole 19R Opposing through hole 20 Friction reducing material 22 Belleville spring 180 Projection member 181 Washer 181a Washer body 181b Washer tip 182 Bolt 183 Dowel pin 184 Washer head

Claims (8)

非免震構造物に免震ゴムを介して免震対象物を支持する免震構造であって、
前記免震ゴムの上下何れか一方のフランジ板に貫通孔を形成すると共に、この貫通孔を貫通して前記非免震構造物側又は前記免震対象物側に取り付けられる突起部材を設け
前記突起部材と、前記突起部材に貫通される前記貫通孔とを、前記免震ゴムを取り囲むように複数設け、
前記突起部材は、前記貫通孔との間に隙間が生じるように前記貫通孔よりも小寸法に形成され、
前記突起部材が前記非免震構造物側に取り付けられる場合には、前記突起部材の断面の中心位置が、前記貫通孔の断面の中心位置よりも前記免震ゴム側へ偏心して配置され、
前記突起部材が前記免震対象物側に取り付けられる場合には、前記突起部材の断面の中心位置が、前記貫通孔の断面の中心位置よりも前記免震ゴムと反対側へ偏心して配置されることを特徴とする免震構造。
A seismic isolation structure that supports a base isolation object via a base isolation rubber on a non-base isolation structure,
A through hole is formed in either one of the upper and lower flange plates of the seismic isolation rubber, and a protruding member that is attached to the non-seismic isolation structure side or the seismic isolation object side through the through hole is provided .
A plurality of the projecting member and the through-hole penetrating the projecting member are provided so as to surround the seismic isolation rubber,
The protruding member is formed with a smaller dimension than the through hole so that a gap is formed between the protruding member and the through hole,
When the projecting member is attached to the non-seismic isolation structure side, the center position of the cross section of the projecting member is arranged eccentric to the seismic isolation rubber side than the center position of the cross section of the through hole,
When the projecting member is attached to the seismic isolation object side, the center position of the cross section of the projecting member is arranged eccentric to the opposite side of the seismic isolation rubber from the center position of the cross section of the through hole. Seismic isolation structure characterized by that.
前記突起部材は、前記非免震構造物側又は前記免震対象物側に着脱可能に取り付けられることを特徴とする請求項1に記載の免震構造。   The seismic isolation structure according to claim 1, wherein the protruding member is detachably attached to the non-base isolation structure side or the base isolation object side. 前記突起部材と、前記貫通孔の内周との間に摩擦を低減するための摩擦低減材を介在させたことを特徴とする請求項1又は2に記載の免震構造。   The seismic isolation structure according to claim 1, wherein a friction reducing material for reducing friction is interposed between the protruding member and the inner periphery of the through hole. 前記突起部材は、前記貫通孔が形成されたフランジ板が、前記非免震構造物又は前記免震対象物から所定量だけ離間した場合に、当該フランジ板と当接する拡大部を有することを特徴とする請求項1〜のいずれかに記載の免震構造。 The protruding member has an enlarged portion that comes into contact with the flange plate when the flange plate in which the through hole is formed is separated from the non-base isolation structure or the base isolation object by a predetermined amount. The seismic isolation structure according to any one of claims 1 to 3 . 前記免震ゴムのフランジ板を前記非免震構造物又は前記免震対象物に向けて付勢する弾性体を設けたことを特徴とする請求項1〜のいずれかに記載の免震構造。 The base isolation structure according to any one of claims 1 to 4 , further comprising an elastic body that biases the flange plate of the base isolation rubber toward the non-base isolation structure or the base isolation object. . 前記突起部材は、内周側のボルトと外周側の座金とから構成され、前記ボルトは前記非免震構造物又は前記免震対象物に取り付けられていることを特徴とする請求項1〜のいずれかに記載の免震構造。 It said projection member is constituted by the inner circumferential side of the bolt and the outer peripheral side of the washer, according to claim 1 to 5, wherein the bolt is characterized in that attached to the non-seismic isolation structure or the seismic isolation object The seismic isolation structure described in any of the above. 前記座金は上下の部材に分割されていることを特徴とする請求項に記載の免震構造。 The seismic isolation structure according to claim 6 , wherein the washer is divided into upper and lower members. 非免震構造物に免震ゴムを介して免震対象物を支持する免震方法であって、
前記免震ゴムの上下何れか一方のフランジ板に貫通孔を形成し、突起部材を前記非免震構造物側又は前記免震対象物側にこの貫通孔を貫通して取り付け
前記突起部材と、前記突起部材に貫通される前記貫通孔とを、前記免震ゴムを取り囲むように複数設け、
前記突起部材を、前記貫通孔との間に隙間が生じるように前記貫通孔よりも小寸法に形成し、
前記突起部材を前記非免震構造物側に取り付ける場合には、前記突起部材の断面の中心位置を、前記貫通孔の断面の中心位置よりも前記免震ゴム側へ偏心させて配置し、
前記突起部材を前記免震対象物側に取り付ける場合には、前記突起部材の断面の中心位置を、前記貫通孔の断面の中心位置よりも前記免震ゴムと反対側へ偏心させて配置することを特徴とする免震方法。
A seismic isolation method for supporting a seismic isolation object via a seismic isolation rubber on a non-base isolation structure,
A through hole is formed in one of the upper and lower flange plates of the seismic isolation rubber, and a projecting member is attached through the through hole on the non-seismic isolation structure side or the seismic isolation object side ,
A plurality of the projecting member and the through-hole penetrating the projecting member are provided so as to surround the seismic isolation rubber,
Forming the projecting member in a smaller dimension than the through hole so that a gap is formed between the projecting member and the through hole;
When attaching the projecting member to the non-seismic isolation structure side, the center position of the cross section of the projecting member is arranged eccentric to the seismic isolation rubber side than the center position of the cross section of the through hole,
When attaching the projecting member to the seismic isolation object side, the center position of the cross section of the projecting member is arranged eccentric to the opposite side of the seismic isolation rubber from the center position of the cross section of the through hole. Seismic isolation method characterized by
JP2006156454A 2006-06-05 2006-06-05 Seismic isolation structure and seismic isolation method Expired - Fee Related JP4735426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006156454A JP4735426B2 (en) 2006-06-05 2006-06-05 Seismic isolation structure and seismic isolation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156454A JP4735426B2 (en) 2006-06-05 2006-06-05 Seismic isolation structure and seismic isolation method

Publications (2)

Publication Number Publication Date
JP2007321969A JP2007321969A (en) 2007-12-13
JP4735426B2 true JP4735426B2 (en) 2011-07-27

Family

ID=38854960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156454A Expired - Fee Related JP4735426B2 (en) 2006-06-05 2006-06-05 Seismic isolation structure and seismic isolation method

Country Status (1)

Country Link
JP (1) JP4735426B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107605223A (en) * 2017-09-26 2018-01-19 镇江市星耀智能装备有限公司 A kind of novel earthquake-proof component

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5675279B2 (en) * 2010-11-02 2015-02-25 清水建設株式会社 Seismic isolation device installation structure
JP2014126097A (en) * 2012-12-26 2014-07-07 Toyota Motor Corp Torsional vibration reduction device
JP6419449B2 (en) * 2014-03-28 2018-11-07 株式会社ブリヂストン Seismic isolation device
JP6605872B2 (en) * 2015-08-04 2019-11-13 三井住友建設株式会社 Structure support structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304011A (en) * 1999-04-22 2000-10-31 Aisin Seiki Co Ltd Fixing method of resin product
JP2006118676A (en) * 2004-10-25 2006-05-11 Naniwa Tekko Kk Eye bolt

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286370A (en) * 1994-04-15 1995-10-31 Kayaba Ind Co Ltd Jack-up type building construction device
JPH08210338A (en) * 1995-02-07 1996-08-20 Ishikawajima Harima Heavy Ind Co Ltd Reamer bolt for coupling
JPH1136496A (en) * 1997-05-23 1999-02-09 Hitachi Kizai Kk Plate-mounting metal fitting
JPH11153191A (en) * 1997-11-25 1999-06-08 Shimizu Corp Mechanism corresponding to drawing of base isolation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304011A (en) * 1999-04-22 2000-10-31 Aisin Seiki Co Ltd Fixing method of resin product
JP2006118676A (en) * 2004-10-25 2006-05-11 Naniwa Tekko Kk Eye bolt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107605223A (en) * 2017-09-26 2018-01-19 镇江市星耀智能装备有限公司 A kind of novel earthquake-proof component

Also Published As

Publication number Publication date
JP2007321969A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP5135034B2 (en) Exposed type column base structure
US9249817B2 (en) Wooden member joint structure
JP4735426B2 (en) Seismic isolation structure and seismic isolation method
TWI565865B (en) Mounting structure for laminated rubber body and structure with the mounting structure
JP4394661B2 (en) Fixed bearing device for structures
TWI531736B (en) Joining member for laminated rubber body, laminated rubber body with the joining member and structure
JP2007291676A (en) Rubber-sealed fixing and bearing apparatus for structure
JP2015224488A (en) Friction-vibration damping device
KR102151069B1 (en) Bridge supporting apparatus with separable type anchoring members and construction method thereof
JP6445925B2 (en) Ceiling structure and construction method thereof
JP5522971B2 (en) Rubber washer, and support and structure using the rubber washer
JP4488383B1 (en) Bridge bearing device
JP2013148106A (en) Thin slide support device for construction
JP4997354B1 (en) Fixing member for shear force transmission with fixing maintenance function
JP2020190320A (en) Sliding base isolation bearing structure
JP6420991B2 (en) Seismic isolation device
JP6404573B2 (en) Structure foundation
JP5392685B2 (en) Isolator protection device and method of assembling the same
JP2010270881A (en) Fail safe mechanism of base isolation device and method of installing the same
JP2008280818A (en) Base isolation structure of building and building adopting the same
JP4588909B2 (en) Anti-vibration control structure
KR101166552B1 (en) Up-lift resistant elastomeric bearing for bridge
JP2018054109A (en) Recovering rubber and its fixing structure
JP2006226387A (en) Laminated rubber bearing
JP6605872B2 (en) Structure support structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees