JP4733097B2 - Method for transmitting power between members and outputting them, and means for utilizing the method - Google Patents

Method for transmitting power between members and outputting them, and means for utilizing the method Download PDF

Info

Publication number
JP4733097B2
JP4733097B2 JP2007282399A JP2007282399A JP4733097B2 JP 4733097 B2 JP4733097 B2 JP 4733097B2 JP 2007282399 A JP2007282399 A JP 2007282399A JP 2007282399 A JP2007282399 A JP 2007282399A JP 4733097 B2 JP4733097 B2 JP 4733097B2
Authority
JP
Japan
Prior art keywords
rotation
rolling
rotating
shaft
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007282399A
Other languages
Japanese (ja)
Other versions
JP2009085426A5 (en
JP2009085426A (en
Inventor
静雄 三島
Original Assignee
静雄 三島
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 静雄 三島 filed Critical 静雄 三島
Priority to JP2007282399A priority Critical patent/JP4733097B2/en
Publication of JP2009085426A publication Critical patent/JP2009085426A/en
Publication of JP2009085426A5 publication Critical patent/JP2009085426A5/ja
Application granted granted Critical
Publication of JP4733097B2 publication Critical patent/JP4733097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、部材間で動力を伝達し出力できる方法、並びに該方法を活用される活用手段、並びに該手段を用いた動力を含めた相対的なエネルギーの出力方法に関する。
又、部材間の接続の部位における相対的な速度差並びに摺動を予防できる手段を用いることにより該接続の部位における摩擦力によって前記動力を伝達し出力できる方法、並びに該方法を活用されて構成される部材間で動力を伝達し出力できる動力伝達機構,該機構と連携して機能できる装置,前記方法を相対的にも活用される業務やシステム構成等を含めた前記活用手段に関する。
The present invention relates to a method capable of transmitting and outputting power between members, a utilization means utilizing the method, and a relative energy output method including power using the means.
Also, a method capable of transmitting and outputting the power by frictional force at the connection portion by using a means capable of preventing relative speed difference and sliding at the connection portion between the members, and a configuration utilizing the method. The present invention relates to a power transmission mechanism capable of transmitting and outputting power between members to be output, a device capable of functioning in cooperation with the mechanism, and the utilization means including work and system configuration etc. in which the method is relatively utilized.

先ず、速度差の発生と伝達と障害との関係について説明する。
例えば、部材と部材(装置と装置を含む)との衝突並びに摺動(滑り動く或いは摺り動くを意味させる)が生じられる場合は、部材間で相対的な速度に差が生じられ速度の差が部材間に伝達されたときであり、伝達されることにより部材間では衝撃,破損,摩耗等或いは突然の減速や突然の加速等の障害を受ける。
反対に部材間で衝突や摺動等の障害が生じられない場合は、進む速度と方向が同一の時で部材間の接続の部位の移動が相対的に等加速運動の場合,或いは部材間の接続の部位において相対的に停止状態の場合,或いは部材間の接続の部位において相対的な転がり軌跡の伝達の場合であり、この様な場合には部材間の接続の部位においては相対的な速度差の伝達が無く障害は生じないと思われる。
First, the relationship between the occurrence of speed difference, transmission, and failure will be described.
For example, when a collision between a member and a member (including a device and a device) and sliding (meaning sliding movement or sliding movement) occur, a difference in relative speed occurs between the members, and the difference in speed is This is when it is transmitted between the members, and the transmission causes a failure such as impact, breakage, wear or sudden deceleration or sudden acceleration between the members.
On the other hand, when there is no obstacle such as collision or sliding between the members, when the moving speed and direction are the same, the movement of the connection part between the members is relatively equal acceleration motion, or between the members This is the case where the connection is relatively stopped or the transmission of the relative rolling trajectory at the connection between the members. In such a case, the relative speed at the connection between the members. There is no transmission of the difference, and there seems to be no failure.

次に、部材間の接続の部位において摺動を伴うものの今回の本発明の趣旨に近い次の二つの出願(私の出願)について、その構成と改良を要する箇所を本明細書に記載した用語並びに記号を用いて説明する。
特願2001−292555(発明の名称…回転動力を伝達できる構造)
特願2001−330003(発明の名称…回転動力伝達構造)
先ず前記二つの出願の共通する特徴の一つは、二つの部材間で回転動力を伝達可能に接続されると共に前記二つの部材間で回転伝達半径比率,回転数並びに回転速度の比率を継続的に自在(段を伴わず)に変えることのできる仮称「回転数比可変自在機構」(以降、従来技術と本発明の説明用語として用いる)であり、例えば、一般的にはContinuously Variable Transmission或いはInfinitely Variable Transmission等と云われ頭文字の部分を用いて呼称される機構である。
前記二つの出願の構成と機能と目的は、前記二つの部材の間に挟まれて位置される転がり部材5を二つの部材の間でクサビ状に行き詰まらせることによって二つの部材と転がり部材5との接続の部位(接続される部分並びに接続される位置を意味する)における圧力と摩擦力(摺動抵抗力又はTraction又は相対的な噛み合い力等の滑り防止力)を強力に高め該摩擦力によって二つの部材間で全く摺動(滑り動く或は摺り動くを意味させる)を伴わない強力な回転動力の伝達と出力を可能にし、更に二つの部材間の回転中心軸の相対的な角度を変えることにより前記接続の部位における二つの部材間の回転伝達半径比率を変化させ入力側回転部材に対して出力側回転部材の回転数並びに回転速度の比率を継続的に自在(段を伴わず)に変えることを可能にすることであった。
Next, the terminology described in this specification for the following two applications (my application) that are accompanied by sliding at the site of connection between the members but are close to the spirit of the present invention will be described. A description will be given using symbols.
Japanese Patent Application No. 2001-292555 (Title of Invention: Structure capable of transmitting rotational power)
Japanese Patent Application No. 2001-330003 (Title of Invention ... Rotary power transmission structure)
First, one of the common features of the two applications is that the rotational power can be transmitted between the two members so that the rotational transmission radius ratio, the rotational speed, and the rotational speed ratio can be continuously maintained between the two members. Is a tentative name “variable speed ratio variable mechanism” (hereinafter, used as a terminology for explaining the prior art and the present invention), and is generally, for example, Continuously Variable Transmission or Infinitely. This mechanism is called “Variable Transmission” or the like and is called using the initial part.
The structure, function, and purpose of the two applications are that the rolling member 5 positioned between the two members is wedged between the two members to form a wedge shape between the two members and the rolling member 5. The pressure and frictional force (sliding resistance force or anti-slip force such as traction or relative meshing force) at the connection part (meaning the connected part and the connected position) are strongly increased by the frictional force. Enables transmission and output of strong rotational power without any sliding (meaning sliding or sliding movement) between two members, and also changes the relative angle of the rotation center axis between the two members As a result, the rotation transmission radius ratio between the two members at the connection portion is changed, and the ratio of the rotation speed and the rotation speed of the output-side rotation member with respect to the input-side rotation member can be continuously freely (without a step). It was to make it possible to obtain.

前記二つの出願による構成を基に前記の仮称「回転数比可変自在機構」を試作し車両(二輪車)に搭載した結果、前記二つの部材の内の出力側に大きな負荷が生じている場合には、転がり部材5と二つの部材との接続の部位で圧力が高まり摩擦力が増加されて二つの部材の間では回転動力の入力,伝達,回転速度の比率の変更,出力,回転中心軸間の相対的な角度の変更を含めて全ての駆動に対して前記の圧力並びに摩擦力の増加と比例されるような駆動抵抗が前記接続の部位で生じられ理想の機能は得られなかった。
この駆動抵抗の発生原因の一つは、前記接続の部位において部材間の相対的な速度差の伝達と摺動を伴う構造であり前記接続の部位における圧力と摩擦力の増加は摺動抵抗並びに駆動抵抗の増加につながったものと思われる。
又、出力側に比較的小さな負荷が生じている場合には、回転動力の入力も伝達も出力も相対角度の変更も回転数並びに回転速度の比率を継続的に自在(段を伴わず)に変化させることも全て滑らかに軽やかに行うことができ期待に近い感触であったが、回転伝達時や接続の部位の半径方向への移動時には接続の部位において相対的な速度差の伝達と摺動を伴う構造のために継続的には様々な障害が生じるものと思われ、理想的には更なる工夫が必要であった。
When a large load is generated on the output side of the two members as a result of trial manufacture of the temporary name “variable speed ratio variable mechanism” based on the configuration according to the two applications and mounting it on a vehicle (two-wheeled vehicle). The pressure is increased and the frictional force is increased at the connection part between the rolling member 5 and the two members, and the rotation power is input, transmitted, the ratio of the rotation speed is changed between the two members, the output, and the rotation center axis. A drive resistance that is proportional to the increase of the pressure and frictional force is generated at all the connections including the change of the relative angle, and the ideal function is not obtained.
One of the causes of the drive resistance is a structure involving transmission and sliding of a relative speed difference between members at the connection portion, and an increase in pressure and frictional force at the connection portion is caused by sliding resistance and This seems to have led to an increase in driving resistance.
In addition, when a relatively small load is generated on the output side, the rotational power input, transmission, output, and change in relative angle can be freely changed (with no steps) in the ratio of rotational speed and rotational speed. All changes can be made smoothly and lightly, and it was close to expectations, but when transmitting rotation or moving the connected part in the radial direction, transmission of relative speed difference and sliding at the connected part It seems that various troubles will occur continuously due to the structure with, and ideally, further ingenuity was necessary.

発明が解決しようとする課題Problems to be solved by the invention

本発明は、前記転がり部材5と圧せられて接続される接続の部位で生じられる相対的な速度差の伝達を、転がり部材5の相対的な転がり回転,或いは接続の部位の相対的な転がり移動,或いは接続の部位における相対的な転がり軌跡の伝達の少なくても何れかが成されることによって回避し、回避することで接続の部位における摺動を予防し、従来より起きている部材間(装置間を含む)での相対的な速度差の伝達による摩耗,衝撃,破損等の様々な障害を減少させ、部材や機構や装置や業務から環境に至る安全性を得ることを目的の一つとしている。
又、部材間における相対的な速度差の減少と相対的な速度差の増加の少なくても何れかを段を伴わずに自在に実現できることも目的としている。
又、回転動力を入力されて回転される入力側回転部材と該入力側回転部材からの回転動力の伝達を受けて前記入力側回転部材とは回転数の相違を伴って回転できる出力側回転部材とを設けられ前記部材間で回転伝達半径比率,回転数並びに回転速度の比率を継続的に自在(段を伴わず)に変えることのできる動力伝達機構であって仮称「回転数比可変自在機構」の場合は、此れまでの技術による構成の殆どは入力側回転部材と出力側回転部材との回転伝達される部材間の接続の部位では圧力と摩擦力を活用されながら少なからず摺動を伴う回転伝達と摺動を伴う回転伝達半径比率の変更のなされる構成であり、摺動を伴うと云うことは厳密に考察すれば部材間の接続の部位が次から次にスキップするように相対的な回転半径方向(回転の中心軸に対して接近されたり離れたりする方向を意味する)にズレながら移動されるためにズレの生じている間は回転動力の伝達力が低くならざるを得ない。
従来タイプのベルト駆動と数種の円盤タイプによる仮称「回転数比可変自在機構」を試作しテストした結果、回転されている最中に回転伝達半径比率を変化させて出力側回転部材の回転速度を加速させる場合も減速させる場合にも必要以上に減速されてしまう現象を確認した。
此の場合、入力側或いは出力側回転部材自体が回転伝達半径比率の変更の可能な形状であっても部材間の接続の部位において摺動を伴う前記比率の変更が成されている最中は摩擦力が損なわれるために回転動力の伝達力が低減され減速や加速く例えば、スキップしたり動力を伝達されたり)を繰り返しながら段々に増速或いは段々に減速されるために厳密には滑りを伴う段付き或いは途切れ途切れのデジタル的な回転速度の変化と成ってしまう。
In the present invention, the transmission of the relative speed difference generated at the connection portion that is pressed and connected to the rolling member 5 is transmitted to the relative rolling rotation of the rolling member 5 or the relative rolling of the connection portion. By avoiding at least one of the movement or transmission of the relative rolling trajectory at the connected part, avoiding the sliding at the connected part by avoiding it, between the members that have occurred conventionally One purpose is to reduce various obstacles such as wear, impact, and breakage due to transmission of relative speed differences (including between devices), and to obtain safety from members, mechanisms, devices, and work to the environment. I am trying.
It is another object of the present invention to realize any one of the members without any steps, even if the relative speed difference between the members is reduced and the relative speed difference is not increased.
An input-side rotating member that receives rotational power and rotates, and an output-side rotating member that can receive rotation power from the input-side rotating member and rotate with a difference in rotational speed. Is a power transmission mechanism capable of continuously changing the ratio of the rotation transmission radius ratio, the rotation speed and the rotation speed between the members freely (without a step). In the case of ”, most of the configurations according to the technology so far slide at least a little while utilizing the pressure and the frictional force at the connection part between the rotation transmission member of the input side rotation member and the output side rotation member. It is a configuration in which the rotation transmission radius ratio with the rotation transmission and the sliding is changed, and the fact that it involves the sliding is relative so that the part of the connection between the members skips from one to the next if strictly considered. Radial direction (center of rotation) Is inevitably transmission force of the rotary power is low while occurring deviation in order to be moved while shifted to mean directions) to and away from the close relative.
As a result of testing and testing a prototype "variable speed ratio variable mechanism" with a conventional belt drive and several disk types, the rotation speed of the output side rotating member is changed by changing the rotation transmission radius ratio during rotation. We confirmed the phenomenon that the vehicle was decelerated more than necessary both when accelerating and decelerating.
In this case, while the input side or output side rotating member itself has a shape capable of changing the rotation transmission radius ratio, the ratio is changed while sliding at the connection portion between the members. Because the frictional force is impaired, the transmission force of the rotational power is reduced, and deceleration or acceleration is repeated (for example, skipping or power transmission is repeated). This is accompanied by a change in the digital rotation speed with steps or interruptions.

仮称「回転数比可変自在機構」を、本発明で云う部材間で動力を伝達し出力できる方法並びに該方法を活用される活用手段の具現化された構成にすることにより、動力を伝達できる部材間の接続の部位においては負荷の大きさに比例するような強力な摩擦力を生じさせ前記に示した摺動を強力に予防し強力なトルク伝達を実現し、更に回転伝達方向とは異なる方向(例えば回転伝達方向に対して交差される方向或いは相対角度を有する方向或いは回転半径方向等)に対しても前記接続の部位の相対的な転がり移動を可能にする類のない機構並びに装置を成立させ、該機構並びに装置を用いることにより部材間の相対的な速度差の伝達を回避し接続の部位における摺動を伴わず回転伝達半径比率の変更に同期しタイムラグの全く伴わない加速,減速,停止,更には衝突さえも安全に可能にすることを目的としている。
又、本発明の部材間で動力を伝達し出力できる方法並びに該方法を活用される活用手段を用いた相対的なエネルギーの出力方法によって得られるエネルギー(例えば回転,移動,動力等の運動エネルギー或いは駆動抵抗,電気,音,光,熱等を含めたエネルギー)を用いることによって、資源の消費や有害物質の排出を低減し環境を含めた安全性を高めることも目的としている。
A member capable of transmitting power by adopting a tentative name “variable speed ratio mechanism” in which the method for transmitting and outputting power between members according to the present invention and a utilization means utilizing the method are embodied. A strong frictional force that is proportional to the magnitude of the load is generated at the connection part between them, and the sliding shown above is strongly prevented to realize a strong torque transmission, and further, a direction different from the rotation transmission direction. A unique mechanism and device that enables relative rolling movement of the connected portion with respect to (for example, a direction intersecting the rotation transmission direction, a direction having a relative angle, or a rotation radial direction) is established. By using the mechanism and apparatus, it is possible to avoid transmission of a relative speed difference between the members, and to synchronize with the change of the rotational transmission radius ratio without sliding at the connected portion, and to accelerate without any time lag, Fast, stop, further is intended to safely allow even collisions.
In addition, the energy (for example, kinetic energy such as rotation, movement, power or the like obtained by the method of transmitting power between the members of the present invention and outputting the power and the relative energy output method using the utilization means utilizing the method) By using energy including drive resistance, electricity, sound, light, heat, etc., the purpose is to reduce the consumption of resources and the emission of harmful substances and improve the safety including the environment.

課題を解決する為の手段Means to solve the problem

上記課題を解決する為に本発明は、前記部材間の接続の部位における速度差の伝達並びに摺動を予防或いは低減できる構成から成る手段を開発し此れを用い、前記接続の部位における相対的な摩擦力により部材間で動力の伝達と出力ができる方法,並びに該方法を活用される活用手段,並びに該手段を用い動力を含めた相対的なエネルギーの出力方法について統一した用語を用いて以下に示す。
又、それぞれの手段によって得られる機能及び利点を示す。
In order to solve the above-mentioned problems, the present invention has developed a means comprising a configuration capable of preventing or reducing the transmission and sliding of the speed difference at the connection portion between the members, and using this means, A method that can transmit and output power between members by a simple frictional force, a utilization means that uses the method, and a relative energy output method that includes power using the means, and uses unified terminology Shown in
Moreover, the function and advantage obtained by each means are shown.

先ず本発明で云う「部材間で動力の伝達と出力ができる方法」とは…
動力を入力されて運動(回転運動,往復回転,スライド運動,往復運動,移動等の運動を含む)できる入力側部材と該入力側部材の運動の伝達を受けて運動(回転運動,往復回転,スライド運動,往復運動,移動等の運動を含む)されることのできる出力側部材とを用いられて、該二つの部材間で動力が伝達でき出力できる接続構成を用いられるか或いは該接続構成を基にされる方法であり、本発明で示す構成並びに方法の特徴は、部材間で動力の伝達できる相互の部位では相対的に圧せられて接続できると共に該接続の部位(前記の相互の部位)における摺動を予防しながら部材間で動力の伝達ができる方法を示すものである。
又、「該方法を活用される活用手段」とは…
前記構成,方法並びに特徴を相対的(直接的,間接的,実質的或いは客観的等)にも用いて構成される構造物で例えば、動力伝達機構,該動力伝達機構と相対的にも連携可能(連動可能を含む)に接続されて機能できる装置,設備,施設,相対位置を移動できる或いは移動させることのできる移動装置(例えば車両を含めた移動手段),電気を出力可能な発電装置,その他の構造物等、
或いは前記構成や方法から得られる特徴や利点を物理的或いは非物理的にも用いるか或いは示すことによって活用される手段で例えば、映像,出版,業務(収益業務,非収益業務を含む),相対的なエネルギーの出力方法,活動等、
此れらを含めて前記構成,方法並びに特徴から得られる利点を活用されることにより具現化される活用手段(一種の構成)を意味し示すものである。
First of all, the “method for transmitting and outputting power between members” in the present invention is ...
An input side member that can move by input of power (including rotational movement, reciprocating rotation, slide movement, reciprocating movement, movement, etc.) and movement (revolving movement, reciprocating rotation, A connection structure capable of transmitting and outputting power between the two members by using an output-side member that can be moved (including slide movement, reciprocation movement, movement, etc.) The structure and the characteristics of the method shown in the present invention are based on the mutual parts where power can be transmitted between the members and can be connected by being relatively compressed and the parts of the connection (the mutual parts described above). ) Shows a method of transmitting power between members while preventing sliding.
What is “utilization means to utilize this method”?
A structure that uses the configuration, method, and features relative (directly, indirectly, substantially, objectively, etc.). Devices that can be connected and function (including those that can be linked), equipment, facilities, moving devices that can move or move relative positions (eg, moving means including vehicles), power generators that can output electricity, etc. Structure, etc.
Or, means that can be used by physically or non-physically using or showing the characteristics and advantages obtained from the above-mentioned configuration and method, for example, video, publishing, business (including profitable business and non-revenue business), relative Energy output methods, activities, etc.
Including these, it means and indicates a utilization means (a kind of structure) that is realized by utilizing the advantages obtained from the structure, method, and features.

次に、前記接続の部位における摺動を予防できる部材間の接続構成を用いられ部材間で動力を伝達し出力できる方法並びに該方法を活用される活用手段について幾つかを示す。  Next, a method for transmitting and outputting power between members by using a connection configuration between members that can prevent sliding at the connection site, and some utilization means utilizing the method will be described.

(1)…部材間で動力を伝達し出力できる方法並びに該方法を活用される活用手段において、
部材に有する壁面(平面的な壁面,曲面的な壁面,円柱状或いは円筒状の外壁面,円筒状の内壁面,中心位置を中心にされる略同一半径の球面状の外壁或いは内壁から成る壁面,その他の形状の壁面等どのような壁面であってよい)と,前記壁面と圧せられて接続できると共に軸中心に相対的に転がり回転し前記壁面に対して転がり軌跡を伝達できる転がり部材と,前記壁面との間に前記転がり部材を挟みながら該転がり部材と圧せられて接続できると共に該接続の部位において前記軸中心にされる前記転がり部材の転がり回転の伝達を受けることにより前記軸とは異なる軸中心に所定方向に回転できる回転部材と,前記の壁面と回転部材との間で前記転がり部材を相対的なクサビ状に行き詰まらせることのできる面形状と,前記接続の部位において前記所定方向とは交差される方向に向かう圧力或いは前記転がり部材を前記回転部材に対し前記所定方向とは交差する方向に転がり移動せしめんとする圧力の少なくても何れかの動力による圧力の伝達を受けることにより前記の壁面と回転部材との間で転がり部材を相対的なクサビ状に行き詰まらせながら前記各軸中心の回転とは異なる動力を出力可能にされ該出力されながらも前記の壁面と転がり部材との相対位置(接続の部位であってもよい)の転がり移動と共に前記所定方向へ前記軸中心にされる前記回転部材の回転(継続的或いは非継続的な回転)を可能にされる方法とを活用できる構成にする。
(1) In a method capable of transmitting and outputting power between members and a utilization means utilizing the method,
Wall surface of member (planar wall surface, curved wall surface, columnar or cylindrical outer wall surface, cylindrical inner wall surface, wall surface consisting of spherical outer wall or inner wall with substantially the same radius centered at the center position Any other wall such as a wall having a different shape) and a rolling member that can be connected to the wall by being pressed and can rotate and rotate relative to the axial center to transmit a rolling trajectory to the wall. The rolling member can be connected by being pressed with the rolling member while sandwiching the rolling member between the wall surface and receiving the transmission of the rolling rotation of the rolling member centered on the shaft at the connection portion. A rotating member capable of rotating in a predetermined direction about a different axis, a surface shape capable of causing the rolling member to get stuck in a relative wedge shape between the wall surface and the rotating member, and the connection part In this case, the pressure caused by any motive power is at least a pressure in a direction crossing the predetermined direction or a pressure that causes the rolling member to roll and move in the direction crossing the predetermined direction with respect to the rotating member. By receiving the transmission of power, it is possible to output a power different from the rotation of each axis center while the rolling member is stuck in a relative wedge shape between the wall surface and the rotating member, and the output of the power is Enables rotation (continuous or non-continuous rotation) of the rotating member centered on the shaft in the predetermined direction along with the rolling movement of the relative position between the wall surface and the rolling member (which may be a connected portion). To make the best use of this method.

此の構成においては例えば、前記の壁面と転がり部材との接続の部位或いは転がり部材と回転部材との接続の部位の少なくても何れかの部位において前記動力による圧力の伝達を相対的に受けることにより、転がり部材の前記移動の方向に対して接続の部位における前記回転部材に有する面が相対的に段無く滑らかに傾斜され前記転がり部材の転がり移動を阻み行き詰まらすことのできる面形状,又は前記接続の部位で相対的にロックすることのできる面形状,又は転がり部材をクサビ状に行き詰まらすことのできる面形状によって、前記の壁面と転がり部材との接続の部位並びに回転部材と転がり部材との接続の部位においては摺動を強力に予防或いは低減されながら前記動力を出力することができる利点がある。
又、前記壁面に対して前記転がり部材の転がり回転による転がり軌跡の伝達並びに前記回転部材の前記所定方向への軽快な回転を可能にしたことにより、前記の転がり部材と回転部材間並びに前記の転がり部材と壁面間における摺動とを強力に予防或いは低減されながら前記動力を出力することができる利点がある。
又、前記構成によって、前記の出力をしながらも該出力される方向とは相対的に角度を有する方向(例えば、出力される方向とは交差される方向,中心軸に対して接近或いは離れる方向,相対的な回転半径方向,相対的な軸に対して交差される方向或いは平行な方向等)に前記の壁面と転がり部材との接続の部位並びに相対位置の転がり移動を前記の壁面と転がり部材との接続の部位において摺動を予防或いは低減しながら可能にすることができる利点が得られる。
In this configuration, for example, the transmission of pressure by the power is relatively received in at least any part of the connecting part between the wall surface and the rolling member or the connecting part between the rolling member and the rotating member. The surface shape of the rotating member at the connection site with respect to the direction of movement of the rolling member is smoothly inclined relatively smoothly without any step, and the surface shape that prevents the rolling movement of the rolling member can be blocked. Depending on the surface shape that can be relatively locked at the connection site, or the surface shape that can block the rolling member in a wedge shape, the connection site between the wall surface and the rolling member and the rotation member and the rolling member There is an advantage that the power can be output while preventing or reducing sliding strongly at the connected portion.
In addition, since the rolling locus is transmitted to the wall surface by the rolling rotation of the rolling member, and the rotating member can be easily rotated in the predetermined direction, the rolling member and the rotating member can be rotated as well as the rolling member. There is an advantage that the power can be output while strongly preventing or reducing sliding between the member and the wall surface.
In addition, according to the configuration, a direction having an angle relative to the output direction while performing the output (for example, a direction crossing the output direction, a direction approaching or leaving the central axis) , Relative rotation radius direction, direction intersecting relative axis or direction parallel to the relative axis, etc.) and connecting the wall surface and the rolling member to each other and rolling the relative position to the wall surface and the rolling member. The advantage that can be achieved while preventing or reducing the sliding at the site of connection with is obtained.

又、前記の壁面と回転部材との間で転がり部材が相対的なクサビ状に行き詰まるにつれて又は該構成に具備される入力側部材へ伝達される動力(トルク)が大きくなるにつれて又は該構成に具備される出力側部材への負荷が大きくなるにつれて前記の動力や負荷の大きさに比例するように前記の壁面と転がり部材間並びに転がり部材と回転部材間の各接続の部位における圧力と摩擦力を高めることの可能な前記面形状或いは構成を用いたことにより、前記各接続の部位での摺動を強力に予防し非常に大きなトルクに至る動力の伝達と出力ができる利点がある。  Further, as the rolling member gets stuck in a relative wedge shape between the wall surface and the rotating member, or as the power (torque) transmitted to the input side member included in the configuration increases, or the configuration includes As the load on the output side member increases, the pressure and frictional force at each connection site between the wall surface and the rolling member and between the rolling member and the rotating member are proportional to the power and the magnitude of the load. By using the surface shape or configuration that can be increased, there is an advantage that power can be transmitted and output to a very large torque by strongly preventing sliding at each connection portion.

つまり、前記所定方向とは交差する方向に前記転がり部材を転がり移動せしめんとする場合に該転がり移動の方向に対して前記回転部材の面によって前記転がり移動を阻み段を伴わず緩やかに行き詰まらせる事を可能にする構成並びに前記面形状が、本発明で云う動力の伝達できる部材間の接続の部位における相対的な速度差の伝達を回避し摺動を予防できる手段の一つである。
又、前記の壁面と回転部材との間で前記転がり部材を挟みクサビ状に行き詰まらせながら前記の壁面と転がり部材間での転がり軌跡の伝達並びに前記転がり部材の転がり回転による前記回転部材への前記所定方向への回転伝達のできる構成が本発明で云う動力の伝達できる部材間の接続の部位における相対的な速度差の伝達を回避し摺動を予防できる手段の更なる一つである。
That is, when the rolling member is intended to roll and move in a direction intersecting with the predetermined direction, the surface of the rotating member prevents the rolling movement with respect to the direction of the rolling movement, and slowly gets stuck without any step. The configuration that enables this and the shape of the surface are one of the means that can prevent sliding by avoiding transmission of a relative speed difference at a connection portion between members capable of transmitting power according to the present invention.
Further, the rolling member is sandwiched between the wall surface and the rotating member so as to get stuck in a wedge shape, the rolling locus is transmitted between the wall surface and the rolling member, and the rolling member is rotated to rotate the rolling member. The structure capable of transmitting the rotation in a predetermined direction is a further means for avoiding the sliding by avoiding the transmission of the relative speed difference at the connection portion between the members capable of transmitting the power according to the present invention.

従って、例え前記の壁面と転がり部材との接続の部位が相対的な転がり移動中或いは停止中であっても、或いは本発明の構成に用いられる動力を出力される出力側の部材に大きな負荷が生じても前記の壁面と転がり部材との接続の部位並びに転がり部材と回転部材との接続の部位では摺動を強力に予防され前記回転部材の前記所定方向への回転抵抗の発生を押さえ、動力の入力,伝達,出力,前記の壁面と転がり部材との接続の部位並びに相対位置の転がり移動と共に前記の転がり軌跡の伝達と転がり回転を軽やかに安全に実施される事が可能となる。  Therefore, even if the portion of the connection between the wall surface and the rolling member is in a relative rolling movement or stopped, or a large load is applied to the output side member that outputs the power used in the configuration of the present invention. Even if it occurs, sliding is strongly prevented at the connection portion between the wall surface and the rolling member and at the connection portion between the rolling member and the rotating member, and the generation of rotational resistance in the predetermined direction of the rotating member is suppressed, and the power The transmission and rolling rotation of the rolling trajectory can be performed lightly and safely together with the input, transmission, output, and the location of the connection between the wall surface and the rolling member and the rolling movement of the relative position.

(2)…前記(1)で示した構成で、部材間で動力を伝達し出力できる方法並びに該方法を活用される活用手段においては、前記壁面を円形状の内壁或いは外壁と成る壁面で設けることもできる。
例えば前記壁面を、中心軸を中心に回転できる(回転できなくてもよいが)部材に設けられる壁面としながら該中心軸に対して同一半径の円柱状或いは円筒状の部材で該中心軸を中心にされる同一半径の外壁或いは内壁で設けたり、或いは中心位置に対して同一半径の球面状の外壁又は内壁で設けることもできる。
此の構成においては、前記(1)で示した特徴や利点が得られる他に、前記壁面を具備される部材と回転動力を相対的に伝達できることや、前記壁面を具備される部材を回転動力の入力或いは出力される部材として活用できる利点がある。
(2)... In the method shown in the above (1), in which the power can be transmitted and output between members and the utilization means utilizing the method, the wall surface is provided as a circular inner wall or an outer wall. You can also.
For example, the wall surface is a wall surface provided on a member that can rotate around the central axis (although it may not be able to rotate), and the central axis is centered on a columnar or cylindrical member having the same radius with respect to the central axis. The outer wall or the inner wall having the same radius may be provided, or the outer wall or the inner wall having the same radius with respect to the center position may be provided.
In this configuration, in addition to the characteristics and advantages shown in (1) above, the rotational power can be transmitted relatively to the member provided with the wall surface, and the member provided with the wall surface can be used as the rotational power. There is an advantage that it can be used as a member to be input or output.

(3)…部材間で動力を伝達し出力できる方法並びに該方法を活用される活用手段において、
中心位置を中心に略同一半径の球面状の外壁或いは内壁から成る壁面と,前記壁面と圧せられて接続できると共に軸中心に相対的に転がり回転し前記壁面に対して転がり軌跡を伝達できる転がり部材と,前記壁面との間に前記転がり部材を挟みながら前記転がり部材と圧せられて接続できると共に該接続の部位において前記軸中心にされる前記転がり部材の転がり回転の伝達を受けることにより前記軸とは異なる軸中心に所定方向に回転できる回転部材と,前記の壁面と回転部材との間で前記転がり部材を相対的なクサビ状に行き詰まらせることのできる面形状と,前記軸とは異なる軸であって前記中心位置を中心に相対的な角度を得る事が可能な二つの中心軸と,部材間で回転数の相違を伴って回転動力を伝達できる部材であって前記二つの中心軸の内の一方を軸に回転できる部材と他の一方及び前記中心位置を軸に回転できる部材の二つの部材と,前記相違を伴う状態で前記二つの部材間で回転動力が伝達されることにより前記転がり部材は前記回転部材に対し前記所定方向とは交差する方向に転がり移動せしめんとする動力の伝達を受けられ此れによって前記の壁面と回転部材との間で前記転がり部材を相対的なクサビ状に行き詰まらせながら前記二つの部材の少なくても何れかの部材から回転動力の出力が可能にされ該出力されながらも前記の壁面と転がり部材との相対位置(接続の部位であってもよい)の転がり移動と共に前記所定方向へ前記軸中心にされる前記回転部材の回転(継続的或いは非継続的な回転)を可能にされ更に前記角度の大きさによって前記二つの部材間の回転伝達半径比率,回転数並びに回転速度の比率を変えることのできる方法とを活用できる構成にする。
(3) In a method capable of transmitting and outputting power between members and a utilization means utilizing the method,
A wall surface consisting of a spherical outer wall or inner wall with substantially the same radius around the center position, and a roll that can be pressed against and connected to the wall surface and can rotate and rotate relative to the axial center to transmit a rolling trajectory to the wall surface. The rolling member can be connected by being pressed with the rolling member while sandwiching the rolling member between the member and the wall surface, and receiving the transmission of the rolling rotation of the rolling member centered on the shaft at the connection portion. A rotating member capable of rotating in a predetermined direction about an axis center different from the shaft, and a surface shape capable of causing the rolling member to get stuck in a relative wedge shape between the wall surface and the rotating member are different from the shaft. Two central axes capable of obtaining a relative angle with respect to the central position, and members capable of transmitting rotational power with a difference in rotational speed between the members. Rotational power is transmitted between the two members, a member that can rotate around one of the central shafts and a member that can rotate around the other and the central position. As a result, the rolling member receives the transmission of power for rolling and moving in a direction crossing the predetermined direction with respect to the rotating member, and thereby relative to the rotating member between the wall surface and the rotating member. The rotational power can be output from at least one of the two members while being stuck in a typical wedge shape, and the relative position between the wall surface and the rolling member (although it is the connection site) while being output. The rotation member can be rotated (continuous or non-continuous rotation) about the axis in the predetermined direction along with the rolling movement, and the two parts can be controlled according to the angle. Rotation transmission radius ratio between, a configuration that can utilize the method capable of changing the ratio of the rotational speed and rotational speed.

此の構成においては、前記(1)(2)で示した特徴や利点が得られる他に例えば、前記中心位置を中心にして前記二つの中心軸の相対角度を変えることで前記二つの部材間の回転数と回転速度と回転伝達半径比の少なくても何れかの比率を継続的に自在(段を伴わず)に変えられ、変えることによって回転動力を入力される入力側回転部材と回転動力を出力される出力側回転部材間の回転数並びに回転速度の比率を自在(段を伴わず)に変えることのできる前記の仮称「回転数比可変自在機構」を構成できると共に該機構の利点を活用することができる。  In this configuration, in addition to obtaining the features and advantages shown in (1) and (2) above, for example, by changing the relative angle between the two central axes around the central position, The rotation speed, rotation speed, and rotation transmission radius ratio of any of the input side rotating member and the rotation power can be continuously changed freely (without a step), and the rotation power can be input by changing the ratio. The above-mentioned tentative “rotational speed ratio variable mechanism” that can freely change the rotation speed ratio and the rotation speed ratio between the output side rotation members that are output (without a step) can be configured, and the advantages of the mechanism can be obtained. Can be used.

(4)…部材間で動力を伝達し出力できる方法並びに該方法を活用される活用手段において、
中心位置を中心に略同一半径の球面状の内壁から成る壁面と,前記壁面と圧せられて接続できると共に軸中心に相対的に転がり回転し前記壁面に対して転がり軌跡を伝達できる転がり部材と,前記壁面との間に前記転がり部材を挟みながら前記転がり部材と圧せられて接続できると共に該接続の部位において前記軸中心にされる前記転がり部材の転がり回転の伝達を受けることにより前記軸とは異なる軸であって前記中心位置を中心(前記中心位置で無くてもよいが)に所定方向に回転できる回転部材と,前記の壁面と回転部材との間で前記転がり部材を相対的なクサビ状に行き詰まらせることのできる面形状と,前記軸とは異なる軸であって前記中心位置を中心に相対的な角度を得る事が可能な二つの中心軸と,部材間で回転数の相違を伴って回転動力を伝達できる部材であって前記二つの中心軸の内の一方を軸に回転できる部材と他の一方及び前記中心位置を軸に回転できる部材の二つの部材と,前記角度を得られる状態で前記二つの部材の内の一方が回転されることにより前記の壁面と回転部材との間で前記転がり部材を相対的なクサビ状に行き詰まらせながら前記二つの部材の内の他の一方から回転数の相違を伴った回転動力を出力可能にされ該出力されながらも前記の壁面と転がり部材との相対位置(接続の部位であってもよい)の転がり移動と共に前記所定方向へ前記軸中心にされる前記回転部材の回転(継続的或いは非継続的な回転)を可能にされ更に前記角度の大きさによって前記二つの部材間の回転伝達半径比率,回転数並びに回転速度の比率を変えることのできる方法とを活用できる構成にする。
(4) In a method capable of transmitting and outputting power between members and a utilization means utilizing the method,
A wall surface composed of a spherical inner wall of substantially the same radius centered on a center position, a rolling member that can be pressed and connected to the wall surface, and can rotate and rotate relative to the axial center to transmit a rolling trajectory to the wall surface; The shaft can be connected to the rolling member while being pressed with the rolling member between the wall surface and receiving the transmission of the rolling rotation of the rolling member centered on the shaft at the connection portion. Are different shafts that can rotate in a predetermined direction around the center position (although not necessarily at the center position), and a relative wedge between the rolling member between the wall surface and the rotation member. The difference in the rotational speed between the member and the surface shape that can be stuck in the shape, two central axes that are different from the axis and that can obtain a relative angle around the central position, and Companion The angle can be obtained by two members: a member that can transmit rotational power and a member that can rotate about one of the two central shafts and a member that can rotate about the other one and the central position. When one of the two members is rotated in the state, the rolling member is stuck in a relative wedge shape between the wall surface and the rotating member, and the other member is moved from the other one of the two members. Rotational power accompanied by a difference in the number of rotations can be output, and while being output, the center of the axis in the predetermined direction along with the rolling movement of the relative position between the wall surface and the rolling member (which may be a connecting part) The rotation member can be rotated (continuous or non-continuous rotation), and the rotation transmission radius ratio, the rotation speed, and the rotation speed ratio between the two members can be changed according to the size of the angle. Because A configuration that can take advantage of and that way.

此の構成においては、前記(1)(2)(3)で示した特徴や利点が得られる他に、例えば前記(3)で示した仮称「回転数比可変自在機構」の実際の機構を製作する設計,加工,組み立て,部品点数,重量,メンテナンス等についても簡素化できコスト低減可能な利点もある。  In this configuration, in addition to the features and advantages shown in (1), (2), and (3) above, the actual mechanism of the temporary name “rotational speed ratio variable mechanism” shown in (3) above is used. The design, processing, assembly, number of parts, weight, maintenance, etc. to be manufactured can be simplified and the cost can be reduced.

(5)…前記(1)から(4)で示した構成においては、
入力される動力から受ける圧力とは異なる圧力であって、前記の壁面と回転部材との間で前記転がり部材を相対的なクサビ状に行き詰まらせる方向、或いは前記の壁面と転がり部材間、或いは前記の壁面と転がり部材間並びに前記の転がり部材と回転部材間、或いは前記転がり部材を前記回転部材に対し前記所定方向とは交差する方向、で圧することのできる与圧手段を用いた構成が好適である。
此の構成においては、前記(1)から(4)で示した特徴や利点が得られる他に、例えば前記の壁面と回転部材との間で前記の転がり部材を挟みながらクサビ状に行き詰まらせるように圧することにより、前記の壁面と回転部材に対して転がり部材を密着させ、該密着の部位(接続の部位)で摩擦力を得て前記の壁面と転がり部材との接続の部位並びに前記の回転部材と転がり部材との接続の部位において転がり軌跡の伝達が可能となるために構成上或いは用途上或いは稀に起きると懸念される前記接続の部位における摺動を強力に予防し動力の伝達力を失わずに保ち接続の部位の安全性を得られる利点がある。
(5) In the configuration shown in (1) to (4) above,
It is a pressure different from the pressure received from the input power, and the direction in which the rolling member gets stuck in a relative wedge shape between the wall surface and the rotating member, or between the wall surface and the rolling member, or the A configuration using a pressurizing means capable of pressing the rolling member between the wall surface and the rolling member, between the rolling member and the rotating member, or in a direction intersecting the predetermined direction with respect to the rotating member is preferable. is there.
In this configuration, in addition to the characteristics and advantages shown in (1) to (4) above, for example, the rolling member is stuck between the wall surface and the rotating member so as to get stuck in a wedge shape. The rolling member is brought into close contact with the wall surface and the rotating member by applying pressure to the surface, and a frictional force is obtained at the contact portion (connecting portion) to connect the wall surface to the rolling member and the rotation. Since the rolling trajectory can be transmitted at the connection portion between the member and the rolling member, it is possible to strongly prevent the sliding at the connection portion, which is concerned about structurally, usage, or infrequently, and to transmit power. There is an advantage that the safety of the connection part can be obtained without being lost.

(6)…前記(1)から(5)で示した構成においては、
共通の中心軸を中心に回転可能に保持される第1回転部材と第2回転部材と第3回転部材と、前記の第1回転部材と第2回転部材の双方と回転伝達できると共に前記共通の中心軸とは異なる軸中心に前記第3回転部材に回転可能に保持される被保持回転部材とを具備されて、第1回転部材と第2回転部材と第3回転部材と被保持回転部材間で回転数の相違を可能にしながら回転動力の伝達のできる構成の機構を用いられて動力を出力されるか或いは前記第1,第2,第3回転部材の内の少なくても二つは前記(1)から(5)で示した構成に入力される動力と前記構成から出力される動力の伝達を受けて回転できる接続構成が好適である。
此の構成においては、前記(1)〜(5)で示した特徴や利点が得られる他に、例えば外部の回転動力を前記(1)〜(5)で示した構成に具備される回転可能に保持される部材と前記第1,第2,第3回転部材の内の少なくても一つの部材に伝達すれば何れかの部材を速度ゼロの状態から自在(段を伴わずに)に加速させる事や或いは正方向と逆方向へ自在(段を伴わずに)に加速或いは減速或いは回転数並びに回転速度を自在に変化可能にできる利点も得られる。
従って、本発明の活用手段からなる動力伝達機構並びに該機構と連携して機能できる複合的な装置を構成させることもできる。
(6) In the configuration shown in (1) to (5) above,
The first rotating member, the second rotating member, the third rotating member, and the first rotating member and the second rotating member, which are rotatably held around a common central axis, can transmit rotation to both the first rotating member and the second rotating member. A held rotating member rotatably held by the third rotating member at an axis center different from the central axis, and between the first rotating member, the second rotating member, the third rotating member, and the held rotating member; The power is output by using a mechanism capable of transmitting rotational power while enabling the difference in rotational speed, or at least two of the first, second and third rotating members are A connection configuration that can rotate by receiving the power input to the configuration shown in (1) to (5) and the power output from the configuration is preferable.
In this configuration, in addition to obtaining the features and advantages shown in the above (1) to (5), for example, an external rotational power can be provided in the configuration shown in the above (1) to (5). If any member is transmitted to at least one of the members held by the first member, the first member, the second member, and the third rotating member, any member can be freely accelerated from a zero speed state (without a step). There is also an advantage that acceleration or deceleration or the number of rotations and the rotation speed can be freely changed freely or in a direction opposite to the forward direction (without steps).
Therefore, it is possible to configure a power transmission mechanism comprising the utilization means of the present invention and a complex apparatus that can function in cooperation with the mechanism.

(7)…前記記載の構成に示した二つの中心軸であって、該二つの中心軸の両方或いは何れか一方を移動し二つの中心軸間の相対角度を変えることのできる中心軸移動手段を設けられた構成において、
相対的な部材間における状態で例えば、距離の縮小,距離の増加,必要以上の接近,衝突の危険性,衝突、の少なくても何れかの状態を伝達できる伝達手段からの伝達を受けて或いは前記相対的な部材からの伝達に連携されて前記相対角度が変更され前記相対的な部材の少なくても一方の速度を減速或いは加速させて前記相対的な部材間における速度差を減少させること或いは速度差を増加させることの少なくても何れかを可能にする構成を用いることもできる。
此の構成においては、前記(1)〜(6)で示した少なくても何れかの構成と組み合わせて車両(二輪車,自動車,列車,その他の車輪を設けられた移動手段等)を走行させることのできる動力を出力可能に車両に搭載した場合は、前記接続の部位における摺動を予防されながらアクセルを緩めずブレーキを踏まずとも前記相対角度の変更に連携した減速と停止,或いはアクセルを踏まずとも前記相対角度の変更に連携した加速を瞬時に実現できる利点と、衝突等による損傷や障害を予防或いは緩和できる利点を得ることが可能となる。
(7)... Two central axes shown in the configuration described above, wherein the central axis moving means can move both or any one of the two central axes and change the relative angle between the two central axes. In the configuration provided with
In a state between relative members, for example, receiving a transmission from a transmission means capable of transmitting at least one of the following states: reduction in distance, increase in distance, approaching more than necessary, danger of collision, collision The relative angle is changed in conjunction with transmission from the relative member, and at least one speed of the relative member is reduced or accelerated to reduce a speed difference between the relative members, or It is also possible to use a configuration that enables at least any increase in the speed difference.
In this configuration, the vehicle (two-wheeled vehicle, automobile, train, moving means provided with other wheels, etc.) is driven in combination with at least one of the configurations shown in the above (1) to (6). When the vehicle is mounted on the vehicle so as to be able to output motive power capable of being output, it is possible to decelerate and stop in conjunction with the change in the relative angle without stepping on the brake without loosening the accelerator while preventing sliding at the connected part, or stepping on the accelerator. First of all, it is possible to obtain the advantage that the acceleration linked with the change of the relative angle can be realized instantaneously, and the advantage that the damage and failure due to the collision can be prevented or alleviated.

(8)…前記各構成の少なくても何れかの構成と連携して機能できるように構成される装置においては、
相対位置を移動できる或いは移動させる事のできる移動装置(例えば自動車を含めた移動手段),電気を発電し出力させる事のできる発電機や発電所や発電設備等の相対的な発電装置,その他の構造物を含めた相対的な装置とは少なからず連携し機能できるように構成すると共に、前記の転がり部材と回転部材との接続の部位で前記転がり部材を前記回転部材に対し前記所定方向とは交差する方向に転がり移動せしめんとする動力による圧力と前記回転部材の前記所定方向への回転を伴うことで動力或いは相対的なエネルギーを出力できるように構成させる。
此の構成を用いることにより、例えば前記接続の部位における駆動抵抗を低減しながら安全性と耐久性を高められ出力速度の加速,減速等、タイムラグを伴わず瞬時に自在な速度に変化させることが可能となり出力の伝達を受ける装置は省エネルギー効果と求める相対的な速度を瞬時に安全に得られる利点がある。
(8) In an apparatus configured to be able to function in cooperation with at least one of the respective configurations,
A moving device that can move or move the relative position (for example, a moving means including an automobile), a generator that can generate and output electricity, a relative power generating device such as a power plant or a power generation facility, etc. It is configured so that it can function in cooperation with a relative device including a structure, and the predetermined direction with respect to the rotating member is the rolling member at the site of connection between the rolling member and the rotating member. The power or relative energy can be output by accompanying the pressure by the power to roll and move in the intersecting direction and the rotation of the rotating member in the predetermined direction.
By using this configuration, for example, safety and durability can be improved while reducing the driving resistance at the connection part, and the output speed can be instantly changed to a free speed without any time lag, such as acceleration or deceleration of the output speed. A device that can transmit power and has the advantage of being able to instantaneously and safely obtain the energy saving effect and the desired relative speed.

(9)…前記の各構成或いは装置を用い、動力を含めた相対的なエネルギーの出力方法においては、
前記二つの中心軸間に相対的な角度を得られる状態で前記二つの部材の内の一方が回転されることにより前記接続の部位において前記所定方向とは交差される方向に向かう圧力或いは前記転がり部材を前記回転部材に対し前記所定方向とは交差する方向に転がり移動せしめんとする圧力の少なくても何れかの動力による圧力の伝達を受けられて前記の壁面と回転部材との間で転がり部材を相対的なクサビ状に行き詰まらせながら前記所定方向に前記回転部材の往復回転運動の繰り返しを伴って出力される方法或いは構成を用いることが好適である。
(9) ... In the relative energy output method including the power using each of the above-described configurations or devices,
When one of the two members is rotated in a state where a relative angle can be obtained between the two central axes, the pressure or the rolling toward the direction intersecting the predetermined direction at the connection portion is obtained. The member is rolled between the wall surface and the rotating member by receiving the pressure transmitted by any power even if the pressure for rolling and moving the member in the direction intersecting the predetermined direction with respect to the rotating member is small. It is preferable to use a method or a configuration in which a member is stuck in a relative wedge shape and is output with repeated reciprocating rotational movement of the rotating member in the predetermined direction.

此の構成を用いることにより、例えば前記の壁面と転がり部材との接続の部位並びに前記の転がり部材と回転部材との接続の部位で相対的な転がり軌跡の伝達を前記転がり部材の往復回転運動の繰り返しにより行われ、前記転がり部材の往復回転運動によって前記回転部材も前記所定方向に往復回転運動を繰り返されることが可能となる。
この往復回転運動によって前記の転がり部材と回転部材は一定回転方向への慣性(イナーシャ)運動を繰り返し消滅されて、前記構成(例えば動力伝達機構)から出力される回転速度が増速或いは減速される場合であっても前記壁面と転がり部材との接続の部位並びに転がり部材と前記回転部材との接続の部位における不必要な慣性力(イナーシャ)並びに摺動を予防することのできる利点が有る。
又、前記接続の部位における駆動抵抗並びに摺動を予防しながら部材間における回転数並びに回転速度の比率をタイムラグを伴わずに瞬時に自在(段を伴わず)に変化させることが可能であるため資源の消費を低減しながら回転動力の出力を含めてエネルギーの瞬時の自在な増減を可能にできる利点が得られる。
By using this configuration, for example, the transmission of the relative rolling trajectory at the site of connection between the wall surface and the rolling member and the site of connection between the rolling member and the rotating member is transmitted to the reciprocating rotational motion of the rolling member. The reciprocating motion of the rolling member is repeated, and the rotating member can be reciprocated in the predetermined direction.
By this reciprocating rotational motion, the rolling member and the rotational member are repeatedly extinguished by inertia (inertia) motion in a constant rotational direction, and the rotational speed output from the configuration (for example, power transmission mechanism) is increased or decreased. Even in this case, there is an advantage that unnecessary inertia force (inertia) and sliding can be prevented at the connection portion between the wall surface and the rolling member and at the connection portion between the rolling member and the rotation member.
In addition, it is possible to change the rotation speed and the rotation speed ratio between the members instantly and freely without any time lag (without a step) while preventing the driving resistance and sliding at the connected portion. There is an advantage that energy can be instantaneously increased and decreased including the output of rotational power while reducing the consumption of resources.

部材間の接続の部位における速度差の伝達並びに摺動を予防或いは低減できる手段を用い、前記接続の部位における相対的な摩擦力により部材間で動力を伝達し出力できる方法並びに該方法を活用される活用手段,並びに該活用手段を用い動力を含めた相対的なエネルギーの出力方法について、その例を実施の形態(構成の例)として統一した用語と記号を用いて以下に説明する。  A method capable of transmitting or outputting power between members by means of a relative frictional force at the connection portion using means capable of preventing or reducing transmission of a speed difference and sliding at a connection portion between members, and the method are utilized. The use means and the relative energy output method including the power using the use means will be described below using terms and symbols unified as an embodiment (example of configuration).

図1と図2は、前記に示した部材間で動力を伝達し出力できる方法並びに該方法を活用される活用手段の一例であって、部材間の接続の部位における摺動を予防できる手段を用いた動力伝達機構の第1実施形態の特徴を示す図であると共に前記に示した仮称「回転数比可変自在機構」の実施形態の特徴を示す図である。
図1(a)は相対角度を有する中心軸11と12を基に表した平面の断面図、
図1(b)は同軸上に位置する中心軸11と12を基に表した平面及び立面の断面図、
図2(c)は前記図1(b)の右側面の断面図、
図2(d)は前記図2(c)に示す点線で四角く囲んだ部分の拡大図である。
FIGS. 1 and 2 are examples of a method for transmitting and outputting power between the above-described members, and a means for utilizing the method, and means for preventing sliding at a connection portion between the members. It is a figure which shows the characteristic of 1st Embodiment of the used power transmission mechanism, and is a figure which shows the characteristic of embodiment of the temporary name "rotational speed ratio variable mechanism" shown above.
FIG. 1A is a cross-sectional view of a plane based on central axes 11 and 12 having a relative angle,
FIG. 1 (b) is a cross-sectional view of a plane and an elevation surface based on the central axes 11 and 12 located on the same axis,
FIG. 2C is a cross-sectional view of the right side surface of FIG.
FIG. 2D is an enlarged view of a portion surrounded by a dotted line shown in FIG.

先ず、図1と図2に示す第1実施形態の構成の概略について説明する。  First, the outline of the configuration of the first embodiment shown in FIGS. 1 and 2 will be described.

中心位置6に対して略同一半径の球面状の壁面21(図1に示す壁面21は外壁面としている)を設けられた部材1と,中心位置6を通る中心軸11並びに中心位置6を中心に部材1を図中の回転方向fに回転可能に保持(軸支と同意味で用いている)する保持部材4と,前記回転方向fとは相対的な角度を有する方向(例えば図中の矢印方向g)へ前記壁面21に対する相対的な転がり軌跡の伝達を可能に接続される複数の転がり部材5(図に示す転がり部材5は球体としている)と,中心軸11とは異なる軸であって中心位置6を通る中心軸12並びに中心位置6を中心に図中の回転方向hに回転可能に保持される部材であって中心軸12に対して距離を設けられる位置で中心軸12に対して相対的な角度(図中では略90度)を有する軸13を中心に転がり部材5を回転可能に保持し且つ中心軸12に対して略平行と成ると共に軸13と交差される軸14を中心に転がり部材5を僅かながらも回動可能に保持し且つ中心位置6と中心軸11と中心軸12の少なくても何れかに対してその半径方向に僅かながらも移動可能に前記転がり部材5を保持する保持部材2と,転がり部材5を壁面21との間に挟みながら軸13を中心にされる転がり部材5の回転の伝達を受けることにより回転される複数の回転部材7と,前記中心軸11と12と軸13と14とは異なる軸であって前記中心軸12とは相対的な角度(図1,2では相対的に略90度)を有する軸15を中心に所定方向(図中の回転方向k)に前記回転部材7を回転可能に保持すると共に中心軸12と中心位置6を中心に前記保持部材2を相対的に僅かながらも回動可能に保持する保持部材3と,中心軸12と中心位置6を中心に保持部材3と保持部材2とを図中の回転方向hに相対的に回転可能に保持する保持部材8と,軸13を中心にされる転がり部材5の回転方向j並びに軸15を中心にされる回転部材7の回転方向kとは相対的な角度を有する方向で中心位置6と中心軸11と中心軸12の少なくても何れかを中心にした回転動力による圧力を壁面21と転がり部材5との接続の部位m並びに転がり部材5と回転部材7との接続の部位nで相対的に受けることによって壁面21と回転部材7との間で転がり部材5を相対的なクサビ状に行き詰まらせることができる面形状とを相対的に設けて構成したものである。The member 1 provided with a spherical wall surface 21 having substantially the same radius with respect to the center position 6 (the wall surface 21 shown in FIG. 1 is an outer wall surface), the center axis 11 passing through the center position 6, and the center position 6 are the center. The holding member 4 that holds the member 1 rotatably in the rotation direction f in the drawing (used in the same meaning as the shaft support) and the rotation direction f have a relative angle (for example, in the drawing A plurality of rolling members 5 (the rolling member 5 shown in the figure is a sphere) connected so as to be able to transmit a relative rolling trajectory relative to the wall surface 21 in the direction of the arrow g) are different from the central axis 11. the central axis 12 at the central axis 12 and the center position 6 rotatably a member held that provided the distance to the central axis 12 located in the rotation direction h in FIG mainly through the center position 6 Te having a relative angle (approximately 90 degrees in the figure) for 13 also rotatably held and slightly member 5 rolling about an axis 14 which is intersecting the axis 13 with made substantially parallel to rotatably held and the central axis 12 of the member 5 rolling around the A holding member 2 that holds the rolling member 5 so as to be slightly movable in the radial direction with respect to at least one of the central position 6, the central axis 11, and the central axis 12, and the rolling member 5 with the wall surface 21. The plurality of rotating members 7 rotated by receiving the transmission of the rotation of the rolling member 5 centered on the shaft 13 while being sandwiched therebetween, and the central shafts 11 and 12 and the shafts 13 and 14 are different shafts. The rotary member 7 is rotatably held in a predetermined direction (rotation direction k in the drawing) around an axis 15 having an angle relative to the central axis 12 (relatively about 90 degrees in FIGS. 1 and 2). And centering on the central axis 12 and the central position 6 The holding member 3 that holds the holding member 2 in a relatively slightly rotatable manner, and the holding member 3 and the holding member 2 with respect to the center axis 12 and the center position 6 relative to the rotation direction h in the figure. The holding member 8 that is rotatably held, the rotation direction j of the rolling member 5 centered on the shaft 13 and the rotation direction k of the rotating member 7 centered on the shaft 15 are in a direction having a relative angle. Pressure due to rotational power centered on at least one of the central position 6, the central shaft 11, and the central shaft 12 is applied to the connection portion m between the wall surface 21 and the rolling member 5 and the connection between the rolling member 5 and the rotating member 7. By relatively receiving at the part n, a surface shape capable of causing the rolling member 5 to get stuck in a relative wedge shape between the wall surface 21 and the rotating member 7 is provided relatively.

前記構成は、中心軸11を中心に回転可能に保持される部材1と中心軸12を中心に回転可能に保持される保持部材3間と、中心軸11を中心に回転可能に保持される部材1と中心軸12を中心に回転可能に保持される保持部材2間と、中心軸12を中心に回転可能に保持される保持部材3と保持部材2間と、軸13を中心に回転できる転がり部材5と軸15を中心に回転できる回転部材7間での回転動力の伝達と出力のできる構成である。
又、中心位置6を中心に回転可能に保持される部材1と保持部材3間と、中心位置6を中心に回転可能に保持される部材1と保持部材2間と、中心位置6を中心に回転可能に保持される保持部材3と保持部材2間での回転動力の伝達と出力のできる構成である。
又、転がり部材5と回転部材7との接続の部位nにおいては、軸13を中心に回転できる転がり部材5と軸15を中心に回転できる回転部材7間での回転動力の伝達を可能にし、保持部材3と保持部材2間での回転動力の伝達と出力を可能にできる構成である。
又、壁面21と転がり部材5との接続の部位mにおいては壁面21に対して転がり部材5の相対的な転がり軌跡の伝達と、壁面21に対して接続の部位mの相対的な転がり移動と、部材1と保持部材2並びに保持部材3間での回転動力の伝達と出力を可能にできる構成である。
又、接続の部位mとnを用いることによって部材1と保持部材2と保持部材3間並びに壁面21と転がり部材5と回転部材7間での回転動力の相対的な伝達と出力を可能にする構成である。
In the above-described configuration, the member 1 held rotatably around the central axis 11 and the holding member 3 held rotatably around the central axis 12 and the member held rotatably around the central axis 11 1 and the holding member 2 that is rotatably held around the central shaft 12, between the holding member 3 and the holding member 2 that is rotatably held around the central shaft 12, and a rolling that can rotate around the shaft 13. In this configuration, rotational power can be transmitted and output between the rotating member 7 that can rotate around the member 5 and the shaft 15.
Further, between the member 1 and the holding member 3 that are rotatably held around the center position 6, between the member 1 and the holding member 2 that are rotatably held around the center position 6, and around the center position 6. This is a configuration that can transmit and output rotational power between the holding member 3 and the holding member 2 that are rotatably held.
In addition, in the connection portion n between the rolling member 5 and the rotating member 7, it is possible to transmit rotational power between the rolling member 5 that can rotate around the shaft 13 and the rotating member 7 that can rotate around the shaft 15. This is a configuration that enables transmission and output of rotational power between the holding member 3 and the holding member 2.
In addition, in the connection portion m between the wall surface 21 and the rolling member 5, the transmission of the relative rolling locus of the rolling member 5 with respect to the wall surface 21 and the relative rolling movement of the connection portion m with respect to the wall surface 21. In this configuration, transmission and output of rotational power between the member 1, the holding member 2 and the holding member 3 can be made possible.
Further, by using the connection parts m and n, it is possible to relatively transmit and output rotational power between the member 1, the holding member 2, and the holding member 3 and between the wall surface 21, the rolling member 5, and the rotating member 7. It is a configuration.

又、中心軸11と12とが同一軸上から中心位置6を中心に相対的な角度を有する状態に至って或いは中心軸11と12とが相対的な角度の変更に至って、壁面21に対して軸13を中心にする転がり部材5の転がり回転と軸15を中心にする回転部材7の回転が成され中心軸11に対してその半径方向に接続の部位mが摺動を伴わずに転がり移動できる機能と、接続の部位mとnの少なくても何れかで部材間における相対的なスピン(部材間における相対的な回転或いは方向転換等を意味させている)のできる機能とを具備される構成である。
又、接続の部位mとnにおいては、相対的な転がり軌跡の伝達と圧力の増加並びに摩擦力の増加を可能にする方法を用いて接続の部位mとnにおける摺動を予防し、部材1と保持部材2と保持部材3間での回転動力の伝達と出力と,部材1と保持部材3(保持部材2を含む)間での回転伝達半径比率の変更に同期し瞬時に回転数並びに回転速度の比率を自在(段を伴わず)に継続的に変化させることのできる構成である。
つまりは、前記に示した部材間の接続の部位における摺動を予防できる手段を用いられ該接続の部位における摩擦力によって動力を伝達し出力できる方法を用い活用される動力伝達機構であると共に前記に説明した仮称「回転数比可変自在機構」である。
In addition, the central axes 11 and 12 have a relative angle with respect to the center position 6 from the same axis, or the central axes 11 and 12 have changed relative angles, and the wall surface 21 is changed. The rolling member 5 is rotated about the shaft 13 and the rotating member 7 is rotated about the shaft 15, and the portion m connected in the radial direction with respect to the central shaft 11 rolls and moves without sliding. And a function capable of performing relative spin (meaning relative rotation or direction change between the members) at least in any of the connection portions m and n. It is a configuration.
Further, at the connection parts m and n, the sliding at the connection parts m and n is prevented by using a method enabling transmission of a relative rolling trajectory, an increase in pressure, and an increase in friction force. Rotation speed and rotation are instantaneously synchronized with the transmission and output of rotational power between the holding member 2 and the holding member 3 and the change of the rotation transmission radius ratio between the member 1 and the holding member 3 (including the holding member 2). In this configuration, the speed ratio can be continuously changed freely (without a stage).
That is, it is a power transmission mechanism that is used by using a method that can prevent the sliding at the connection portion between the members described above and can transmit and output the power by the frictional force at the connection portion. Is the tentative name “rotational speed ratio variable mechanism” described in (1).

次に、図1と図2に示す第1実施形態の構成の詳細ついて説明する。  Next, details of the configuration of the first embodiment shown in FIGS. 1 and 2 will be described.

部材1においては、保持部材3(保持部材2を含む)と部材1間で回転数の相違を伴って回転動力を伝達可能にする為に、接続の部位m並びに転がり部材5が中心軸11に対して相対的な半径方向に転がり移動できるように中心位置6を中心にする同一半径の滑らかな球面状の外壁から成る壁面21を具備させている。又、転がり部材5がクサビ状に行き詰まることによって生じられる接続の部位mにおける圧力を中心位置6に直行させず迂回させ弾力的に受けることによって壁面21と転がり部材5の疲労破壊を防ぐために中心軸11を中心に円筒状の丸穴(貫通でも止まり穴でも良い)を設け、丸穴内に回転軸34を挿入し相対的に供回りできるように組みつけて固定し部材1を相対的に構成させているが、壁面21と回転軸34を一体的に構成し回転軸34内に中心軸11を中心にされる丸穴を設けても同様の効果を得ることが可能である。  In the member 1, the connection part m and the rolling member 5 are connected to the central shaft 11 in order to transmit rotational power with a difference in the rotational speed between the holding member 3 (including the holding member 2) and the member 1. On the other hand, a wall surface 21 comprising a smooth spherical outer wall having the same radius and centering on the center position 6 is provided so as to be able to roll and move in a relative radial direction. In order to prevent fatigue damage of the wall surface 21 and the rolling member 5 by receiving the pressure at the connection portion m generated by the rolling member 5 being stuck in a wedge shape without causing it to go straight to the central position 6 and elastically receiving it, the central shaft 11 is provided with a cylindrical round hole (which may be a through hole or a blind hole), and a rotating shaft 34 is inserted into the round hole and assembled and fixed so that it can be relatively rotated. However, the same effect can be obtained even if the wall surface 21 and the rotary shaft 34 are integrally formed and a round hole centered on the central axis 11 is provided in the rotary shaft 34.

転がり部材5においては、軸13と14を中心とする固定的な回転と回動の方向に限定されず何れの方向にも転がり回転可能な球体を用い、接続の部位mとnで受ける圧力によって転がり部材5と壁面21の疲労破壊を防ぐために中心軸12及び中心位置6に対して略垂直となるべき位置であって壁面21に対してその円周面で90度間隔で4個配置させ動力よる圧力を分割して受けることを可能にしている。  The rolling member 5 is not limited to the direction of fixed rotation and rotation about the shafts 13 and 14, but is a sphere that can rotate and rotate in any direction, and depending on the pressure received at the connection parts m and n. In order to prevent fatigue failure of the rolling member 5 and the wall surface 21, four powers are arranged at 90 ° intervals on the circumferential surface of the wall surface 21 that should be substantially perpendicular to the central axis 12 and the central position 6. It is possible to receive the pressure by dividing.

転がり部材5を前記で云う回転可能に保持する構成は、軸13を中心に回転可能に保持できる転がり軸受け41(図2で示すフランジ付きのラジアルベアリング)を二つ用いて軸13の向く方向の転がり部材5の両端の球面を転がり軸受け41に具備される内輪同士で挟み転がり部材5が転がり軸受け41から外れずに精度良く保持しながら転がり部材5の軽やかな回転を可能にさせている。  The structure for holding the rolling member 5 so as to be rotatable as described above uses two rolling bearings 41 (radial bearings with flanges shown in FIG. 2) capable of holding the rolling member 5 so as to be rotatable around the shaft 13. The rolling members 5 are held between the inner rings provided on the rolling bearings 41 with the inner rings provided at both ends of the rolling members 5 so that the rolling members 5 can be lightly rotated while holding the rolling members 5 accurately without being detached from the rolling bearings 41.

転がり部材5を前記で云う回動可能に保持する構成は、転がり部材5が二つの転がり軸受け41の内輪に挟まれて保持される状態で軸14を中心に僅かながらのスムーズな回動ができる範囲で構成させている。  The configuration in which the rolling member 5 is rotatably held as described above allows a slight smooth rotation about the shaft 14 while the rolling member 5 is held between the inner rings of the two rolling bearings 41. It is made up of a range.

転がり部材5を中心位置6と中心軸11と中心軸12の少なくても何れかに対してその半径方向(接近或いは離れる方向)へ移動可能にする構成は、図1と図2で示すように転がり部材5と転がり軸受け41が保持部材2から外れず必要な精度を保つ範囲で転がり軸受け41の有する外輪とフランジを保持部材2に対して僅かながらも前記半径方向にスライド移動可能に保持させており、転がり部材5と壁面21間並びに転がり部材5と回転部材7間の密着を可能にし転がり部材5をクサビ状に行き詰まらせることのできる可動範囲で構成している。  As shown in FIGS. 1 and 2, the rolling member 5 can be moved in the radial direction (approaching or moving away) with respect to at least one of the center position 6, the center axis 11, and the center axis 12. The outer ring and the flange of the rolling bearing 41 are held so as to be slightly slidable in the radial direction with respect to the holding member 2 as long as the rolling member 5 and the rolling bearing 41 are not detached from the holding member 2 and the required accuracy is maintained. Therefore, the rolling member 5 and the wall surface 21 as well as the rolling member 5 and the rotating member 7 can be in close contact with each other, and the rolling member 5 is configured in a movable range that can be wedged.

回転部材7を軸15を中心に回転可能に保持する構成は、例えば中心に対して同一半径となる凹んだリング状の軌道と,該軌道に対して転がり回転し転がり軌跡の伝達できる転動体と,前記軌道との間に転動体を挟みながら前記転動体の転がり回転と共に前記中心を軸にして回転できる部材とを相対的に用いられて構成されるラジアルベアリング,スラストベアリング,アンキュラベアリング,その他等を含めて「転がり軸受け」と呼称される転がり軸受け構造を用いており、図1と図2においては転がり軸受け42(軸15の向く軸方向からの圧力を受けて支えることのできるスラストベアリング)と転がり軸受け43(軸15の半径方向或いはラジアル方向からの圧力を受けて支えることのできるニードル形ラジアルベアリング)を用い、前記クサビ状に行き詰まる状態で接続の部位mとnで受ける強力な圧力に対してスラスト方向とラジアル方向の両方向で支えながら精度を保って軽快に回転できるように回転部材7並びに保持部材3に対して転がり軸受け42と43を相対的に係合させて取り付けている。  The configuration in which the rotating member 7 is rotatably held around the shaft 15 includes, for example, a concave ring-shaped track having the same radius with respect to the center, and a rolling element that rotates and rotates with respect to the track and can transmit the rolling track. , Radial bearings, thrust bearings, ancillary bearings, and the like that are configured by relatively using members that can rotate about the center together with the rolling rotation of the rolling elements while sandwiching the rolling elements between the track and the track. 1 and 2, a rolling bearing structure 42 (a thrust bearing that can be supported by receiving pressure from the axial direction of the shaft 15) is used. And rolling bearings 43 (needle type radial bearings that can be supported by receiving pressure from the radial direction or radial direction of the shaft 15) The rotating member 7 and the holding member 3 can be rotated easily while maintaining accuracy while supporting in both the thrust direction and the radial direction against the strong pressure received at the connection parts m and n in a state where the wedge is stuck. Thus, the rolling bearings 42 and 43 are relatively engaged with each other.

転がり部材5の球面と接続される回転部材7の面は、図1と図2で示すように軸15の向く軸方向の面であって軸15から半径方向に等距離で設けられたリング状に構成された図示の凹んだ曲面状の溝31内の底部付近の回転面32とし、前記の個々の転がり部材5には個々の回転部材7を一個づつ合計4個用いて接続させ、接続の部位nにおける圧力と摩擦力による疲労破壊等の障害を緩和し耐久性と安全性を図れる構成としている。  The surface of the rotating member 7 connected to the spherical surface of the rolling member 5 is an axial surface facing the shaft 15 as shown in FIGS. 1 and 2, and is a ring shape provided at an equal distance from the shaft 15 in the radial direction. The rotating surface 32 in the vicinity of the bottom of the concave curved groove 31 shown in the figure is configured, and the individual rolling members 5 are connected to each of the rolling members 5 using a total of four, one by one. The configuration is such that durability and safety can be achieved by relieving obstacles such as fatigue failure due to pressure and frictional force at the site n.

回転部材7に具備される曲面状の溝31は、図2に示すように中心位置6と回転面32間の半径より小さな半径であると共に球体から成る転がり部材5の球面の半径より僅かに大きな曲率の半径であって転がり部材5を相対的にはクサビ状に行き詰まらせることのできる面形状で前記の通りリング状に構成させている。  The curved groove 31 provided in the rotating member 7 has a radius smaller than the radius between the center position 6 and the rotating surface 32 as shown in FIG. 2 and is slightly larger than the radius of the spherical surface of the rolling member 5 made of a sphere. As described above, the rolling member 5 is configured in the shape of a ring having a radius of curvature and capable of causing the rolling member 5 to become relatively wedge-shaped.

転がり部材5の球面と接続される回転部材7の接続の部位nは、中心軸12を中心にする保持部材3の回転方向に対して軸15を中心にする回転部材7の回転方向が相対的に交わる位置であると共に中心軸12並びに中心位置6に対して略垂直となる位置或いはその付近になる位置とし、壁面21と回転部材7との間で転がり部材5を前記接続の部位mとnにおいて相対的にクサビ状に行き詰まらせることのできる位置構成としている。  In the connection portion n of the rotating member 7 connected to the spherical surface of the rolling member 5, the rotation direction of the rotating member 7 about the axis 15 is relative to the rotation direction of the holding member 3 about the center axis 12. And a position that is substantially perpendicular to or near the central axis 12 and the central position 6, and the rolling member 5 is connected between the wall surface 21 and the rotating member 7 to the connection parts m and n. In this case, the position is configured to be relatively wedge-shaped.

壁面21と回転部材7との間で転がり部材5をクサビ状に行き詰まらせることができる面形状とは、図2(c)(d)で示すように壁面21と曲面状の溝31の間に位置される球体から成る転がり部材5が矢印方向pとqのどちらの方向に向かっても段を伴う事なく緩やかに相対的なクサビ状に行き詰まることのできる面形状で示し、壁面21と溝31並びに回転面32とで前記面形状を相対的に構成している。
又、此のクサビ状に行き詰まることは、前記の壁面21と回転部材7の間で転がり部材5を挟み合って相対的な梃子の原理或いは作用反作用の法則に類似した機能によって前記壁面21と転がり部材5との接続の部位m並びに転がり部材5と回転部材7との接続の部位nにおける圧力と摩擦力をゼロの状態から段を伴わずスムーズに高めることもできる為、例えどのように大きな負荷が該動力伝達機構に具備される出力側回転部材に伝達されても負荷の大きさに対応し比例するように必要な範囲の前記圧力と摩擦力を作り出すことが可能となる。
As shown in FIGS. 2 (c) and 2 (d), the surface shape capable of causing the rolling member 5 to get stuck in a wedge shape between the wall surface 21 and the rotating member 7 is between the wall surface 21 and the curved groove 31. The rolling member 5 composed of a spherical body is shown in a surface shape that can slowly get stuck in a relative wedge shape without any step in either of the arrow directions p and q. In addition, the surface shape is relatively constituted by the rotating surface 32.
Further, this wedge-shaped bouncing occurs when the rolling member 5 is sandwiched between the wall surface 21 and the rotating member 7, and the wall surface 21 rolls with a function similar to the principle of relative lever or the law of action and reaction. Since the pressure and frictional force at the connection part m with the member 5 and the connection part n between the rolling member 5 and the rotating member 7 can be increased smoothly from zero to no step, for example, how much load Even when the power is transmitted to the output side rotation member provided in the power transmission mechanism, it is possible to create the necessary pressure and frictional force in a range corresponding to the magnitude of the load.

保持部材2及び保持部材3に対して部材1との回転伝達半径比率並びに回転数の比率を相対的に自在に(段を伴わず)変更できる構成,並びに中心位置6を中心に中心軸11と12間の相対角度を自在に(段を伴わず)スムーズに変更できる構成は、保持部材4と8の少なくても何れかを前記中心軸11或いは12を中心とする回転方向に対して相対角度を有する方向であって中心位置6を中心に矢印方向gに回動させて中心軸11と12の少なくても何れかの相対位置を移動させる事のできる中心軸移動手段を設けて構成している。  A configuration in which the ratio of the rotation transmission radius to the member 1 and the ratio of the number of rotations with respect to the holding member 2 and the holding member 3 can be changed relatively freely (without a step), and the central axis 11 with the center position 6 as the center The configuration in which the relative angle between 12 can be changed freely (without a step) is such that at least one of the holding members 4 and 8 is a relative angle with respect to the rotation direction around the central axis 11 or 12. A center axis moving means is provided which is capable of moving at least one of the relative positions of the center axes 11 and 12 by rotating in the arrow direction g around the center position 6. Yes.

中心軸12を中心にする保持部材3と保持部材2間の回転伝達構成は、保持部材3に相対的に取り付けている回転部材7に具備される曲面状の溝31と,保持部材2に相対的に取り付けている転がり部材5との接続によって図2(c)(d)で示すように中心軸12を中心にする回転方向における拘束或いは中心軸12を中心にする回転方向における相対的な凹凸の組み合わせを成立させ保持部材3と保持部材2間において略1:1の比率での回転伝達を可能に構成している。  The rotation transmission configuration between the holding member 3 and the holding member 2 around the central shaft 12 is relative to the curved groove 31 provided in the rotating member 7 attached to the holding member 3 and the holding member 2. 2 (c) and 2 (d), the constraining in the rotational direction around the central axis 12 or the relative irregularities in the rotational direction around the central axis 12 as shown in FIGS. Thus, the rotation transmission at a ratio of approximately 1: 1 is possible between the holding member 3 and the holding member 2.

保持部材3と保持部材2間での中心軸12を中心に相対的に僅かながらも軽やかに回動可能とした構成は、転がり部材5をクサビ状に行き詰まらせる時に壁面21と回転部材7に対して転がり部材5は軸14を中心にする僅かながらの転がり回転と転がり軌跡の伝達が生じられる場合があり、此の場合は接続の部位mとnの位置が異なるために部材1と保持部材2と保持部材3間には相対位置の物理的なズレが生じられることもあり、このズレに応じられるように保持部材2を中心軸12を中心に保持部材3に対して相対的に僅かながらも軽やかに回動可能にさせ且つ中心軸12に対して平行に移動させずに精度を保てるようにガイドレール51とボルトの頭部52によって保持部材3に取り付けて保持部材3と保持部材2間では滑り軸受け構造を構成させているが転がり軸受け構造を設けることも可能である。
しかし、該構成に限定せず前記ズレを吸収できる手段を用いて保持部材2と保持部材3を一体的或いは相対的に締結して構成する事も可能である。
The structure in which the rotation between the holding member 3 and the holding member 2 can be relatively lightly rotated about the central axis 12 with respect to the wall surface 21 and the rotating member 7 when the rolling member 5 is stuck in a wedge shape. In this case, the rolling member 5 may have a slight rolling rotation around the shaft 14 and transmission of the rolling trajectory. In this case, since the positions of the connection parts m and n are different, the member 1 and the holding member 2 are used. There may be a physical displacement of the relative position between the holding member 3 and the holding member 2 with a slight relative to the holding member 3 about the central axis 12 so as to correspond to this deviation. the lightly between the holding member 3 and the holding member 2 is attached to the holding member 3 by the guide rails 51 and the bolt head 52 so as to maintain the accuracy without moving in parallel for the and the central axis 12 is turnable Sliding bearing Although by constituting the granulated is also possible to provide a rolling bearing structure.
However, the present invention is not limited to this configuration, and the holding member 2 and the holding member 3 can be integrally or relatively fastened by using means capable of absorbing the deviation.

次に、図1と図2に示す第1実施形態の特徴の概略について説明する。  Next, an outline of features of the first embodiment shown in FIGS. 1 and 2 will be described.

例えば図1と図2で示す状態で、例1として保持部材3に負荷を与え部材1が入力の回転動力の伝達を受けて中心軸11を中心に正方向に1回転される場合、或いは例2として部材1に負荷を与え保持部材3が入力の回転動力の伝達を受けて中心軸12を中心に正方向に1回転される場合には、軸15を中心にされる回転部材7の図中の回転方向k(所定方向)に対して交差される方向に転がり部材5を転がり移動せしめんとする回転動力が伝達されると共に接続の部位mとnにおいては回転部材7の回転方向kとは交差される方向に向かう動力の伝達を受けて接続の部位mでは壁面21と転がり部材5間で圧せられ接続の部位nでは転がり部材5と回転部材7間で圧せられながら転がり部材5は軸14を中心に壁面21と回転部材7に対して僅かながらの転がり回動(一種の回転)と相対的な転がり軌跡の伝達がなされ、該転がり軌跡の伝達或いは前記転がり移動せしめんとする動力の伝達或いは接続の部位mとnで回転部材7の回転方向kに交差される方向に向かう動力の伝達の少なくても何れかがなされることによって接続の部位mとnにおいては摺動を予防されながら転がり部材5は前記面形状によって壁面21と回転部材7との間でクサビ状に行き詰まり接続の部位mとnで更に圧せられることになる。  For example, in the state shown in FIGS. 1 and 2, as an example 1, a load is applied to the holding member 3, and the member 1 receives the input rotational power and is rotated once in the positive direction about the central axis 11, or an example 2, when the holding member 3 receives a transmission of input rotational power and is rotated once in the positive direction around the central shaft 12, the drawing of the rotating member 7 centered on the shaft 15. Rotational power for rolling and moving the rolling member 5 in a direction intersecting with the inner rotational direction k (predetermined direction) is transmitted, and the rotational direction k of the rotating member 7 is connected at the connection parts m and n. Is transmitted between the rolling member 5 and the rolling member 5 while being pressed between the wall surface 21 and the rolling member 5 at the connection site m while being transmitted between the rolling member 5 and the rotating member 7 at the connection site n. Is about the shaft 14 with respect to the wall surface 21 and the rotating member 7. A slight rolling rotation (a kind of rotation) and a relative rolling trajectory are transmitted, and transmission of the rolling trajectory or power transmission or connection of the rolling movement is performed at the parts m and n of the rotating member 7. The rolling member 5 rotates with the wall surface 21 according to the surface shape while sliding is prevented at the connection parts m and n by at least one of the transmission of power in the direction intersecting the rotation direction k. There is a wedge shape between the member 7 and the connection parts m and n are further pressed.

又、クサビ状に行き詰まるにつれて接続の部位mとnにおける圧力は前記の負荷と回転動力の大きさに比例するように段を伴わずに増加され、この増加される圧力に伴って前記接続の部位における部材間の摩擦力も同様に増加され、この摩擦力によって接続の部位mとnにおいて強力な回転動力の伝達と出力が可能となり、前記例1の場合は部材1の回転に続いて保持部材2がそして保持部材3が中心軸12及び中心位置6を中心に前記と相対的に共通の正方向に回転され、前記例2の場合は保持部材3の回転に続いて保持部材2は中心軸12及び中心位置6を中心に前記正方向に略一回転されると共に部材1は中心軸11及び中心位置6を中心に前記と相対的に共通の正方向に回転される構成である。
但し、中心軸11と12が同軸上に位置する場合は部材1と保持部材2と保持部材3は略1回転されるが、中心位置6を中心に中心軸11と12間で相対的に角度を有する場合であって前記例1の場合には保持部材2及び保持部材3は1回転に満たない減速回転となり、前記例2の場合には保持部材2は略1回転されるが部材1は1回転を越える増速回転となる。
As the wedges get stuck, the pressure at the connection portions m and n is increased without steps so as to be proportional to the magnitude of the load and the rotational power. The frictional force between the members is also increased in the same manner, and this frictional force enables transmission and output of strong rotational power at the connection portions m and n. In the case of Example 1, the holding member 2 is followed by the rotation of the member 1. However, the holding member 3 is rotated in the positive direction which is relatively common to the center axis 12 and the center position 6 as described above. In the case of Example 2, the holding member 2 is rotated by the center axis 12 following the rotation of the holding member 3. The member 1 is rotated about the central position 6 in the positive direction and rotated about the central axis 11 and the central position 6 in the common positive direction.
However, when the central shafts 11 and 12 are located on the same axis, the member 1, the holding member 2 and the holding member 3 are rotated approximately once, but the relative angle between the central shafts 11 and 12 is centered on the central position 6. In the case of Example 1, the holding member 2 and the holding member 3 are decelerated and rotated less than one rotation. In the case of Example 2, the holding member 2 is rotated approximately once, but the member 1 is The speed increases over 1 rotation.

例えば、前記クサビ状に行き詰まり接続の部位mとnで圧せられる状態であっても、中心位置6を中心に中心軸11と12の少なくても何れかを回動する場合(例えば、保持部材4と8の少なくても何れかを中心位置6を中心に回動しても良い)、或いは中心位置6を中心に中心軸11と12間で相対的に角度を有する状態での部材1と保持部材2と保持部材3間の前記の回転伝達の場合には、壁面21と転がり部材5との接続の部位m或いは転がり部材5と回転部材7との接続の部位nにおけるスピン(部材間における相対的な回転或いは方向転換等)と,中心軸11に対してその半径方向(矢印方向g)へ接続の部位m並びに転がり部材5の転がり移動(軸13を中心にされる転がり部材5の転がり回転)の少なくても何れか伴い、更に軸13を中心にする転がり部材5の転がり回転の伝達を受ける回転部材7は転がり軸受け42と43によって保持されながら軸15を中心に前記所定方向に軽やかに回転されることになる。
つまり、中心軸11に対する接続の部位mの半径方向への転がり移動と、接続の部位m或いはnにおける前記スピンの少なくても何れかを伴うことによって、部材1と保持部材3(保持部材2を含む)間の回転伝達半径比と回転数の比率を接続の部位mにおいて継続的に自在(段を伴う事なく)に相違させることができ、前記相対角度を有する場合には転がり部材5と回転部材7は前記のそれぞれの軸13,15を中心に回転される構成としている。
For example, even in a state where the wedge is stuck and pressed by the parts m and n of the connection, when at least one of the center shafts 11 and 12 is rotated around the center position 6 (for example, a holding member) 4 or 8 may be rotated about the central position 6), or the member 1 in a state where the central axes 11 and 12 have a relative angle with respect to the central position 6. In the case of the above-described rotation transmission between the holding member 2 and the holding member 3, the spin at the connection portion m between the wall surface 21 and the rolling member 5 or the connection portion n between the rolling member 5 and the rotation member 7 (between members) Relative rotation or direction change), and a portion m connected to the central axis 11 in the radial direction (arrow direction g) and rolling movement of the rolling member 5 (rolling of the rolling member 5 around the axis 13). Rotation) with at least 13 rotary member 7 for receiving the transmission of rolling rotation of the rolling member 5 is mainly will be lightly rotated in a predetermined direction around the axis 15 while being held by the roller bearings 42 and 43.
In other words, the member 1 and the holding member 3 (the holding member 2 is attached to the holding member 2) are accompanied by a rolling movement in the radial direction of the connection part m with respect to the central axis 11 and at least one of the spins at the connection part m or n. The rotation transmission radius ratio and the rotation speed ratio can be continuously and freely different (without a step) at the connection portion m. The member 7 is configured to be rotated around the respective shafts 13 and 15.

第一実施形態で示す構成を前記で説明した仮称「回転数比可変自在機構」とすると、部材間での回転動力の伝達も出力も回転伝達半径比率,回転数並びに回転速度の比率の変更も壁面21と転がり部材5との接続の部位mにおいて行うことができ、中心軸11と12間の相対的な角度の大小によって回転動力を入力される入力側回転部材と回転動力を出力できる出力側回転部材間の回転伝達半径比率,回転数並びに回転速度の比率を継続的に自在(段を伴わず)に変えることのできる構成となる。
例え出力側回転部材にどのように大きな負荷が生じられても接続の部位mとnでは相対的な転がり軌跡の伝達と転がり回転が成されることによって速度差の伝達を回避されると共に伝達される負荷と回転動力の大きさに比例するような強力な圧力と摩擦力を段無く生じさせることができる為に、回転動力の伝達,出力される回転数並びに回転速度の変更においても接続の部位mとnでは摺動を強力に予防され、回転伝達半径比率の変更操作に同期しタイムラグやタイムロスを伴わず強力な回転動力と回転速度を瞬時に伝達し出力できる構成となる。
If the configuration shown in the first embodiment is the temporary name “variable speed ratio variable mechanism” described above, the transmission and output of rotational power between members, the ratio of the rotational transmission radius ratio, the rotational speed and the rotational speed can be changed. This can be performed at the connection portion m between the wall surface 21 and the rolling member 5, and the input side rotating member to which the rotational power is input according to the relative angle between the central shafts 11 and 12 and the output side from which the rotational power can be output. The rotation transmission radius ratio, the rotation speed, and the rotation speed ratio between the rotating members can be continuously changed freely (without steps).
For example, no matter how large a load is generated on the output side rotating member, the transmission of the speed difference is avoided and transmitted by transmitting the relative rolling trajectory and rolling at the connection parts m and n. Because it is possible to generate a strong pressure and frictional force that is proportional to the magnitude of the load and the rotational power without stepping, the connection part can also be used in the transmission of rotational power, the output rotational speed, and the rotational speed. In m and n, sliding is strongly prevented, and a powerful rotational power and rotational speed can be instantaneously transmitted and output in synchronism with the operation of changing the rotational transmission radius ratio without any time lag or time loss.

次に、図1と図2に示す第1実施形態の特徴及び機能の詳細ついて説明する。  Next, details of features and functions of the first embodiment shown in FIGS. 1 and 2 will be described.

部材1と保持部材3(保持部材2を含めている)間での回転伝達半径比率,回転数並びに回転速度の比率について、例えば図1(a)に示すように壁面21と転がり部材5との接続の部位mを部材1と保持部材3との回転動力の伝達の部位と仮定し、保持部材3の回転の中心軸12と接続の部位m間の垂直な距離(回転伝達半径)をxとし、部材1の回転の中心軸11と接続の部位m間の垂直な距離(回転伝達半径)をyとすると、保持部材3と部材1間の回転伝達半径比率はx:yとなる。
図1(a)の場合は、x>yとなるためxよりyの距離が小さくなる。
例えば、図1(a)で比較できるように、x=5,y=4と例えて、保持部材3を入力側回転部材として10回転させれば出力側回転部材となる部材1は12.5回転されることになり、部材1を入力側回転部材として10回転させれば、保持部材3は8回転されることになる。
又、図1(a)に向かって上下に前記接続の部位mを示しているが、中心軸12を中心に保持部材3を90度回転させて図に向かって中心位置6あたりに接続の部位mを移して接続の部位m′とした場合も保持部材3と部材1間の回転伝達の比率は前記と同様の値のx:y(例えばx=5,y=4)となり得る。
何故ならば、図に示すxとyとzを力の及ぶ方向で表される量或いは力の配分等を示すことのできる「ベクトル」と仮定し、接続の部位m′において保持部材3が部材1から回転動力の伝達を受けると仮定した場合に、中心軸11上で前記yで示す線が交わる位置と中心位置6間の距離及び矢印方向をzとし,中心位置6と接続の部位m間の距離及び矢印方向をxとし,中心軸11上で前記yで示す線が交わる位置と接続の部位m間の距離及び矢印方向をyとすればx,y,zで示した線の向きと長さで「ベクトル」を相対的に示すことができ、このx,y,zを活用すれば保持部材3と部材1間の相対的な回転伝達半径比率と類似する比率を求めることができる。
As for the ratio of the rotation transmission radius ratio, the rotation speed, and the rotation speed between the member 1 and the holding member 3 (including the holding member 2), for example, as shown in FIG. Assuming that the connection part m is a part for transmitting rotational power between the member 1 and the holding member 3, the vertical distance (rotation transmission radius) between the central axis 12 of the rotation of the holding member 3 and the connection part m is x. When the vertical distance (rotational transmission radius) between the central axis 11 of rotation of the member 1 and the connection portion m is y, the rotational transmission radius ratio between the holding member 3 and the member 1 is x: y.
In the case of FIG. 1A, since x> y, the distance y is smaller than x.
For example, as can be compared in FIG. 1A, if the holding member 3 is rotated 10 times as the input side rotation member, the member 1 that becomes the output side rotation member becomes 12.5 , as x = 5 and y = 4. If the member 1 is rotated 10 times as the input side rotating member, the holding member 3 is rotated 8 times .
Further, although the connection part m is shown up and down in FIG. 1A, the holding member 3 is rotated 90 degrees around the central axis 12 and the connection part around the center position 6 in the figure. Even when m is moved to the connection part m ′, the ratio of the rotational transmission between the holding member 3 and the member 1 can be x: y (for example, x = 5, y = 4 ) similar to the above.
This is because it is assumed that x, y, and z shown in the figure are “vectors” that can indicate the amount expressed in the direction in which the force is applied or the distribution of the force, and the like, and the holding member 3 is a member at the connection portion m ′. Assuming that rotational power is transmitted from 1, the distance between the position where the line indicated by y on the central axis 11 intersects with the central position 6 and the arrow direction are z, and between the central position 6 and the connection part m And the direction of the line indicated by x, y, z, where y is the distance between the position where the line indicated by y on the central axis 11 and the connecting portion m and the arrow direction are indicated by y. The “vector” can be relatively indicated by the length, and if this x, y, z is utilized, a ratio similar to the relative rotation transmission radius ratio between the holding member 3 and the member 1 can be obtained.

例えば、中心軸11を中心に部材1が正方向に回転され接続の部位m′が接続の部位mへ移動されると、本来の回転の力の及ぼす方向を矢印方向yと仮定すると実際の接続の部位m′は接続の部位mである矢印方向xへの移動となる。
これを三平方の定理(ピタゴラスの定理)を活用すれば次の式でxを表すことができる。
(xの2乗=yの2乗+zの2乗)…三平方の定理となり、
x=√(yの2乗+zの2乗)となる。
前記の「ベクトル」と「三平方の定理」に従って緻密に考察すると、xはyとzとの相対的な合力となり、此の状態のzは壁面21に対して軸13を中心に転がり部材の転がり回転による接続の部位mの転がり軌跡の伝達される相対的な距離に該当され、xはどのような場合であっても接続の部位m(m′を含む)と中心軸12間の距離に変化が無く一定であり、yは部材1が保持部材3に伝達する回転動力の方向(中心軸11を中心にされる回転方向)並びに相対的な視点から見た場合の移動距離になると仮定できる。
従って、接続の部位mとm′の違いが生じても保持部材3と部材1間の回転伝達の比率は前記と同様の値でx=5,y=4となりz=3と仮定することができ、保持部材3と部材1は回転数の相違を伴って回転を継続する事が可能となる。
For example, when the member 1 is rotated in the forward direction around the central axis 11 and the connection part m ′ is moved to the connection part m, it is assumed that the direction of the original rotational force is the arrow direction y and the actual connection The part m ′ is moved in the arrow direction x, which is the connection part m.
By utilizing the Pythagorean theorem (the Pythagorean theorem) this can represent x by the following equation.
(X squared = y squared + z squared) ... the square theorem,
x = √ (square of y + square of z ).
Considering closely according to the “vector” and the “three-square theorem”, x is a relative resultant force of y and z, and z in this state is about the axis of the rolling member about the axis 13 with respect to the wall surface 21. This corresponds to the relative distance to which the rolling locus of the connection part m due to rolling rotation is transmitted, and x is the distance between the connection part m (including m ′) and the central axis 12 in any case. It can be assumed that there is no change and that y is the direction of the rotational power transmitted by the member 1 to the holding member 3 (the rotational direction centered on the central axis 11) and the moving distance when viewed from a relative viewpoint. .
Therefore, even if there is a difference between the connection parts m and m ′, the ratio of the rotation transmission between the holding member 3 and the member 1 is the same value as described above, and x = 5, y = 4 and z = 3. The holding member 3 and the member 1 can continue to rotate with a difference in rotational speed.

第1実施形態で示す動力伝達機構を用いれば、接続の部位mにおける摺動を伴わず或いは予防されるために、既存の仮称「回転数比可変自在機構」や相対位置を移動できる移動装置(車両等を含めた移動手段)に付随的に用いられているブレーキや電磁クラッチを用いなくとも此れまでに予想できなかった機能を得ながら前記の摺動やタイムラグ(時間差)を伴う事なく継続的に回転数並びに回転速度の比率の変更を実現できる仮称「回転数比可変自在機構」や相対位置を移動できる移動装置或いは発電可能な発電装置等を構成させ省エネルギー効果と相対的な安全性を得ることも可能となる。  If the power transmission mechanism shown in the first embodiment is used, the existing temporary name “rotational speed ratio variable mechanism” or a moving device that can move the relative position is not accompanied or prevented by sliding at the connection portion m. Even without using brakes or electromagnetic clutches that are incidentally used in moving means including vehicles etc.), it is possible to continue without the above-mentioned sliding and time lag (time difference) while obtaining functions that could not have been expected. The tentative “rotational speed ratio variable mechanism” that can change the rotational speed and the rotational speed ratio, a moving device that can move the relative position, or a power generating device that can generate power can be configured to save energy and provide relative safety. It can also be obtained.

図3と図4は、部材間で動力を伝達し出力できる方法並びに該方法を活用される活用手段の一例であって、部材間の接続の部位における摺動を予防できる手段を用いた動力伝達機構の第2実施形態の特徴を示す図であると共に前記に説明した仮称「回転数比可変自在機構」の実施形態の特徴を示す図である。
図3(a)は相対角度を有する中心軸11と12を基に表した平面の断面図、
図3(b)は同軸上に位置する中心軸11と12を基に表した平面の断面図、
図4(c)は前記図3(b)の立面の断面図、
図4(d)は前記図4(c)の右側面の断面図、
図4(e)は前記図4(d)で示した点線で四角く囲んだ部分の拡大図である。
FIG. 3 and FIG. 4 are examples of a method that can transmit and output power between members, and a utilization means that can utilize the method, and power transmission that uses means that can prevent sliding at the site of connection between members. It is a figure which shows the characteristic of 2nd Embodiment of a mechanism, and is a figure which shows the characteristic of embodiment of tentative name "rotational speed ratio variable mechanism" demonstrated above.
FIG. 3A is a cross-sectional view of a plane represented by the central axes 11 and 12 having a relative angle,
FIG. 3B is a cross-sectional view of a plane based on the central axes 11 and 12 located on the same axis,
FIG. 4C is a sectional view of the elevational surface of FIG.
4D is a cross-sectional view of the right side surface of FIG.
FIG. 4 (e) is an enlarged view of a portion surrounded by a dotted line shown in FIG. 4 (d).

第2実施形態の前記第1実施形態と最も大きく異なるところは、壁面21を球面状の内壁から成る壁面とし、回転面33を具備される回転部材7を中心軸12に対して略垂直に交差される軸15と中心位置6を中心に保持部材3に対して相対的に回転可能に保持させ、中心位置6と中心軸15から距離を設けられる半径方向の回転面33と球面状の内壁から成る壁面21との間に転がり部材5を挟む構成を用いたことである。
又、第2実施形態で示す構成は、図1と図2に対して図3と図4では見た目において異なる所も多いが機能は前記第1実施形態で示した内容と略同様である。正確な理解を示すために前記第1実施形態で用いた用語並びに記号を用いて同様に説明する。
The most different point of the second embodiment from the first embodiment is that the wall surface 21 is a wall surface composed of a spherical inner wall, and the rotating member 7 provided with the rotating surface 33 intersects the central axis 12 substantially perpendicularly. From the radial rotation surface 33 and the spherical inner wall, which are held so as to be rotatable relative to the holding member 3 around the shaft 15 and the center position 6. That is, the configuration in which the rolling member 5 is sandwiched between the wall surface 21 and the wall surface 21 is used.
The configuration shown in the second embodiment is different from that shown in FIGS. 1 and 2 in FIGS. 3 and 4 in many respects, but the function is substantially the same as the contents shown in the first embodiment. In order to show an accurate understanding, the terms and symbols used in the first embodiment will be used in the same way.

先ず、図3と図4に示す第2実施形態の構成の概略について説明する。  First, an outline of the configuration of the second embodiment shown in FIGS. 3 and 4 will be described.

中心位置6に対して略同一半径の球面状の壁面21(図3,4に示す壁面21は内壁面としている)を設けられた部材1と,中心位置6を通る中心軸11並びに中心位置6を中心に部材1を図中の回転方向fに回転可能に保持(軸支と同意味で用いている)する保持部材4と,前記回転方向fとは相対的な角度を有する方向(図中の矢印方向g)へ前記壁面21に対する相対的な転がり軌跡の伝達を可能に接続される複数の転がり部材5(球体)と,中心軸11とは異なる軸であって中心位置6を通る中心軸12並びに中心位置6を中心に図中の回転方向hに回転可能に保持される部材であって中心軸12に対して距離を設けられる位置で中心軸12に対して相対的な角度(図中では略90度)を有する軸13を中心に転がり部材5を回転可能に保持し且つ中心軸12に対して略平行と成ると共に軸13に対して交差される軸14を中心に転がり部材5を僅かながらも回動可能に保持し且つ中心位置6と中心軸11と中心軸12の少なくても何れかに対してその半径方向に僅かながらも移動可能に前記転がり部材5を保持する保持部材2と,転がり部材5を壁面21との間に挟みながら軸13を中心にされる転がり部材5の転がり回転の伝達を受けることにより回転される回転部材7と,前記中心軸11と12と軸13と14とは異なる軸であって前記中心軸12とは中心位置6で相対的な角度(図3と4では略垂直となる角度)を有する軸15並びに中心位置6を中心に前記回転部材7を所定方向(図中の回転方向k)に回転可能に保持すると共に中心軸12と中心位置6を中心に前記保持部材2を相対的に僅かながらも回動可能に保持する保持部材3と,中心軸12と中心位置6を中心に保持部材3と保持部材2とを図中の回転方向hに回転可能に相対的に保持する保持部材8と,軸13を中心にされる転がり部材5の回転方向j並びに軸15を中心にされる回転部材7の回転方向kとは相対的な角度を有する方向で中心位置6と中心軸11と中心軸12の少なくても何れかを中心にした回転動力を壁面21と転がり部材5との接続の部位m並びに転がり部材5と回転部材7との接続の部位nで相対的に受けることによって壁面21と回転部材7との間で転がり部材5を相対的なクサビ状に行き詰まらせることができる面形状とを相対的に設けて構成したものである。The member 1 provided with a spherical wall surface 21 having substantially the same radius with respect to the center position 6 (the wall surface 21 shown in FIGS. 3 and 4 is an inner wall surface), the center axis 11 passing through the center position 6, and the center position 6 The holding member 4 that holds the member 1 rotatably in the rotation direction f in the drawing (used in the same meaning as the shaft support) and the rotation direction f have a relative angle (in the drawing) A plurality of rolling members 5 (spheres) connected so as to be able to transmit a relative rolling trajectory relative to the wall surface 21 in the arrow direction g), and a central axis that is different from the central axis 11 and passes through the central position 6 relative angle (Fig. with respect to the central axis 12 at 12 and the center position 6 rotatably a member held that provided the distance to the central axis 12 located in the rotation direction h in FIG mainly rotation friendly member 5 rolling about an axis 13 having a substantially 90 degrees) in the middle The shaft 14 also rotatably held slightly the member 5 rolling around the and center position 6 and the central axis 11, which is crossed with respect to the axis 13 with made substantially parallel to the holding and the central axis 12 to the The holding member 2 that holds the rolling member 5 so as to be slightly movable in the radial direction with respect to at least one of the central shafts 12 and the shaft 13 while the rolling member 5 is sandwiched between the wall surface 21 The rotating member 7 rotated by receiving the transmission of the rolling rotation of the rolling member 5, and the central shafts 11 and 12 and the shafts 13 and 14 are different axes, and the central shaft 12 is a central position 6. And the shaft 15 having a relative angle (substantially perpendicular in FIGS. 3 and 4) and the center position 6 as a center, the rotary member 7 is rotatably held in a predetermined direction (rotation direction k in the drawing). Centering on center axis 12 and center position 6 The holding member 3 that holds the holding member 2 so as to be relatively pivotable, and the holding member 3 and the holding member 2 can be rotated in the rotation direction h in the drawing with the central shaft 12 and the center position 6 as the center. The holding member 8 held relatively to the rotation direction j of the rolling member 5 centered on the shaft 13 and the rotation direction k of the rotation member 7 centered on the shaft 15 are directions having a relative angle. A rotational power centered on at least one of the central position 6, the central shaft 11, and the central shaft 12 is applied to a portion m for connection between the wall surface 21 and the rolling member 5 and a portion n for connection between the rolling member 5 and the rotational member 7. The surface shape which can make the rolling member 5 get stuck in a relative wedge shape between the wall surface 21 and the rotating member 7 by receiving relatively is relatively provided.

前記構成は、中心軸11を中心に回転可能に保持される部材1と中心軸12を中心に回転可能に保持される保持部材3間と、中心軸11を中心に回転可能に保持される部材1と中心軸12を中心に回転可能に保持される保持部材2間と、中心軸12を中心に回転可能に保持される保持部材3と保持部材2間と、軸13を中心に回転できる転がり部材5と軸15及び中心位置6を中心に回転できる回転部材7間での回転動力の伝達と出力のできる構成である。
又、中心位置6を中心に回転可能に保持される部材1と保持部材3間と、中心位置6を中心に回転可能に保持される部材1と保持部材2間と、中心位置6を中心に回転可能に保持される保持部材3と保持部材2間での回転動力の伝達と出力のできる構成である。
又、転がり部材5と回転部材7との接続の部位nにおいては、軸13を中心に回転できる転がり部材5と軸15を中心に回転できる回転部材7間での回転動力の伝達を可能にし、保持部材3と保持部材2間での回転動力の伝達と出力を可能にできる構成である。
又、壁面21と転がり部材5との接続の部位mにおいては壁面21に対して転がり部材5の相対的な転がり軌跡の伝達と、壁面21に対して接続の部位mの相対的な転がり移動と、部材1と保持部材2並びに保持部材3間での回転動力の伝達と出力を可能にできる構成である。
又、接続の部位mとnを用いることによって部材1と保持部材2と保持部材3間並びに壁面21と転がり部材5と回転部材7間での回転動力の相対的な伝達と出力を可能にする構成である。
In the above-described configuration, the member 1 held rotatably around the central axis 11 and the holding member 3 held rotatably around the central axis 12 and the member held rotatably around the central axis 11 1 and the holding member 2 that is rotatably held around the central shaft 12, between the holding member 3 and the holding member 2 that is rotatably held around the central shaft 12, and a rolling that can rotate around the shaft 13. In this configuration, rotational power can be transmitted and output between the rotating member 7 that can rotate around the member 5 and the shaft 15 and the center position 6.
Further, between the member 1 and the holding member 3 that are rotatably held around the center position 6, between the member 1 and the holding member 2 that are rotatably held around the center position 6, and around the center position 6. This is a configuration that can transmit and output rotational power between the holding member 3 and the holding member 2 that are rotatably held.
In addition, in the connection portion n between the rolling member 5 and the rotating member 7, it is possible to transmit rotational power between the rolling member 5 that can rotate around the shaft 13 and the rotating member 7 that can rotate around the shaft 15. This is a configuration that enables transmission and output of rotational power between the holding member 3 and the holding member 2.
In addition, in the connection portion m between the wall surface 21 and the rolling member 5, the transmission of the relative rolling locus of the rolling member 5 with respect to the wall surface 21 and the relative rolling movement of the connection portion m with respect to the wall surface 21. In this configuration, transmission and output of rotational power between the member 1, the holding member 2 and the holding member 3 can be made possible.
Further, by using the connection parts m and n, it is possible to relatively transmit and output rotational power between the member 1, the holding member 2, and the holding member 3 and between the wall surface 21, the rolling member 5, and the rotating member 7. It is a configuration.

又、中心軸11と12とが同一軸上から中心位置6を中心に相対的な角度を有する状態に至って或いは中心軸11と12とが相対的な角度の変更に至って、壁面21に対して軸13を中心にする転がり部材5の転がり回転と軸15を中心にする回転部材7の回転が成され中心軸11に対してその半径方向に接続の部位mが摺動を伴わずに転がり移動できる機能と、接続の部位mとnの少なくても何れかで部材間における相対的なスピン(部材間における相対的な回転或いは方向転換等を意味させている)のできる機能とを具備される構成である。
又、接続の部位mとnにおいては、相対的な転がり軌跡の伝達と圧力の増加並びに摩擦力の増加を可能にする方法を用いて接続の部位mとnにおける摺動を予防し、部材1と保持部材2と保持部材3間での回転動力の伝達と出力と,部材1と保持部材3(保持部材2を含む)間での回転伝達半径比率の変更に同期し瞬時に回転数並びに回転速度の比率を自在(段を伴わず)に継続的に変化させることのできる構成である。
つまりは、前記に示した部材間の接続の部位における摺動を予防できる手段を用いられ該接続の部位における摩擦力により動力を伝達し出力できる方法を用い活用される動力伝達機構であると共に前記に説明した仮称「回転数比可変自在機構」である。
In addition, the central axes 11 and 12 have a relative angle with respect to the center position 6 from the same axis, or the central axes 11 and 12 have changed relative angles, and the wall surface 21 is changed. The rolling member 5 is rotated about the shaft 13 and the rotating member 7 is rotated about the shaft 15, and the portion m connected in the radial direction with respect to the central shaft 11 rolls and moves without sliding. And a function capable of performing relative spin (meaning relative rotation or direction change between the members) at least in any of the connection portions m and n. It is a configuration.
Further, at the connection parts m and n, the sliding at the connection parts m and n is prevented by using a method enabling transmission of a relative rolling trajectory, an increase in pressure, and an increase in friction force. Rotation speed and rotation are instantaneously synchronized with the transmission and output of rotational power between the holding member 2 and the holding member 3 and the change of the rotation transmission radius ratio between the member 1 and the holding member 3 (including the holding member 2). In this configuration, the speed ratio can be continuously changed freely (without a stage).
That is, it is a power transmission mechanism that is used by using a method that can prevent the sliding at the connection portion between the members described above, and that can transmit and output power by the frictional force at the connection portion. Is the tentative name “rotational speed ratio variable mechanism” described in (1).

次に、図3と図4に示す第2実施形態の構成の詳細ついて説明する。  Next, details of the configuration of the second embodiment shown in FIGS. 3 and 4 will be described.

部材1においては、保持部材3(保持部材2を含む)と部材1間で回転数の相違を伴って回転動力を伝達可能にする為に、接続の部位m並びに転がり部材5が中心軸11に対して相対的な半径方向に転がり移動できることと,転がり部材5がクサビ状に行き詰まることによって生じられる接続の部位mにおける圧力を中心位置6に直行されず迂回され分散され弾力的に受けられるようにすることと,中心軸12を中心に保持部材3が回転されることによって転がり部材5が遠心力の影響を受けて遠心方向に移動され壁面21に対して圧せられ密着しやすくすること等を可能にするために、中心位置6を中心にする同一半径の滑らかな球面状の内壁から成る壁面21を具備させ、更に回転の中心軸11を回ることのできる回転軸34と部材1とを相対的に締結或いは固定して構成させている。In the member 1, the connection part m and the rolling member 5 are connected to the central shaft 11 in order to transmit rotational power with a difference in the rotational speed between the holding member 3 (including the holding member 2) and the member 1. On the other hand, it is possible to roll and move in a relative radial direction, and so that the pressure at the connection portion m generated by the rolling member 5 becoming wedged can be detoured, distributed and elastically received without going straight to the central position 6. The rolling member 5 is moved in the centrifugal direction under the influence of centrifugal force by the rotation of the holding member 3 around the central shaft 12 and is pressed against the wall surface 21 to facilitate close contact. to enable, is provided with a wall 21 consisting of a smooth spherical inner wall of the same radius around the center position 6, the rotary shaft 34 and the member 1 which further can around the central axis 11 of rotation Relatively fastened or fixed to and is configured.

転がり部材5は、前記第1実施形態に示した同様の趣旨で球体を用い、接続の部位mとnで受ける相対的な圧力によって転がり部材5の疲労破壊を予防するために中心軸12及び中心位置6に対して略垂直となるべき位置であって壁面21に対してその内壁面で180度間隔で転がり部材5を2個配置させ前記圧力を分割して受けることを可能にしている。  The rolling member 5 uses a sphere for the same purpose as shown in the first embodiment, and a central shaft 12 and a center for preventing fatigue failure of the rolling member 5 due to the relative pressure received at the connection portions m and n. Two rolling members 5 are arranged at an interval of 180 degrees on the inner wall surface of the wall surface 21 at a position that should be substantially perpendicular to the position 6, and the pressure can be divided and received.

転がり部材5を前記で云う回転可能並びに回動可能並びに転がり部材5を中心位置6と中心軸11と中心軸12の少なくても何れかに対してその半径方向(接近或いは離れる方向)へ移動可能に保持する構成は、前記第1実施形態に示した同様の趣旨で類似する構成を用いている。  The rolling member 5 can be rotated and rotated as described above, and the rolling member 5 can be moved in the radial direction (approaching or moving away) with respect to at least one of the central position 6, the central shaft 11, and the central shaft 12. The configuration held in FIG. 6 uses a similar configuration with the same purpose as described in the first embodiment.

回転部材7を軸15を中心に回転可能に保持する構成は、例えば凹んだリング状の軌道に対して転がり回転できる転動体を具備した転がり軸受けであって転がり軸受け44(図3,4では軸15の半径方向或いはラジアル方向からの圧力を受けて支えることのできる複列から成るラジアルボールベアリング)を用い、前記クサビ状に行き詰まる状態で接続の部位mとnで受ける強力な圧力に対してスラスト方向とラジアル方向の両方向で支えながら回転部材7が軽快に回転できるように転がり軸受け44に具備される円筒状の内輪36を保持部材3に対して相対的に係合させて取り付け転がり軸受け44に具備される円筒状の外輪37を回転部材7として用いているが、回転部材7を前記外輪37に嵌め合わせて取り付けても良い。  The configuration in which the rotating member 7 is rotatably held around the shaft 15 is, for example, a rolling bearing provided with a rolling element capable of rolling and rotating with respect to a concave ring-shaped track, and a rolling bearing 44 (in FIG. 15 radial ball bearings that can be supported by receiving pressure from the radial direction or radial direction), and thrust against the strong pressure received at the connection parts m and n in a wedge-like state The cylindrical inner ring 36 provided in the rolling bearing 44 is relatively engaged with the holding member 3 so that the rotating member 7 can rotate easily while being supported in both the radial direction and the radial direction. Although the cylindrical outer ring 37 provided is used as the rotating member 7, the rotating member 7 may be fitted and attached to the outer ring 37.

転がり部材5の球面と接続される回転部材7の面は、中心位置6と軸15を中心にした同一半径の円筒状の外壁面で軸15に対して略平行な回転面33であって中心軸12と軸15に略垂直となる位置付近とし、一個の回転部材7の両側面から前記二つの転がり部材5で挟むように接続させている。  The surface of the rotating member 7 connected to the spherical surface of the rolling member 5 is a cylindrical outer wall surface of the same radius centered on the center position 6 and the shaft 15, and is a rotating surface 33 that is substantially parallel to the shaft 15. The shaft 12 and the shaft 15 are located in the vicinity of a position substantially perpendicular to each other, and are connected so as to be sandwiched between the two rolling members 5 from both side surfaces of the single rotating member 7.

転がり部材5の球面と接続される回転部材7の接続の部位nは、中心軸12を中心にする保持部材3の回転方向に対して軸15を中心にする回転部材7の回転方向が相対的に交差される位置であると共に中心軸12並びに中心位置6に対して略垂直となる位置或いはその付近になる位置とし、壁面21と回転部材7との間で転がり部材5を前記接続の部位mとnにおいて相対的にクサビ状に行き詰まらせることのできる位置構成としている。  In the connection portion n of the rotating member 7 connected to the spherical surface of the rolling member 5, the rotation direction of the rotating member 7 about the axis 15 is relative to the rotation direction of the holding member 3 about the center axis 12. And a position substantially perpendicular to or near the central axis 12 and the central position 6, and the rolling member 5 between the wall surface 21 and the rotating member 7 is connected to the connection portion m. And n are positioned so as to be relatively wedge-shaped.

壁面21と回転部材7との間で転がり部材5をクサビ状に行き詰まらせることができる面形状とは、図4(d)(e)で示すように軸15に略平行な回転面33と壁面21との間に位置される転がり部材5(球体)が矢印方向pとqのどちらの方向に向かっても段無くスムーズに相対的なクサビ状に行き詰まることのできる面形状で示し、壁面21と回転面33によって前記面形状を構成している。  As shown in FIGS. 4D and 4E, the surface shape capable of causing the rolling member 5 to get stuck in a wedge shape between the wall surface 21 and the rotating member 7 is the rotation surface 33 and the wall surface substantially parallel to the shaft 15 as shown in FIGS. The rolling member 5 (sphere) positioned between the surface 21 and the wall 21 is shown in a surface shape that can smoothly and smoothly get stuck in a relative wedge shape in either direction of the arrow p or q. The surface shape is constituted by the rotating surface 33.

保持部材2及び保持部材3に対して部材1との回転伝達半径比率並びに回転数の比率を継続的に自在(段を伴わず)に変更できる構成,並びに中心位置6を中心に中心軸11と12間の相対角度を継続的に自在(段を伴わず)にスムーズに変更できる構成は、保持部材4と8の少なくても何れかを前記中心軸11或いは12を中心とする回転方向に対して相対角度を有する方向であって中心位置6を中心に矢印方向gに回動させて中心軸11と12の少なくても何れかの相対位置を移動させる事のできる中心軸移動手段を設けて構成している。  A configuration in which the ratio of the rotation transmission radius and the number of rotations to the member 1 with respect to the holding member 2 and the holding member 3 can be continuously changed freely (without a step), and the central axis 11 with the center position 6 as the center The configuration in which the relative angle between 12 can be changed smoothly and continuously (without a step) is such that at least one of the holding members 4 and 8 is rotated with respect to the rotation direction around the central axis 11 or 12. There is provided a central axis moving means that is capable of moving at least one of the relative positions of the central axes 11 and 12 by rotating in the arrow direction g around the central position 6 in a direction having a relative angle. It is composed.

中心軸12を中心にする保持部材3と保持部材2間の回転伝達構成は、保持部材3に相対的に取り付けている回転部材7に具備される回転面33と,保持部材2に相対的に取り付けている転がり部材5との接続によって図4(d)(e)で示すように中心軸12を中心にする回転方向における拘束或いは中心軸12を中心にする回転方向における相対的な凹凸の組み合わせを成立させ保持部材3と保持部材2間において1:1の比率での回転伝達を可能に構成している。  The rotation transmission configuration between the holding member 3 and the holding member 2 centered on the central shaft 12 is relative to the rotation surface 33 provided on the rotation member 7 attached to the holding member 3 and the holding member 2. As shown in FIGS. 4 (d) and 4 (e), depending on the connection with the attached rolling member 5, the constraint in the rotational direction about the central axis 12 or the combination of relative irregularities in the rotational direction about the central axis 12. The rotation transmission at a ratio of 1: 1 is possible between the holding member 3 and the holding member 2.

保持部材3と保持部材2間での中心軸12を中心に相対的に僅かながらも軽やかに回動可能とした構成は、転がり部材5をクサビ状に行き詰まらせる時に壁面21と回転部材7に対して転がり部材5は軸14を中心にする僅かながらの転がり回転と転がり軌跡の伝達が生じられる場合があり、此の場合は接続の部位mとnの位置が異なるために部材1と保持部材2と保持部材3間には相対位置の物理的なズレが生じられることもあり、このズレに応じられるように保持部材2を中心軸12を中心に保持部材3に対して相対的に僅かながらも軽やかに回動可能にさせ且つ中心軸12に対して平行移動させずに精度を保てるようにガイドレール51とボルトの頭部52によって保持部材3に取り付けて保持部材3と保持部材2間では滑り軸受け構造を構成させているが転がり軸受け構造を設けることも可能である。
しかし、該構成に限定せず前記ズレを吸収できる手段を用いて保持部材2と保持部材3を一体的或いは相対的に締結して構成する事も可能である。
The structure in which the rotation between the holding member 3 and the holding member 2 can be relatively lightly rotated about the central axis 12 with respect to the wall surface 21 and the rotating member 7 when the rolling member 5 is stuck in a wedge shape. In this case, the rolling member 5 may have a slight rolling rotation around the shaft 14 and transmission of the rolling trajectory. In this case, since the positions of the connection portions m and n are different, the member 1 and the holding member 2 may be used. There may be a physical displacement of the relative position between the holding member 3 and the holding member 2 with a slight relative to the holding member 3 about the central axis 12 so as to correspond to this deviation. lightly slip between the holding member 3 and the holding member 2 is attached to the holding member 3 by the guide rails 51 and the bolt head 52 so as to maintain the accuracy without translation against the rotatable to be allowed and the central axis 12 Bearing structure Although by constituting it is also possible to provide a rolling bearing structure.
However, the present invention is not limited to this configuration, and the holding member 2 and the holding member 3 can be integrally or relatively fastened by using means capable of absorbing the deviation.

第2実施形態における構成の組み立て方法については、球面状の内壁からなる壁面21内に保持部材2と3と回転部材7と転がり部材5とを挿入することになるが、保持部材2を挿入するには保持部材2の外周の両側の一部を切り欠いて内壁からなる壁面21内に挿入し、内壁からなる壁面21内で該構成を組み立てる方法を用いた方が組み立て作業としては容易である。  Regarding the assembly method of the configuration in the second embodiment, the holding members 2 and 3, the rotating member 7, and the rolling member 5 are inserted into the wall surface 21 formed of a spherical inner wall, but the holding member 2 is inserted. It is easier for the assembly work to use a method in which a part of both sides of the outer periphery of the holding member 2 is cut out and inserted into the wall surface 21 made of the inner wall, and the structure is assembled in the wall surface 21 made of the inner wall. .

次に、図3と図4に示す第2実施形態の特徴と機能について説明する。  Next, features and functions of the second embodiment shown in FIGS. 3 and 4 will be described.

前記「図1と図2で示す前記第1実施形態の特徴の概略についての説明」と、前記「図1と図2で示す第1実施形態の特徴及び機能の詳細についての説明」は、図3と図4で示す第2実施形態にも同様に当てはまるため、第1実施形態で示した説明を第2実施形態の説明に合うように読み替えて(例えば、第1実施形態を第2実施形態と読み替え、図1(a)を図3(a)と読み替える)第2実施形態の説明として準用する。  The above “Description of Outline of Features of First Embodiment Shown in FIGS. 1 and 2” and “Description of Details of Features and Functions of First Embodiment Shown in FIGS. 1 and 2” 3 and FIG. 4 apply similarly to the second embodiment shown in FIG. 4, so that the explanation given in the first embodiment is replaced with the explanation of the second embodiment (for example, the first embodiment is replaced with the second embodiment). And replaces FIG. 1 (a) with FIG. 3 (a) and applies mutatis mutandis to the description of the second embodiment.

結果的に図3と図4で示す第2実施形態の構成は、前記第1実施形態で示した形状や構成とは僅かに異なるが、第1実施形態で示した特徴と機能を得ることができる。
又、第2実施形態は第1実施形態の構成と比べて簡素な構成で部品数を低減できるため、製作コストや重量や容積や駆動抵抗等の更なる低減も可能となる。
又、転がり部材5と壁面21との接続の部位mは転がり部材5の凸球面に対して壁面21は凹球面となるため前記第1実施形態の構成と比べて接続の部位における面圧による歪みや変形を予防できるため、耐久性と安全性では有利となる。
更に、中心軸12を中心に保持部材2と3が回転される場合には、転がり部材5は遠心方向に推力が生じられ此れによって転がり部材5と壁面21との密着が成され壁面21との摩擦力を高められ、転がり部材5は壁面21に対して転がり軌跡の伝達がしやすくなり、従って転がり部材5は壁面21と回転部材7との間でクサビ状に行き詰まりやすくなり接続の部位mにおける速度差の伝達を回避し摺動を予防するには更に適する構成となる。
As a result, the configuration of the second embodiment shown in FIGS. 3 and 4 is slightly different from the shape and configuration shown in the first embodiment, but the features and functions shown in the first embodiment can be obtained. it can.
In addition, since the second embodiment can reduce the number of parts with a simple configuration as compared with the configuration of the first embodiment, the manufacturing cost, weight, volume, driving resistance, and the like can be further reduced.
Further, since the wall portion 21 of the connecting portion m between the rolling member 5 and the wall surface 21 is a concave spherical surface with respect to the convex spherical surface of the rolling member 5, the distortion due to the surface pressure at the connecting portion compared to the configuration of the first embodiment. This can be advantageous in terms of durability and safety.
Further, when the holding members 2 and 3 are rotated about the central axis 12, the rolling member 5 generates a thrust in the centrifugal direction, and thereby the rolling member 5 and the wall surface 21 are brought into close contact with each other. Therefore, the rolling member 5 can easily transmit a rolling locus to the wall surface 21, and therefore the rolling member 5 is easily wedged between the wall surface 21 and the rotating member 7, and the connection portion m In order to prevent the transmission of the speed difference and prevent the sliding, the structure is further suitable.

図5は、部材間で動力を伝達し出力できる方法並びに該方法を活用される活用手段の一例であって、部材間の接続の部位における摺動を予防できる手段を用いた動力伝達機構の第3実施形態の特徴を示す図であると共に前記に説明した仮称「回転数比可変自在機構」の実施形態の特徴を示す図である。
又、前記図1と図2に示した第1実施形態の構成を二式設け二式間を回転伝達可能に接続して一対に構成して示す略図である。
同図(a)は中心軸11と12とを同一軸上に位置させて表した立面図、
同図(b)は前記図(a)の平面図、
同図(c)は前記図(b)を基に中心軸11と12間に相対角度を設けた図である。
第3実施形態については、前記図1と図2に示す第1実施形態の構成と記号を用い部分的に省略した図5(a)(b)(c)を用いて説明するが省略或いは不足される内容は前記第1又は第2実施形態で示した構成と説明を準用するものとする。
FIG. 5 is an example of a method that can transmit and output power between members, and a utilization means that can utilize the method, and shows a first example of a power transmission mechanism that uses means that can prevent sliding at the site of connection between members. It is a figure which shows the characteristic of 3 embodiment, and is a figure which shows the characteristic of embodiment of tentative name "rotational speed ratio variable mechanism" demonstrated above.
1 and FIG. 2 are schematic diagrams showing two configurations of the first embodiment shown in FIG. 1 and FIG.
The figure (a) is an elevation showing the central axes 11 and 12 positioned on the same axis,
FIG. 4B is a plan view of FIG.
FIG. 4C is a view in which a relative angle is provided between the central axes 11 and 12 based on the above-described FIG.
The third embodiment will be described with reference to FIGS. 5 (a), 5 (b), and 5 (c) partially omitted using the configuration and symbols of the first embodiment shown in FIGS. 1 and 2, but omitted or insufficient. The contents to be applied shall apply the configuration and description shown in the first or second embodiment.

先ず、図5に示す第3実施形態の構成の概略について説明する。  First, the outline of the configuration of the third embodiment shown in FIG. 5 will be described.

中心軸11を中心に回転可能に保持される部材1と,中心軸12を中心に回転可能に保持される保持部材3並びに保持部材2とを用いられ、中心位置6を中心に中心軸11と中心軸12間の相対的な角度を変更できると共に部材1と保持部材3(保持部材2を含む)間で回転伝達できるように構成された前記第1実施形態で示した構成を2式設けて一対として構成させ、2式の内の1式をA列とし、もう一方の1式をB列としてA列とB列間で回転動力の入力と伝達と出力のできる構成である。
又、回転動力の伝達は、前記各実施形態で示した接続の部位mとnで行われる構成には変わりない。
A member 1 that is held rotatably about a central axis 11, a holding member 3 that is held rotatably about a central axis 12, and a holding member 2 are used. There are provided two sets of the configuration shown in the first embodiment that can change the relative angle between the central shafts 12 and can transmit the rotation between the member 1 and the holding member 3 (including the holding member 2). A pair is configured, and one of the two sets is an A row, and the other set is a B row, and rotational power can be input, transmitted, and output between the A row and the B row.
Further, the transmission of the rotational power is not changed to the configuration performed at the connection parts m and n shown in the above embodiments.

次に、図5に示す第3実施形態の構成の詳細と特徴について説明する。  Next, details and features of the configuration of the third embodiment shown in FIG. 5 will be described.

此の第3実施形態における構成は、図5(a)で示すようにA列の中心軸12に対してB列の中心軸11を平行に配置すると共にA列の中心軸11に対してB列の中心軸12を平行に配置し、A列の中心軸11とB列の中心軸12間並びにA列の中心軸12とB列の中心軸11間並びにA列の中心位置6とB列の中心位置6間の相対距離を略同一距離に配置し、A列の中心位置6とB列の中心位置6を結ぶ線が各中心軸11と12に対して垂直となるように配置し、A列の部材1に有する回転軸34に歯車61を取り付けて固定し、B列の保持部材3に有する回転軸35に歯車62を取り付けて固定し、前記歯車61と62間で回転伝達可能に接続することによってA列の保持部材3とB列の部材1間での回転伝達を可能にし、A列の保持部材3並びに回転軸35とB列の部材1並びに回転軸34は保持部材4に対して回転可能に保持させ、A列の部材1並びに回転軸34とB列の保持部材3並びに回転軸35は保持部材8に対して回転可能に保持させて構成させている。  In this third embodiment, as shown in FIG. 5 (a), the central axis 11 of the B row is arranged in parallel to the central axis 12 of the A row, and the B of the central axis 11 of the A row is B. The central axis 12 of the row is arranged in parallel, between the central axis 11 of the A row and the central axis 12 of the B row, between the central axis 12 of the A row and the central axis 11 of the B row, and the central position 6 and B row of the A row. The relative distance between the central positions 6 is arranged at substantially the same distance, and the line connecting the central position 6 of the A row and the central position 6 of the B row is arranged perpendicular to the central axes 11 and 12, A gear 61 is attached and fixed to the rotating shaft 34 of the member A in the A row, and a gear 62 is attached and fixed to the rotating shaft 35 of the holding member 3 in the B row so that rotation can be transmitted between the gears 61 and 62. By connecting, the rotation transmission between the holding member 3 of the A row and the member 1 of the B row is enabled, and the holding portion of the A row 3 and the rotation shaft 35 and the B row member 1 and the rotation shaft 34 are held rotatably with respect to the holding member 4, and the A row member 1 and the rotation shaft 34 and the B row holding member 3 and the rotation shaft 35 are held. The member 8 is configured to be rotatably supported.

更に、図5(c)で示すように、A列とB列の中心位置6を通る軸9を中心に保持部材8を回動させて中心軸11と12との相対位置を移動させることのできる中心軸移動手段を設け、該中心軸移動手段によってA列の中心軸12並びにB列の中心軸11に対してA列の中心軸11並びにB列の中心軸12の相対角度を変更できるように構成させている。
従って、A列の保持部材3からA列の部材1へA列の部材1からB列の保持部材3へB列の保持部材3からB列の部材1への回転伝達、反対にB列の部材1からB列の保持部材3へB列の保持部材3からA列の部材1へA列の部材1からA列の保持部材3への回転伝達ができ、前記中心軸11と12間の相対角度を変更することによって出力される回転数並びに回転速度の比率を継続的に自在(段を伴わず)に変化させる事ができる。
Further, as shown in FIG. 5C, the holding member 8 is rotated around the axis 9 passing through the center position 6 of the A row and the B row to move the relative position between the center shafts 11 and 12. A central axis moving means capable of changing the relative angles of the central axis 11 of the A row and the central axis 12 of the B row with respect to the central axis 12 of the A row and the central axis 11 of the B row by the central axis moving means. Is configured.
Accordingly, the rotation transmission from the holding member 3 in the A row to the member 1 in the A row to the holding member 3 in the A row from the holding member 3 in the A row to the holding member 3 in the B row, and vice versa. Rotation can be transmitted from the member 1 to the holding member 3 in the B row to the holding member 3 in the B row to the member 1 in the A row from the member 1 in the A row to the holding member 3 in the A row. By changing the relative angle, it is possible to continuously and freely change the rotation speed ratio and the rotation speed ratio (without steps).

例えば、前記第1実施形態の説明で用いたx:yの比率を例えば2:1とすれば、第3実施形態の構成では(1/2)×(1/2)=1/4,
或いは(2/1)×(2/1)=4/1となり、
回転伝達の比率,回転数並びに回転速度の比率を拡大できることがわかる。
従って一対からなる第3実施形態では前記相対角度の変更によって、例えばA列の保持部材3からB列の部材1へ至る回転伝達では比率の高い増速回転が可能であり、B列の部材1からA列の保持部材3へ至る回転伝達では比率の高い減速回転が可能となる。
For example, if the ratio of x : y used in the description of the first embodiment is 2: 1 , for example , in the configuration of the third embodiment, ( 1/2) × (1/2) = 1/4.
Or ( 2/1) x (2/1) = 4/1 ,
It can be seen that the ratio of rotation transmission , the number of rotations, and the ratio of rotation speed can be expanded .
Accordingly, in the third embodiment consisting of a pair, by changing the relative angle, for example, rotation transmission from the holding member 3 in the A row to the member 1 in the B row can be accelerated at a high rate, and the member 1 in the B row In the rotation transmission from to the holding member 3 in the A row, a reduced rotation with a high ratio is possible.

又、第1実施形態で説明した構成を一対用いて第3実施形態を構成させたが、前記第2実施形態の構成を一対用いて第3実施形態を構成させたり、第1実施形態と第2実施形態の両方を用いて第3実施形態を構成させる事も可能であり、一対に限らず更に複数設けて回転伝達可能に構成させることもできる。
又、図5で示す第3実施形態においては、A列の保持部材3とB列の部材1の回転方向が相対的に逆になっているが、相対的に同一の正方向に回転できるように構成させることもできる。
又、第3実施形態においては、回転動力を入力される入力側回転部材或いは回転動力を出力される出力側回転部材と成り得るA列の保持部材3とB列の部材1を所定位置に保つことができるため活用においては利便性が良い。
In addition, the third embodiment is configured by using a pair of the configurations described in the first embodiment, but the third embodiment may be configured by using a pair of the configurations of the second embodiment, or the first embodiment and the first embodiment. It is possible to configure the third embodiment using both of the two embodiments, and it is also possible to provide not only a pair but also a plurality of the embodiments so that rotation can be transmitted.
In the third embodiment shown in FIG. 5, the rotation directions of the holding members 3 in the A row and the members 1 in the B row are relatively opposite to each other, but can rotate relatively in the same positive direction. Can also be configured.
In the third embodiment, the A-row holding member 3 and the B-row member 1 that can serve as an input-side rotating member to which rotational power is input or an output-side rotating member from which rotational power is output are maintained at predetermined positions. Therefore, it is convenient for use.

図6は、部材間で動力を伝達し出力できる方法並びに該方法を活用される活用手段の一例であって、部材間の接続の部位における摺動を予防できる手段を用いた動力伝達機構の第4実施形態の特徴を示す図であると共に前記に説明した仮称「回転数比可変自在機構」の実施形態の特徴を示す図である。
又、前記図1に示した第1実施形態の構成を用い中心位置6を中心に中心軸11と12間で相対角度を有した状態で回転動力を入力される入力側回転部材と回転動力を出力される出力側回転部材間の回転伝達方法を表した平面図である。
図6(a)は保持部材4と保持部材3間で回転動力の伝達できる方法を表し、
図6(b)は保持部材4と部材1間で回転動力の伝達できる方法を表し、
図6(c)は保持部材8と部材1間で回転動力の伝達できる方法を表し、
図6(b)は保持部材8と保持部材3間で回転動力の伝達できる方法を表した図である。
第4実施形態については、前記図1に示す第1実施形態の構成と記号を用い部分的に省略した図6を用いて説明するが省略或いは不足される内容は前記第1又は第2実施形態に示した構成と説明を用いて準用するものとする。
FIG. 6 is an example of a method capable of transmitting and outputting power between members and a utilization means utilizing the method, and shows a first example of a power transmission mechanism using means capable of preventing sliding at a connection portion between members. It is a figure which shows the characteristic of 4 embodiment, and is a figure which shows the characteristic of embodiment of tentative name "rotational speed ratio variable mechanism" demonstrated above.
In addition, using the configuration of the first embodiment shown in FIG. 1, the rotational power and the input side rotational member to which rotational power is input with a relative angle between the central shafts 11 and 12 around the central position 6 It is a top view showing the rotation transmission method between the output side rotation members output.
FIG. 6A shows a method for transmitting rotational power between the holding member 4 and the holding member 3.
FIG. 6 (b) shows a method of transmitting rotational power between the holding member 4 and the member 1,
FIG. 6C shows a method of transmitting rotational power between the holding member 8 and the member 1,
FIG. 6B is a diagram showing a method for transmitting rotational power between the holding member 8 and the holding member 3.
The fourth embodiment will be described with reference to FIG. 6 which is partially omitted using the configuration and symbols of the first embodiment shown in FIG. 1, but the contents omitted or omitted are the first or second embodiment. It shall apply mutatis mutandis using the configuration and description shown in.

図6(a)(b)(c)(d)に示す第4実施形態の構成の最大の特徴は、
前記第1実施形態と略同様の構成を用いながら、部材1と保持部材3(保持部材2を含む)間で相対的に生じられる回転伝達半径比率の差を、回転動力として出力できる構成である。
又、前記第1実施形態における相対的には回転速度に差のある保持部材3と部材1間,保持部材3と保持部材8間,部材1と保持部材4間を活用し、部材1と保持部材3と保持部材4と保持部材8の少なくても何れかを相対的に固定し、少なくても何れかに回転動力を入力して回転させ、少なくても何れかから回転動力を出力する方法を示すものである。
The maximum features of the configuration of the fourth embodiment shown in FIGS. 6A, 6B, 6C, and 6D are as follows.
While using a configuration substantially the same as that of the first embodiment, it is a configuration that can output a rotational transmission radius ratio difference generated relatively between the member 1 and the holding member 3 (including the holding member 2) as rotational power. .
Further, in the first embodiment, the holding member 3 and the holding member 3 having relatively different rotational speeds, the holding member 3 and the holding member 8, and the member 1 and the holding member 4 are used to hold the holding member 1 and the holding member 4. A method in which at least one of the member 3, the holding member 4, and the holding member 8 is relatively fixed, and rotational power is input to at least any of the members 3, the rotating member, and the rotational power is output from at least any of them. Is shown.

先ず、前記第1実施形態の構成で説明した回転速度に係わる分析を示す。  First, an analysis related to the rotational speed described in the configuration of the first embodiment will be shown.

例えば、前記第1実施形態で用いた保持部材3と部材1間の回転伝達半径比率が1:1の時は中心軸11と12が同一軸上に位置され保持部材3と部材1との数値的な回転速度に差は生じない。
保持部材3と部材1間の回転伝達半径比率が3:2の時は保持部材3と部材1間には回転速度に差が生じられ入力される回転動力の1回転に対して1/2の回転の速度差,或いは1/3の回転の速度差が生じることになり、此の速度差の比率は次の速度差算出式で表すことができる。
(回転伝達半径比率x:y)−(入力回転動力1回転)=(速度差の比率)
(入力回転動力1回転)−(回転伝達半径比率x:y)=(速度差の比率)
For example, when the rotation transmission radius ratio between the holding member 3 and the member 1 used in the first embodiment is 1: 1, the central axes 11 and 12 are positioned on the same axis, and the numerical values of the holding member 3 and the member 1 are the same. There is no difference in the rotational speed.
When the rotation transmission radius ratio between the holding member 3 and the member 1 is 3: 2, there is a difference in the rotation speed between the holding member 3 and the member 1, which is ½ of one rotation of the input rotational power. A difference in rotation speed or a difference in rotation speed of 1/3 occurs, and the ratio of the speed difference can be expressed by the following speed difference calculation formula.
(Rotation transmission radius ratio x: y)-(input rotation power 1 rotation) = (speed difference ratio)
(Input rotation power 1 rotation)-(rotational transmission radius ratio x: y) = (speed difference ratio)

例えば、前記第1実施形態で示した構成で、中心軸11と12が同一軸上に位置する場合には、保持部材3と部材1間の回転伝達半径比率x:yは1:1となり、前記式に当てはめると保持部材3と部材1間の数値的な速度差の比率は、
(1/1)−1=0(速度差の比率)となる。
1−(1/1)=0(速度差の比率)となる。
又、中心軸11と12間に相対的な角度が生じる場合には、保持部材3と部材1間の回転伝達では回転数と回転速度が相違される。
つまり保持部材3と部材1間の回転伝達半径比率で前記第1実施形態で例えたx:yを3:2とすれば、前記速度差算出式に当てはめると部材3と部材1間の数値的な速度差の比率は、
(3/2)−1=+1/2(+の出力は入力と同一回転方向)
(2/3)−1=−1/3(−の出力は入力とは逆回転方向)
1−(3/2)=−1/2(−の出力は入力とは逆回転方向)
1−(2/3)=+1/3(+の出力は入力と同一回転方向)となる。
従って、部材3と部材1間の数値的な速度差の比率に従うと、入力される1回転に対して出力は0から1/2回転或いは0から1/3回転に至る回転数並びに回転速度の比率を継続的に自在(段を伴わず)に変化可能と例えられる。
For example, in the configuration shown in the first embodiment, when the central axes 11 and 12 are located on the same axis, the rotation transmission radius ratio x: y between the holding member 3 and the member 1 is 1: 1, When applied to the above equation, the ratio of the numerical speed difference between the holding member 3 and the member 1 is
(1/1) -1 = 0 (ratio of speed difference).
1- (1/1) = 0 (speed difference ratio).
When a relative angle is generated between the central shafts 11 and 12, the rotational speed and the rotational speed are different in the rotation transmission between the holding member 3 and the member 1.
In other words, if x: y illustrated in the first embodiment is 3: 2 in the rotation transmission radius ratio between the holding member 3 and the member 1, the numerical value between the member 3 and the member 1 is obtained by applying the speed difference calculation formula. The speed difference ratio is
(3/2) -1 = + 1/2 (+ output is the same rotation direction as input)
(2/3) -1 = -1 / 3 (the output of-is the direction opposite to the input)
1- (3/2) = − 1/2 (the output of − is the direction opposite to the input)
1- (2/3) = + 1/3 (the output of + is the same rotational direction as the input).
Therefore, according to the ratio of the numerical speed difference between the member 3 and the member 1, the output is 0 to 1/2 rotation or 0 to 1/3 rotation with respect to the input rotation and the rotation speed. It can be said that the ratio can be continuously changed freely (without steps).

前記例えに従えば、中心軸11と12間に角度を設け、部材1が中心軸11を中心に或いは保持部材3が中心軸12を中心に回転されない手段を設け、部材1と保持部材3の何れか或いは中心軸11と12の何れかを中心位置6を相対的な軸或いは支点にして旋回させる方法を用いることにより、前記第1実施形態とは相対的な方法でありながら壁面21と転がり部材5との接続の部位mと,転がり部材5と回転部材7との接続の部位nとにおいて回転動力を伝達し、部材1と保持部材3間の回転伝達半径比率の差を回転動力として出力させる事が可能と例えられる。  According to the above illustration, an angle is provided between the central shafts 11 and 12, and means for preventing the member 1 from rotating about the central shaft 11 or the holding member 3 from rotating about the central shaft 12 is provided. By using a method of turning any one of the central shafts 11 and 12 with the central position 6 as a relative axis or fulcrum, the wall 21 is rolled with respect to the first embodiment. Rotational power is transmitted at the part m connected to the member 5 and the part n connected between the rolling member 5 and the rotating member 7, and the difference in the rotational transmission radius ratio between the member 1 and the holding member 3 is output as rotational power. It can be compared to that possible.

次に、図6並びに第4実施形態で示す具体的な回転動力の入力と伝達と出力の方法について説明する。  Next, specific rotational power input, transmission, and output methods shown in FIG. 6 and the fourth embodiment will be described.

図6(a)で示す保持部材4と保持部材3間で回転伝達できる第1の方法は、保持部材8を所定位置に固定して配置した状態で、中心軸11と12間に相対的な角度を設けると共に中心軸11を中心に部材1が回転されない手段を設け、中心位置6を支点とし中心軸12(中心軸11及び12とは相対角度を有した中心軸であっても良い)を中心に中心軸11と部材1と保持部材4を旋回(矢印で示す回転方向rへの回転)させることによって、部材1に設けられた壁面21と転がり部材5間で相対的な転がり軌跡の伝達を軸13を中心にされる転がり部材5の転がり回転により行われ、此れによって保持部材3は中心軸12を中心に前記旋回方向rとは相対的に同方向(矢印で示す回転方向h)に回転され回転動力を出力することができる。
又、保持部材3の回転速度は、中心軸11と12間の相対的な角度が無い状態から大きくなるにつれては速く(速度0から段を伴わず高速へ)なり、反対に前記角度が小さくなるにつれて減速(0に向かって減速)され、前記角度がなくなり同軸上の中心軸11と12を中心に保持部材4を回転させた時は部材1と保持部材3に負荷があれば保持部材3は保持部材4からの回転伝達は受けにくく回転されない状態を作り出すことができる。
又、保持部材3を入力側回転部材として中心軸12を中心にして回転させれば出力となる保持部材4(中心軸12を中心に旋回或いは回転される部材)を段を伴わずに無限(数値計算上の無限であって実際は抵抗も無限に向かって増加されるため有限となる)に向かって継続的に加速回転させたり、或いは継続的に減速回転させることも可能となる。
A first method capable of transmitting rotation between the holding member 4 and the holding member 3 shown in FIG. 6A is a relative method between the central shafts 11 and 12 in a state where the holding member 8 is fixedly arranged at a predetermined position. An angle is provided and means for preventing the member 1 from rotating about the central axis 11 is provided, and a central axis 12 (the central axes 11 and 12 may be a central axis having a relative angle) with the central position 6 as a fulcrum is provided. By rotating the central shaft 11, the member 1, and the holding member 4 in the center (rotation in the rotation direction r indicated by the arrow), a relative rolling locus is transmitted between the wall surface 21 provided on the member 1 and the rolling member 5. Is carried out by the rolling rotation of the rolling member 5 centered on the shaft 13, whereby the holding member 3 is relatively in the same direction as the turning direction r about the central shaft 12 (rotation direction h indicated by an arrow). Can output rotational power
Further, the rotational speed of the holding member 3 increases as it increases from a state where there is no relative angle between the central axes 11 and 12 (from a speed of 0 to a high speed without a step), and conversely, the angle decreases. When the holding member 4 is rotated around the coaxial central axes 11 and 12 when the member 1 and the holding member 3 are loaded, the holding member 3 is It is difficult for the rotation transmission from the holding member 4 to be received, and it is possible to create a state where the holding member 4 is not rotated.
Further, if the holding member 3 is rotated about the central axis 12 using the holding member 3 as an input side rotating member, the holding member 4 (a member that is turned or rotated around the central axis 12) is output infinitely without steps. It is possible to continuously accelerate or rotate at a reduced speed toward an infinite numerical calculation, and in reality, the resistance increases to infinity.

図6(b)で示す保持部材4と部材1間で回転伝達できる第2の方法は、
保持部材8と保持部材3を相対的に固定して所定位置に配置した状態で、中心軸11と12間に相対的な角度を設け、中心位置6を支点とし中心軸12(中心軸11及び12とは相対角度を有した中心軸であっても良い)を中心に中心軸11と部材1と保持部材4を旋回(矢印で示す回転方向rへの回転)させることによって、部材1に設けられた壁面21と転がり部材5間で相対的な転がり軌跡の伝達を軸13を中心にされる転がり部材5の転がり回転によって行われ、此れによって部材1は中心軸11を中心に前記旋回方向rとは相対的に逆方向(矢印で示す回転方向f)に回転され回転動力を出力することができる。
又、部材1の回転速度は、中心軸11と12間の相対的な角度が無い状態から大きくなるにつれては速く(速度0から段を伴わずに高速へ)なり、反対に前記角度が小さくなるにつれて減速(0にむかって減速)され、前記角度がなくなり同軸上の中心軸11と12を中心に保持部材4を回転させた時は部材1は保持部材4からの回転伝達は受けにくく回転されない状態を作り出すことができる。
又、部材1を入力側回転部材として中心軸11を中心にして回転させれば出力となる保持部材4(中心軸12を中心に旋回或いは回転される部材)を段を伴わずに無限(数値計算上の無限であって実際は抵抗も無限に向かって増加されるため有限となる)に向かって継続的に加速回転させたり、或いは継続的に減速回転させることも可能となる。
A second method capable of transmitting rotation between the holding member 4 and the member 1 shown in FIG.
With the holding member 8 and the holding member 3 relatively fixed and arranged at a predetermined position, a relative angle is provided between the central shafts 11 and 12, and the central shaft 12 (the central shaft 11 and 12 may be a central axis having a relative angle), and the central axis 11, the member 1, and the holding member 4 are turned (rotated in the rotation direction r indicated by the arrow) to be provided in the member 1. The relative rolling trajectory is transmitted between the wall surface 21 and the rolling member 5 by the rolling rotation of the rolling member 5 centered on the shaft 13, whereby the member 1 is rotated about the central shaft 11 in the turning direction. It can be rotated in a direction opposite to r (rotation direction f indicated by an arrow) to output rotational power.
Further, the rotational speed of the member 1 increases as it increases from a state where there is no relative angle between the central axes 11 and 12 (from speed 0 to a high speed without a step), and conversely, the angle decreases. Accordingly, when the holding member 4 is rotated about the coaxial central axes 11 and 12, the member 1 is not easily rotated and is not rotated. Can create a state.
Further, the holding member 4 (a member that is turned or rotated around the central axis 12) that is output when the member 1 is rotated about the central axis 11 with the member 1 as an input side rotating member is infinite (numerical value) without a step It is possible to continuously accelerate and rotate toward the infinite in the calculation, and in fact, the resistance increases toward infinity.

図6(c)で示す保持部材8と部材1間で回転伝達できる第3の方法は、
保持部材4を所定位置に固定して配置した状態で、中心軸11と12間に相対的な角度を設けると共に中心軸12を中心に保持部材3が回転されない手段を設け、中心位置6を支点とし中心軸11(中心軸11及び12とは相対角度を有した軸中心であっても良い)を中心に中心軸12と保持部材3と保持部材8を旋回(矢印で示す回転方向rへの回転)させることによって、部材1に設けられた壁面21と転がり部材5間で相対的な転がり軌跡の伝達を軸13を中心とされる転がり部材5の転がり回転によって行われ、此れによって部材1は中心軸11を中心に前記旋回方向rとは相対的に逆方向(矢印で示す回転方向f)に回転され回転動力を出力することができる。
又、部材1の回転速度は、中心軸11と12間の相対的な角度が大きくなるにつれては速く(速度0から段無く高速へ)なり、反対に前記角度が小さくなるにつれて減速(0に向かって減速)され、前記角度がなくなり同軸上の中心軸11と12を中心に保持部材8を回転させた時は部材1と保持部材3に負荷があれば部材1は保持部材8からの回転伝達は受けにくく回転されない状態を作り出すことができる。
又、部材1を入力側回転部材として中心軸11を中心にして回転させれば出力となる保持部材8(中心軸11を中心に旋回或いは回転される部材)を段を伴わずに無限(数値計算上の無限であって実際は抵抗も無限に向かって増加されるため有限となる)に向かって継続的に加速回転させたり、或いは継続的に減速回転させることも可能となる。
A third method capable of transmitting rotation between the holding member 8 and the member 1 shown in FIG.
In a state where the holding member 4 is fixedly arranged at a predetermined position, a means for providing a relative angle between the central shafts 11 and 12 and preventing the holding member 3 from rotating about the central shaft 12 is provided. The center shaft 12, the holding member 3 and the holding member 8 are swiveled (in the rotational direction r indicated by the arrow) around the center axis 11 (the center axis 11 and 12 may be an axis center having a relative angle). Rotation), the transmission of the relative rolling trajectory between the wall surface 21 provided on the member 1 and the rolling member 5 is performed by the rolling rotation of the rolling member 5 about the shaft 13, thereby the member 1. Is rotated about the central axis 11 in a direction opposite to the turning direction r (rotation direction f indicated by an arrow) to output rotational power.
Further, the rotation speed of the member 1 increases as the relative angle between the central axes 11 and 12 increases (from 0 to a stepless high speed), and conversely decreases as the angle decreases (towards 0). When the holding member 8 is rotated about the coaxial central shafts 11 and 12 if the member 1 and the holding member 3 are loaded, the member 1 transmits the rotation from the holding member 8. Can create a state that is difficult to receive and is not rotated.
Further, if the member 1 is rotated about the central axis 11 with the member 1 as an input side rotating member, the holding member 8 (member which is turned or rotated around the central axis 11) becomes infinite (numerical value) without steps. It is possible to continuously accelerate and rotate toward the infinite in the calculation, and in fact, the resistance increases toward infinity.

図6(d)で示す保持部材8と保持部材3間で回転伝達できる第4の方法は、
保持部材4と部材1を相対的に固定して所定位置に配置した状態で、中心軸11と12間に相対的な角度を設け、中心位置6を支点とし中心軸11(中心軸11及び12とは相対角度を有した軸中心であっても良い)を中心に中心軸12と保持部材3と保持部材8を旋回(矢印で示す回転方向rへの回転)させることによって、部材1に設けられた壁面21と転がり部材5間で相対的な転がり軌跡の伝達を軸13を中心にされる転がり部材5の転がり回転によって行われ、此れによって保持部材3は中心軸12を中心に前記旋回方向rとは相対的に同一方向(矢印で示す回転方向h)に回転され回転動力を出力することができる。
又、保持部材3の回転速度は、中心軸11と12間の相対的な角度が大きくなるにつれては速く(速度0から段無く高速へ)なり、反対に前記角度が小さくなるにつれて減速(0に向かって減速)され、前記角度がなくなり同軸上の中心軸11と12を中心に保持部材8を回転させた時は部材1と保持部材3に負荷があれば保持部材3は保持部材8からの回転伝達は受けにくく回転されない状態を作り出すことができる。
又、保持部材3を入力側回転部材として中心軸12を中心にして回転させれば出力となる保持部材8(中心軸11を中心に旋回される部材)を段を伴わずに無限(数値計算上の無限であって実際は抵抗も無限に向かって増加されるため有限となる)に向かって継続的に加速回転させたり、或いは継続的に減速回転させることも可能となる。
A fourth method capable of transmitting rotation between the holding member 8 and the holding member 3 shown in FIG.
In a state where the holding member 4 and the member 1 are relatively fixed and arranged at a predetermined position, a relative angle is provided between the central shafts 11 and 12, and the central shaft 11 (the central shafts 11 and 12 is centered on the central position 6). The center axis 12, the holding member 3, and the holding member 8 are pivoted (rotated in the rotation direction r indicated by the arrow) around the center axis 12, and provided on the member 1. The relative rolling trajectory is transmitted between the wall surface 21 and the rolling member 5 by the rolling rotation of the rolling member 5 centered on the shaft 13, whereby the holding member 3 rotates about the central shaft 12. It can be rotated in the same direction as the direction r (rotation direction h indicated by an arrow) to output rotational power.
Further, the rotation speed of the holding member 3 increases as the relative angle between the central axes 11 and 12 increases (from zero speed to steplessly high speed), and conversely decreases as the angle decreases (to zero). When the holding member 8 is rotated about the coaxial central shafts 11 and 12 if the member 1 and the holding member 3 are loaded, the holding member 3 is removed from the holding member 8. Rotation transmission is difficult to receive and can create a state where it is not rotated.
Further, if the holding member 3 is rotated about the central axis 12 using the holding member 3 as an input side rotating member, the holding member 8 (member turned about the central axis 11) that is output becomes infinite (numerical calculation) without steps. It is possible to perform continuous acceleration rotation or continuous decelerating rotation toward the infinite upper limit, and in fact, the resistance increases toward infinity.

前記図6(a)(b)(c)(d)で示す第1,2,3,4の方法共に、前記第1実施形態で示した構成を用い第1実施形態で示した説明とは異なる入力と出力の方法を用いながら部材間における回転動力の伝達は、中心位置6を中心にして相対角度を有することのできる中心軸11と12間で相対角度を変化させることによって部材間における回転数と回転速度の比率を段を伴わずにスムーズに継続的に変化させることができると共に壁面21と回転部材7との間で転がり部材5を挟みクサビ状に行き詰まらせながら部材間の接続の部位mとnにおける摺動を予防できる手段を用いた前記第1実施形態並びに第2実施形態で示した構成並びに特徴には変わりない。
又、軸13を中心に転がり部材5が回転される場合は軸15を中心に回転部材7も回転される構成である。
又、第1実施形態の構成の替わりに第2実施形態で示した構成を用いて第4実施形態の構成並びに回転伝達方法を可能にすることもできる。
With the first, second, third, and fourth methods shown in FIGS. 6 (a), 6 (b), 6 (c), and 6 (d), what is described in the first embodiment using the configuration shown in the first embodiment. Transmission of rotational power between members using different input and output methods is achieved by changing the relative angle between the central axes 11 and 12 that can have a relative angle about the center position 6. The ratio of the number and the rotational speed can be changed smoothly and continuously without steps, and the connection part between the members while sandwiching the rolling member 5 between the wall surface 21 and the rotating member 7 and getting stuck in a wedge shape. The configuration and characteristics shown in the first and second embodiments using means capable of preventing sliding at m and n remain unchanged.
Further, when the rolling member 5 is rotated about the shaft 13, the rotating member 7 is also rotated about the shaft 15.
Further, the configuration of the fourth embodiment and the rotation transmission method can be made possible by using the configuration shown in the second embodiment instead of the configuration of the first embodiment.

但し、第4実施形態の構成次第では出力される回転運動は、略一定速度であったり、前記の差のみならず加速から減速,減速から加速という非等速運動と成ることもある。
又、図6(a)(c)で示す第4実施形態においては、回転動力を入力されて回転される入力側回転部材と該入力側回転部材からの回転動力の伝達を受けて回転されて回転動力を出力できる出力側回転部材の回転の中心軸を同軸上で所定位置にできるため、回転動力の入力或いは出力を接続する上では使い勝手がよく簡素に構成することができる。
又、図6(b)(d)で示す第4実施形態においては詳細を省いているが、回転動力を入力されて回転される入力側回転部材と、該入力側回転部材からの回転動力の伝達を受けて回転されて回転動力を出力できる出力側回転部材の回転の中心軸を同軸上の所定位置にすることも可能である。
又、前記中心軸間の角度の変更は相対的な回動やスライド等の方法を用いた中心軸移動手段を設けて自在に変更を行っても良く、又、角度を固定しても良い。
However, depending on the configuration of the fourth embodiment, the output rotational motion may be a substantially constant speed, or may be not only the above difference but also non-constant speed motion from acceleration to deceleration and deceleration to acceleration.
In the fourth embodiment shown in FIGS. 6 (a) and 6 (c), the input side rotating member that is rotated by receiving the rotational power and the rotational power received from the input side rotating member are rotated. Since the central axis of rotation of the output-side rotating member capable of outputting rotational power can be coaxially set at a predetermined position, it is easy to use and can be simply configured in connecting rotational power input or output.
Although details are omitted in the fourth embodiment shown in FIGS. 6B and 6D, an input-side rotating member that receives rotational power and rotates, and the rotational power from the input-side rotating member. It is also possible to set the central axis of rotation of the output side rotating member that can be rotated by receiving the transmission and output rotational power to a predetermined position on the same axis.
The angle between the central axes may be changed by providing a central axis moving means using a method such as relative rotation or sliding, or the angle may be fixed.

図7は、部材間で動力を伝達し出力できる方法並びに該方法を活用される活用手段の一例であって、部材間の接続の部位における摺動を予防できる手段を用いた動力伝達機構の第5実施形態の特徴を示す図である。
図7(a)は中心軸11を中心に表した平面並びに立面の共通する断面図、
図7(b)は前記図(a)の右側面の断面図である。
第5実施形態は、前記図1と図2で示した第1実施形態の構成を基にしており、第1実施形態で示した用語並びに記号を用いて説明するが、不足或いは省略された内容は、前記第1実施形態に示した説明を用いて準用するものとする。
FIG. 7 is an example of a method that can transmit and output power between members and a utilization means that can utilize the method. It is a figure which shows the characteristic of 5 embodiment.
FIG. 7A is a cross-sectional view common to a plane and an elevational plane centered on the central axis 11;
FIG. 7B is a cross-sectional view of the right side surface of FIG.
The fifth embodiment is based on the configuration of the first embodiment shown in FIGS. 1 and 2, and will be described using the terms and symbols shown in the first embodiment. Are applied mutatis mutandis using the description given in the first embodiment.

先ず、図7に示す第5実施形態の前記第1実施形態の構成と異なるところについて説明する。  First, the difference of the fifth embodiment shown in FIG. 7 from the configuration of the first embodiment will be described.

第1実施形態の構成と異なるところは、転がり部材5と接続される前記部材1の壁面21を中心軸11に対して同一半径の円柱状或いは円筒状の外壁面とし、前記図1と図2の第1実施形態で示した中心軸11と12を図7に示す第5実施形態では一つの中心軸11とし、転がり部材5(球体)に対する壁面21と回転部材7との接続の組み合わせを図7に示すように中心軸11の軸の向く方向に複数列(図7では2列)用いて壁面21に対してふらつかないように安定化を図り、部材1と保持部材3と保持部材2を保持部材4と8の間で中心軸11を中心に回転可能に保持させたことである。  The difference from the configuration of the first embodiment is that the wall surface 21 of the member 1 connected to the rolling member 5 is a columnar or cylindrical outer wall surface having the same radius with respect to the central axis 11, and FIG. 1 and FIG. In the fifth embodiment shown in FIG. 7, the central shafts 11 and 12 shown in the first embodiment are set as one central shaft 11, and the connection of the wall surface 21 and the rotating member 7 to the rolling member 5 (sphere) is illustrated. As shown in FIG. 7, a plurality of rows (two rows in FIG. 7) are used in the direction of the axis of the central shaft 11 to stabilize the wall 1 so that the member 1, the holding member 3, and the holding member 2 are not moved. That is, the holding members 4 and 8 are held rotatably around the central axis 11.

次に、第5実施形態の特徴と機能について説明する。  Next, features and functions of the fifth embodiment will be described.

中心軸11を中心とする回転方向fへの回転動力の伝達を部材1が受けると、転がり部材5は壁面21と回転部材7との間でクサビ状に行き詰まり、行き詰まることによって転がり部材5と壁面21との接続の部位m並びに転がり部材5と回転部材7との接続の部位nにおいて圧力が高まり、圧力が高まることによって接続の部位mとnにおいて摩擦力が高まり、該摩擦力が高まることによって接続の部位mとnにおいては摺動を予防され安全に出力側回転部材(例えば保持部材3)を回転方向fへの回転させることができる。  When the member 1 receives transmission of rotational power about the central axis 11 in the rotational direction f, the rolling member 5 becomes wedged between the wall surface 21 and the rotating member 7, and the rolling member 5 and the wall surface are blocked by being stuck. The pressure is increased at the connection portion m to 21 and the connection portion n between the rolling member 5 and the rotating member 7, and the friction force is increased at the connection portions m and n by increasing the pressure, thereby increasing the friction force. In the connection parts m and n, sliding is prevented, and the output side rotating member (for example, the holding member 3) can be safely rotated in the rotation direction f.

反対に、中心軸11を中心とする回転方向fへの回転動力の伝達を保持部材3が受けても前記と同様に接続の部位mとnにおいては摺動を予防され安全に出力側回転部材(例えば部材1)を回転方向fへ回転させることができる。
更に、部材1と保持部材3とが回転方向fに相対的に回転伝達されている最中であっても中心軸11に略平行に壁面21と転がり部材5間での相対的な転がり軌跡の伝達と,軸13を中心にする転がり部材5の回転と,該転がり部材5の回転の伝達を受けて軸15を中心にする回転部材7の回転を伴って、前記接続の部位mとnにおいて相対的な速度差の伝達を回避され摺動を伴わずに中心軸11に略平行に保持部材3(保持部材2を含む)が部材1に対して平行移動,或いは部材1が保持部材3に対して平行移動することを可能にしている。
On the other hand, even if the holding member 3 receives transmission of rotational power about the central axis 11 in the rotational direction f, sliding is prevented at the connection parts m and n and the output side rotational member is safe as described above. For example, the member 1 can be rotated in the rotation direction f.
Further, the relative rolling locus between the wall surface 21 and the rolling member 5 is substantially parallel to the central axis 11 even when the member 1 and the holding member 3 are being transmitted in rotation relative to the rotational direction f. With the transmission, the rotation of the rolling member 5 around the shaft 13, and the rotation of the rotating member 7 around the shaft 15 in response to the rotation of the rolling member 5, the connection parts m and n The holding member 3 (including the holding member 2) moves parallel to the member 1 in parallel with the central axis 11 without sliding and avoids transmission of a relative speed difference, or the member 1 becomes the holding member 3. It is possible to move in parallel.

つまり、部材1と保持部材3間では、回転伝達の接続の部位mとnにおいて摺動を予防された安全な回転伝達(回転方向fへの回転)と、前記回転伝達方向(回転方向f)とは相対角度を有する方向(矢印方向g)へ摺動を伴わずに部材1と保持部材3との相対位置の移動を安全にできる構成としている。  That is, between the member 1 and the holding member 3, safe rotation transmission (rotation in the rotation direction f) in which sliding is prevented at the rotation transmission connection portions m and n, and the rotation transmission direction (rotation direction f). Is configured so that the relative position of the member 1 and the holding member 3 can be safely moved without sliding in a direction having a relative angle (arrow direction g).

図8は、部材間で動力を伝達し出力できる方法並びに該方法を活用される活用手段の一例であって、部材間の接続の部位における摺動を予防できる手段を用いた動力伝達機構の第6実施形態の特徴を示す図である。
図8(a)は中心軸11を中心に表した平面の断面図、
図8(b)は前記図(a)の右側面の断面図である。
第6実施形態は、前記第5実施形態で示した特徴を有する構成である。
又、前記図3と図4で示した第2実施形態の構成を基にしており、第2実施形態で示した用語並びに記号を用いて説明するが、不足或いは省略された内容は、前記第2実施形態に示した説明を準用するものとする。
FIG. 8 is an example of a method that can transmit and output power between members and a utilization means that can utilize the method. It is a figure which shows the characteristic of 6 embodiment.
FIG. 8A is a cross-sectional view of a plane centered on the central axis 11;
FIG. 8B is a cross-sectional view of the right side of FIG.
The sixth embodiment has a configuration having the characteristics shown in the fifth embodiment.
3 and FIG. 4, and the explanation will be made using the terms and symbols shown in the second embodiment. The description given in the second embodiment shall apply mutatis mutandis.

先ず、図8に示す第6実施形態の前記第2実施形態の構成と異なるところについて説明する。  First, the differences of the sixth embodiment shown in FIG. 8 from the configuration of the second embodiment will be described.

第2実施形態の構成と異なるところは、転がり部材5と接続される前記部材1の壁面21を中心軸11に対して同一半径の円筒状の内壁面とし、前記図3と図4の第2実施形態で示した中心軸11と12を図8に示す第6実施形態では一つの中心軸11とし、転がり部材5(球体)に対する壁面21と回転部材7との接続の組み合わせを図8に示すように中心軸11の軸の向く方向に90度の角度を変えて複数列(図8では2列)を用い、壁面21に対してふらつかないように安定化を図れるように構成させ、部材1と保持部材3と保持部材2を中心軸11を中心に回転可能に保持させる構成としたことである。  The difference from the configuration of the second embodiment is that the wall surface 21 of the member 1 connected to the rolling member 5 is a cylindrical inner wall surface having the same radius with respect to the central axis 11, and the second wall in FIGS. In the sixth embodiment shown in FIG. 8, the central shafts 11 and 12 shown in the embodiment are used as one central shaft 11, and the combination of the connection between the wall surface 21 and the rotating member 7 with respect to the rolling member 5 (sphere) is shown in FIG. 8. Thus, the angle of 90 degrees is changed in the direction of the axis of the central axis 11 and a plurality of rows (two rows in FIG. 8) are used so that the wall 1 can be stabilized so as not to fluctuate. The holding member 3 and the holding member 2 are configured to be held rotatably about the central axis 11.

又、第6実施形態の構成における特徴と機能については、前記第5実施形態と略同様であるため前記第5実施形態の特徴と機能の説明を用いて準用し第6実施形態の説明とする。
又、前記第5実施形態においては部材1の壁面21(外壁面)を保持部材2と3で取り囲む構成であるのに対して、第6実施形態の構成においては保持部材2と3を部材1の壁面21(内壁面)で取り囲む構成の違いである。
従って前記第5,第6実施形態はそれぞれに適した用途での活用が好適である。
Since the features and functions in the configuration of the sixth embodiment are substantially the same as those of the fifth embodiment, the description of the sixth embodiment will be applied mutatis mutandis using the descriptions of the features and functions of the fifth embodiment. .
Further, in the fifth embodiment, the wall surface 21 (outer wall surface) of the member 1 is surrounded by the holding members 2 and 3, whereas in the configuration of the sixth embodiment, the holding members 2 and 3 are the members 1. It is the difference of the structure surrounded by the wall surface 21 (inner wall surface).
Therefore, the fifth and sixth embodiments are preferably used in applications suitable for each.

図9は、部材間で動力を伝達し出力できる方法並びに該方法を活用される活用手段の一例であって、部材間の接続の部位における摺動を予防できる手段を用いた動力伝達機構の第7実施形態の特徴を示す図であると共に前記で説明した仮称「回転数比可変自在機構」並びに該機構と連携して機能できるように構成される複合装置の実施形態の特徴を示す図である。
図9(a)は呼称「差動機構」(差動歯車機構と呼称されることもあるが、以降は説明用語として用いる)と呼ばれる回転動力伝達機構と前記図5で示した第3実施形態の構成とを回転伝達可能に接続させ中心軸11と12とを同一軸上に位置させて表した立面図、
図9(b)は前記図9(a)の平面図であり、
図9(c)は中心位置6並びに軸9を中心に中心軸11と12間に相対的な角度を設けて表した前記図9(a)の平面図である。
図9で示す装置の構成は、前記図5に示した第3実施形態の構成と記号を用いて説明するが省略或いは不足される内容は前記第1又は第2又は第3実施形態に示した説明を用いて準用するものとする。
FIG. 9 is an example of a method that can transmit and output power between members and a utilization means that can utilize the method, and shows a first example of a power transmission mechanism that uses means that can prevent sliding at a connection portion between members. FIG. 7 is a diagram showing the characteristics of the seventh embodiment, and also shows the characteristics of the embodiment of the composite device configured to be able to function in cooperation with the temporary name “variable speed ratio variable mechanism” described above and the mechanism. .
FIG. 9A shows a rotational power transmission mechanism called “differential mechanism” (sometimes referred to as a differential gear mechanism, but will be used as an explanation term hereinafter) and the third embodiment shown in FIG. And an elevation view in which the central shafts 11 and 12 are positioned on the same axis with the configuration of FIG.
FIG. 9B is a plan view of FIG. 9A.
FIG. 9C is a plan view of FIG. 9A which shows the center position 6 and the axis 9 with a relative angle between the center axes 11 and 12.
The configuration of the apparatus shown in FIG. 9 will be described using the configuration and symbols of the third embodiment shown in FIG. 5, but the contents omitted or omitted are shown in the first, second, or third embodiment. It shall be applied mutatis mutandis using the explanation.

先ず、呼称「差動機構」の構成と特徴について説明する。  First, the configuration and characteristics of the designation “differential mechanism” will be described.

「差動機構」の構成ついては、既存の遊星歯車機構や差動歯車機構或いは次の特許出願に記載される構成を用いることも可能である。
(特許出願番号) (名 称)
特願2000−338872号 回転運動伝達機構
特願2000−304198号 回転抵抗手段を具備した回転動力伝達機構
As for the configuration of the “differential mechanism”, an existing planetary gear mechanism, a differential gear mechanism, or a configuration described in the following patent application can be used.
(Patent application number) (Name)
Japanese Patent Application No. 2000-338872 Rotational motion transmission mechanism Japanese Patent Application No. 2000-304198 Rotational power transmission mechanism provided with rotation resistance means

「差動機構」の構成は、共通の中心軸を中心に回転可能に保持される少なくても三つの回転部材であって第1回転部材と第2回転部材と第3回転部材とを用いられ、前記第3回転部材には前記共通の中心軸とは異なる中心軸(前記共通の中心軸に対して距離を有し平行な中心軸,或いは前記共通の中心軸に対して相対角度有する中心軸,或いは前記共通の中心軸に対して交差する中心軸等何れでもよい)を中心に回転可能に保持されると共に前記第1回転部材と第2回転部材の双方と回転伝達できる被保持回転部材(第1回転部材と第2回転部材の双方と接続される一つの回転部材,或いは第1回転部材と第2回転部材間を回転伝達可能に接続される偶数又は複数の回転部材等何れの構成であっても良い)を設けられて成る構成であり、前記被保持回転部材(例えば、内歯車や太陽歯車やその他のギヤ等と噛み合って自転されながら旋回或いは公転できる歯車)が前記共通の中心軸を中心に公転(旋回と同一意味)され前記共通の中心軸とは異なる軸中心に自転(回転)できる構造を具備する機構である。
つまり、「差動機構」とは、図9で示す歯車を用いた「差動機構」に限らず、第1回転部材と第2回転部材と第3回転部材が共通される軸を中心にそれぞれ異なる回転速度で回転可能であり、第1回転部材と前記被保持回転部材と第2回転部材間での回転伝達と、第1回転部材と第2回転部材と第3回転部材間での回転伝達を相対的にも行うことのできる機構であれば良い。
又、既存の差動歯車機構或いは遊星歯車機構と同様に減速,増速,或いは相対的な速度差を基にした差動回転,相対的な速度或いはトルクの不均衡による差動回転等を含めて様々な回転或いは回転伝達や多くの機能を得られる構成である。
The configuration of the “differential mechanism” includes at least three rotating members that are rotatably held around a common central axis, and use a first rotating member, a second rotating member, and a third rotating member. The third rotating member has a central axis different from the common central axis (a central axis having a distance to and parallel to the common central axis, or a central axis having a relative angle with respect to the common central axis) Or a held rotating member that is held rotatably about a common center axis and can be transmitted to both the first rotating member and the second rotating member. One rotating member connected to both the first rotating member and the second rotating member, or an even number or a plurality of rotating members connected so as to transmit rotation between the first rotating member and the second rotating member. May be provided), and A holding and rotating member (for example, a gear that can rotate or revolve while being rotated by meshing with an internal gear, a sun gear, or another gear) is revolved (same meaning as swivel) around the common central axis, and the common central axis Is a mechanism having a structure capable of rotating (rotating) about a different axis center.
That is, the “differential mechanism” is not limited to the “differential mechanism” using the gears shown in FIG. 9, and the first rotating member, the second rotating member, and the third rotating member are each centered on a common axis. Rotation transmission between the first rotation member, the held rotation member, and the second rotation member, and rotation transmission between the first rotation member, the second rotation member, and the third rotation member, which are rotatable at different rotation speeds. Any mechanism can be used as long as it can be performed relatively.
Also, as with existing differential gear mechanisms or planetary gear mechanisms, it includes deceleration, acceleration, differential rotation based on relative speed differences, differential rotation due to relative speed or torque imbalance, etc. In this configuration, various rotations or rotation transmission and many functions can be obtained.

前記「差動機構」には大きく分けると次の第1と第2の二通りの種類があり、 第1の差動機構は、第3回転部材を停止させた状態で共通の中心軸を中心に第1回転部材が正方向に回転されると第2回転部材は第1回転部材からの回転伝達を受け共通の中心軸を中心に第1回転部材の回転方向とは逆方向へ回転される。
第2の差動機構は、第3回転部材を停止させた状態で共通の中心軸を中心に第1回転部材が正方向に回転されると第2回転部材は第1回転部材からの回転伝達を受け共通の中心軸を中心に第1回転部材の回転方向と同一方向に回転される。
従って、第1と第2の何れの差動機構を用いて構成させることもできる。
尚、図9で示す実施形態は前記第1の差動機構を用いて構成させたものである。
又、前記差動機構に具備される前記の第1,第2,第3回転部材,被保持回転部材等は、摩擦力を用いた回転体,歯車,その他の駆動手段で構成でき、歯車には、平歯車,傘歯車,リングギヤ,インターナルギヤ,ヘリカル歯車,ねじれ歯,ウォームギヤ,ウォームホイール,ゼネバギヤ,フェースギヤ,ラックギヤ等を含めて多様な歯車を用いる事ができる。
The “differential mechanism” is roughly divided into the following two types, the first and second types. The first differential mechanism is centered on a common central axis with the third rotating member stopped. When the first rotating member is rotated in the forward direction, the second rotating member receives rotation transmission from the first rotating member and rotates in the direction opposite to the rotating direction of the first rotating member around the common central axis. .
In the second differential mechanism, when the first rotating member is rotated in the forward direction around the common central axis while the third rotating member is stopped, the second rotating member transmits the rotation from the first rotating member. Is rotated about the common central axis in the same direction as the rotation direction of the first rotating member.
Accordingly, the first and second differential mechanisms can be used.
In the embodiment shown in FIG. 9, the first differential mechanism is used.
The first, second and third rotating members, held rotating members and the like provided in the differential mechanism can be composed of a rotating body, a gear, and other driving means using frictional force. Various gears can be used, including spur gears, bevel gears, ring gears, internal gears, helical gears, torsion teeth, worm gears, worm wheels, geneva gears, face gears, rack gears, and the like.

図9に示す「差動機構」の構成は、図示のA列の共通の中心軸12(中心軸11であっても良いが)を中心に回転可能に保持される内歯車から成る第1回転部材と,太陽歯車から成る第2回転部材と,キャリアから成る第3回転部材とを設けられ、前記第3回転部材には前記中心軸12とは異なる中心軸であって中心軸12に対して距離を設けられ略平行な軸を中心に回転可能に保持されると共に前記第1回転部材と第2回転部材の双方と回転伝達或いは噛み合うことのできる遊星歯車から成る被保持回転部材を設けられて構成されている。  The configuration of the “differential mechanism” shown in FIG. 9 is a first rotation composed of an internal gear that is rotatably held around a common central axis 12 (which may be the central axis 11) in the A row shown in the figure. A member, a second rotating member made of a sun gear, and a third rotating member made of a carrier, the third rotating member having a central axis different from the central axis 12 and with respect to the central axis 12 A held rotating member is provided which is a planetary gear which is provided with a distance and is rotatably held around a substantially parallel axis and which can transmit and mesh with both the first rotating member and the second rotating member. It is configured.

次に図9を基に、前記図5に示した第3実施形態の構成と前記差動機構とを回転伝達可能に接続させた装置の構成並びに特徴について説明する。  Next, based on FIG. 9, the configuration and characteristics of the apparatus in which the configuration of the third embodiment shown in FIG.

図9に示す構成は、前記差動機構に具備される第1回転部材に歯車63を固定し、A列の保持部材3(前記図5記載の部材)に具備される回転軸35に前記差動機構に具備される第3回転部材を固定し、B列の部材1(前記図5記載の部材)に具備される回転軸34に対して前記歯車63に噛み合う歯車64を固定し、第2回転部材に具備される回転軸38をA列の中心軸12を中心に所定位置に配置される保持部材10に対して回転可能に保持させ、B列の部材1に具備される回転軸34をB列の中心軸11を中心に前記保持部材10に対して回転可能に保持させ、歯車61と62と63と64は同一歯数で設けて構成させている。  In the configuration shown in FIG. 9, the gear 63 is fixed to the first rotating member provided in the differential mechanism, and the difference between the rotating shaft 35 provided in the holding member 3 in the A row (the member illustrated in FIG. 5). The third rotating member provided in the moving mechanism is fixed, and the gear 64 meshing with the gear 63 is fixed to the rotating shaft 34 provided in the B row member 1 (the member shown in FIG. 5). The rotating shaft 38 provided in the rotating member is rotatably held with respect to the holding member 10 disposed at a predetermined position around the center axis 12 of the A row, and the rotating shaft 34 provided in the member 1 of the B row is provided. The gears 61, 62, 63, and 64 are provided with the same number of teeth.

図9に示す構成で、A列とB列の中心軸11と12に角度を設けない場合は、図5で示す第3実施形態の構成と同様にA列の保持部材3とB列の部材1間の回転数並びに回転速度の比率は1:1となる。
此の状態で例えば、A列の第2回転部材に固定される回転軸38を矢印で示す回転方向sに1回転させると、A列の第2回転部材と歯車63と第1回転部材と第3回転部材と回転部材3と部材1と歯車61は矢印で示す回転方向(s又はf方向)に1回転され、B列の歯車62と回転軸35と保持部材3と部材1と回転軸34と歯車64も矢印で示す回転方向(h又はt方向)に1回転される。
反対にB列の回転軸34を矢印で示す回転方向tに1回転させると、B列の部材1と歯車64と回転部材3と歯車62も矢印で示す回転方向(h又はt方向)に1回転され、A列の歯車61と部材1と回転部材3と第3回転部材と第2回転部材と歯車63と第1回転部材とは矢印で示す回転方向(s又はf方向)に1回転されることになる。
此れらの状態の場合には、前記被保持回転部材は自転されず中心軸12を中心に公転されることになる。
In the configuration shown in FIG. 9, when the central axes 11 and 12 of the A row and the B row are not provided with an angle, the holding member 3 of the A row and the members of the B row are the same as the configuration of the third embodiment shown in FIG. The ratio of the rotational speed and rotational speed between 1 is 1: 1.
In this state, for example, when the rotating shaft 38 fixed to the second rotating member in the A row is rotated once in the rotation direction s indicated by the arrow, the second rotating member in the A row, the gear 63, the first rotating member, The three-rotating member, the rotating member 3, the member 1, and the gear 61 are rotated once in the rotation direction (s or f direction) indicated by the arrow, and the B-row gear 62, the rotating shaft 35, the holding member 3, the member 1, and the rotating shaft 34 are rotated. The gear 64 is also rotated once in the rotation direction (h or t direction) indicated by the arrow.
On the contrary, when the rotation shaft 34 of the B row is rotated once in the rotation direction t indicated by the arrow, the member 1, the gear 64, the rotation member 3 and the gear 62 of the B row are also 1 in the rotation direction (h or t direction) indicated by the arrow. The gear 61, the member 1, the rotation member 3, the third rotation member, the second rotation member, the gear 63, and the first rotation member of the A row are rotated once in the rotation direction (s or f direction) indicated by the arrow. Will be.
In these states, the held rotating member is revolved around the central axis 12 without rotating.

図9(c)に示すように、A列とB列の中心軸11と12に角度を設けた場合は、図5で示す第3実施形態の構成と同様にA列の保持部材3とB列の部材1間の回転数並びに回転速度の比率は1:1から例えば1:1×N(Nは相対的な比率)と変化され前記被保持回転部材は自転と公転を伴う。
図9(c)で示すように、前記角度を設けた状態でA列の第2回転部材を矢印で示す回転方向sに回転させるとA列の第1,第3回転部材とB列の部材1と回転軸34と歯車64を矢印で示す回転方向或いは矢印で示す回転方向とは反対方向に回転されて1:1とは異なる速度比での回転数の出力や回転を停止させることも可能となり、反対にB列の回転軸34を矢印で示す回転方向tに回転させるとA列の第2,第3回転部材を矢印で示す回転方向或いは矢印で示す回転方向とは反対方向に回転されて1:1とは異なる速度比での回転数の出力や回転を停止させることも可能となる。
つまり、回転動力を入力される入力側回転部材(例えばB列の回転軸34)を回転させながら中心軸11と12の相対角度を変えることにより出力側回転部材(例えばA列の回転軸38)を回転ゼロから正方向へ継続的に自在(段を伴わず)に加速回転ができ、更に高速回転から回転ゼロへ,回転ゼロから逆方向へ高速回転へ等、前記相対角度の変更に同期し回転数並びに回転速度を継続的に自在(段を伴わず)に変化させることができる利点を得ることができる。
As shown in FIG. 9C, when the central axes 11 and 12 of the A row and the B row are provided with an angle, the holding members 3 and B of the A row are similar to the configuration of the third embodiment shown in FIG. The ratio of the rotational speed and the rotational speed between the members 1 in the row is changed from 1: 1 to, for example, 1: 1 × N (N is a relative ratio), and the held rotating member is accompanied by rotation and revolution.
As shown in FIG. 9C, when the second rotation member in row A is rotated in the rotation direction s indicated by the arrow with the angle provided, the first and third rotation members in row A and the member in row B 1, the rotation shaft 34, and the gear 64 can be rotated in the rotation direction indicated by the arrow or in the direction opposite to the rotation direction indicated by the arrow, and the output of the rotation speed or rotation at a speed ratio different from 1: 1 can be stopped. On the contrary, when the rotation shaft 34 in the B row is rotated in the rotation direction t indicated by the arrow, the second and third rotation members in the A row are rotated in the rotation direction indicated by the arrow or in the direction opposite to the rotation direction indicated by the arrow. It is also possible to stop the output of rotation speed and rotation at a speed ratio different from 1: 1.
That is, the output side rotating member (for example, the A-axis rotating shaft 38) is changed by changing the relative angle between the central axes 11 and 12 while rotating the input side rotating member (for example, the B-axis rotating shaft 34) to which rotational power is input. Can be rotated from zero to continuously in the forward direction (with no steps), and further synchronized with the change in the relative angle, such as from high speed to zero and from zero to high speed. It is possible to obtain an advantage that the rotation speed and the rotation speed can be continuously and freely changed (without steps).

次に、前記実施形態に示した接続の部位mとnにおける摺動の予防と、部材間で回転数並びに回転速度を継続的に自在(段を伴わず)に変えることができることにより得られる更なる利点について前記記載の用語と記号を用いて説明する。  Next, it is obtained by preventing sliding at the connection portions m and n shown in the above embodiment and continuously changing the rotation speed and rotation speed between the members freely (without steps). The advantages will be described using the terms and symbols described above.

例えば前記図6と図9に示した実施形態を用いると、接続の部位mとnにおける摺動を完全に予防されれば、出力側回転部材はゼロ回転に近い低速回転並びに無限に近い大きな回転トルクから回転動力を出力でき、どの様な大きな質量や力に対しても段を伴わずにスムーズに回転速度を加速させたり減速させたり停止させることが可能となる。
又、中心軸11と12間の相対角度を変えることよって出力側回転部材の回転速度を回転ゼロから高速回転に加速することができるが、此れに伴い部材間の回転伝達半径比の比率が変化され接続の部位mにおいて入力側回転部材の回転抵抗が前記比率の変化に応じて増加されることになり、反対に中心軸11と12間の相対角度を変えることよって慣性回転運動をしている出力側回転部材の回転速度を高速回転からゼロ回転に至って減速することができるが、此の場合も部材間の回転伝達半径比の比率が変化され接続の部位mにおいて出力側回転部材から入力側回転部材への回転伝達における回転抵抗は無限に向かって増加され接続の部位mとnにおいては全く摺動を伴わず或いは予防されながら出力側回転部材を停止させることのできる無限に近い回転抵抗を生じさせることも可能と思われる。
つまり、どんなに高質量で高速で慣性運動をしている出力側回転部材の回転運動によっても入力側回転部材を定速回転から無限に向かって高速回転させることは不可能と思われ、部材間における回転伝達比率が無限の比率或いは最大の回転抵抗位置或いはその付近となった場合には、出力側回転部材は接続の部位mにおいて無限に近い回転抵抗の伝達を受けて停止せざるを得なくなると共に出力側回転部材から入力側回転部材へ回転動力の伝達は不能となる。
For example, when the embodiment shown in FIGS. 6 and 9 is used, if the sliding at the connection portions m and n is completely prevented, the output side rotating member rotates at a low speed close to zero rotation and a large rotation near infinity. Rotational power can be output from torque, and it is possible to smoothly accelerate, decelerate, and stop the rotational speed without steps for any large mass or force.
In addition, by changing the relative angle between the central shafts 11 and 12, the rotational speed of the output side rotating member can be accelerated from zero to high speed rotation. As a result, the rotational resistance of the input side rotating member is increased in accordance with the change in the ratio at the connection portion m, and on the contrary, by changing the relative angle between the central shafts 11 and 12, The rotation speed of the output side rotating member can be decelerated from high speed rotation to zero rotation, but in this case also, the ratio of the rotation transmission radius ratio between the members is changed and the input side rotating member inputs from the output side rotating member. The rotation resistance in the rotation transmission to the side rotation member is increased infinitely, and the output side rotation member can be stopped without sliding or being prevented at the connection parts m and n at all. Also it seems possible to cause rotational resistance near.
In other words, no matter how high the mass and the inertial motion of the output side rotating at high speed, it seems impossible to rotate the input side rotating member from constant speed to infinity at high speed. When the rotation transmission ratio becomes an infinite ratio or the maximum rotation resistance position or in the vicinity thereof, the output side rotation member is forced to stop by receiving transmission of rotation resistance near infinite at the connection portion m. Transmission of rotational power from the output side rotating member to the input side rotating member becomes impossible.

この機能を考察すると、従来のディスクブレーキやドラムブレーキ等のように回転体とパッド間における面粗さ同士間の相対的な速度差の伝達と摺動と発熱を伴って強制的に回転抵抗を生じさせる構成とは全く異なった構成である。
つまり、接続の部位mとnにおいて速度差の伝達を回避し摺動とタイムラグを伴わずに継続的に自在(段を伴わず)に部材間の回転伝達半径比率或いは回転伝達速度の比率を変更し回転抵抗を継続的に自在(段を伴わず)に増減可能且つ出力側回転部材を高速回転から段無く減速させ更に停止させ更に逆回転させることのできる制動機構並びに仮称「回転数比可変自在機構」と云うことができると共に、動力(回転運動を含む)を含めた運動エネルギーを前記部材間の接続の部位mとnにおいて摺動を伴わずに損失せずに入力側回転部材から出力側回転部材に向かって或いは出力側回転部材から入力側回転部材に向かって継続的に自在(段を伴わず)に回転数並びに回転速度の比率を変えながら安全に移動させて蓄積することのできる相対的な「エネルギーの移蓄機構」或いは「エネルギーの位置移動機構」と云うこともできる。
Considering this function, as with conventional disc brakes, drum brakes, etc., rotational resistance is forcibly accompanied by transmission of relative speed difference between the surface roughness between the rotating body and the pad, sliding and heat generation. The configuration is completely different from the configuration to be generated.
In other words, transmission of the speed difference is avoided at the connection parts m and n, and the rotation transmission radius ratio or rotation transmission speed ratio between the members is changed continuously (without steps) without sliding and time lag. The rotation resistance can be increased and decreased continuously (without steps), and the output-side rotating member can be decelerated from high speed without stopping and further stopped and further reversely rotated. Kinetic energy including power (including rotational motion) from the input side rotary member to the output side without loss without sliding without sliding at the connection portions m and n between the members. Relative to be able to safely move and accumulate while changing the number of rotations and the ratio of rotation speed continuously (without steps) toward the rotation member or from the output-side rotation member to the input-side rotation member Target It can also be referred to as "energy of Utsuri蓄 mechanism" or "position movement mechanism of energy".

例えば、前記本発明の方法並びに前記接続の部位mとnを活用される活用手段を具現化することにより前記仮称「回転数比可変自在機構」と連携して機能され相対位置を移動できる移動装置(例えば車輪を具備する自動車,車両等)を構成した場合の例であって、本発明を用いた前記仮称「回転数比可変自在機構」に具備される入力側回転部材が回転速度に全くむらの無い一定速度で無限のトルクで回転されている状態で、最終の出力側回転部材(例えば、車両に具備される直径0.7mの車輪)の回転数が最初は0/rpm(1分当たりの回転数),前記図示の中心軸11と12間の角度の変化に要する所要時間が0.1秒,角度の変化後の出力側回転部材の回転数は1000/rpmになると仮定して算出すると、車両は時速0km〜約132kmまでを約0.1秒で到達し、反対に時速約132km〜0kmへ約0.1秒で到達という計算も成り立つ。
(例えば…私の車は1984年製前輪駆動4ドアセダン,車重860kg,排気量1487cc,出力トルク17kgm,0〜100kmの加速の計測値は6秒程であり、ある大学と民間企業で製作した電気自動車の0〜100kmの加速は約4.1秒と記載されていたが、2007年現在の国産市販車と比べても加速は非常によい方であるが、更に速い加速の実現を否定できるとは思えない)
従って、前記接続の部位mとnを用いた前記仮称「回転数比可変自在機構」と連携して機能できる装置から成る移動装置(例えば車両)を構成すれば、時速約132km程であれば排気量660CC未満の軽自動車でも大排気量のレーシングカーより速く加速できると共に燃費の節約は非常に優れるものと成り得る。
For example, a moving device capable of moving in relation to the function of the tentative name “rotational speed ratio variable mechanism” by embodying the method of the present invention and the utilization means utilizing the connection parts m and n. (For example, an automobile or a vehicle equipped with wheels, etc.) The input side rotating member provided in the temporary name “variable speed ratio variable mechanism” using the present invention is not completely uniform in rotational speed. The rotation speed of the final output-side rotating member (for example, a wheel with a diameter of 0.7 m provided in the vehicle) is initially 0 / rpm (per minute). ), The time required for changing the angle between the center axes 11 and 12 shown in the figure is 0.1 seconds, and the rotation speed of the output-side rotating member after the change in angle is 1000 / rpm. Then, the vehicle is 0km / h to about Reaches up to 32km in about 0.1 seconds, it holds also calculated that reached in about 0.1 seconds to speed about 132km~0km opposite.
(For example, my car is a 1984 front-wheel drive 4-door sedan, 860 kg in weight, displacement 1487 cc, output torque 17 kgm, acceleration of 0-100 km is about 6 seconds, manufactured by a university and a private company Although the acceleration of 0-100 km of electric vehicles was described as about 4.1 seconds, the acceleration is very good compared to the domestic production vehicle as of 2007, but the realization of even faster acceleration can be denied. I don't think so)
Therefore, if a moving device (for example, a vehicle) composed of a device that can function in cooperation with the temporary name “rotational speed ratio variable mechanism” using the connection parts m and n is configured, the exhaust gas is exhausted at a speed of about 132 km / h. Even a light vehicle with an amount of less than 660 CC can accelerate faster than a racing car with a large displacement, and can save fuel.

例えば前記移動装置に具備される車輪が1回転される間に前記中心軸11と12間の相対角度を変えれば接続の部位mとnでは速度差の伝達を回避され摺動とタイムラグを伴わず前記角度の変更操作に同期し車輪は継続的に段を伴わずに瞬時に加速回転され車輪の加速回転に略同期して移動装置を速度ゼロから100km/h以上の速度に到達させる事も、車輪が1回転する間に前記相対角度を変えれば100km/h以上の速度から瞬時に速度ゼロに到達可能と例えてみる。
例えば、時速100km/hにおける進む距離は秒速で約27.78m/s、速度ゼロから100km/hに到達するまでの時間を長くすれば27.78m以上進むが、速度ゼロから100km/hに到達するまでの時間を短くすれば進む距離は1cm或いは1mm以下にすることも可能と例えると、相対的な質量や運動エネルギーや位置エネルギー等に対しても1cm或いは1mm以下と云う短い距離の中で等加速運動での慣性加速(例えば摺動を伴わない回転伝達半径比率或いは回転伝達速度比率の変化)に過ぎず、相対的な速度差の伝達や車輪と路面間や車両と搭乗者間の相対的なスリップも生じにくいと思われ、例え生じても例示の場合のスリップ距離は1cm或いは1mm以下と云うことに成り得る。
For example, if the relative angle between the central shafts 11 and 12 is changed while the wheel provided in the moving device is rotated once, transmission of the speed difference is avoided at the connection parts m and n, and there is no sliding and time lag. Synchronously with the change operation of the angle, the wheel is accelerated and rotated instantaneously without steps, and the moving device reaches a speed of zero to 100 km / h substantially in synchronization with the acceleration rotation of the wheel. If the relative angle is changed during one rotation of the wheel, it is possible to instantly reach zero speed from a speed of 100 km / h or higher.
For example, the distance traveled at a speed of 100 km / h is approximately 27.78 m / s per second. If the time to reach 100 km / h from zero speed is increased, the distance travels more than 27.78 m, but the speed reaches from zero to 100 km / h. If the time to do so is shortened, the distance traveled can be reduced to 1 cm or 1 mm or less. For a relative mass, kinetic energy, potential energy, etc., within a short distance of 1 cm or 1 mm or less. It is only inertial acceleration (e.g., change in rotational transmission radius ratio or rotational transmission speed ratio without sliding) in equal acceleration motion, transmission of relative speed difference, relative between wheels and road surface, relative between vehicle and passenger. Therefore, even if it occurs, the slip distance in the illustrated case can be 1 cm or 1 mm or less.

本発明の方法並びに構成を用いた仮称「回転数比可変自在機構」を活用すると、出力側回転部材の回転速度並びに前記移動装置の速度を瞬時に減速させ停止させる場合は、中心軸11と12間の相対角度を変えて移動装置の慣性速度並びに出力側回転部材の慣性回転速度を段を伴わずにスムーズに入力側回転部材を加速回転させながら入力側回転部材側に移すことで可能と云う意味であり、
反対に出力側回転部材の回転速度並びに前記移動装置の速度を一瞬で高速に加速させる場合は、中心軸11と12間の相対角度を変えて入力側回転部材の回転動力並びに慣性運動を段を伴わずにスムーズに移動装置の慣性速度並びに出力側回転部材を加速させながら出力側回転部材側に移すことで可能と考えている。
つまり本発明における方法において中心軸11と12間の相対角度を変えて前記の出力側回転部材並びに移動装置を加速させたり減速させることは、質量や慣性運動や位置エネルギーを継続的に前記部材間の接続の部位mとnで摺動や段を伴わずに、動力を含めた相対的なエネルギーの相対位置を本発明の構成に用いられる出力側回転部材或いは入力側回転部材に向かって移すか或いは伝達し蓄えられることにより接続の部位mとnでは相対的な等速運動並びに等加速運動が成されて、前記のスリップや衝撃を予防し安全な加速減速が可能になると思われる。
又、本発明の方法を用いた仮称「回転数比可変自在機構」における壁面21と転がり部材5との接続の部位mにおいては、回転速度の比率の伝達と回転動力の伝達と回転抵抗の伝達であり、接続の部位mでは如何に回転速度の比率が変化されても転がり軌跡の伝達が成されるのみであるため相対的な速度差の伝達と摺動とを伴うことはないと考えれば、前記の等速運動から継続的に段を伴わずに等加速度運動で加速や減速が自在に成される可能性も考えられる。
When the temporary name “rotational speed ratio variable mechanism” using the method and configuration of the present invention is utilized, the central shafts 11 and 12 can be used to instantaneously decelerate and stop the rotational speed of the output side rotating member and the speed of the moving device. By changing the relative angle between them, the inertial speed of the moving device and the inertial rotational speed of the output-side rotary member can be shifted to the input-side rotary member side while smoothly rotating the input-side rotary member without steps. Meaning,
On the other hand, when the rotational speed of the output side rotating member and the speed of the moving device are accelerated at a high speed in an instant, the rotational angle and inertial motion of the input side rotating member are changed by changing the relative angle between the central axes 11 and 12. It is considered possible to smoothly move to the output side rotating member side while accelerating the inertia speed of the moving device and the output side rotating member without accompanying.
In other words, in the method of the present invention, changing the relative angle between the central shafts 11 and 12 to accelerate or decelerate the output-side rotating member and the moving device continuously increases the mass, inertial motion, and potential energy between the members. Whether the relative position of relative energy including power is moved toward the output side rotation member or the input side rotation member used in the configuration of the present invention without sliding or stepping at the connection parts m and n. Alternatively, by transmitting and storing, it is considered that relative constant speed motion and constant acceleration motion are performed at the connection portions m and n, and the above-described slip and impact can be prevented and safe acceleration and deceleration can be achieved.
In addition, in the connection portion m between the wall surface 21 and the rolling member 5 in the temporary name “rotational speed ratio variable mechanism” using the method of the present invention, the transmission of the rotational speed ratio, the transmission of rotational power, and the transmission of rotational resistance. If the ratio m of the rotational speed is changed, only the rolling trajectory is transmitted at the connection part m, so that there is no relative speed difference transmission and sliding. There is also a possibility that acceleration and deceleration can be freely performed by the constant acceleration motion without continuously stepping from the constant velocity motion.

前記各実施形態の何れかを用いて車両を構成させた場合は、車両に具備される車輪のみならず発電機のローターも本発明の動力伝達機構並びに仮称「回転数比可変自在機構」から出力される回転動力で回転させることができる。
つまり、発電機のローターを回転させることによって電気エネルギーを出力させたり,該電気エネルギーでエアコンを稼働させたりランプを点灯させたり様々な相対的なエネルギーに変換して出力させ活用することが可能となる。
前記車両を発電所並びに発電装置と仮定すれば、本発明の方法並びに構成を活用された発電装置に装備される発電機のローターを回転させて電気を出力させ電気を供給する事業や販売事業を行うこともでき、接続の部位mとnにおける摺動を伴わず発電機のローターを継続的に自在に瞬時に広範囲の加速や減速をすることも可能となる。
又、本発明の方法並びに構成を活用し、相対位置を移動できる相対位置移動装置(二輪車,四輪車,列車等を含めた車両,船,航空機,移動設備等)や相対位置を移動させることのできる相対位置移動装置(エレベーター,クレーン,搬送装置,移動設備等)、電気を発電できる相対的な発電装置(発電機,発電手段,発電設備,発電施設等)、出力される回転動力と連携して機能できる相対的な装置(加工機械,組み立て機械,駆動設備等)等の相対的な装置を構成させ、接続の部位mとnにおける摺動を予防され強力なトルクと段を伴わない瞬時の加速や減速によって資源エネルギーの消費を低減させ省エネルギー効果の高い動力の出力や相対的なエネルギーの出力を可能にすることができる。
When a vehicle is configured using any of the above-described embodiments, not only the wheels provided in the vehicle but also the rotor of the generator are output from the power transmission mechanism of the present invention and the provisional name “variable speed ratio mechanism”. It can be rotated with the rotational power.
In other words, it is possible to output electric energy by rotating the rotor of the generator, operate the air conditioner with the electric energy, turn on the lamp, convert it into various relative energy, and output and use it. Become.
Assuming that the vehicle is a power plant and a power generation device, a business or a sales business in which electricity is output by rotating a rotor of a generator equipped in the power generation device utilizing the method and configuration of the present invention. It is also possible to perform acceleration and deceleration over a wide range instantaneously and freely in a continuous manner without causing sliding at the connection parts m and n.
Further, by utilizing the method and configuration of the present invention, the relative position moving device (vehicles including two-wheeled vehicles, four-wheeled vehicles, trains, ships, airplanes, moving equipment, etc.) and relative positions can be moved. Relative position moving device (elevator, crane, transport device, moving equipment, etc.) capable of generating power, relative power generating device (generator, power generation means, power generation equipment, power generation facility, etc.) capable of generating electricity, and linkage with output rotational power Relative devices (processing machines, assembly machines, drive equipment, etc.) that can function as a function are configured to prevent sliding at the connection parts m and n, and without momentary powerful torque and steps. By accelerating and decelerating, energy consumption can be reduced, and power output and relative energy output with high energy saving effect can be realized.

又、本発明による仮称「回転数比可変自在機構」を用いて、例えば車両の速度を減速する時に回転伝達半径比率を変えて発電機に具備されるローターを増速回転させて発電させ更に蓄電し、蓄電された電気エネルギーでモーターの出力軸或いは前記ローターを再び回転させることができるようにエネルギーの回生装置を構成させれば更に省エネルギー効果を高める事が可能となる。  Further, by using the temporary name “variable speed ratio variable mechanism” according to the present invention, for example, when reducing the speed of the vehicle, the rotation transmission radius ratio is changed and the rotor included in the generator is rotated at a higher speed to generate electric power and further to store electricity. If the energy regeneration device is configured such that the output shaft of the motor or the rotor can be rotated again with the stored electrical energy, the energy saving effect can be further enhanced.

又、本発明の方法を用いた仮称「回転数比可変自在機構」を用いて風力により羽根車を回転させて発電できる風力発電装置を構成することもできる。
従来、風の強く風力が過度に大きい場合は羽根車の回転速度が速くなり過ぎて回転中のバランスが悪化し羽根車を回転可能に支える構造が破損する危険を伴うことがあり危険回避対策として羽根車の回転を停止させる処置も必要であり、例えば従来技術による仮称「回転数比可変自在機構」を用いる場合も摺動を伴うために危険の比率と駆動抵抗が増加されるものと思われる。
本発明の仮称「回転数比可変自在機構」を制動機構として活用すれば、前記風力の大きさや向きに対応できるように中心軸11と12間の相対的な角度を変えて羽根車或いは発電機のローターの回転速度を段無く変化させれば風力を活用しながら入力側回転部材の回転速度に対して比率の高い発電が可能になると共に羽根車の回転速度の増速を適宜に瞬時に制限し減速させる事も可能となるため設備や施設を含めた全体的な発電装置の安全性と耐久性を守ることができる。
It is also possible to configure a wind power generator capable of generating power by rotating an impeller by wind power using a temporary name “rotational speed ratio variable mechanism” using the method of the present invention.
Conventionally, when the wind is strong and the wind power is excessively large, the rotation speed of the impeller becomes too fast, the balance during rotation deteriorates, and there is a risk that the structure that supports the impeller to be rotatable may be damaged. It is also necessary to take measures to stop the rotation of the impeller. For example, even when using the temporary name “variable speed ratio variable mechanism” according to the prior art, it seems that the risk ratio and the driving resistance are increased due to sliding. .
If the tentative name “rotational speed ratio variable mechanism” of the present invention is utilized as a braking mechanism, the relative angle between the central shafts 11 and 12 is changed so as to correspond to the magnitude and direction of the wind force, and the impeller or generator If the rotational speed of the rotor of the rotor is changed steplessly, power generation with a high ratio to the rotational speed of the input side rotating member can be achieved while utilizing wind power, and the speed increase of the impeller can be instantaneously limited as appropriate. Therefore, it is possible to decelerate, so that the safety and durability of the entire power generator including facilities and facilities can be protected.

次に、部材間の接続の部位における摺動を予防できる手段を用いた前記動力伝達機構並びに該機構と連携して機能できる装置に係わる更なる実施例について前記記載の用語と記号を用いて説明する。  Next, a further embodiment relating to the power transmission mechanism using means capable of preventing sliding at the site of connection between members and a device capable of functioning in cooperation with the mechanism will be described using the terms and symbols described above. To do.

動力の伝達,運動,出力される動力或いは前記転がり軌跡の伝達等を含めて、回転,往復回転,回動,往復運動,直線的運動,旋回,振動,迂回等、用途に応じて何れを用いても何れを生じさせてもよい。  Including power transmission, motion, output power or transmission of the rolling trajectory, etc., whichever is used depending on the application, such as rotation, reciprocating rotation, rotation, reciprocating motion, linear motion, turning, vibration, detouring, etc. However, either may be generated.

軸或いは中心軸を中心に回転可能或いは回転方向とは、前記実施形態に限定する事なく正方向や逆方向への回転或いは往復方向への回転でもよく、又、バックストップ機構やクラッチ等を設けて回転伝達方向や回転方向を制限してもよい。  The axis or the center axis can be rotated or the direction of rotation is not limited to the above-described embodiment, but may be forward or reverse rotation or reciprocal rotation, and a backstop mechanism or a clutch is provided. Thus, the rotation transmission direction and the rotation direction may be limited.

前記中心軸11と12間に相対的な角度を設ける場合には、中心位置6を中心とする同一半径の球面状の壁面21(外壁面或いは内壁面)と回転部材7との間で軸13を中心に転がり部材5を往復回転運動させると共に該転がり部材5の往復回転運動の伝達を受けて軸15を中心に回転部材7を往復回転運動させることができ、この往復回転運動によって前記接続の部位mとnにおける摺動を予防された省エネルギー効果の高い安全な回転動力の出力或いは相対的なエネルギーの出力を可能にする出力方法を用いることが好適であり、本発明の趣旨である。  When a relative angle is provided between the central shafts 11 and 12, a shaft 13 is formed between the rotary member 7 and the spherical wall surface 21 (outer wall surface or inner wall surface) having the same radius with the center position 6 as the center. The reciprocating rotational motion of the rolling member 5 about the shaft 15 and the reciprocating rotational motion of the rolling member 5 can be received to reciprocate the rotating member 7 about the shaft 15. It is preferable to use an output method that enables safe rotational power output or relative energy output that is highly energy-saving and prevents sliding at the parts m and n, and is the gist of the present invention.

前記中心軸11と12の少なくても何れかの相対位置を移動させて中心軸11と12間の相対的な角度を変える方法としては、前記に示した中心軸移動手段を用いればよいが、前記角度を変える方法は手動や自動や弾発的等で行える自在な手段を用いて実施することができる。
又、前記中心軸移動手段においては、例えば部材1と保持部材3を回転させている状態で中心位置6を中心に中心軸11と12との相対的な角度を変える方法,或いは予め前記角度を有する構成,或いは本発明の構成内の部材の回転速度と前記角度の変更を同時に行える手段を用いる事も可能である。
又、前記角度の変更と共に入力側回転部材の回転速度を増速或いは減速できるように連動させる方法を用いるとより効果的な加速や減速を可能にすることができるが、此の場合はエンジンやモーターやタービン等の原動機の出力軸の回転速度を増速させる方法を用いる場合は前記原動機からの出力による速度差の伝達が構成内外に相対的に成され少なからず障害を伴うために好適とは言えない。
又、中心位置6を中心に中心軸11と12間の相対的な角度を変えることのできる保持部材4或いは保持部材8が中心位置6を中心に勝手に回動されることを予防できるセルフロック機構或いは予防手段を設けることが安全性を得るためには有効である。
又、前記相対的な角度を変えても前記保持部材4或いは保持部材8が所定の位置に戻れる復原力のある手段を用いることも安全性を得るためには有効である。
As a method of changing the relative angle between the central axes 11 and 12 by moving at least one of the relative positions of the central axes 11 and 12, the above-described central axis moving means may be used. The method of changing the angle can be performed using any means that can be performed manually, automatically, or elastically.
In the central axis moving means, for example, a method of changing the relative angle between the central axes 11 and 12 around the central position 6 while the member 1 and the holding member 3 are rotated, or the angle is set in advance. It is also possible to use means that can simultaneously change the rotation speed and the angle of the member having the structure or the structure of the present invention.
In addition, it is possible to achieve more effective acceleration or deceleration by using a method of interlocking so that the rotation speed of the input side rotating member can be increased or decreased along with the change of the angle. When using a method of increasing the rotational speed of the output shaft of a prime mover such as a motor or turbine, it is preferable because the transmission of the speed difference due to the output from the prime mover is made relatively inside and outside the structure, and there are not a few obstacles. I can not say.
In addition, the self-lock which can prevent the holding member 4 or the holding member 8 capable of changing the relative angle between the center shafts 11 and 12 around the center position 6 from being freely rotated around the center position 6 can be prevented. Providing a mechanism or preventive means is effective for obtaining safety.
In order to obtain safety, it is also effective to use a restoring means capable of returning the holding member 4 or the holding member 8 to a predetermined position even if the relative angle is changed.

回転或いは回動可能に保持(軸支)する前記保持部材並びに軸支手段は、転がり軸受けから成る通称ラジアルベアリング,スラストベアリング,アンギュラベアリング等や、或いは滑り軸受けや他の軸支手段等、何れの軸受けを用いても相対的に受ける圧力に対し耐えて支えられ軽やかな回転を保てるものが好ましい。又、前記保持部材並びに軸支手段は、前記の軸受けであっても軸受けを取り付ける部材であってもよい。  The holding member and the supporting means for holding (supporting) in a rotatable or pivotable manner are any of radial bearings, thrust bearings, angular bearings, etc. consisting of rolling bearings, sliding bearings or other supporting means. Even if a bearing is used, it is preferable to be able to withstand and support a relatively received pressure and maintain a light rotation. Further, the holding member and the shaft support means may be the above-described bearing or a member to which the bearing is attached.

前記転がり部材5は、接続の部位mとnが球面となる球面体或いは球体を用いることが好適だが、球体或いは球面体とは異なる形状の転がり部材でもよい。
球面体を用いた場合は、球面の中心位置を貫通する穴を設けたり、回転軸を両端に突き出るように設ければ、前記穴或いは回転軸に対してベアリングを挿入することによって球面体を回転可能且つ外れないように保持できる。
The rolling member 5 is preferably a spherical body or a sphere in which the connection parts m and n are spherical, but may be a rolling member having a shape different from that of the sphere or the spherical body.
When a spherical body is used, if a hole penetrating the center position of the spherical surface is provided, or if the rotation shaft is provided so as to protrude at both ends, the spherical body is rotated by inserting a bearing into the hole or the rotation shaft. It can be held so as not to come off.

前記転がり部材5から成る球体を回転可能に保持する構成は、転がり部材5を相対的な滑り軸受けによって軸13並びに軸14を中心に回転可能且つ中心位置6に対する半径方向に移動可能に保持させる手段を用いてもよい。
例えば、丸い縦穴と丸い横穴を互いに交わるように設けた穴内に球体を入れて穴から外れ落ちないように保持する軸受け構造を用いることもできる。
The configuration in which the sphere composed of the rolling member 5 is rotatably held is a means for holding the rolling member 5 so as to be rotatable about the shaft 13 and the shaft 14 by a relative sliding bearing and movable in the radial direction with respect to the center position 6. May be used.
For example, it is possible to use a bearing structure in which a sphere is placed in a hole provided so that a round vertical hole and a round horizontal hole cross each other so as not to fall off the hole.

前記接続の部位mとnは、壁面21と転がり部材5との接続の部位mにおける接線と,回転部材7と転がり部材5との接続の部位nにおける接線とが略平行になるように構成させ、前記の二つの接続の部位mとnと中心位置6を直線上に位置できる構成(回転部材7と転がり部材5との接続の部位nは前記直線上から僅かにズレている方がよい場合もあるが)を用いることによって、壁面21と回転部材7との間で転がり部材5をクサビ状に行き詰まらせやすくすると共に接続の部位mとnにおける摺動を強力に予防させるには効果的である。
又、接続の部位mとnにおける相互の面は、滑らかな鏡面,硬度化された面,硬質皮膜,メッキ等が施されるものも好適である。
The connection parts m and n are configured such that the tangent at the connection part m between the wall surface 21 and the rolling member 5 and the tangent at the connection part n between the rotating member 7 and the rolling member 5 are substantially parallel. The structure in which the two connection parts m and n and the center position 6 can be positioned on a straight line (when the connection part n between the rotating member 7 and the rolling member 5 is preferably slightly shifted from the straight line. Is effective to prevent the rolling member 5 from becoming wedged between the wall surface 21 and the rotating member 7 and to strongly prevent sliding at the connection parts m and n. is there.
Further, as the mutual surfaces at the connection portions m and n, those having a smooth mirror surface, a hardened surface, a hard coating, plating, or the like are also suitable.

転がり部材5と接続される回転部材7の面は、軸15と略平行であると共に軸15を中心に同一半径の距離を設けられた円周面,或いは軸15に対して相対角度を有する傾斜される面であると共に軸15を中心に同一半径の距離を設けられた面,或いは軸15とは距離を設けられ軸15とは垂直となる面等を用いることによって、転がり部材5からの回転伝達で回転部材7が回転できると共に転がり部材5をクサビ状に行き詰まりやすくする上で有効である。  The surface of the rotating member 7 connected to the rolling member 5 is a circumferential surface that is substantially parallel to the shaft 15 and has a distance of the same radius around the shaft 15, or an inclined surface having a relative angle with respect to the shaft 15. Rotation from the rolling member 5 by using, for example, a surface having a distance of the same radius around the shaft 15 or a surface having a distance from the shaft 15 and being perpendicular to the shaft 15. This is effective in rotating the rotating member 7 by transmission and making the rolling member 5 easily wedged.

接続の部位nにおいては、軸15からの距離が大きくなるにつれて軸13を中心にされる転がり部材5の回転抵抗は小さくなり接続の部位mとnでの摺動は生じにくくなり、反対に軸15からの距離が小さく或いはゼロになるにつれて軸13を中心にされる転がり部材5の回転抵抗は大きくなり接続の部位mとnでの摺動は生じやすくなる。  At the connection portion n, as the distance from the shaft 15 increases, the rotational resistance of the rolling member 5 centered on the shaft 13 decreases, and sliding at the connection portions m and n hardly occurs. As the distance from 15 decreases or becomes zero, the rotational resistance of the rolling member 5 centered on the shaft 13 increases and sliding at the connection portions m and n tends to occur.

回転部材7の形状は、軸15を中心とする略同一半径の円筒状,或いは略同一半径の円柱状,或いは相対的なソロバン玉形状,或いはソロバン玉形状の外周を軸15を中心とする略同一半径の円柱状の外壁面となるような形状等様々な形状を設ける事ができる。  The shape of the rotating member 7 is a cylindrical shape with substantially the same radius centered on the shaft 15, a columnar shape with substantially the same radius, a relative abacus bead shape, or an outer periphery of the abacus bead shape with the shaft 15 as the center. Various shapes such as a cylindrical outer wall surface having the same radius can be provided.

回転部材7を回転可能に保持する構成は、軸15の向く軸方向(スラスト方向)或いは軸15に交差される方向(ラジアル方向)等多様な方向からの圧力に耐えながら摺動せずに軽やかに容易に回転できる軸受け構造が好適である。
スラスト方向では、軸15を中心にした同一半径の円形となり得る軌道を具備した部材と,該軌道上を往復転がり回転と共に軸15を中心に往復旋回できる転動体を用いて該転動体と回転部材7間でスラスト方向の圧力に耐えられる転がり軸受けから成るスラストベアリング或いは類似する構成が望ましい。
又、ラジアル方向では、軸15を中心にしたリング状の軌道を具備した部材と,該軌道上を往復転がり回転と共に軸15を中心に往復旋回できる転動体を用い、該転動体と回転部材7間で前記のラジアル方向の圧力に耐えられる転がり軸受けから成るラジアルベアリング或いは類似する構成を用いることが望ましい。
又、回転部材7を回転可能に保持する構成は、回転部材7に設けることのできる外壁面,内壁面,回転軸,側面,穴等により保持可能に構成させればよい。
The structure that rotatably holds the rotating member 7 is light without sliding while enduring pressure from various directions such as the axial direction (thrust direction) toward the shaft 15 or the direction intersecting the shaft 15 (radial direction). A bearing structure that can be easily rotated is suitable.
In the thrust direction, the rolling element and the rotating member are formed by using a member having a circular track having the same radius around the shaft 15 and a rolling member capable of reciprocating rolling on the track and reciprocating around the shaft 15. A thrust bearing consisting of rolling bearings capable of withstanding thrust in the thrust direction between 7 or similar is desirable.
Further, in the radial direction, a member having a ring-shaped track centering on the shaft 15 and a rolling element capable of reciprocatingly rotating around the shaft 15 along with the reciprocating rolling rotation on the track are used. It is desirable to use radial bearings or similar arrangements consisting of rolling bearings that can withstand the radial pressures between them.
In addition, the rotation member 7 may be rotatably held by an outer wall surface, an inner wall surface, a rotation shaft, a side surface, a hole, or the like that can be provided on the rotation member 7.

前記部材1,保持部材2,保持部材3には、中心軸11或いは中心軸12を中心とされる貫通穴或いは止まり穴を設け、該穴内に回転軸を挿入して該回転軸と前記部材間で回転伝達可能に取り付けることもできる。  The member 1, the holding member 2 and the holding member 3 are provided with a through hole or a blind hole centered on the central shaft 11 or the central shaft 12, and a rotation shaft is inserted into the hole so that the rotation shaft and the member are not connected. It can also be attached so that rotation can be transmitted.

保持部材2を中心軸を中心に回転可能に保持する構成は、部材1に対して相対的に回転可能に保持させたり,保持部材3に対して相対的に回動可能に保持させることもできる。
又、保持部材2が中心軸(11,12)に対して略平行にズレて外れることのないように部材1或いは保持部材3に対して相対的に凹凸となるガイドを設けて前記中心軸の左右方向から保持部材2を挟むように構成するか、或いは前記中心軸の左右方向から部材1或いは保持部材3を挟むように構成する事が望ましい。
The configuration in which the holding member 2 is rotatably held around the central axis can be held to be relatively rotatable with respect to the member 1 or can be held to be relatively rotatable with respect to the holding member 3. .
In addition, a guide that is relatively concave and convex with respect to the member 1 or the holding member 3 is provided so that the holding member 2 is not displaced in parallel with the central axis (11, 12). It is desirable that the holding member 2 is sandwiched from the left-right direction, or the member 1 or the holding member 3 is sandwiched from the left-right direction of the central axis.

回転動力を入力される入力側回転部材或いは回転動力を出力される出力側回転部材は、前記の部材1,保持部材2,保持部材3,保持部材4,保持部材8,転がり部材5,回転部材7,第1回転部材,第2回転部材,第3回転部材,被告保持回転部材,その他の回転可能な回転部材等、何れの回転部材であってもよい。  The input side rotating member to which the rotational power is input or the output side rotating member to which the rotational power is output includes the member 1, the holding member 2, the holding member 3, the holding member 4, the holding member 8, the rolling member 5, and the rotating member. 7, any rotating member such as a first rotating member, a second rotating member, a third rotating member, a defendant holding rotating member, and other rotatable rotating members may be used.

前記各図で示される保持部材3は、転がり部材5と回転部材7とを相対的にも具備して構成すれば、保持部材3に対して部材1を相対的に挿入することによって実施形態で示した機能を得られるため部材1を省いても、本発明で示した動力伝達機構から除外するものではない。The holding member 3 shown in each of the drawings is configured by inserting the member 1 relative to the holding member 3 in the embodiment, if the holding member 3 includes the rolling member 5 and the rotating member 7 relatively. Even if the member 1 is omitted to obtain the function shown, it is not excluded from the power transmission mechanism shown in the present invention.

転がり部材5を挟む壁面21と回転部材7の面形状は、円弧状,平面状,鈍角状,鋭角状,凸状,凹状等どのような形状でも良く、転がり部材5を挟む向かい合う部位における両接線は相対的に平行であっても僅かに傾斜されるように構成させても良いが、転がり部材5を挟んだ残りの向かい合う面は相対的に段無く緩やかに傾斜される相対的なクサビ状の傾斜面(例えば平面であっても相対的には傾斜面とすることもできる)を用いることが有効となる。
又、転がり部材5と壁面21との接続並びに転がり部材5と回転部材7との接続はそれぞれ一カ所(複数箇所でもいいが効果は異なる)と成るような接続構成が前記接続の部位における摩擦力を高めるためには有効となる。
The surface shape of the wall surface 21 sandwiching the rolling member 5 and the rotating member 7 may be any shape such as an arc shape, a planar shape, an obtuse angle shape, an acute angle shape, a convex shape, or a concave shape, and both tangents at opposite portions sandwiching the rolling member 5 May be configured to be relatively parallel or slightly inclined, but the remaining opposing surfaces sandwiching the rolling member 5 are relatively wedge-shaped that are relatively gently inclined without any step. It is effective to use an inclined surface (for example, even a flat surface can be relatively inclined).
In addition, the connection structure between the rolling member 5 and the wall surface 21 and the connection between the rolling member 5 and the rotating member 7 is one place (there may be a plurality of places but the effect is different). It is effective to increase

前記与圧手段については図示を省いたが、壁面21と転がり部材5間或いは壁面21と転がり部材5間並びに転がり部材5と回転部材7間で相対的に密着させ転がり部材5を常にクサビ状に行き詰まらせる方向で圧する与圧手段を用いて構成する事が好ましい。
例えば、転がり部材5を回転可能に保持する転がり軸受け41と保持部材2間,或いは転がり軸受け41と保持部材3間,或いは保持部材2と保持部材3間,或いは転がり部材5と保持部材2間,或いは転がり部材5と保持部材3間,或いは転がり部材5と壁面21間で、部材間における回転動力の伝達とは異なる方法(例えば、復原力のあるバネ,伸縮可能な部材等を用いた与圧の方法,或いは反発力又は吸着力等を生じさせる事のできる部材或いは手段を設ける方法等)を用いて前記の密着と圧力を可能に構成すれば、転がり部材5と壁面21間で精度の高い接続の位置を保持すると共に壁面21と回転部材7間で転がり部材5をクサビ状に行き詰まらせやすくし相対的な転がり軌跡の伝達を容易にし壁面21と転がり部材5との接続の部位mでの摺動を強力に予防させることができる。
Although not shown in the drawings, the pressurizing means is relatively closely contacted between the wall surface 21 and the rolling member 5, or between the wall surface 21 and the rolling member 5, and between the rolling member 5 and the rotating member 7, so that the rolling member 5 is always wedge-shaped. It is preferable to use a pressurizing means that presses in a direction that causes a deadlock.
For example, between the rolling bearing 41 and the holding member 2 for holding the rolling member 5 rotatably, between the rolling bearing 41 and the holding member 3, or between the holding member 2 and the holding member 3, or between the rolling member 5 and the holding member 2, Alternatively, a method different from the transmission of rotational power between the rolling member 5 and the holding member 3 or between the rolling member 5 and the wall surface 21 (for example, pressurization using a spring having a restoring force, a member that can be expanded and contracted, etc.) Or a method of providing a member or means capable of generating a repulsive force or an adsorbing force, etc.) to achieve the above close contact and pressure, a high accuracy between the rolling member 5 and the wall surface 21 can be obtained. While maintaining the position of the connection, the rolling member 5 is easily wedged between the wall surface 21 and the rotating member 7 to facilitate the transmission of the relative rolling trajectory, and the connection between the wall surface 21 and the rolling member 5 is facilitated. Sliding at position m can be strongly prevented.

前記保持部材2は、保持部材3と連結するか或いは固定するか,或いは保持部材3と相対的に一体構成することによって転がり部材5を保持部材3によって回転可能に保持する構成としてもよい。
この構成の場合は、保持部材2は保持部材3となり、転がり部材5と保持部材3間或いは転がり軸受け41と保持部材3間で圧することのできる前記与圧手段,或いは壁面21と転がり部材5間で圧することのできる前記与圧手段を設けることもできる。
The holding member 2 may be configured such that the rolling member 5 is rotatably held by the holding member 3 by being connected to or fixed to the holding member 3 or by being relatively integrated with the holding member 3.
In the case of this configuration, the holding member 2 becomes the holding member 3, and between the rolling member 5 and the holding member 3 or between the rolling bearing 41 and the holding member 3, or between the wall surface 21 and the rolling member 5. It is also possible to provide the pressurizing means that can be pressed with a pressure.

本発明の構成を取り囲む筺体(ケース),カバー,軸受け構成は、接続の部位mとnでは相対的な速度差の伝達を回避し摺動を強力に予防できる構造であるために軸受けや筺体に大きな力がおよび、この力に耐えて支えなければならない。従って、構成の周りを全て囲み、梁材を用いて筺体の強度を向上させ、軸受け間のスパンを大きく設けることも有効である。
又、転がり軸受けにあっては、リング状の軌道を転がり回転と共に旋回される転動体と、該転動体を回転可能に軸支するリテーナ間での摺動(滑り)を強力に防止できる構成を用いるか或いは摺動に対して摩耗しにくい部材と構造を用いる事が望まれる。又、リテーナを省ける構造も有効である。
又、用途によっては部材1と保持部材3の少なくても一部と中心位置6を取り囲み中心位置6付近を屈曲自在に構成されるフレキシブルなブーツ,ベローズ或いは弾性部材から成るカバーを取り付けて構成させることも塵ほこりから守るためには有効である。
The housing (case), cover, and bearing structure surrounding the structure of the present invention is a structure that can prevent the relative speed difference from being transmitted and strongly prevent sliding at the connection parts m and n. There is a great force and you have to endure and support this force. Therefore, it is also effective to surround the entire structure, improve the strength of the frame by using beam members, and provide a large span between the bearings.
In addition, the rolling bearing has a configuration that can strongly prevent sliding (sliding) between a rolling element that rotates and rotates on a ring-shaped track and a retainer that rotatably supports the rolling element. It is desirable to use a member and a structure that are used or are not easily worn by sliding. In addition, a structure that can eliminate the retainer is also effective.
Further, depending on the application, at least a part of the member 1 and the holding member 3 and the center position 6 are surrounded, and a cover made of a flexible boot, bellows or elastic member configured to be able to be bent around the center position 6 is attached. It is also effective to protect against dust.

本発明で示した動力伝達機構にはオイル或いはグリース潤滑できる構成が望ましいが、既存の仮称「回転数比可変自在機構」に用いられる摩擦係数の高いオイルはベアリングに対する回転抵抗も生じられるため好適とは言えない。
本発明で示した構成には、接続の部位mとnでは非常に摺動しにくいため摩擦係数の極めて低く浸透性があり面に対してオイル切れの非常に少ない高耐圧のオイルを用いることが安全性と耐久性を得るためには有効と考えられる。
The power transmission mechanism shown in the present invention preferably has a configuration capable of oil or grease lubrication. However, oil having a high friction coefficient used in the existing temporary name “variable rotation speed ratio mechanism” is preferable because it also causes rotational resistance to the bearing. I can't say that.
In the configuration shown in the present invention, it is very difficult to slide at the connection parts m and n, and therefore, a high pressure resistant oil having a very low friction coefficient and permeability and having very little oil breakage on the surface is used. It is considered effective for obtaining safety and durability.

前記各部材に設けられる材質は、従来技術による仮称「回転数比可変自在機構」に用いられる回転ディスク,回転体等の摩擦車のように純粋に近い鉄材等、面圧に強く硬度な部材を用いても良いが、前記接続の部位mとnでは非常に摺動しにくい構成となっており、金属,プラスティック樹脂等、用途に併せて自在な材質を選ぶことができる。又、大きなトルクを伝達する場合は張力や硬度があり表面が剥離しにくい材質を用いることも好適である。  The material provided for each member is a member that is strong against surface pressure and hard, such as a pure steel material such as a rotating disk or a friction wheel such as a rotating body used in a temporary name “variable speed ratio variable mechanism” according to the prior art. Although it may be used, the connection portions m and n are extremely difficult to slide, and any material such as metal or plastic resin can be selected according to the application. When transmitting a large torque, it is also preferable to use a material that has tension and hardness and is difficult to peel off from the surface.

本発明の構成を回転伝達自在継ぎ手としての活用する場合においては、前記第1,第2実施形態に示した構成を車両に具備される左右の車輪の車軸(回転軸)或いは操舵軸の角度の変化に追従される回転伝達自在継ぎ手として用いることもできる。
例えば、中心軸11と12との相対角度が変わることによって出力側回転部材(例えば車輪)は減速回転或いは加速回転或いは抵抗の増減を可能にされる為、カーブを曲がったり路面の凹凸に対して左右の車輪は適切な回転速度及び回転トルクを路面に伝達する事も可能となり車輪と路面とのスリップを防止しながら安全に素早く通過する事が可能となる。
When the configuration of the present invention is used as a rotation transmission universal joint, the configuration shown in the first and second embodiments is adjusted to the angle of the left and right wheel axles (rotary shafts) or the steering shaft provided in the vehicle. It can also be used as a rotation-transmitting universal joint that follows changes.
For example, when the relative angle between the central axes 11 and 12 is changed, the output side rotating member (for example, a wheel) can be decelerated or accelerated, or the resistance can be increased or decreased. The left and right wheels can transmit appropriate rotational speed and rotational torque to the road surface, and can pass safely and quickly while preventing slippage between the wheels and the road surface.

前記移動装置の破損や障害を防止する手段としての活用においては、車両並びに車輪の加速減速に本発明で云う構成を用いた場合は路面と車輪間の相対的なスリップも回避される可能性が高いことは前記のとおりである。
本発明の構成を設けられて成る相対位置を移動できる移動装置に具備される部材に対して、外部の部材が相対的に必要以上に接近或いは押圧(衝突でも良い)することによって前記中心軸11と12との相対角度を変え此れに同期し回転伝達半径比を変えて路面と車輪間の相対的な転がり回転抵抗を増加させ前記車輪(前後左右の何れの車輪でも良い)の回転速度或いは移動装置の推進速度を減速できるように構成させることもできる。
又、相対的な位置を移動できる移動装置に具備される部材との押圧(衝突や追突でも良い)による伝達或いは該移動装置の必要以上の接近による相対的な位置或いは速度の伝達によって、前記中心軸11と12との相対角度を変え此れに同期して加速或いは減速が行われ或いは同期して抵抗を増減されて前記移動装置の速度或いは外部の部材の速度を瞬時に段を伴わずに減速或いは加速されるように構成させ該構成によって複数の移動装置間或いは移動装置と外部の部材間での破損或いは障害を最小限に防止し安全性を高めることも可能となる。
In use as a means for preventing damage and failure of the moving device, when the configuration according to the present invention is used for acceleration and deceleration of the vehicle and wheels, relative slip between the road surface and the wheels may be avoided. The high thing is as above-mentioned.
The central shaft 11 is formed by an external member relatively approaching or pressing (may be a collision) with an external member relative to a member provided in a moving device capable of moving a relative position provided with the configuration of the present invention. And the relative transmission angle ratio is changed in synchronism with this to change the rotation transmission radius ratio to increase the relative rolling rotation resistance between the road surface and the wheel, thereby increasing the rotational speed of the wheel (which may be any of the front, rear, left and right wheels) or It can also be configured to reduce the propulsion speed of the moving device.
Further, the center can be obtained by transmission by pressing (may be collision or rear-end collision) with a member provided in a moving device capable of moving the relative position, or by transmitting a relative position or speed by approaching the moving device more than necessary. The relative angle between the shafts 11 and 12 is changed, and the acceleration or deceleration is performed synchronously or the resistance is increased or decreased synchronously, so that the speed of the moving device or the speed of the external member is instantaneously not accompanied by a step. By being configured to decelerate or accelerate, it is possible to minimize damage or failure between a plurality of moving devices or between a moving device and an external member, thereby improving safety.

本発明の構成にトルクリミッターを接続させる構成において、本発明の構成は前記接続の部位mとnにおいて摺動を予防されているために比較的弱いところに回転力或いは圧力が加わり破損と障害を生じる恐れがある。
従って本発明の構成内の回転動力の入力側回転部材或いは出力側回転部材の少なくても何れかと回転伝達される部材間で回転動力の伝達を制限し制限を超える回転部材間での回転伝達を僅かながらも予防できる回転伝達制限装置(通称トルクリミッター)を設けることが前記破損を予防するためには有効である。
In the configuration in which the torque limiter is connected to the configuration of the present invention, since the configuration of the present invention prevents sliding at the connection parts m and n, a torque or pressure is applied to a relatively weak place to cause damage and failure. May occur.
Therefore, the transmission of rotational power is limited between members that are rotationally transmitted with at least one of the input side rotational member or the output side rotational member of the rotational power within the configuration of the present invention, and the rotational transmission between the rotational members that exceeds the limit. In order to prevent the breakage, it is effective to provide a rotation transmission limiting device (commonly known as a torque limiter) that can be prevented even slightly.

前記記載の動力伝達機構(部材間の接続の部位における速度差の伝達並びに摺動を予防或いは低減できる手段を用い該接続の部位における摩擦力により部材間で動力を伝達し出力できる方法並びに該方法を活用される活用手段或いは該活用手段の一例として示した動力伝達機構)は例えば、動力を入力されて駆動できる入力側部材と該入力側部材からの動力の伝達を受けて駆動される出力側部材間で駆動の伝達や駆動方向の変化を可能にされる相対的な駆動伝達自在継ぎ手とされたり、回転動力を入力されて回転される入力側回転部材と該入力側回転部材からの回転動力の伝達を受けて回転される出力回転部材間で回転の中心軸間の相対角度を自在に変えながら回転伝達できる回転伝達自在継ぎ手とされたり、進む速度或いは回転速度等の相対的な速度を減速させたり制御することのできる相対的なブレーキ機構とされたり、回転動力を入力されて回転される入力側回転部材と該入力側回転部材からの回転動力の伝達を受けて回転される出力回転部材間で摩擦によるロック等の役割を果たすことのできるクラッチ機構とされたり、複数の部材間で相対角度を自在に変化できるように可動可能に保持される相対的な可動機構とされたり、その用途によって如何様な構成にも具現化することができる。  The power transmission mechanism described above (a method capable of transmitting and outputting power between members by means of frictional force at the connection portion using means capable of preventing or reducing transmission of a speed difference and sliding at a connection portion between members, and the method For example, an input side member that can be driven by receiving power and an output side that is driven by receiving power from the input side member. Rotating power from an input-side rotating member that is used as a relative drive-transmitting universal joint that enables transmission of driving and changes in the driving direction between members, and that is rotated by receiving rotational power It can be used as a rotation-transmitting joint that can transmit rotation while freely changing the relative angle between the center axes of rotation between the output rotating members that are rotated by the transmission of A relative brake mechanism capable of decelerating and controlling the actual speed, rotating by receiving the rotational power from the input-side rotating member and the input-side rotating member that is rotated by receiving the rotational power. A clutch mechanism that can act as a lock by friction between output rotating members that are operated, or a relative movable mechanism that is movably held so that the relative angle can be freely changed among a plurality of members Or can be embodied in any configuration depending on the application.

本発明の前記記載の方法並びに活用手段並びに構成(例えば動力伝達機構,仮称「回転数比可変自在機構」を含む)を活用されることにより、耐久性,安全性,省エネルギー化,CO2排出削減効果,評価,付加価値或いは売上等を高めることの可能な要素とコスト低減の要素があり、他の方法では得難いものである。
従って、制動機構,原動機(モーター,エンン,タービー等),車両,移動装置,発電機,前記発電装置等を含め、本発明で示した方法並びに構成(例えば前記動力伝達機構)を活用される装置を本発明の対象から除外するものではない。
又、前記動力伝達機構並びに前記装置においても、部材間の接続の部位における摺動を予防できる手段を用い該部材間で動力を伝達できる方法並びに該方法を活用される活用手段の一例であり、該活用手段は、機構,装置,業務,販売,出力方法等を含めた活用の手段であり、例えば本発明で示した前記方法を題材に活用する単なる業務や活動であっても前記活用手段に含まれるものとしている。
By utilizing the above-described method and utilization means and configuration of the present invention (for example, a power transmission mechanism, including a temporary name “variable speed ratio variable mechanism”), durability, safety, energy saving, CO2 emission reduction effect There are elements that can increase evaluation, added value, sales, etc. and elements that reduce costs, which are difficult to obtain by other methods.
Therefore, a device utilizing the method and configuration (for example, the power transmission mechanism) shown in the present invention, including a braking mechanism, a prime mover (motor, engine, turby, etc.), a vehicle, a moving device, a generator, the power generation device, etc. Are not excluded from the scope of the present invention.
Further, in the power transmission mechanism and the apparatus, the method that can transmit power between the members using the means that can prevent the sliding at the connection portion between the members, and the utilization means that utilize the method are examples. The utilization means are utilization means including mechanisms, devices, operations, sales, output methods, and the like. For example, even simple operations and activities utilizing the method described in the present invention as the subject matter can be used as the utilization means. It is supposed to be included.

以上は本発明の実施形態である。
本発明は、接続の部位mとnにおける摺動を予防できる手段を用いて成る動力伝達機構を用いることによって障害の予防,安全性の向上或いは省エネルギー化等を図ることのできる相対的な構成或いは装置の確立と提供を目的としているが、単に動力或いは回転動力を伝達できる構成のみに限定するものではない。
従って、本発明で云う部材間の接続の部位における摺動を予防できる手段,或いは該手段を具備した動力伝達機構との連携によって機能を得られる装置,或いは該動力伝達機構と回転伝達できる構造を具備される装置,或いは前記に示した方法を活用される活用手段を含め、特許請求の範囲に示す特徴は少なくても本発明の範囲であり、本発明は特許請求の範囲に示す特徴から逸脱することなく他の様々な形状や手段を用いて構成させることができる。
又、記載される事柄は単なる例示にすぎず限定的に解釈するものではない。
The above is an embodiment of the present invention.
The present invention provides a relative configuration that can prevent failure, improve safety, save energy, etc. by using a power transmission mechanism that uses means that can prevent sliding at the connection parts m and n. The purpose is to establish and provide a device, but the present invention is not limited to a configuration that can transmit power or rotational power.
Therefore, a means capable of preventing sliding at a connection portion between members according to the present invention, a device capable of obtaining a function by cooperation with a power transmission mechanism provided with the means, or a structure capable of transmitting rotation with the power transmission mechanism. The features shown in the scope of the claims are at least the scope of the present invention, including the devices provided, or the means of utilizing the method described above, and the invention departs from the features shown in the claims. It can be configured using various other shapes and means without doing so.
In addition, what is described is merely an example and should not be interpreted in a limited manner.

発明の効果The invention's effect

本発明は、少なくても以下に記載される効果を得る事ができる。  The present invention can obtain the effects described below at least.

▲1▼.本発明で示す動力伝達機構の構成においては、部材間における摩擦力による動力の伝達と出力の方法を用いながら、部材間の接続の部位mとnにおける摺動と障害の発生を予防し、少なくても接続の部位における安全性と耐久性の向上が可能となる。
例えば、軸15を中心に所定方向に回転できる回転部材7に対して転がり部材5を前記所定方向とは交差する方向に転がり移動せしめんとする動力の伝達を受ける方法を用いたことにより接続の部位nで受ける動力や負荷による圧力を接続の部位mにおける摩擦力に替えながら動力を損失することなく伝達し前記軸15中心の回転とは異なる動力の出力が可能となった。
例えば、壁面21と回転部材7との間で転がり部材5をクサビ状に行き詰まらせることのできる面形状を転がり部材5と接続される壁面21と回転部材7の面に相対的に構成させたことにより、接続の部位mとnで受ける動力や負荷による圧力を摩擦力に替え、動力を損失することなく伝達し出力可能となった。
(1). In the configuration of the power transmission mechanism shown in the present invention, the use of the power transmission and output method by the frictional force between the members, while preventing the occurrence of sliding and failure at the connection parts m and n between the members, the less However, it is possible to improve the safety and durability at the connection site.
For example, the connection is achieved by using a method of receiving transmission of power for rolling and moving the rolling member 5 in a direction intersecting the predetermined direction with respect to the rotating member 7 that can rotate in a predetermined direction around the shaft 15. The power received at the part n and the pressure due to the load are transmitted without changing the frictional force at the connected part m without losing the power, and the output of the power different from the rotation at the center of the shaft 15 becomes possible.
For example, the surface shape capable of causing the rolling member 5 to get stuck in a wedge shape between the wall surface 21 and the rotating member 7 is configured relatively to the wall surface 21 connected to the rolling member 5 and the surface of the rotating member 7. Thus, the power received at the connection parts m and n and the pressure due to the load are changed to frictional force, and the power can be transmitted and output without loss.

▲2▼.壁面21と回転部材7に対して軸13並びに軸14を中心にされる転がり部材5の転がり回転による転がり軌跡の伝達を相対的に可能にした構成を用いることによって、壁面21と回転部材7との間で転がり部材5をクサビ状に行き詰まらせた状態であっても接続の部位mとnにおける摺動,駆動抵抗,摩耗等の障害の発生を予防し接続の部位における安全性を高めることが可能となった。(2). By using a configuration that relatively enables transmission of a rolling locus by rolling rotation of the rolling member 5 centered on the shaft 13 and the shaft 14 with respect to the wall surface 21 and the rotating member 7, the wall surface 21 and the rotating member 7 Even when the rolling member 5 is stuck in a wedge shape, the occurrence of troubles such as sliding, driving resistance and wear at the connection parts m and n can be prevented and the safety at the connection part can be improved. It has become possible.

▲3▼.接続の部位mとnにおける圧力と摩擦力を必要な範囲で自在(段を伴わず)に増減でき、接続の部位mとnにおける部材の安全性と耐久性を高めることが可能となる。
例えば、転がり部材5をクサビ状に行き詰まらせることのできる面形状を用いたことによって、接続の部位nで受ける動力や負荷による圧力を接続の部位mにおける必要な範囲の圧力と摩擦力に替えることが可能となったため、接続の部位mとnにおける過剰な圧力や摺動による損傷の予防が可能となった。
(3). The pressure and frictional force at the connection parts m and n can be freely increased and decreased within a necessary range (without steps), and the safety and durability of the members at the connection parts m and n can be improved.
For example, by using a surface shape that can lock the rolling member 5 in a wedge shape, the power and load pressure received at the connection site n are replaced with the pressure and friction force within the required range at the connection site m. Therefore, it is possible to prevent damage due to excessive pressure and sliding at the connection portions m and n.

▲4▼.軸13を中心にする転がり部材5の往復転がり回転と軸15を中心とする回転部材の往復回転を可能にする構成を用いたことにより接続の部位mとnにおける摺動と障害の発生を予防し安全性と耐久性を高めることが可能となった。
例えば、転がり部材5をクサビ状に行き詰まらせながらも軸13を中心に転がり部材5の回転を可能に軸支する軸支手段(軸受け)と、軸15を中心に回転部材7の回転を軽やかに可能に軸支する軸支手段(軸受け)とを用いたことによって、クサビ状に行き詰まらせながらも壁面21に対して軸13を中心とする転がり部材5の転がり回転と、該転がり回転によって軸15を中心に回転部材7を回転させることを可能にし、此れらの回転によって接続の部位mにおいては入力される動力の伝達方向に対して相対角度を有する方向への転がり軌跡の伝達並びに接続の部位mの転がり移動を接続の部位mにおいて摺動と摺動音と発熱の発生を強力に予防をされながら実施可能となった。
(4). By using a configuration that allows the rolling member 5 to reciprocate and rotate about the shaft 13 and the rotating member about the shaft 15 to reciprocate, sliding and failure at the connection sites m and n can be prevented. It has become possible to improve safety and durability.
For example, while the rolling member 5 is stuck in a wedge shape, the shaft support means (bearing) that supports the rotation of the rolling member 5 around the shaft 13 and the rotation of the rotating member 7 around the shaft 15 are light. By using a shaft support means (bearing) that supports the shaft as much as possible, the rolling member 5 rotates about the shaft 13 with respect to the wall surface 21 while being wedge-shaped, and the shaft 15 is rotated by the rolling rotation. The rotation member 7 can be rotated around the center, and the rotation locus is transmitted and connected in a direction having a relative angle to the transmission direction of the input power at the connection portion m by these rotations. It has become possible to carry out the rolling movement of the part m while strongly preventing sliding, sliding noise and generation of heat at the connection part m.

▲5▼.接続の部位mにおいて、部材間の回転伝達半径比,回転数並びに回転速度の比率を摺動を予防されながら継続的に段を伴わずに変えることが可能になった。
例えば、中心位置6を中心に同一半径の球面から成る壁面21(外壁面或いは内壁面)と回転部材7との間に転がり部材5を挟み転がり部材5をクサビ状に行き詰まらせることを可能に構成したことによって、出力側回転部材に大きな負荷が生じている場合に中心位置6を中心に中心軸11と12との相対角度を変更する場合であっても接続の部位mとnにおいては摺動を予防されながら壁面21に対して相対的な半径方向に接続の部位mを転がり移動させ非常に軽快に中心軸11と12との相対角度を変更することができ、此れによってタイムラグを伴わず前記相対角度の変更と同期された加速或いは減速或いは制動が可能となる。
(5). In the connection portion m, the rotation transmission radius ratio, the rotation speed, and the rotation speed ratio between the members can be continuously changed without steps while preventing sliding.
For example, the rolling member 5 is sandwiched between a wall surface 21 (outer wall surface or inner wall surface) made of a spherical surface having the same radius around the center position 6 and the rotating member 7 so that the rolling member 5 can be wedged. As a result, even when the relative angle between the central axes 11 and 12 is changed around the center position 6 when a large load is generated on the output side rotating member, sliding occurs at the connection parts m and n. It is possible to change the relative angle between the central shafts 11 and 12 very easily by rolling and moving the connecting portion m in the radial direction relative to the wall surface 21 while preventing the occurrence of a time lag. Acceleration, deceleration or braking synchronized with the change of the relative angle is possible.

▲6▼.本発明で示した動力伝達機構との連携によって機能を得られる装置は、接続の部位mとnのみならず速度差の伝達による障害を予防され、此れによって耐久性,省エネルギー効果,相対的なエネルギー(回転速度,発電,その他)のタイムラグの無い自在な増減,危険回避,商品価値の向上等、多様な相乗効果と安全性を得る事が可能となる。(6). In the device capable of obtaining the function by cooperation with the power transmission mechanism shown in the present invention, the failure due to the transmission of the speed difference as well as the connection portions m and n is prevented, and thereby durability, energy saving effect, relative It is possible to obtain various synergistic effects and safety such as free increase / decrease without time lag of energy (rotation speed, power generation, etc.), danger avoidance, and improvement of commercial value.

▲7▼.本発明で示した部材間で動力を伝達できる方法並びに該方法を活用される活用手段を具現化して用いることにより、接続の部位における摺動を予防される前記機構や装置を活用できる他に、省エネルギー効果,コスト削減効果,収益,環境保全効果,安全性等、多くの相乗効果や便乗効果を得ることができる。(7). In addition to being able to utilize the mechanism and apparatus that prevent sliding at the site of connection by embodying and using a method that can transmit power between members shown in the present invention and a utilization means that utilizes the method, Many synergistic effects such as energy saving effects, cost reduction effects, profits, environmental conservation effects, safety, etc. can be obtained.

本発明の活用手段の一例となる動力伝達機構の第1実施形態の特徴を示す図。The figure which shows the characteristic of 1st Embodiment of the power transmission mechanism which is an example of the utilization means of this invention. 本発明の活用手段の一例となる動力伝達機構の第1実施形態の特徴を示す図。The figure which shows the characteristic of 1st Embodiment of the power transmission mechanism which is an example of the utilization means of this invention. 本発明の活用手段の一例となる動力伝達機構の第2実施形態の特徴を示す図。The figure which shows the characteristic of 2nd Embodiment of the power transmission mechanism which is an example of the utilization means of this invention. 本発明の活用手段の一例となる動力伝達機構の第2実施形態の特徴を示す図。The figure which shows the characteristic of 2nd Embodiment of the power transmission mechanism which is an example of the utilization means of this invention. 本発明の活用手段の一例となる動力伝達機構の第3実施形態の特徴を示す図。The figure which shows the characteristic of 3rd Embodiment of the power transmission mechanism which is an example of the utilization means of this invention. 本発明の活用手段の一例となる動力伝達機構の第4実施形態の特徴を示す図。The figure which shows the characteristics of 4th Embodiment of the power transmission mechanism which is an example of the utilization means of this invention. 本発明の活用手段の一例となる動力伝達機構の第5実施形態の特徴を示す図。The figure which shows the characteristic of 5th Embodiment of the power transmission mechanism which is an example of the utilization means of this invention. 本発明の活用手段の一例となる動力伝達機構の第6実施形態の特徴を示す図。The figure which shows the characteristics of 6th Embodiment of the power transmission mechanism which is an example of the utilization means of this invention. 本発明の活用手段の一例となる動力伝達機構の第7実施形態の特徴を示す図。The figure which shows the characteristic of 7th Embodiment of the power transmission mechanism which is an example of the utilization means of this invention.

符号の説明Explanation of symbols

1…部材
2,3,4,8,10…保持部材
5…転がり部材
6…中心位置
7…回転部材
9,13,14,15…軸
11,12…中心軸
21…壁面
31…凹んだ曲面状の溝
32,33…回転面
34,35,38…回転軸
36…内輪
37…外輪
41,42,43,44…転がり軸受け
51…ガイドレール
52…ボルトの頭部
61,62,63,64…歯車
f,h,j,k,r,s,t…回転方向
g,p,q…方向
m,m′…壁面21と転がり部材5との接続の部位
n…転がり部材5と回転部材7との接続の部位
x,y,z…距離,力の及ぶ方向
DESCRIPTION OF SYMBOLS 1 ... Member 2,3,4,8,10 ... Holding member 5 ... Rolling member 6 ... Center position 7 ... Rotating member 9, 13, 14, 15 ... Axis 11, 12 ... Center axis 21 ... Wall surface 31 ... Recessed curved surface Grooves 32, 33 ... rotating surfaces 34, 35, 38 ... rotating shaft 36 ... inner ring 37 ... outer rings 41, 42, 43, 44 ... rolling bearing 51 ... guide rail 52 ... bolt heads 61, 62, 63, 64 ... gears f, h, j, k, r, s, t ... rotational directions g, p, q ... direction m, m '... site of connection between wall surface 21 and rolling member 5 n ... rolling member 5 and rotating member 7 Connection part x, y, z ... distance, direction of force

Claims (4)

軸15から略等距離の半径で該軸中心にリング状の回転面を有する回転部材Rotating member having a ring-shaped rotating surface at the center of the shaft at a radius approximately equal to the shaft 15
7と、該回転部材7を前記軸15を中心に所定方向に回転自在に保持する保持部材3と、7 and a holding member 3 that holds the rotating member 7 so as to be rotatable in a predetermined direction around the shaft 15; 前記回転面に接続され該接続される位置で前記軸15とは異なる軸13を中心に回転するIt is connected to the rotation surface and rotates around a shaft 13 different from the shaft 15 at the connected position. ことで回転部材7を前記所定方向に回転させる転がり部材5と、前記回転面との間で転がThus, the rolling member 5 that rotates the rotating member 7 in the predetermined direction rolls between the rotating surface. り部材5を挟み前記回転面とは相対的に移動できる壁面21と、前記の回転面と壁面21A wall surface 21 that can move relative to the rotating surface with the gripping member 5 interposed therebetween, and the rotating surface and the wall surface 21 の少なくても何れかで転がり部材5を前記回転面に対して前記所定方向とは交差する方向Direction in which the rolling member 5 intersects the rotation plane with the predetermined direction at least in any direction へ移動せしめんと圧を加えることで転がり部材5は前記の回転面と壁面の間でクサビ状にThe rolling member 5 is wedge-shaped between the rotating surface and the wall surface by moving to nail and applying pressure. 行き詰まりながら転がり部材5と壁面21との接続の部位或いは転がり部材5と回転部材The part of the connection between the rolling member 5 and the wall surface 21 or the rolling member 5 and the rotating member while getting stuck 7との接続の部位で前記クサビ状に行き詰まる方向への摩擦力を作り出すか或いは該摩擦The frictional force is generated in the direction where the wedge is stuck in the portion connected to the wedge 7, or the friction is generated. 力で動力を伝達するか或いは前記クサビ状に行き詰まりながらも転がり部材5の前記回転The rotation of the rolling member 5 while transmitting power by force or being stuck in the wedge shape で回転部材7を前記所定方向へ回転させるかの少なくても何れかのできる構成とを活用さIn this case, a configuration in which at least one of the rotating member 7 is rotated in the predetermined direction can be used. れる装置。Equipment.
前記壁面21は、前記の軸15と13とは異なる軸11或いは該軸11上のThe wall surface 21 is different from the shafts 15 and 13 on the shaft 11 or on the shaft 11.
中心位置6を中心に一周にわたって略同一半径の面で構成される請求項1記載の装置。The apparatus according to claim 1, wherein the apparatus is configured by surfaces having substantially the same radius around the center position 6.
中心位置6を中心に略同一半径の球面状の前記壁面21を有する部材1と、A member 1 having the spherical wall surface 21 of substantially the same radius around a center position 6;
前記の軸15と13とは異なる軸であって前記中心位置6を中心に相対角度を変えることThe axis is different from the axes 15 and 13, and the relative angle is changed around the center position 6. のできる中心軸11と12と、部材1は中心軸11を中心に中心位置6を回り前記保持部Center shafts 11 and 12, and the member 1 rotates around the central axis 11 around the central position 6 and the holding portion 材3は中心軸12を中心に中心位置6を回り前記回転部材7は前記軸15と共に更なる中The material 3 rotates around the center position 6 around the center axis 12 and the rotary member 7 is further 心軸12を中心に回り前記転がり部材5は前記軸13と共に更なる中心軸12を中心に中The rolling member 5 around the center axis 12 is centered around the center axis 12 together with the axis 13. 心位置6を回ることのできる構成とを活用される請求項1記載の装置。The apparatus according to claim 1, wherein a configuration capable of turning around the center position 6 is utilized.
軸15から略等距離の半径で該軸中心にリング状の回転面を有する回転部材Rotating member having a ring-shaped rotating surface at the center of the shaft at a radius approximately equal to the shaft 15
7と、該回転部材7を前記軸15を中心に所定方向に回転自在に保持する保持部材3と、7 and a holding member 3 that holds the rotating member 7 so as to be rotatable in a predetermined direction around the shaft 15; 前記回転面に接続され該接続される位置で前記軸15とは異なる軸13を中心に回転するIt is connected to the rotation surface and rotates around a shaft 13 different from the shaft 15 at the connected position. ことで回転部材7を前記所定方向に回転させる転がり部材5と、前記回転面との間で転がThus, the rolling member 5 that rotates the rotating member 7 in the predetermined direction rolls between the rotating surface. り部材5を挟み前記回転面とは相対的に移動できる壁面21とを少なくても活用され、At least the wall surface 21 that can move relative to the rotation surface with the gripping member 5 interposed therebetween is utilized,
前記の回転面と壁面21の少なくても何れかで転がり部材5を前記回転面に対して前記所At least one of the rotating surface and the wall surface 21 causes the rolling member 5 to move relative to the rotating surface. 定方向とは交差する方向へ移動せしめんと圧を加えることで転がり部材5は前記の回転面The rolling member 5 is moved in the direction intersecting with the constant direction, and the rolling member 5 is rotated by applying pressure. と壁面の間でクサビ状に行き詰まりながら転がり部材5と壁面21との接続の部位或いはThe part of the connection between the rolling member 5 and the wall surface 21 while being wedged between the wall surface and the wall surface or 転がり部材5と回転部材7との接続の部位で前記クサビ状に行き詰まる方向への摩擦力をThe frictional force in the direction of getting stuck in the wedge shape at the connection portion between the rolling member 5 and the rotating member 7 作り出すか或いは該摩擦力で動力を伝達するか或いは前記クサビ状に行き詰まりながらもCreate or transmit power with the frictional force or get stuck in the wedge shape 転がり部材5の前記回転で回転部材7を前記所定方向へ回転させるかの少なくても何れかAt least one of rotating the rotating member 7 in the predetermined direction by the rotation of the rolling member 5 を可能にする方法。How to enable.
JP2007282399A 2007-10-02 2007-10-02 Method for transmitting power between members and outputting them, and means for utilizing the method Expired - Fee Related JP4733097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007282399A JP4733097B2 (en) 2007-10-02 2007-10-02 Method for transmitting power between members and outputting them, and means for utilizing the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007282399A JP4733097B2 (en) 2007-10-02 2007-10-02 Method for transmitting power between members and outputting them, and means for utilizing the method

Publications (3)

Publication Number Publication Date
JP2009085426A JP2009085426A (en) 2009-04-23
JP2009085426A5 JP2009085426A5 (en) 2010-12-02
JP4733097B2 true JP4733097B2 (en) 2011-07-27

Family

ID=40659087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007282399A Expired - Fee Related JP4733097B2 (en) 2007-10-02 2007-10-02 Method for transmitting power between members and outputting them, and means for utilizing the method

Country Status (1)

Country Link
JP (1) JP4733097B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056589A (en) * 2001-08-21 2003-02-26 Shizuo Mishima Rotational power transmission structure capable of flexibly setting relative angle of central axis of rotation
JP2003097657A (en) * 2001-09-20 2003-04-03 Shizuo Mishima Structure for transmitting rotation power
JP2008151182A (en) * 2006-12-14 2008-07-03 Ntn Corp Constant velocity universal joint
JP2008215557A (en) * 2007-03-06 2008-09-18 Ntn Corp Constant velocity universal joint

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056589A (en) * 2001-08-21 2003-02-26 Shizuo Mishima Rotational power transmission structure capable of flexibly setting relative angle of central axis of rotation
JP2003097657A (en) * 2001-09-20 2003-04-03 Shizuo Mishima Structure for transmitting rotation power
JP2008151182A (en) * 2006-12-14 2008-07-03 Ntn Corp Constant velocity universal joint
JP2008215557A (en) * 2007-03-06 2008-09-18 Ntn Corp Constant velocity universal joint

Also Published As

Publication number Publication date
JP2009085426A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
CN106090149B (en) Double-motor plate type infinitely-variable-speed power system
JP4799199B2 (en) In-wheel motor drive device
JPH08500413A (en) Continuously variable transmission
KR20140031379A (en) Powertrain for a vehicle and method for controlling a powertrain
KR101476668B1 (en) Compound planetary front wheel drive continuously variable transmission
WO2017049049A1 (en) Hybrid electric powertrain configurations with a ball variator used as a continuously variable mechanical transmission
CN105848949B (en) Traction system for a vehicle
EP3378689B1 (en) Power transmission device for vehicle
WO2018045146A1 (en) Electric axle transmission with a ball variator continuously variable planetary transmission with and without torque vectoring for electric and hybrid electric vehicles
WO2017083522A1 (en) Compound split hybrid electric powertrain configurations with a ball variator continuously variable transmission with one or more modes
JP4733097B2 (en) Method for transmitting power between members and outputting them, and means for utilizing the method
KR20190122253A (en) Control unit and method for azimuth and / or pitch adjustment of wind turbines
KR20170112617A (en) Speed changing Power Train for Rail Car
US20200300316A1 (en) Nutational braking systems and methods
US9512906B2 (en) Transmission device
US20140243146A1 (en) Infinitely variable traction drive employing alternate steerable rollers
WO2014087793A1 (en) Vehicle power transmission
RU2262633C1 (en) Device for cleaning inner surface of pipeline
JP4535361B2 (en) Rotational power transmission device
WO2018005747A1 (en) Powertrain
JP2004316892A (en) Torque transmitting coupling
KR100991515B1 (en) Roll down ball type high speed reducer
JP2014040892A (en) Frictional roller type transmission
TR201808322A2 (en) U TRANSFORMABLE INFINITY TRANSMITABLE TRANSMISSION
JP5780929B2 (en) Hypoid gear device

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100927

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R150 Certificate of patent or registration of utility model

Ref document number: 4733097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees