JP4535361B2 - Rotational power transmission device - Google Patents

Rotational power transmission device Download PDF

Info

Publication number
JP4535361B2
JP4535361B2 JP2001330003A JP2001330003A JP4535361B2 JP 4535361 B2 JP4535361 B2 JP 4535361B2 JP 2001330003 A JP2001330003 A JP 2001330003A JP 2001330003 A JP2001330003 A JP 2001330003A JP 4535361 B2 JP4535361 B2 JP 4535361B2
Authority
JP
Japan
Prior art keywords
rotating body
rotation
central axis
rotated
rotational power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001330003A
Other languages
Japanese (ja)
Other versions
JP2003097657A5 (en
JP2003097657A (en
Inventor
静雄 三島
Original Assignee
静雄 三島
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 静雄 三島 filed Critical 静雄 三島
Priority to JP2001330003A priority Critical patent/JP4535361B2/en
Publication of JP2003097657A publication Critical patent/JP2003097657A/en
Publication of JP2003097657A5 publication Critical patent/JP2003097657A5/ja
Application granted granted Critical
Publication of JP4535361B2 publication Critical patent/JP4535361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、相対角度を有する中心軸を中心に回転自在に軸支される複数の回転体間で回転伝達可能に接続される機構を含めた回転動力伝達構造に関する。
又、前記複数の回転体間での相対的な回転数と回転速度と回転速度比を無段階に変化させる事のできる無段変速機能を具備した前記回転動力伝達構造並びに該構造を設けられて成る構成に関する。
【0002】
【従来の技術】
従来、回転動力を入力される入力軸と,該入力軸から伝達された回転速度を変速されて更に外部に出力できる出力軸と,前記入力軸と出力軸間を回転伝達可能に接続される回転体と,前記入力軸と出力軸の回転中心軸に対して前記回転体の回転中心軸の相対位置を移動させて回転中心軸間の相対的な角度を変えることができる中心軸移動手段が設けられ、前記入力軸と出力軸を定位置に固定的に配置しながら前記の移動と回転伝達を実施することができ、前記移動が成されることにより前記の入力軸と回転体と出力軸間の相対的な回転速度の比率を無段階に変えることのできる無段変速機があり、
此の構成の特徴は、前記入力軸と出力軸はほぼ平行な距離を設けられた回転中心軸を中心に回転可能に軸支される構成で、回転伝達可能に配置する為には少なくても複数の軸を横方向あるいは縦方向に並べるスペースが必要であった。
【0003】
【発明が解決しようとする課題】
回転動力を入力される入力軸と該入力軸から伝達されて回転される回転体と該回転体から回転動力の伝達を受けて回転され回転動力を外部に出力できる出力軸間でのスリップを強力に防止すると共に、前記の入力軸と回転体と出力軸を設けて構成される機構のスペース並びに容積の必要以上の拡大を抑制可能にすることを目的としている。
又、前記の入力軸と出力軸と回転体を共通の位置中心に回転可能に保持できる構造を用いて、前記位置には相互に回転伝達可能な複数の回転体の回転中心軸を位置させ、前記位置中心にした回転中心軸間の相対的な交差角度の自由度,回転動力の向かう相対的な方向の自由度,複数の回転軸間の回転速度比の自由度等を含めて新たな技術の展開を可能にし、構成部品数の抑制,小型軽量化,低コスト化等を容易にし、消費エネルギーの強力な抑制,効率化,省エネルギー化に役立つ構成を実現し提供することを目的としている。
【0004】
【課題を解決する為の手段】
上記課題を解決する為に、本発明の回転動力伝達構造並びに回転動力伝達構造に用いる事のできる各種の構造を以下の手段を用いて構成させる事が出来る。
【0005】
(1)… それぞれの中心軸を中心に相対的に回転自在に軸支される回転体1と回転体2と回転体3と、前記回転体1と回転体2間を回転伝達できる第1接続手段と、前記回転体2と回転体3間を回転伝達できる第2接続手段とを少なくても設けられ、前記2つの接続手段の少なくても何れかは前記回転体1と回転体2と回転体3の少なくても何れかの周りを取り囲むように構成させ、前記回転体1と回転体2と回転体3の前記中心軸上の共通する中心位置10を略中心に前記回転体1と回転体2と回転体3の内の少なくても2つ回転体間の中心軸の相対角度を変化させる事によって、回転体1と回転体2と回転体3の内の少なくても2つの回転体間の相対的な回転数の比率を変化させる事を可能に構成させて本発明の回転動力伝達構造を成立させる事ができる。
又、前記2つの接続手段の少なくても何れかは前記回転体1と回転体2の少なくても何れかの周りと前記中心位置10の周りを取り囲むように構成させて本発明の回転動力伝達構造を成立させる事もできる。
【0006】
(2)…又、前記(1)記載の回転動力伝達構造を次のように構成させる事もできる。
それぞれの中心軸を中心に相対的に回転自在に軸支される回転体1と回転体2と回転体3とを少なくても具備し、前記回転体1と回転体2には回転体1と回転体2と回転体3の前記中心軸上の共通する中心位置10を中心にした略球面状の外壁面をそれぞれに設け、回転体2には回転体1の前記球面状の外壁面の周りを取り囲むと共に回転体1と回転体2間を回転伝達できる接続手段を設け、回転体3には回転体2の前記球面状の外壁面の周りを取り囲むと共に回転体2と回転体3間を回転伝達できる接続手段を設け、前記回転体1と回転体2と回転体3間で回転伝達自在に接続させて本発明の回転動力伝達構造を成立させる事もできる。
【0007】
(3)…又、前記回転体1と回転体2と接続手段間の構造を次のように構成させる事もできる。
中心軸8−1を中心に回転自在に軸支される回転軸83と、中心軸8−1の軸方向であって前記回転軸83の両端の一方には前記中心軸8−1上の中心位置10を中心にした略球面状の外壁面9−1−1と、前記回転軸83の両端の他の一方には前記中心位置10を中心にした略球面状の外壁面9−1−2とを設けられて構成される回転体1と、前記中心軸8−1に対して交差される中心軸8−2を中心に回転自在に軸支される回転体2と、前記中心位置10の周りを取り囲みながら前記回転体1に具備される略球面状の外壁面9−1−1と9−1−2を加圧できると共に回転体1と回転体2間を回転伝達自在に接続される接続手段とを少なくても具備させて構成させる。
【0008】
(4)…又、前記回転体1と回転体2間や、回転体2と回転体3間を含めて前記回転体間の中心軸の相対角度あるいは前記回転体間の中心軸の相対位置を移動する事のできる中心軸移動手段を具備させて、前記回転体1と回転体2間や回転体2と回転体3間での回転数の比率を無段階に変化させ相対的に前記回転体間の回転数を相対的に無段変速できるように構成させる事もできる。
【0009】
(5)…又、前記回転体2を次のように構成させる事もできる。
中心位置10を略中心に円形状の外壁面または中心位置10を略中心に略球面状の外壁面の何れかの外壁面を有する前記回転体1を含めた外部の部材の前記外壁面の周りを取り囲む事ができると共に、前記外壁面を加圧する事のできる複数の可動部材6と、可動部材6と加圧自在にされると共に前記中心位置10の周りを取り囲みながら中心位置10から距離を設けられた位置で前記中心位置10に対して接近される位置から離れる方向に向かった複数のクサビ状の面と、可動部材6を可動自在に保持する保持部材と、前記中心位置10を中心に前記中心位置10と複数の可動部材6と前記保持手段の周りを取り囲む事のできる略球面状の外壁面とを少なくても設けられて構成され、前記外部の部材の前記外壁面と可動部材6間を加圧接続させた場合には、前記中心位置10を中心に正方向と逆方向の少なくても何れかの回転の加圧力を前記外部の部材と相対的に受け止められるように構成させて、球面状の外壁面を具備して成る前記回転体2を含めた部材の構造を成立させる事ができる。
【0010】
(6)…又、前記接続手段を次のように構成させる事ができる。
前記中心軸を略中心にした穴30を設けられている保持部材12に具備される構造であって、該穴30の内壁面には前記中心軸を取り囲むと共に中心軸から距離を設けられた位置で中心軸に対して接近される位置から離れる方向に向かったクサビ状の面5−1と5−2とをそれぞれに複数設けられ、前記複数のクサビ状の面5−1に対してそれぞれ加圧自在且つ可動自在にされる可動部材6−1と、前記複数のクサビ状の面5−2に対してそれぞれ加圧自在且つ可動自在にされる可動部材6−2と、可動部材6−1を前記クサビ状の面5−1に対して前記中心軸に接近される方向と前記中心軸を中心にした正方向の回転方向との間の方向に加圧し、可動部材6−2を前記クサビ状の面5に対して前記中心軸に接近される方向と前記中心軸を中心にした前記正方向とは異なる逆方向の回転方向との間の方向に加圧する事のできる加圧部材とを相対的に設けられ、
中心位置10を略中心に円形状の外壁面または中心位置10を略中心に略球面状の外壁面を具備する外部の部材を前記保持部材12の穴30内に挿入して外部の部材の前記外壁面に対して前記可動部材6−1と6−2の前記中心軸に近い面で加圧接続させた場合には、前記中心軸を中心に前記外部の部材と保持部材12の何れを正方向と逆方向に回転させても前記外部の部材と保持部材12間では回転の加圧力を受け止められるように構成させて前記接続手段から成る保持部材12に具備される構造を成立させる事ができる。
【0011】
(7)…又、前記接続手段を次のように構成させる事ができる。
保持部材12から成る第1部材と、保持部材4から成る第2部材と、中心軸上の自在な位置10を中心に略球面状や円形状の外壁面を含めて前記自在な位置10から距離を設けられた壁面を具備して成る第3部材とを設ける事の可能な構造であって、前記第1部材と第2部材と第3部材の内の少なくても2つは同一中心軸を中心に相対的に回転自在に軸支される事の可能な構造であって、前記第1部材には前記中心軸から距離を設けられた位置で前記中心軸上の周りを取り囲むと共に前記自在な位置10に対して接近される位置から離れる方向に向かった相対的なクサビ状の面5−1と5−2をそれぞれ複数設けられ、前記第2部材には、前記複数のクサビ状の面5−1に対してそれぞれに加圧自在且つ相対的に可動自在にされる可動部材6−1と、前記複数のクサビ状の面5−2に対してそれぞれに加圧自在且つ相対的に可動自在にされる可動部材6−2とを可動自在に保持され、前記第1部材と第2部材と可動部材6−1と可動部材6−2との少なくても何れかには可動部材6−1を前記クサビ状の面5−1に対して前記中心軸を中心にした略正方向の回転方向に加圧し可動部材6−2を前記クサビ状の面5−2に対して前記中心軸を中心にした略逆方向の回転方向に加圧できる加圧部材とを設けられ、前記可動部材6−1と6−2に対して前記第3部材に具備される壁面を加圧自在に接続させる事によって、前記中心軸を中心に第1部材を正方向と逆方向の何れの方向に回転させても第1部材から伝達される回転の加圧力を第2部材と第3部材が受け止められる要素と、第3部材を相対的に停止又は固定した状態で前記中心軸を中心に第2部材を正方向と逆方向に回転させる事によって第2部材から伝達される回転の加圧力を第1部材が受け止められて第1部材が回転される要素と、第3部材を停止又は固定した前記の状態で前記中心軸を中心に第1部材を正方向と逆方向の何れの方向に回転の加圧力を伝達しても第1部材から伝達される回転の加圧力は第3部材で受け止められる要素とを少なくても内在されるように前記接続手段から成る回転動力伝達構造を構成させる事ができる。
【0012】
(8)…又、前記手段(7)で示した接続手段から成る回転動力伝達構造においては、前記加圧部材によって、可動部材6−1と6−2は前記回転方向と前記中心位置10から離れる方向との間の方向に押し出されるように加圧されて、可動部材6−1は前記クサビ状の面5−1と第3部材の前記壁面間で相対的に挟み込まれるように加圧され、可動部材6−2は前記クサビ状の面5−2と第3部材の前記壁面間で相対的に挟み込まれるように加圧される事を可能に構成させる事もできる。
【0013】
(9)…又、車両を含めて相対位置を移動できる移動手段と、電気を発電できる発電装置の少なくても何れかには、前記移動手段と発電装置の少なくても何れかを駆動させる駆動手段として前記(1)又は(2)又は(3)又は(4)又は(7)又は(8)記載の何れかの回転動力伝達構造を具備して構成させる事ができる。
【0014】
(10)…又、前記(2)と(3)記載の何れかの回転動力伝達構造に具備される接続手段は、前記中心軸を略中心にした穴を設けられ、該穴の内壁面には前記中心軸を取り囲むと共に前記中心軸から距離を設けられた位置で前記中心軸に対して接近される位置から離れる方向に向かった複数の相対的なクサビ状の面5と、前記クサビ状の面5に対して加圧自在且つ可動自在にされる複数の可動部材と、前記可動部材を前記クサビ状の面5に対して前記中心軸に接近される方向と前記中心軸を中心にした回転方向との間の方向に押し出すように加圧できる加圧部材7とを相対的に設け、前記回転体1と回転体2に具備される略球面状の外壁面に対して前記可動部材を加圧接続させる事によって、前記回転体1と回転体2間と、回転体2と回転体3間で回転伝達可能に構成させる事のできる回転動力伝達構造として構成させる事も自在である。
【0015】
【本発明の実施形態】
以下、本発明の回転動力伝達構造と該構造に用いる事のできる実施形態例を図面に基づいて説明する。
【0016】
図1は、本発明の回転動力伝達構造の第1実施形態と特徴を示す略図である。
同図(a)は平面図であり、同図(b)は前記図(a)の正面断面図であり、同図(c)は図(b)の右側面の中心位置10を基にした断面図である。
【0017】
図1の図(a)と(b)と(c)で示す回転動力伝達構造は、
それぞれの中心軸を中心に相対的に回転自在に軸支される回転体1と回転体2と回転体3と、前記回転体1と回転体2間を回転伝達できる接続手段20−1と、前記回転体2と回転体3間を回転伝達できる接続手段20−2とを少なくても設ける事によって、前記回転体1と回転体2と回転体3とは、同一中心軸上から相対角度を有する中心軸に至って前記回転体の内の少なくても何れかから回転動力を入力する事によって何れかから回転動力を出力可能に構成させると共に、前記回転体1と回転体2と回転体3のそれぞれの中心軸上の共通する一つの中心位置10(前記手段記載の自在な位置10を含む)を略中心に前記回転体1と回転体2と回転体3の少なくても何れかとの中心軸の相対角度を変化させる事によって、回転体1と回転体2と回転体3の少なくても2つの回転体間の相対的な回転数の比率を変化させる事を可能に構成された第1回転動力伝達構造である。
又、前記2つの接続手段の少なくても何れかは前記回転体1と回転体2の少なくても何れかの周りと前記中心位置10の周りを取り囲むように構成させて本発明の第1回転動力伝達構造を成立させる事もできる。
【0018】
又、図1においては、中心軸8−1を中心に軸支手段91に対して回転自在に軸支される回転体1と、中心軸8−2を中心に軸支手段92に対して回転自在に軸支される回転体2と、中心軸8−3を中心に軸支手段93に対して回転自在に軸支される回転体3とを設けられ、前記回転体1と回転体2には前記中心軸上であって互いに共通する中心位置10(前記中心軸を含む)の周りを取り囲むような略球面状の外壁面をそれぞれに設けられ、回転体2には回転体1の前記球面状の外壁面9−1の周りを取り囲むと共に回転体1と回転体2間を回転伝達できる接続手段20−1を設け、回転体3には回転体2の前記球面状の外壁面9−2の周りを取り囲むと共に回転体2と回転体3間を回転伝達できる接続手段20−2を設け、前記回転体1と回転体2間と、回転体2と回転体3間で回転伝達自在に接続されている事を示す前記第1回転動力伝達構造である。
【0019】
次に、同図で示す具体的な構造と機能を説明する。
【0020】
同図で示す中心軸8−1は回転体1の中心軸であり、中心軸8−2は回転体2の中心軸であり、中心軸8−3は回転体3の中心軸として示し、中心軸8−1と8−2と8−3を同一中心軸上に配置した状態を示しているが、回転体1と回転体2と回転体3や中心軸8−1と8−2と8−3を相対的に異なる角度に成るような中心軸位置にさせる事もできる。
又、前記それぞれ異なる軸支手段91と92と93又は前記回転体1と2と3又は前記中心軸8−1と8−2と8−3の少なくても何れかを、前記何れかの中心軸方向となる図示のx方向や前記中心位置10を中心に相対角度を有する方向となる図示のy方向に移動できる中心軸移動手段を設けて前記軸支手段や前記回転体や前記中心軸の少なくても何れかを移動自在に構成させる事もできる。
従って、前記それぞれ異なる軸支手段の内の少なくても何れかを回転やスライド等を含めて図示を省いている他の軸支手段やフレームに対して可動自在(往復の回転や揺動やスライドを含む)に軸支させて構成する事も自在である。
又、中心軸8−1と8−2と8−3の少なくても何れか間の相対位置や相対角度が生じても、又は前記中心軸の相対位置を移動を実施している最中であっても回転体1と回転体2間や、回転体2と回転体3間や、回転体1と回転体2と回転体3間の少なくても何れか間では正方向と逆方向の回転伝達と正方向と逆方向の何れかの回転伝達を可能に構成させる事のできる構造である。
【0021】
又、図1に示す前記接続手段20−1と20−2とは略同一機能と略同一構造を用いて次のように構成させている。(接続手段20−1と20−2とは異なる機能と異なる構造や形状を用いて構成させる事も自在である)
【0022】
図1に示すように、前記中心軸(本発明の全ての実施形態の記載例においては中心軸を中心軸上の前記中心位置10として理解する事もできる)を略中心にした穴30を設けられると共に前記中心軸を略中心にした円弧状の外壁面40(円弧状以外の形状でもよい)を具備した保持部材12を具備して成る構造であって、該穴30の内壁面50には前記中心軸を取り囲むと共に前記中心軸から距離を設けられた位置で前記中心軸に対して接近される位置から離れる方向に向かった複数のクサビ状の面5(クサビ状の面は、中心軸を中心に同一半径と成らない面としている)と、前記クサビ状の面5に対して加圧自在且つ可動自在にされる複数の可動部材6と、該可動部材6を可動自在に保持する保持部材4と、前記可動部材6を前記クサビ状の面5に対して前記中心軸に接近される方向と前記中心軸を中心にした回転方向との間の方向に押し出すように加圧できると共に加圧力に対する反発力をしめす事のできる加圧部材7(弾性的に変形及び復元自在な弾性部材でも良い)とを設けられ、前記保持部材4と保持部材12とは一体成形又は保持部材4と前記保持部材12間を相対的に固定(保持部材4と前記保持部材12を前記中心軸を中心に相対的に僅かに回転自在に取り付ける事も自在である)されて保持部材4と保持部材12は供回り自在に構成させて前記接続手段20−1と20−2をそれぞれに構成させている。
【0023】
更に、接続手段20−1に具備される保持部材12は、回転体2に設けられた前記中心軸を略中心にした円弧状の内壁面を具備した穴32に対して圧入して回転体2と保持部材12間を相対的に固定させ、接続手段20−1と共に前記中心軸上の中心位置10を略中心にして中心位置10の周りを取り囲むような略球面状の外壁面9−2を具備して成る回転体2を構成させている。
接続手段20−2に具備される保持部材12は、回転体3に設けられた前記中心軸を略中心にした円弧状の内壁面を具備した穴33に対して圧入し回転体3と保持部材12間を相対的に固定させて、接続手段20−2と共に回転体3を構成させている。
【0024】
又、回転体2と接続手段20−1の前記保持部材12間や、回転体3と接続手段20−2の保持部材12間を圧入せずに一体成形させたり、接合させたり、係合させて、供回り自在に構成させたり、同一素材や異なる素材として構成させる事も自在である。
【0025】
又、図示のクサビ状の面5は、保持部材12の穴30の内壁面50に対して相対的に傾斜状に凹んだ(相対的に凹凸状でもよい)曲面状の形状(略への字形状や平面状の形状でもよい)で等間隔(等間隔でなくても良い)で複数(偶数でも奇数でも良い)設けられている。
又、クサビ状の面5は前記加圧部材7や保持部材4に設ける事も自在である。
従って、クサビ状の面5と加圧部材7と保持部材4間を一体成形させたり、接合させたり、係合させたり、同一素材や異なる素材として構成させる事も自在である。
【0026】
又、図示の可動部材6は、保持部材4や保持部材12内で回転又は揺動又はスライドを含めて可動自在に保持されて円柱状に構成させているが円筒状や円錐状や多角形や一点を中心にしない複数の円弧状の外壁面を具備した棒状の形状や、球面を具備する球面体や球体で構成させる事も自在である。
又、可動部材6においても保持部材12や前記加圧部材7や保持部材4に設ける事も自在である。
従って、可動部材6と保持部材12とクサビ状の面5と加圧部材7と保持部材4間を一体成形させたり、接合させたり、係合させたり、同一素材や異なる素材として構成させながら相対的に構成される保持部材12とクサビ状の面5と加圧部材7と保持部材4に対して可動部材6を僅かながらも揺動自在を含めて可動自在に構成させる事もできる。
【0027】
又、同図において回転体1は中心位置10を中心に略球面状の外壁面9−1を具備して構成され、回転体1と回転体2と回転体3にはそれぞれに回転軸を設けているが、該回転軸は穴の空いている回転軸であっても良い。
【0028】
又、略球面状の外壁面9−1と9−2は、中心位置10を中心に放射方向に同一半径の途切れのない真球面とする事もできるが、略球面状の外壁面自体は、前記接続手段の穴30内に挿入して嵌め合わせる構造であり、前記接続手段との好適な嵌め合い公差や寸法や、前記中心位置10や、加工精度や、組み立て精度を含めて寸分の狂いのない完全精度と成り得る真球面の外壁面は、成形方法や成形手段を含めて現在技術では完璧にはしがたい。
従って、作為的な形状や効率的な形状を含めて僅かに楕円的な球面や、面粗さからなる凹凸や、不均衡や均衡な配列から成る僅かな凹凸を具備した略球面状の外壁面であっても、球面と共に球面状の外壁面の範囲として用いる事もできる。
【0029】
又、図示の加圧部材7は、コイル状のバネを用いているが、板状や他の形状のバネや、樹脂や金属を含めて弾性変形及び形状復元自在な反発力を有する弾性部材や他の部材を用いる事ができると共に、前記保持部材4や保持部材12や可動部材6に対して加圧部材7を取り付けたり、加圧部材7と前記保持部材4や保持部材12や可動部材6間を一体成形させて同一素材や異なる素材として構成させる事も自在である。
【0030】
又、前記可動部材6を前記クサビ状の面5に対して前記中心軸に接近される方向と前記中心軸を中心にした回転方向との間の方向に押し出すように加圧できるように構成させた事を示したが、此の構成は可動部材6を前記中心軸に接近される方向と、前記中心軸を中心にした回転方向の少なくても何れかの方向に押し出すように加圧できる構成とした例である。
【0031】
又、前記保持部材12に具備される構造や接続手段20−1と20−2を、前記中心軸を中心に正方向の回転の加圧力を相対的に受け止めて回転伝達するか回転伝達される事を可能にすると共に、逆方向の回転の加圧力を相対的に受け止める事ができずに回転伝達できないか回転伝達されない機能を具備するワンウェイクラッチや回転の加圧力を受け止める方向を切り替え自在なツーウェイクラッチやラチェット機構等と呼称される機構を含めたバックストップ機構とする事もできるし、該バックストップ機構の構造を用いて構成させる事も自在であるが、図1に示す接続手段20−1と20−2と保持部材12に具備される構造は、前記バックストップ機構から成るワンウェイクラッチを用いて示している。従ってあらゆる構造のバックストップ機構を用いる事ができる主旨である。
【0032】
又、前記接続手段20−1と20−2は、前記中心軸を略中心に同一半径の円弧状の外壁面または中心位置10を略中心にした略球面状の外壁面(9−1又は9−2)を具備する回転体1と回転体2を含めた外部の部材を、前記保持部材12の穴30内に挿入すると加圧部材7は縮んで(伸びても良い)可動部材6は前記中心軸から僅かに離れる方向の半径方向に移動されながら前記外部の部材の前記外壁面に対して前記可動部材6の前記中心軸に近い面で加圧接続されると共に加圧部材7の加圧力によって可動部材6は前記中心軸方向とクサビ状の面5に対しても加圧する事ができる。
又、前記中心軸を中心に前記外部の部材と保持部材12の少なくても何れかを正方向と逆方向の少なくても何れかの方向に回転させた場合には、前記外部の部材と保持部材12間では回転の加圧力を受け止められて回転されるように構成されている。
従って、図1においては回転体1の球面状の外壁面9−1と接続手段20−1に具備される可動部材6と加圧接続され、回転体2の球面状の外壁面9−2と接続手段20−2に具備される可動部材6と加圧接続されている為に回転体1と回転体2間と、回転体2と回転体3間では少なくても何れかを正方向と逆方向の少なくても何れかの方向に回転させれば回転伝達される事ができる主旨の第1回転動力伝達構造である。
【0033】
次に、回転体1と回転体2と回転体3との回転伝達時における球面状の外壁面9−1と9−2と可動部材6とクサビ状の面5と加圧部材7との具体的な機能について説明する。
【0034】
例えば、回転体1に対して入力の動力で前記中心軸を中心に矢印70方向に1回転の回転力(加圧力を意味する)を伝達し、回転体2には回転抵抗を与えて停止又は固定させた場合には、接続手段20−1に具備される保持部材4内に位置する可動部材6は、回転体1の球面状の外壁面9−1から回転の加圧力を受けて接続手段20−1に具備されるクサビ状の面5と球面状の外壁面9−1に対して図中の矢印v方向に僅かに転がり回転又はスライドしながらクサビ状の面5と球面状の外壁面9−1に対する加圧接続の位置が移動されると共にクサビ状の面5と球面状の外壁面9−1との間に挟み込まれて行き詰まり、クサビ状の面5と可動部材6と球面状の外壁面9−1間で加圧力が増加されてクサビ状の面5と可動部材6と球面状の外壁面9−1間での相対的な噛み合いが生じられて回転体1から伝達される回転の加圧力を接続手段20−1によって受け止められ、回転体2を略1回転させる事ができる。
又、接続手段20−1を前記記載のバックストップ機構で構成させた場合は、回転体1の回転を停止させても、回転体2は回転体1に対して回転伝達する事なく回転を継続する事ができると共に、回転体1を矢印71方向に回転させた場合には回転体2を回転させずに回転体1のみが回転する事もできる。
【0035】
又、回転体2に対して入力の動力で前記中心軸を中心に矢印70方向に1回転の回転力(加圧力を意味する)を伝達し、回転体3には回転抵抗を与えて停止又は固定させた場合には、接続手段20−2に具備される保持部材4内に位置する可動部材6は、回転体2の球面状の外壁面9−2から回転の加圧力を受けて接続手段20−2に具備されるクサビ状の面5と球面状の外壁面9−2に対して図中の矢印v方向に僅かに転がり回転又はスライドしながらクサヒ状の面5と球面状の外壁面9−2に対する加圧接続の位置が移動されると共にクサビ状の面5と球面状の外壁面9−2との間に挟み込まれて行き詰まりながら、クサビ状の面5と可動部材6と球面状の外壁面9−2間で加圧力が増加されてクサビ状の面5と可動部材6と球面状の外壁面9−2間での相対的な噛み合いが生じられて回転体2から伝達される回転の加圧力を接続手段20−2によって受け止められ、回転体3を略1回転させる事ができる。
【0036】
又、接続手段20−2を前記記載のバックストップ機構で構成させた場合は、回転体2の回転を停止させても、回転体3は回転体2に対して回転伝達する事なく回転を継続する事ができると共に、回転体2を矢印71方向に回転させた場合には回転体3を回転させずに回転体2のみが回転する事もできる。
【0037】
従って、回転体1を矢印70方向に回転させれば回転体2と回転体3は接続手段20−1と20−2によって矢印70方向に回転を継続する事が自在となる。
又、回転体3を矢印71方向に回転させれば回転体2と回転体1は接続手段20−1と20−2によって矢印71方向に回転させられて回転を継続する事が自在となる。
【0038】
又、前記接続手段20−1と20−2や前記バックストップ機構の構造を応用し、前記と略同様の構造や同様の機能を更に追加して設ければ、回転体1を矢印70方向と71方向に回転させれば回転体2と回転体3は接続手段によって矢印70方向と71方向に回転され、回転体3を矢印70方向と71方向に回転させれば回転体2と回転体1は接続手段によって矢印70方向と71方向に回転され、回転体2を矢印70方向と71方向に回転させれば回転体3と回転体1は接続手段によって矢印70方向と71方向に回転させる事を可能に構成させる事もできる。
【0039】
図1で示した回転動力伝達構造と前記接続手段20−1と20−2の構造は、摩擦接触(トラクションドライブ的)に類似されるような摩擦力による回転伝達構造でありながら、複数の可動部材6と複数のクサビ状の面5を球面状の面9−1と9−2を取り囲むように配置させて加圧接続させている為に、球面状の面9−1と9−2に対する可動部材6の加圧接続箇所を増加させ、回転体1と回転体2間や回転体2と回転体3間の回転伝達においては加圧力を複数の加圧接続箇所に分割し分散しながら、個々の加圧接続箇所における加圧の負担と損傷を減少させ、回転体1と回転体2間や回転体2と回転体3間の回転伝達においては滑る事を限りなく防止又は滑る事を皆無にしながら強力なトルクによる回転伝達を可能にしている。
【0040】
又、クサビ状の面5と可動部材6と球面状の面9−1及び9−2間の加圧接続は部材間の加圧接触や、クサビ状の面5と可動部材6と球面状の面9−1及び9−2間には潤滑油を含めて他の部材や媒体を介在させて他の部材や媒体によって回転の加圧力を相対的に受け止められるように構成させる事も自在である。
【0041】
又、前記接続手段(20−1と20−2)の構造においては、保持部材4と保持部材12間を一体成形又は固定させて構成させたが、前記中心軸を中心に保持部材4と保持部材12とを相対的に僅かながらも回転自在に構成させながら可動部材6によって供回り且つ回転伝達自在に構成させて、接続手段20−1と20−2の替わりとして接続手段20−3として構成させる事もできる。
例えば此のように構成させた図示を省いている接続手段20−3の場合で、
回転体1に対して回転抵抗を与えて、入力の回転動力で回転体2を矢印71方向に回転させれば、接続手段20−3に具備される保持部材4と回転体1は回転体2から伝達される回転の加圧力を受け止めて矢印71方向に回転される。
次に前記の状態で回転体2を矢印70方向に回転させれば、接続手段20−3に具備される保持部材4は回転体2から伝達される回転の加圧力を受け止めて矢印70方向に回転されるが、回転体1は回転の加圧力を受け止められず回転されない状態を保つ事もできる。
又、回転体2と保持部材4に回転抵抗を与えて回転体1を矢印70方向に回転させれば回転体2と保持部材4は回転体1から伝達される回転の加圧力を受け止めて回転される。
又、回転体2と保持部材4に回転抵抗を与えて回転体1を矢印71方向に回転させれば回転体2と保持部材4は回転体1から伝達される回転の加圧力を受け止められずに停止状態を保つ事ができる。
又、回転体2を矢印70方向に回転させれば保持部材4は回転体2から伝達される回転の加圧力を受け止めて矢印70方向に回転されるが、回転体1は回転体2から伝達される回転の加圧力を受け止められずに停止状態を保つ事もできる。
此れらの機能は、前記接続手段(20−1と20−2)と同様に前記バックストップ機構の構造を応用して用いているためにバックストップ機能を得る事ができる。
【0042】
このバックストップ機能は、保持部材12と回転体1の何れかを正方向の回転方向に回転させれば可動部材6を球面状の外壁面9とクサビ状の面5の間で挟み込んで相対的に噛み合わされて回転の加圧力を相対的に受け止められるが、保持部材12と回転体1の何れかを逆方向に回転させれば可動部材6は球面状の外壁面9とクサビ状の面5の間で挟み込まれずに相対的に噛み合わされないように構成させているためであり、可動部材6に対して左右の位置となるクサビ状の面5の傾斜面の角度を変化させているためである。従って可動部材6に対して左右の何れかの位置に傾斜状の面から成るクサビ状の面5を設けて構成させ、左右の何れかの位置に前記傾斜状の面とは異なる角度の面5を設けて構成させる事もできる。
【0043】
次に、回転体1に対して回転抵抗を与えながら入力の回転動力で前記接続手段20−3に具備される保持部材4を矢印70と71の何れの方向に回転させても回転体2(保持部材12)は保持部材4から伝達される回転の加圧力を受け止めて矢印70と71方向に回転されながら、回転体1を停止状態にする事も自在であり、此れも前記バックストップ機能の効果である。
【0044】
次に、回転体1を軸支手段90に対して固定又は停止させている場合に、入力の回転動力で接続手段20−3に具備される保持部材4を矢印70と71の方向に回転させれば回転体2も同一方向に回転される。しかし、この状態で入力の回転動力で回転体2に対して矢印71の回転方向に回転の加圧力を加えると回転体2の回転の加圧力は回転体1で受け止められるために回転体2は回転されないか又は保持部材4と回転体1と軸支手段90が前記中心軸を中心に回転される事も可能になる。従って入力の回転動力の伝達される範囲で正方向に回転され入力の回転動力の伝達される範囲を超えて前記正方向に回転される事を阻止するセルフロック機構と同様の機能を得る事も自在である。
又、入力の回転動力で保持部材4を矢印70方向に回転させた場合は回転体1を回転させずに回転体2と保持部材4が矢印70方向に回転する事ができ、これは前記バックストップ機構に内在される機能となる。
【0045】
図2は、前記図1で示した前記第1実施形態の更なる特徴を示す略図であり、同図は前記図1の図(b)で示した正面図を基にした変形図である。
従って、前記図1の図(a)と(b)と(c)で示した符号を準用するものとしている。
【0046】
図2は前記図1の構造であり、前記図1で示した図示と異なるところは、中心軸8−2と回転体2と軸支手段92を中心軸8−1と8−3に対して相対角度を有した位置に移動させた状態を示している。
具体的には、回転体2を中心軸8−2を中心に軸支手段92に対して回転自在に軸支させていると共に、軸支手段92を前記中心位置10を中心に軸支手段94に対して回動自在に軸支させ、軸支手段92を前記中心位置10を中心に図示のy方向に回動させる事によって回転体2と中心軸8−2を中心軸8−1と8−3に対して相対角度を有する位置に移動させたものである。
又、軸支手段91と93と94をフレーム99に固定させている。
従って此の構成の場合には、軸支手段92を前記中心軸移動手段として理解する事もできる。
【0047】
又、回転体1や回転体2や回転体3を回転自在に軸支する軸支手段の少なくても何れかの軸支手段を前記中心位置10を中心に図示のy方向に回動させたり図示のx方向に移動させる事を可能な構造を設け前記軸支手段(91,92,93,94)を含めて前記中心軸移動手段として理解する事もできる。
又、前記中心軸の相対角度を有する位置の方向のy方向に前記少なくても何れかの中心軸や回転体や軸支手段を移動させる場合においても、前記中心軸間の相対角度を自在な角度に無段階に変化可能にしたり、移動の行為をやめる事によって基の位置や自在な位置や設定される位置に戻ったり、移動された位置を保ったり、移動した後に固定させたり、移動されている最中に常に移動中の位置を相対的に固定されたり拘束される機能から成るセルフロックされる等を含めて自在な構成を用いる事も可能である。
【0048】
図3は、前記図1と図2で示した第1実施形態の更なる機能と特徴を示す図であり、同図(a)は前記図1の図(a)であり、同図(b)は前記図2である。
同図(a)と図(b)では、前記中心軸や前記中心位置10を支点(前記中心軸や中心位置10以外の位置を支点とする事もできるが、説明と理解を容易にするために仮定している)とした時の支点sと力点(図中の符号t又はu)との距離と、支点sと作用点(図中の符号u又はt)との距離との相対距離の比率を示し、前記相対距離の比率を変化させる事によって回転体1と回転体2との回転数の比率の変化と、回転体2と回転体3との回転数の比率の変化を可能にする事ができる主旨を示すものである。
尚、力点と作用点は球面状の外壁面(9−1と9−2)と加圧接続される可動部材6との加圧接続位置を示している。
【0049】
又、前記回転数の比率の変化とは、回転速度や回転角速度の変化を含めているが、 回転体1と2と3のそれぞれの回転の中心軸8−1と8−2と8−3が同一中心軸上に位置される図(a)の場合には、回転体1を矢印70方向に9回転させたり、回転体3を矢印71方向に9回転させれば、回転体1と2と3は同一方向に略同一回転速度や略同一回転角速度で略9回転されて同一回転数と成る。
図(b)の場合のように中心軸8−1と8−3に対して中心軸8−2が相対角度を有している場合には、回転体1を矢印70方向に9回転させたり、回転体3を矢印71方向に4回転させれば、回転体1と2と3はそれぞれ異なる回転数となる事を示しており、例えば、回転体1が9回転、回転体2が6回転、回転体3が4回転されて前記各回転体は異なる回転数となる事を可能にできる事を含めて前記回転体の回転を永遠に継続させた場合は、前記各回転体間の相対的な回転数が少なくても1回転以上の変化と永遠に相対的な回転数の差が増加される事を前記回転数の比率の変化として示している。
【0050】
次に具体的な回転数の比率の変化の要素を説明する。
【0051】
同図の図(a)において、球面状の外壁面9−1を具備する回転体1と接続手段20−1を具備した回転体2間の回転伝達では、回転体1を入力の回転動力で矢印70方向に回転させた時には、回転体1の球面状の外壁面9−1と可動部材6との加圧接続位置tが力点となり、回転体1の球面状の外壁面9−1と可動部材6との加圧接続位置uが作用点となって回転体2は回転伝達を受ける事になる。又、回転体2を入力の回転動力で矢印71方向に回転させた時には、回転体1の球面状の外壁面9−1と可動部材6との加圧接続位置uが力点となり、回転体1の球面状の外壁面9−1と可動部材6との加圧接続位置tが作用点となって回転体1は回転伝達を受ける事になる。
この場合、例えば中心軸8−1と8−2と8−3の共通する中心位置10を支点sとした場合は、支点sと力点tとの距離と、支点sと作用点uとの距離が相対的に略同一距離となるために回転体1と回転体2とは略同一速度で同一の回転数で回転される事になる。
【0052】
図(b)においては、球面状の外壁面9−1を具備する回転体1と接続手段20−1を具備した回転体2間の回転伝達では、回転体1を入力の回転動力で矢印70方向に回転させた時には、回転体1の球面状の外壁面9−1と可動部材6との加圧接続位置tが力点となり、回転体1の球面状の外壁面9−1と可動部材6との加圧接続位置uが作用点となって回転体2は回転伝達を受ける事になり、この場合の中心軸8−2上にある中心位置10から成る支点s1と作用点u間の距離に対して、加圧接続位置tから中心軸8−1に向かって中心軸8−1と略垂直に交わる位置となる中心軸8−1上の支点s2と力点t間の距離が短くなっている。
【0053】
又、回転体2を入力の回転動力で矢印71方向に回転させた時には、回転体1の球面状の外壁面9−1と可動部材6との加圧接続位置uが力点となり、回転体1の球面状の外壁面9−1と可動部材6との加圧接続位置tが作用点となって回転体1は回転伝達を受ける事になり、この場合の支点s1と力点u間の距離に対して支点s2と作用点t間の距離が短くなっている。
【0054】
前記の場合には、力点と作用点と成る加圧接続位置tとuが同一位置でありながら加圧接続位置tとuに対して支点となるs1とs2とはそれぞれ異なる距離となっているために、支点と力点間の距離と、支点と作用点間の距離の相対距離の比率が異なるために例えば回転体1が9回転されながら回転体2は6回転というように回転数が変化される事になり得る。
従って、前記の説明を応用すれば、回転体2と回転体3間でも回転数が変化される事が可能となり、例えば、回転体1と回転体2間の変速比を2/3とし回転体2と回転体3間の変速比を2/3とした場合は、回転体1と回転体3間の変速比は(2/3)×(2/3)=4/9と成り、回転体1と2と3を設けた事によってより大きな変速比を得る事が可能となる。
【0055】
又、前記中心軸間の相対角度を無段階に変化させる事によって前記変速比も無段階に変化されて回転体1と2と3間では相対的な回転数を無段階に変化させる事が可能となる事を示している事と、前記図1で説明した機能を用いれば回転体1と2と3間では回転伝達時の滑りを防止又は皆無にしながら無段変速を可能にできる事を示している。
又、回転体1と回転体3を定位置にしながら回転体1と回転体3間で回転数を無段変速させ、回転体1と回転体3の何れか一方を回転動力を入力される回転体とし、他の一方を回転動力を出力される回転体とする事も自在となる。
【0056】
此れらの無段変速機能は、前記略球面状の外壁面を具備した回転体を含めて、加圧接続位置tとuの少なくても何れかを相対的な半径方向(中心軸方向)に自在に移動させると共に相対的な支点s(s1とs2)の位置を移動する事のできる前記中心軸移動手段を設ける事によって可能にしている。
【0057】
図4は、前記接続手段(20−1と20−2)の構造を活用した他の接続手段20−4を示す図であり前記図1の図(c)で示した構造を活用した図である。
【0058】
図4の図(a)は、前記図1で記載した中心軸方向から見た右側面図であり、図(b)は、保持部材4と可動部材6(6−1と6−2)と加圧部材7の形状と構造を示す斜視図であり、保持部材4は、前記中心軸や中心位置10の周りを取り囲むと共に可動部材6−1と6−2の一部の周りを取り囲んで可動部材6−1と6−2を可動自在に保持する複数の穴34を設けられ、穴34内で前記中心軸や中心位置10の周りを取り囲む可動部材6から成る複数の可動部材6−1と6−2をそれぞれ個別に回転やスライドや揺動等を含めて可動自在に保持させて、前記中心軸や中心位置10を中心にした穴30を具備してリング状に構成されている事を示している。
【0059】
図4の前記図1で示した前記接続手段(20−1と20−2)と異なるところは、同図(a)で示すように、前記保持部材12に対して前記クサビ状の面5を図示の5−1と5−2のようにそれぞれ複数設け、クサビ状の面5−1と5−2はそれぞれ相対的に異なる方向に傾斜される傾斜面で構成させ、クサビ状の面5−1には保持部材12に一体又は固定される保持部材4と12に対して相対的に可動自在に保持される前記可動部材6から成る可動部材6−1をクサビ状の面5−1に対して加圧接続可能に配置させ、クサビ状の面5−2には前記保持部材4と12に対して相対的に可動自在に保持される可動部材6−2をクサビ状の面5−2に対して加圧接続可能に配置させ、可動部材6−1と6−2の前記中心軸(8−1又は8−2又は8−3)や中心位置10に近い面と前記中心軸や中心位置10を中心に円弧状の外壁面や略球面状の外壁面9−1や9−2を具備した回転体や部材の前記外壁面と加圧接続できるように構成させている。
【0060】
又、加圧部材7は、可動部材6−1がクサビ状の面5−1と前記円弧状の外壁面や略球面状の外壁面(9−1や9−2)の間に挟み込まれて行き詰まる方向に加圧されるように可動部材6−1に対して加圧できるように設けていると共に、可動部材6−2がクサビ状の面5−2と前記円弧状の外壁面や略球面状の外壁面(9−1や9−2)の間に挟み込まれて行き詰まる方向に加圧されるように可動部材6−2に対して加圧できるように設けて構成させており、具体的には可動部材6−1は前記中心軸を中心に略矢印70の方向と中心位置10又は中心軸方向との間の方向に加圧され、可動部材6−2は前記中心軸を中心に略矢印71と中心位置10又は中心軸方向との間の方向に加圧されている。
又、加圧部材7は、保持部材4と12と可動部材6−1と6−2とクサビ状の面5−1と5−2の少なくても何れかと相対的に加圧自在に具備されている。
【0061】
又、これらの保持部材12と可動部材6−1と6−2とクサビ状の面5−1と5−2と加圧部材7を前記図1及び第1実施形態の説明で示したように構成させる事も自在である。
又、クサビ状の面5−1と5−2を保持部材12の穴30の内壁面50に対して一体的に構成させたり内壁面50に対して別々の位置に構成させたり、可動部材6−1と6−2を一体的に構成させたり別々に構成させたり、加圧部材7を可動部材6−1と6−2に対して別々に加圧できるように個別に複数設けて構成する事も自在であるが、図4においては構造の簡素化を図るために可動部材6−1と6−2の間に加圧部材7を配置させている。
又、図4に示す接続手段20−4を前記図1や図2や図3で示す接続手段20−1や20−2の替わりに設けて本発明の回転動力伝達構造を成立させる事も自在である。
【0062】
次に、前記接続手段20−4の機能を説明する。
【0063】
同図に示す球面状の外壁面9−1を具備する前記回転体1を矢印70方向に回転させれば、可動部材6−1はクサビ状の面5−1と回転体1の球面状の外壁面9−1(円弧状の外壁面でも良い)間で挟み込まれて行き詰まりながら前記外壁面9−1と可動部材6−1との相対的に噛み合いが強化されて回転体1の回転の加圧力を接続手段20−4と回転体2が受け止めて球面状の外壁面9−2を具備する回転体2を回転させる事ができる。
又、回転体1を矢印71方向に回転させれば、可動部材6−2はクサビ状の面5−2と回転体1の球面状の外壁面9−1(円弧状の外壁面でも良い)間で挟み込まれて行き詰まりながら前記外壁面9−1と可動部材6−2との相対的に噛み合いが強化されて回転体1の回転の加圧力を接続手段20−4と回転体2が受け止めて回転体2を回転させる事ができる。
【0064】
又、回転体2を矢印71方向に回転させれば、可動部材6−1はクサビ状の面5−1と回転体1の球面状の外壁面9−1(円弧状の外壁面でも良い)間で挟み込まれて行き詰まりながら前記外壁面と可動部材6−1との相対的に噛み合いが強化されて回転体2の回転の加圧力を接続手段20−4と回転体1が受け止めて回転体1を回転させる事ができる。
又、回転体2を矢印70方向に回転させれば、可動部材6−2はクサビ状の面5−2と回転体1の球面状の外壁面9−1(円弧状の外壁面でも良い)間で挟み込まれて行き詰まりながら前記外壁面9−1と可動部材6−2との相対的に噛み合いが強化されて回転体2の回転の加圧力を接続手段20−4と回転体1が受け止めて回転体1を回転させる事ができる。
【0065】
従って、前記バックストップ機構の構造を活用した接続手段20−1と20−2とは僅かに異なる構造でありながら回転体1と回転体2間での正方向と逆方向の両方向の回転伝達を回転体1と回転体2の何れから回転伝達しても回転伝達されるように構成させ適確な回転伝達を可能にしている。
【0066】
又、前記図4の接続手段20−4の構造を応用して図示を省いた次の接続手段20−5を構成させ、接続手段20−5を前記図1や図2や図3で示す接続手段20−1と20−2の替わりに設けて本発明の回転動力伝達構造を成立させる事も自在である。
例えば、前記図4の接続手段20−4の構造や機能を応用して次のように構成させる事もできる。
具体的な例としては、前記図4の接続手段20−4の構造をそのまま活用しながら、保持部材12と保持部材4間を固定させずに前記中心軸を中心に保持部材12と保持部材4を僅かながらも相対的に回転できるように保持部材12と保持部材4を軸支手段に対して回転自在に軸支させて構成させると共に保持部材12と保持部材4間を可動部材6−1と6−2によって回転伝達可能に構成させる事もできる。
【0067】
此のように構成させて、回転体1に対して回転抵抗を与えて、入力の回転動力で回転体2(保持部材12)を矢印70と71の方向に回転させれば、接続手段20−4に具備される保持部材4と回転体1は回転体2から伝達される回転の加圧力を受け止めて矢印70と71の方向に回転される。
次に、回転体2と保持部材4に対して回転抵抗を与えて、入力の回転動力で回転体1を矢印70と71の方向に回転させれば、回転体2と接続手段20−4に具備される保持部材4は可動部材6−1と6−2から伝達される回転の加圧力を受け止められなければ回転体1から伝達される回転の加圧力を受け止められず回転されない事も可能となる。
【0068】
次に、回転体1に対して回転抵抗を与えて、入力の回転動力で保持部材4を矢印70と71の方向に回転させれば回転体2は保持部材4から伝達される回転の加圧力を受け止めて矢印70と71の方向に回転されるが、回転体1は可動部材6−1と6−2から伝達される回転の加圧力を受け止められなければ回転体1は回転される事はなく此の機能は前記接続手段20−3で説明した機能に基ずく。
次に、回転体1を軸支手段91に固定又は停止させて、入力の回転動力で保持部材4を矢印70と71の方向に回転させれば回転体2は保持部材4から伝達される回転の加圧力を受け止めて矢印70と71の方向に回転されるが、回転体1は回転される事はなく、此の状態で回転体2に対して入力の回転動力で矢印70と71の方向に回転の加圧力を伝達すれば回転体2の回転の加圧力は回転体1で受け止められるために回転体2は回転されないか又は保持部材4と回転体2と回転体1と軸支手段91が前記中心軸を中心に回転される事も可能になる。
従って、入力の回転動力の伝達される範囲で相対的な正方向に回転され入力の回転動力の伝達される範囲を超えて前記相対的な同一正方向に回転される事を阻止する前記セルフロック機構と同様のセルフロック機能を得る事も自在である。
【0069】
図5は、前記接続手段(20−1と20−2と20−4)の構造を活用した他の接続手段20−6を示す図であり前記図4で示した構造を活用した図である。
図5の図(a)は、前記図4で記載した中心軸方向から見た右側面図であり、
図(b)は、前記保持部材4の形状と前記可動部材6と前記加圧部材7の位置を示す斜視図である。
【0070】
図5の接続手段20−6の前記図4記載の接続手段20−4と異なるところは、保持部材12と相対的に一体構成又は固定される保持部材4(保持部材12と保持部材4を前記中心軸を中心に僅かながらも相対的に回転自在に構成させながら保持部材12と保持部材4を供回り自在に回転伝達できるように構成させてもよい)に具備される穴34内で可動(回転や揺動やスライドの何れでもよい)自在に保持される可動部材6を設けられて、保持部材12に具備されるクサビ状の面5−1と向かい合う可動部材6の面をクサビ状の面5−1と加圧自在に接続させ、保持部材12に具備されるクサビ状の面5−2と向かい合う可動部材6の面をクサビ状の面5−2と加圧自在に接続させて構成させたところである。
又、保持部材4と可動部材6との間には可動部材6をクサビ状の面5−1と中心軸又は中心位置10の方向に加圧できる加圧部材7−1を設け、保持部材4と可動部材6との間には可動部材6をクサビ状の面5−2と中心軸又は中心位置10の方向に加圧できる加圧部材7−2を設けて構成させている。
此の構成により可動部材6は、図中の前記中心軸に対して相対角度を有する軸kを中心にして矢印で示す回動方向pに加圧されるように構成させている。
【0071】
従って、前記回転体1と回転体2間や前記回転体2と回転体3間の回転伝達の接続手段として接続手段20−6を用いる事によって、例えば回転体1を正方向や逆方向に又は回転体2を正方向や逆方向に回転させても可動部材6はクサビ状の面5−1又はクサビ状の面5−2の少なくても何れかと回転体1の円形状又は球面状の外壁面との間に挟み込まれて行き詰まりながら回転の加圧力を受け止められて回転体1と回転体2間の回転伝達を可能にされる。従って少なくても前記記載の接続手段20−4と略同様の機能を得る事ができる。
【0072】
又、前記接続手段20−6の構造を活用して、保持部材4と保持部材12間を前記中心軸を中心に僅かながらも相対的に回転自在に構成させながら保持部材12と保持部材4を供回り自在に回転伝達できるように構成させれば、前記接続手段20−5と同様の機能を得る事のできる接続手段20−7を構成させる事も可能となる。
【0073】
又、前記接続手段20−3や20−4や20−5や20−6や20−7の構造は、既存の技術による構造や機能とは異なるものとなり、説明以外にも多様な機能や要素や用途が内在されており、前記記載の構造や機能や要素や用途に限定するものではなく、前記記載の構造や形状を変化させたりしながら前記記載の各種の機能や要素や他の機能や要素を更に内在させて、独立的な用途での活用も自在である。
【0074】
図6と図7で図8と図9で示す回転動力伝達構造は、前記図1と2と3と4で示した回転動力伝達構造とは異なる機能を具備した構造である。
又、前記図1と2と3と4と5で示した構造と接続手段を含めた回転動力伝達構造を第1回転動力伝達構造とし、図6と図7と図8と図9で示す主旨の回転動力伝達構造を第2回転動力伝達構造として理解していただき以下に説明する。
【0075】
第2回転動力伝達構造を用いる意味は、前記第1回転動力伝達構造に対して更に第2回転動力伝達構造を接続させて効率的な回転動力の伝達や出力を自在にさせ無段変速比率の拡大や縮小を可能にした活用化と多機能化する事にある。
【0076】
図6と図7と図8と図9で示す第2回転動力伝達構造の共通する構造は、中心軸8−4を中心に軸支手段95と96に対して回転自在に軸支されるキャリア60(回転体を意味する)と、中心軸8−4とは異なる中心軸8−5(例えば、中心軸8−4に対して略平行かつ距離を設けられた中心軸や、中心軸8−4に対して相対角度を有した中心軸等を含めている)を中心にして前記キャリア60に対して相対的に回転自在に軸支されると共に前記中心軸8−4を中心にキャリア60と共に供回りできる複数の相対的な遊星歯車61(歯車ではなく遊星運動できる回転体でもよい)と、中心軸8−4を中心に軸支手段95と96とキャリア60に対して相対的に回転自在に軸支される歯車(歯車ではなく他の回転体でもよい)62と63とを少なくても設けられ、歯車62は歯車61と回転伝達自在に接続され、歯車63は歯車61と回転伝達自在に接続されて構成されている。
【0077】
前記第2回転動力伝達構造の相対的な構成例を基に具体的に以下に示す。
【0078】
図6の第2回転動力伝達構造は、歯車62を内歯車として構成させ、複数の歯車61と、歯車63は平歯車で構成させ、歯車61は中心軸8−4に対して略平行かつ距離を設けられた中心軸8−5を中心に回転自在に軸支され、歯車61に対して歯車62と歯車63が噛み合わされて歯車61と62と63とキャリア60間で相対的に回転伝達自在に構成されている。
【0079】
図7の第2回転動力伝達構造は、歯車62と63と複数の歯草61を傘歯車で構成させ、歯車61は中心軸8−4に対して相対角度を有した中心軸8−5を中心に回転自在に軸支され、歯車61に対して歯車62と歯車63が噛み合わされて歯車61と62と63とキャリア60間で相対的に回転伝達自在に構成されている。
【0080】
図8の第2回転動力伝達構造は、歯車62と63を相対的に歯数の異なる平歯車で構成させ、前記歯車61を歯車61−1と61−2に分けて歯車61−1と61−2を相対的に歯数の異なる平歯車で構成させて、歯車62と歯車61−1間を噛み合わせて回転伝達自在に接続させ、歯車63と歯車61−2間を噛み合わせて回転伝達自在に接続させ、歯車61−1と61−2間を回転軸80によって相対的に固定して歯車61−1と61−2間を回転伝達自在に接続させて構成させ、歯車61−1と61−2と62と63とキャリア60間で相対的に回転伝達自在に構成されている。
又、歯車61−1と61−2は中心軸8−4に対して略平行かつ距離を設けられた中心軸8−5を中心に回転自在に軸支されている。
又、歯車62の歯数を30とし、歯車63の歯数を20とし、歯車61−1の歯数を20とし、歯車61−2の歯数を30として構成させているが自在な歯数を用いる事ができる。
【0081】
図9の第2回転動力伝達構造は、歯車62を内歯車として構成させ、歯車61を歯車61−1と61−2に分けて歯車61−1と61−2を平歯車で構成させて、歯車61−1は中心軸8−5−1を中心にキャリア60に対して回転自在に軸支させ、歯車61−2は中心軸8−5−2を中心にキャリア60に対して回転自在に軸支させ、歯車63を平歯車として構成させ、歯車62と歯車61−1とを噛み合わせて回転伝達自在に接続させ、歯車61−1と歯車61−2とを噛み合わせて回転伝達自在に接続させ、歯車61−2と歯車63とを噛み合わせて回転伝達自在に接続させて、歯車61−1と61−2と62と63とキャリア60間で相対的に回転伝達自在に構成されている。
又、中心軸8−5−1と中心軸8−5−2は中心軸8−4に対して略平行かつ距離を設けられたそれぞれ異なる位置に設けている。
【0082】
又、前記第2回転動力伝達構造は、前記図6と7と8と9の構成以外の構造や歯車列や異なる歯車や回転体を設けて構成させる事も自在である。
【0083】
次に、前記第2回転動力伝達構造の共通する機能の一部を説明する。
前記図6と7の構成の共通する一つの特徴は、例えば、キャリア60を固定させた場合に、中心軸8−4を中心に歯車62を正方向に回転させれば歯車63は逆方向に回転される計算上の機能があり、歯車62と歯車63とは相対的に逆回転できる機能を具備した構造である。
前記図8と9の構成の共通する一つの特徴は、例えば、キャリア60を固定させた場合に、中心軸8−4を中心に歯車62を正方向に回転させれば歯車63は同一正方向に回転される計算上の機能があり、歯車62と歯車63とは相対的に同一方向に回転できる機能を具備した構造である。
【0084】
次に、前記図6と7と8と9の構成を代表して図8の構成の前記歯車の歯数を基にして計算上の数値で機能の例を示すと、
キャリア60を固定させた場合に、中心軸8−4を中心に歯車62を正方向に1回転させれば歯車63は同一正方向に9/4回転される増速機構を実現する事ができ、中心軸8−4を中心に歯車63を正方向に1回転させれば歯車62は同一正方向に4/9回転される減速機構を実現できる。
又、歯車62を固定させた場合に、中心軸8−4を中心にキャリア60を正方向に1回転させれば歯車63は逆方向に5/4回転される増速機構を実現でき、中心軸8−4を中心に歯車63を正方向に1回転させればキャリア60は逆方向に4/5回転される減速機構を実現できる。
又、歯車63を固定させた場合に、中心軸8−4を中心にキャリア60を正方向に1回転させれば歯車62は正方向に5/9回転される減速機構を実現でき、中心軸8−4を中心に歯車62を正方向に1回転させればキャリア60は正方向に9/5回転される増速機構を実現できる。
【0085】
又、中心軸8−4を中心にキャリア60を正方向に1回転、歯車62を正方向に2回転させれば歯車63は同一正方向に13/4回転される増速機構を実現する事ができる。
又、中心軸8−4を中心にキャリア60を正方向に1回転、歯車63を正方向に2回転させれば歯車63は同一正方向に13/9回転される増速機構を実現できる。
又、中心軸8−4を中心に歯車62を正方向に1回転、キャリア60を正方向に2回転させれば歯車63は逆方向に1/4回転される減速機構を実現できる。
又、中心軸8−4を中心に歯車62を正方向に1回転、歯車63を正方向に2回転させればキャリア60は正方向に1/5回転される減速機構を実現できる。
又、中心軸8−4を中心に歯車63を正方向に1回転、キャリア60を正方向に2回転させれば歯車62は正方向に14/9回転される増速機構を実現でき、又、中心軸8−4を中心に歯車63を正方向に1回転、歯車62を正方向に2回転させればキャリア60は正方向に14/5回転される増速機構を実現できる。
【0086】
又、中心軸8−4を中心にキャリア60を逆方向に1回転、歯車62を正方向に1回転させれば歯車63は正方向に18/4回転される増速機構を実現する事ができる。
又、中心軸8−4を中心にキャリア60を逆方向に1回転、歯車63を正方向に1回転させれば歯車62は正方向に4/18回転される減速機構を実現でき、
又、中心軸8−4を中心に歯車62を逆方向に1回転、キャリア60を正方向に1回転させれば歯車63は逆方向に10/4回転される増速機構を実現でき、
又、中心軸8−4を中心に歯車62を逆方向に1回転、歯車63を正方向に1回転させればキャリア60は逆方向に4/10回転される減速機構を実現でき、
又、中心軸8−4を中心に歯車63を逆方向に1回転、キャリア60を正方向に1回転させれば歯車62は正方向に5/18回転される減速機構を実現でき、又、中心軸8−4を中心に歯車63を逆方向に1回転、歯車62を正方向に1回転させればキャリア60は正方向に18/5回転される増速機構を実現できる。
【0087】
従って、図6と7と9の構成においても構造と機能は僅かに異なるものの、少なくても図8の構成を用いて示した機能や類似した機能を得る事が可能となる。
【0088】
図10は、前記図1の図(b)で示した第1回転動力伝達構造と、前記図8の第2回転動力伝達構造で示した構成及び歯車の歯数を用いて組み合わせた本発明の回転動力伝達構造の第2実施形態の断面図を示す図であり、前記第1回転動力伝達構造と前記図6と7と8と9に示した第2回転動力伝達構造間を回転伝達できる構成の代表例としての構造である。
従って、前記何れの第2回転動力伝達構造と第1回転動力伝達構造を設けて構成させる事ができる主旨である。
【0089】
又、同図の接続手段は、前記接続手段20−1と20−2を用いたり、接続手段20−1と20−2の替わりに前記接続手段20−3や20−4や20−5や20−6や20−7を用いる事もできるが、此処では接続手段20−1と20−2の替わりに前記図4記載の接続手段20−4を用いて構成させている。
【0090】
例えば、図10で示すように、前記図1の第1回転動力伝達構造で示した中心軸8−1と8−2と8−3と前記第2回転動力伝達構造の中心軸8−4とを同一中心軸上に位置させて(同一中心軸上以外にも平行な距離を設けられた位置や相対角度を有する位置にさせる事も自在である)、前記第1回転動力伝達構造に具備される回転体1と回転体2と回転体3と第2回転動力伝達構造に具備されるキャリア60(回転体)と歯車(回転体)61と62と63間を相対的に回転伝達自在に接続させて構成させる事ができる。
【0091】
同図10においては、回転体1と歯車63間を回転伝達自在に接続させ、回転体3と歯車62間を回転伝達自在に接続させて構成させた場合であり、回転体1を入力の回転動力で回転させてキャリア60から出力させる事ができる。
具体的には回転体1と回転体2と回転体3が同一中心軸を中心に同一方向に1回転されるとキャリア60と歯車61(61−1と61−2)と62と63は前記中心軸を中心に同一方向に1回転されながら、歯車61(61−1と61−2)は中心軸8−5を中心には回転はされない事が可能となる。
【0092】
次に回転体1と回転体3の中心軸8−1と8−3を同一中心軸上にしながら、前記中心軸移動手段によって回転体2を中心位置10を中心に回動させて中心軸8−2を中心軸8−1と8−3に対して相対角度となる位置に移動させ、回転体1と回転体3との回転速度比率(相対的な回転数の変化を意味する)や相対的な回転伝達半径比率(前記記載の支点と力点間の相対距離と、支点と作用点間の相対距離との比率を含む)を9:4の比率に変化させた場合は、回転体1と歯車63が9回転すると回転体3と歯車62は4回転され、歯車61(61−1と61−2)は中心軸8−5を中心に回転されながら出力となるキャリア60の計算上の回転数を0回転にさせる事も可能となり、従って、回転体1と回転体3は歯車61とキャリア60と相対的に回転伝達自在に接続されている事になる。
【0093】
次に、回転体1と回転体3との回転速度比率や相対的な回転伝達半径比率を9:8の比率に変化させた場合は、回転体1と歯車63が正方向に9回転すると回転体3と歯車62は正方向に8回転され、歯車61(61−1と61−2)は中心軸8−5を中心に回転されながらキャリア60から出力される計算上の回転数は正方向に36/5回転とする事ができる。
【0094】
次に、回転体1と回転体3との回転速度比率や相対的な回転伝達半径比率を9:3の比率に変化させた場合は、回転体1と歯車63が正方向に9回転すると回転体3と歯車62は正方向に3回転され、歯車61(61−1と61−2)は中心軸8−5を中心に回転されながらキャリア60から出力される計算上の回転数は逆方向に19/5回転とする事ができる。
従って、第1回転動力伝達構造の回転速度比率を第2回転動力伝達構造によって自在な比率や自在な回転速度や回転数や回転方向に変化させる事ができる。
【0095】
又、キャリア60を入力の回転動力で回転させて歯車62や63や回転体1や2や3や保持部材4の何れから出力させる事も自在となり、入力の回転動力で回転させる回転体や出力される回転体は、回転体1や2や3や保持部材4や歯車61や62や63やキャリア60の何れでもよく自在に構成させる事ができる。
【0096】
従って、前記図6と7と8と9で示した構成を含めて第2回転動力伝達構造に具備される回転体から成る歯車61や62や63やキャリア60は、前記第1回転動力伝達構造に具備される回転体1や2や3や保持部材4(回転体)の何れとも回転伝達自在に接続させる事もできるし、前記機能や他の機能を自在に得られるように構成させる事もでき、歯車の歯数や歯車列や構成や構造を変える事によって、入力の回転体を正方向に回転させながら出力される回転体を0回転から無段階に正方向と逆方向の何れの方向にも無段変速させたり、出力される回転体の減速範囲と増速範囲を相対的に無限比の比率として構成させる事も自在となる。
何故ならば、入力の回転体が10回転される時に出力の回転体が1回転から0回転とした時は、出力の回転体側から回転動力を入力した場合は10/1から10/0回転となり、どちらの方法もこの間の入力の回転体と出力の回転体との回転速度比率の変化は無限比となるからである。
【0097】
又、第2回転動力伝達構造に具備される回転体から成る歯車61や62や63やキャリア60と、前記第1回転動力伝達構造に具備される回転体1や2や3や保持部材4(回転体)を相対的に同一回転部材として構成させたり、別々の回転部材として構成させたり、結合させたり、他の回転部材を介在して回転伝達自在に接続させて構成させる事も自在である。
【0098】
又、歯車は内歯車や平歯車や傘歯車やヘリカル歯車やねじれ歯を具備した歯車やラック歯を具備した回転体を含めて自在な形状の歯を具備した歯車や回転体を用いる事もできる。又、図8と9で示したように歯車61は複数の歯車列から成る歯車61−1や61−2を更に複数設ける事も自在である。
又、前記各記載の歯車やキャリアを含めて自在な形状の回転体で構成させる事もできる。
【0099】
又、図6と7と8と9で示した第2回転動力伝達構造と、図10で示した回転動力伝達構造は、第2回転動力伝達構造に具備される回転体から成る歯車61と62と63とキャリア60の少なくても何れか2つの回転体に対して外部の回転動力を入力自在に接続するか、或いは前記第2回転動力伝達構造に具備される少なくても前記2つの回転体から外部の回転体に回転伝達自在に接続するか、或いは無段変速機の入力回転体又は入力回転動力と、該無段変速機の出力回転体を前記第2回転動力伝達構造に具備される回転体から成る歯車61と62と63とキャリア60の少なくても何れか2つの回転体と回転伝達自在に接続する事ができる構成を示している。
【0100】
又、前記第1回転動力伝達構造に用いた一部の構成は、既に特許出願(出願人、三島静雄の整理番号…ME−01−006)で示しており、前記第2回転動力伝達構造から成る構成や、第2回転動力伝達構造を活用した無段変速機の構成においても、既に特許出願(出願番号…特願平6−295823号や、特願2000−338872号や、特願2000−304198号や、特願2001−271043号やその他の出願)で示しており、既特許出願に示した構成や構造を活用して本発明の各種の回転動力伝達構造を構成できる主旨である。
【0101】
図11は、前記図10で示した回転動力伝達構造を用いて構成される本発明の回転動力伝達構造の第3実施形態を示す略図である。
此処では、相対位置を移動できる移動手段(例えば、船や航空機や車輪を具備した自転車を含めた車両等を意味している)に本発明の第1回転動力伝達構造を取り付けて本発明の第1回転動力伝達構造を移動手段を移動させる駆動手段として前記移動手段を走行や推進させたり、ブレーキを含めて速度の制約や制動を可能にしたり、前記移動手段に具備される発電装置(発電機を含む)を駆動させて電力(電気)を発電したりする事を可能に接続して構成できる主旨を示すものである。
【0102】
具体的に説明すると図11は、複数の前輪120−1と120−2と、複数の後輪130−1と130−2を回転自在に軸支される車両から成る移動手段100を示しており、移動手段100のフレーム101に対して原動機(原動機は、モーターやエシジン等の回転や相対的な往復運動や揺動等の動力を出力できる装置であってもよい)から成る電力をエネルギー源として回転動力を出力できるモーター102を取り付けて、モーター102の出力軸となる回転軸82から出力される回転動力を前記第1回転動力伝達構造の回転体1に対して回転伝達自在に接続させ、前記第2回転動力伝達構造のキャリア60から出力される回転動力を複数の前輪120−1と120−2と複数の後輪130−1と130−2に対して回転伝達自在に接続させ、更にモーター102に電気エネルギーを供給すると共に電力を蓄える事のできる電力源から成るバッテリー103(蓄電池)と、バッテリー103に電力を送る事のできると共に前記モーター102内に相対的に具備される発電装置(発電機)と電力の送受伝自在に接続された回路及び構成の略図である。
【0103】
従って、前記記載のように中心軸8−1と8−3に対して中心軸8−2の相対角度を変化させる事によって、少なくても移動手段100を無段階に加速させたり減速させたり正方向に移動させたり逆方向に移動させる事が自在となると共に、移動手段100が高速で走行している最中に、中心軸8−2の相対角度を変化させてキャリア60の回転速度と前記車輪と移動手段100を減速させたり停止させる事も自在となり従来のブレーキを特に用いなくても此れらを可能にできるために有効となる。
【0104】
又、キャリア60と前記車輪の回転速度と移動手段100の推進速度を減速させようと中心軸8−2の相対角度を変化させた場合には、移動手段100の重量と速度による運動エネルギーが前記車輪に伝達されている為に、第1回転動力伝達構造や第2回転動力伝達構造に具備される全ての回転体や歯車に対して前記車輪から回転動力が逆流されて伝達されて前記モーター102の回転軸82が加速回転せしめられ此れによってモーター102は発電装置(発電機)となって電力を発電し、バッテリー103に対して電力を送電し、バッテリー103は受電し電力を蓄電する事が可能になり、特に電力の消費を少なくしながら電力を発生し蓄える事が可能となる為に効率的となる。
此のように構成させた場合は前記移動手段100や発電装置(発電機を含めた相対的な構成)には前記第1回転動力伝達構造や第2回転動力伝達構造を具備した構成として活用する事ができる。
【0105】
図12は、前記各実施形態で示した球面状の外壁面を具備して成る前記各種の第1回転動力伝達構造や各種の接続手段以外の他の第1回転動力伝達構造の第4実施形態と接続手段20−8を示す図であり、前記記載と略同一主旨の符号を用いて示している。
同図(a)は、回転体1と回転体2の中心軸8−1と8−2を同一中心軸上に配置させた平面断面図であり、図(b)は、中心軸8−1に対して中心軸8−2を相対角度を有した状態にした正面断面図であり、図(c)は、前記図(a)で示す中心位置10の位置を基にした前記図(a)の右側面の断面図であり回転体1と回転体2間を接続手段20−8によって回転伝達自在に接続させ、回転体2と回転体3間を他の接続手段20−8によって回転伝達自在に接続させた構成を示す略図である。
【0106】
図12で示す具体的な構成は、例えば、前記保持手段12と、前記球面状の外壁面を具備して成る前記回転体1とを一体的に構成させ、前記回転体1の略球面状の外壁面9−1(略球面状で無くてもよいが)に対して僅かに中心位置10に接近されると共に中心軸8−1の両端方向に向かって中心位置10を略中心に略同一半径の面で向かう軌道201と202とを中心位置10の周りを取り囲むように複数設け、該軌道201に対して中心軸8−1と中心位置10に接近される位置から離れる方向に向かう平面的な(曲面でもよい)クサビ状の面5−1を設け、軌道202に対して中心軸8−1と中心位置10に接近される位置から離れる方向に向かう平面的な(曲面でもよい)クサビ状の面5−2を設け、クサビ状の面5−1内に略球面状の面を具備する球体(球体以外の形状でもよい)から成る可動部材6−1を配置させ、クサビ状の面5−2内には略球面状の面を具備する球体から成る可動部材6−2を配置させて、可動部材6−1と6−2を中心軸8−1と中心位置10を取り囲むように位置させて、複数の可動部材6−1と6−2を回転を含めて可動自在に保持する保持部材4を設けて、保持部材4を回転体1と供回り自在に回転体1に対して一体成形又固定(保持部材4と回転体1間を中心軸8−1を中心に僅かながらも相対的に回転自在に接続させてもよいが)させ、回転体2(図中の保持部材13でもよい)に設けられる中心軸8−2を中心にした円形状の穴30の内壁面50に対して前記可動部材6−1と6−2を加圧接続可能に配置させると共に可動部材6−1と6−2を可動自在かつ回転体2から脱落しないように保持する保持部材13を回転体2に一体成形又は固定又は取り付け等を含めて具備させ、更に、前記加圧部材7を保持部材4又は13又は可動部材6−1と6−2の少なくても何れかに具備させて、加圧部材7によって可動部材6−1をクサビ状の面5−1と内壁面50に対して加圧接続させ、加圧部材7によって可動部材6−2をクサビ状の面5−2と内壁面50に対して加圧接続させて構成させている。
【0107】
此の構成においても前記図1と2と3の第1実施形態で示した回転体1と2と3の相互間での回転伝達ができると共に、図4で示した接続手段20−4と略同様の機能を得る事が可能となる。
例えば、図12の図(a)の構成の場合は、回転体1と回転体2の何れから回転伝達しても略同一回転速度及び略同一回転数で回転伝達される事になり、図12の図(b)の構成の場合も回転体1を回転させれば回転体2が回転され回転体2を回転させれば回転体1が回転される事になる。
【0108】
又、回転体1と回転体2間の回転伝達では、可動部材6−1はクサビ状の面5−1と内壁面50の間に挟み込まれて行き詰まり、可動部材6−2はクサビ状の面5−2と内壁面50の間に挟み込まれて行き詰まり、正方向の回転の加圧力を可動部材6−1が受け止めて、逆方向の回転の加圧力を可動部材6−2が受け止めて回転体1と回転体2間の回転伝達を可能にされており前記各構成と同様の機能を示す事ができる。
【0109】
又、図(b)の構成の場合は、可動部材6−1は軌道201に対して可動部材6−2は軌道202に対して中心軸8−2の両端方向と中心軸8−2の半径方向との両方向に向かって転がり又はスライドしながら回転体1と回転体2間での回転伝達がなされる。
【0110】
従って回転体1と回転体2間と、回転体2と回転体3間を前記接続手段20−8の構造を用いて構成させる事によって前記図1と図2と図3と図4と図5と図10と図11の各種の接続手段を含めた回転動力伝達構造を構成できる。
又、前記各種の接続手段の構造は、保持部材4や12を独立的に解釈せずに前記各種の回転体に対して構造的に具備させる事も自在であり、更なる複数の保持部材を具備させる事も自在である。
【0111】
図13は、前記実施形態で示した球面状の外壁面を具備して成る第1回転動力伝達構造を示す第5実施形態であり、同図(a)は平面図の略図であり、同図(b)は正面の断面を示す略図であり、同図(c)は図(b)の右側面の断面を示す略図である。
又、図13で示す第5実施形態は、前記図1で示した第1実施形態を基にした応用例であり、前記図1で示した第1実施形態と特に異なるところは回転体1の構造と中心軸8−1の位置である。
以下、主として図1の第1実施形態で示した用語と符号を用いて図13で示す構造を説明する。
【0112】
具体的に前記図1で示した第1実施形態と異なるところは、図13によって示すように、回転体2の中心軸8−2に対して交差される中心軸8−1を中心に軸支手段91に回転自在に軸支される回転軸83と、中心軸8−1の軸方向であって前記回転軸83の両端の一方には中心軸8−1上の前記中心位置10を中心にした略球面状の外壁面9−1−1と、前記回転軸83の両端の他の一方には前記中心位置10を中心にした略球面状の外壁面9−1−2とを設けて回転体1を構成させ、前記中心位置10の周りを取り囲みながら回転体1に具備される略球面状の外壁面9−1−1と略球面状の外壁面9−1−2を加圧できると共に回転体1と回転体2間を回転伝達できる前記バックストップ機構から成る接続手段20−1を設けて構成させている点である。
従って、中心位置10を取り囲むように設けられている複数の可動部材6が略球面状の外壁面9−1−1と略球面状の外壁面9−1−2を取り囲みながら球面状の外壁面9−1−1と略球面状の外壁面9−1−2に対して加圧接続されて構成されている。
【0113】
又、具体的な回転体1の構造としては、回転軸83と略球面状の外壁面9−1−1とを一体成形させ、略球面状の外壁面9−1−2を具備する部材と回転軸83を嵌め合わせて固定させて取り付けているが、回転軸83と略球面状の外壁面9−1−1を具備する部材と略球面状の外壁面9−1−2を具備する部材とを別々に設けて一体的に固定させても供回り自在に取り付けても、回転軸83と略球面状の外壁面9−1−1と略球面状の外壁面9−1−2を全て一体的に成形させる事もできる。
又、回転軸83の外径は、中心軸8−1を中心にした同一半径の円形状に構成させ、略球面状の外壁面9−1−1と略球面状の外壁面9−1−2の外径を回転軸83の外径より大きな径の外径としているが、同一外径や小さな外径にする事も自在である。
又、図13の構造においても、前記接続手段20−1や20−2に限定する事なく前記の各種の接続手段を用いる事も自在である。
【0114】
又、図13で示す実施形態の前記図1と異なる機能は、中心軸8−2に対して中心軸8−1を垂直に位置させて、回転体1を中心軸8−1を中心に回転させた場合には回転体2と回転体3は回転されずに停止状態を保つ事ができ、この状態で回転体2を中心軸8−2を中心に回転させようとした場合は接続手段20−1によって正方向又は逆方向の何れかの回転による加圧力を回転体1に伝達できるが軸支手段91が固定されていれば回転体1を回転させる事ができないか或いは軸支手段91が固定されていなければ軸支手段91と回転体1と回転体3を回転させる事が可能となる。
【0115】
又、中心軸8−2に対して中心軸8−1の向きを垂直とさせない範囲で中心軸8−1と中心軸8−2を相対角度を有した状態にすれば、回転体1を中心軸8−1を中心に1回転させた場合には回転体2と回転体3は1回転に満たない回転となり回転数の比率が変化される事になる。又、回転体2を1回転させれば回転体1は1回転を越えた回転となり回転数の比率が変化される事になる。
【0116】
又、回転体1と回転体2の何れかを中心位置10を中心に図示の矢印y方向に回動させて中心軸8−1と8−2間を相対角度を変化される方向に無段階に位置移動する事によって、前記図3で示したように力点と支点間の距離に対して作用点と支点間の距離との相対的な比率を前記図1や3で示す実施形態以上に変化させる事を可能にしながら、回転体1と回転体2間と、回転体2と回転体3間での回転速度の無段変速も同様に自在となる。
又、中心軸8−1と8−2と8−3の何れを相対角度を変化される方向に位置移動自在に構成させる事もできる。
又、図13で示した第1回転動力伝達構造を用いて前記図10や図11で示した主旨の回転動力伝達構造を構成させる事も自在である。
【0117】
図14は、前記図13で示した第1回転動力伝達構造の一部を示す図であり、回転体1の更なる構造と、回転体1に対して歯車64を固定させ、歯車64と噛み合い中心軸8−1に対して略平行かつ距離を設けられる中心軸8−7を中心に軸支手段91に回転自在に軸支される歯車65を設けて構成した事を示しており、歯車64と65を外歯車から成る平歯車で構成させている。
【0118】
図15は、前記図13で示した第1回転動力伝達構造の一部を示す図であり、回転体1の更なる構造と、回転体1に対して歯車64を固定させ、歯車64と噛み合い中心軸8−1に対して相対角度を有する中心軸8−7を中心に軸支手段91に回転自在に軸支される歯車65を設けて構成した事を示しており、歯車64と65を外歯車から成る傘歯車で構成させている。
【0119】
又、前記図14と15で示している歯車64と回転軸83間を一体成形や固定や供回り自在に取り付けて構成させてもよい。
此のように歯車を噛み合わせた駆動手段を設けて構成させる事によって回転体1と外部の歯車65間や歯車65に具備される回転軸間での回転伝達を可能にさせ、回転体1に対する回転動力の入力を容易にしたり、回転体1から回転動力を取り出して活用する事を容易にさせている。
【0120】
図16は、略球面状の外壁面を具備した前記各種の回転体1や2の形状例を示した図であり、同図(b)は正面図、同図(c)は右側面を示す図である。
同図においては回転体1や2を中心位置10を中心にした略球面状の外壁面9と円形状の貫通される穴30を設けて構成させている。
又、此の穴30を円形以外の非円形や多角形やその他の形状や未貫通の穴で構成させる事もできる。
又、回転体1や2の回転の中心は図中で示す何れの中心軸上の位置とする事もできる。
【0121】
図17は、略球面状の外壁面を具備した前記各種の回転体1や2の形状例を示した図であり、同図(b)は正面図、同図(c)は右側面を示す図である。
同図においては回転体1や2を中心位置10を中心にした略球面状の外壁面9を設けているが略球面状の外壁面9には凹凸の溝140を設けて構成させている。
特に凹凸の溝140を設ける必要性はないが、凹凸の溝140を設ける事によって例えば潤滑油を介在させると凹凸の溝140内に潤滑油を溜め置く事が可能となり、略球面状の外壁面9への潤滑油の付着を促進し略球面状の外壁面9の消耗や発熱を少なくする効果を生じさせる事が可能となる。
又、凹凸の溝の140の形状は図に示す以外の多様な形状であってもよい。
又、回転体1や2の回転の中心は図中で示す何れの中心軸位置とする事もできる。
【0122】
従って、前記各種の構成に設けられる回転体1や2を、図16と17に示したような形状に構成させる事もできる。又、略球面状の外壁面や中心軸についても同様に用いる事ができる。
【0123】
図18は、前記図1で示した第1回転動力伝達構造を用いた本発明の回転動力伝達構造の第6実施形態を示す構成であり、前記図1で示した第1回転動力伝達構造を2つ用いてその1つを構造Aとし、他の1つを構造Bとして示している。
そして構造Aに具備される回転体2(同図では2−1として示している)と構造Bに具備される回転体2(同図では2−2として示している)間を回転伝達自在に接続させて構成させている。
【0124】
具体的には回転体2−1には駆動手段から成るスプロケット131を固定し、回転体2−2には駆動手段から成るスプロケット132を固定し、スプロケット131と132に対して駆動手段から成るリング状のチェーン133を巻かけて回転体2−1と回転体2−2間を回転伝達自在に接続させている。
又、回転体2−1と2−2は同一軸支手段92に対して回転自在に軸支され、軸支手段92を構造Aと構造Bに具備される中心位置10を中心に矢印で示すy方向に回動する事によって構造Aと構造Bに具備されるそれぞれの回転体1と回転体3と中心軸8−1と8−3に対して回転体2と中心軸8−2の相対角度と相対位置を無段階に移動できるように前記記載の中心軸移動手段を具備させて回転動力伝達構造の第6実施形態を構成させている。
【0125】
この構成によって例えば回転体1を入力の回転動力で回転させれば構造Aと構造Bの2つの回転体2と回転体3を回転させ回転動力を出力でき、回転体3を入力の回転動力で回転させれば構造Aと構造の2つの回転体2と回転体1を回転させ回転動力を出力できる事になる。
又、此の構成によって何れの回転体に回転動力を入力しても何れの回転体から回転動力を出力させる事も自在となり、簡素な構造でありながら活用範囲を増加する事ができる。
又、此の構成においても前記の多様な接続手段や多様な構造や形状を設けて構成させる事も自在である。
又、前記スプロケット131や132やチェーン133から成る駆動手段によって回転体2−1と回転体2−2間を回転伝達自在に接続させたが、回転体2−1に歯車を固定し、回転体2−2には回転体2−1に具備される歯車と噛み合う歯車を固定させて回転体2−1と回転体2−2間を歯車から成る駆動手段によってる回転伝達可能に構成させる事も自在である。
又、構造Aと構造Bの2つの回転体1間や2つの回転体3間を駆動手段によって回転伝達自在に接続させる事もできる。
又、回転体1や回転体3を前記中心位置10を中心に矢印y方向に回動させる事も自在である。
【0126】
更に本発明の回転動力伝達構造及び前記各構成を以下のように構成させる事もできる。
【0127】
回転自在又は可動自在に軸支(保持を含む)される構成には滑り軸受け構造や転がり部材を具備した相対的なベアリング構造を用いる事ができる。
又、前記各記載の回転動力伝達構造や、同一中心軸位置から相対角度を有した中心軸間に至って回転伝達自在なユニバーサルジョイントやボールジョイントやオルダムカップリングを含めた回転伝達自在継ぎ手を活用して中心軸の相対位置を移動し中心軸間の相対角度を変える事のできる中心軸移動手段を設けたり、相対角度を変えて入力の回転速度に対して出力の回転速度を無段階に変速できる無段変速機や、回転抵抗を増減自在にできる制動機構を構成させ前記無段変速機や制動機構としての効果を得る目的で活用する事もできる。
【0128】
又、前記回転伝達自在継ぎ手に具備される構造を、前記第1回転動力伝達構造に具備される前記回転体1と回転体2間や、前記回転体2と回転体3間の少なくても何れかを回転伝達自在に接続させる接続手段として用いて構成させる事もできると共に、更に回転体1と回転体2と回転体3の何れかには前記記載のバックストップ機構から成る接続手段を取り付けてバックストップ機構による機能によって、回転動力を入力される回転体と回転動力を入力される回転体間の回転数の比率を変化させる事のできる無段変速機を含めた回転動力伝達構造として構成させる事もでき、此のような構成の場合には回転体1と回転体2には球面状の外壁面を設けて構成させても球面状の外壁面以外の他の形状にしてもよい。
【0129】
又、記載の各種接続手段は粘性部材や磁性部材を含めて他の接続手段を用いる事もできる。
又、記載の歯車をどのような形状やどのような構造の歯車で構成させる事もできる。又、歯車を含めて駆動手段を用いて前記各種の回転体間を回転伝達自在に接続させる事も自在である。
【0130】
又、本発明の回転動力伝達構造(機構を含めても良い)には、潤滑油や潤滑油を循環をせさる構造や、一部や周りを取り囲むフレームや被覆部材や、オイルシール等を設けて安全かつ滑らかな回転運動を可能に構成させる事も自在である。
又、前記各種の接続手段の構造を回転動力伝達構造として用いる事も自在である。
又、前記各種の回転動力伝達構造を加工機械や駆動機械を含めて多様な機械や装置に取り付けて前記記載の機能を示すように構成させる事もできる。
又、加圧部材7を可動部材6と共に円筒状や円柱状に構成させる事もできる。
又、前記実施形態においては、可動部材6(6−1や6−2を含む)を中心軸8−1や8−2や8−3に対して略平行かつ距離を設けられた中心軸を中心に僅かながらも回転自在な形状と構成を用いたが、中心軸8−1や8−2や8−3に対して相対角度を有する中心軸を中心に僅かながらも回転自在に保持部材4と12に対して相対的に保持されるように構成させる事もできる。
又、前記クサビ状の面は、中心軸8−1や8−2や8−3の中心軸上の定められる一つの位置を中心位置として、該中心位置に接近される位置から離れる方向に向かった面で構成させる事もできる。此のように構成しても前記クサビ状の面の構成と効果を得る事ができる。
【0131】
以上は、主として本発明の回転動力伝達構造(前記各種の回転動力伝達構造や接続手段を回転動力伝達機構や回転運動伝達機構として意味させて構成させる事も自在である)の実施形態例である。
本発明で示した構造や該構造を具備して成る構造物は、特許請求の範囲に示す特徴から逸脱する事なく他の様々な形や手段や構造を用いて構成させる事ができる。
従って、特許請求の範囲に示される特徴や構造を具備して成る相対位置を移動できる移動手段や、電力を発電できる発電装置を含めた構造物や、特許請求の範囲に示される要素や機能を潜在される構造は少なくても本発明の範囲であり、記載される事柄は単なる例示に過ぎず限定的に解釈するものではない。
【0132】
【発明の効果】
本発明は少なくても以下に記載される効果を得る事ができる。
▲1▼.回転体1と回転体3を定位置に設けて、回転体1と回転体3の中心軸8−1と8−3を同一中心軸上や定位置に位置させても、回転体2と回転体2の中心軸8−2を前記中心軸8−1と8−3に対して中心位置10を中心に相対角度を有する方向や相対角度の増減される方向に移動する事によって、回転体1と回転体2と回転体3のそれぞれの回転速度と回転数を無段階に変化させる事が自在となる。
▲2▼.又、接続手段2−1や2−2や2−3や2−4や2−5や2−6や2−7や2−8を設ける事によって回転体1と回転体2間や、回転体2と回転体3間での回転伝達時の滑りを防止し大きなトルクの回転力を相対的に受け止めて回転伝達できる。
▲3▼.又、前記第2回転動力伝達構造を設けた事によって前記第1回転伝達構造間での回転伝達比率となる変速比率の拡大や縮小を可能にしたり差動機構としての機能を得る事を含めて多機能化でき、相対的な効率性を果たす事ができる。
▲4▼.又、移動手段100や前記発電装置に本発明の回転動力伝達構造を設けた事によって省エネルギー化や、相対的な回転速度や走行速度や推進速度を無段階に増減自在にする事が可能となる。
▲5▼.又、前記各種の実施形態で記載した各種の機能や特徴や効果を得る事ができる。
【図面の簡単な説明】
【図1】本発明の回転動力伝達構造の第1実施形態と特徴を示す略図である。
【図2,3】本発明の回転動力伝達構造の第1実施形態の更なる特徴を示す略図である。
【図4】本発明の接続手段20−4の構造と特徴を示す略図である。
【図5】本発明の接続手段20−6の構造と特徴を示す略図である。
【図6,7,8,9】本発明に用いる第2回転動力伝達構造の実施形態を示す略図である。
【図10】本発明の回転動力伝達構造の第2実施形態と特徴を示す略図である。
【図11】本発明の回転動力伝達構造の第3実施形態と特徴を示す略図である。
【図12】本発明の回転動力伝達構造の第4実施形態と接続手段20−8の構造を示す略図である。
【図13】本発明の回転動力伝達構造の第5実施形態と特徴を示す略図である。
【図14,15】本発明の回転動力伝達構造の第5実施形態の更なる特徴を示す略図である。
【図16,17】回転体1や2の形状を示す略図である。
【図18】本発明の回転動力伝達構造の第6実施形態の特徴を示す略図である。
【符号の説明】
1,2,2−1,2−1,3…回転体
4,12,13…保持部材
5,5−1,5−2…クサビ状の面
6,6−1,6−2…可動部材
7,7−1,7−2…加圧部材
8−1,8−2,8−3,8−4,8−5,8−7…中心軸
9−1,9−2,9−1−1,9−1−2…略球面状の外壁面
10…中心軸上の自在な位置,中心位置
20,20−1,20−2,20−3,20−4,20−5,
20−6,20−7,20−8…接続手段
30,32,33,34…穴
40…外壁面
50…穴の内壁面
60…キャリア
61,61−1,61−2,62,63,64,65…歯車
70,71…回転方向
80,81,82,83…回転軸
91,92,93,94,95,96…軸支手段
99,101…フレーム
100…移動手段
102…モーター,発電装置
103…バッテリー
120−1,120−2…前輪
130−1,130−2…後輪
131,132…スプロケット
133…チェーン
140…溝
201,202…軌道
k…軸
p,y…回動方向(移動方向)
s,s1,s2…支点
t,u…加圧接続位置(力点又は作用点)
v,x…移動方向
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotational power transmission structure including a mechanism that is connected so as to be able to transmit rotation between a plurality of rotating bodies that are rotatably supported around a central axis having a relative angle.
Further, the rotational power transmission structure having a continuously variable transmission function capable of continuously changing the relative rotational speed, rotational speed, and rotational speed ratio among the plurality of rotating bodies and the structure are provided. Consists of a configuration.
[0002]
[Prior art]
Conventionally, an input shaft to which rotational power is input, an output shaft that can change the rotational speed transmitted from the input shaft and output it to the outside, and a rotation that is connected to transmit rotation between the input shaft and the output shaft And a center axis moving means capable of changing a relative angle between the rotation center axes by moving a relative position of the rotation center axis of the rotating body with respect to the rotation center axes of the body and the input shaft and the output shaft. The movement and rotation transmission can be performed while the input shaft and the output shaft are fixedly arranged at fixed positions, and the movement between the input shaft, the rotating body, and the output shaft can be performed. There is a continuously variable transmission that can change the relative rotation speed ratio of
The feature of this configuration is that the input shaft and the output shaft are supported so as to be rotatable around a rotation center shaft provided with a substantially parallel distance. A space for arranging a plurality of axes in the horizontal direction or the vertical direction is required.
[0003]
[Problems to be solved by the invention]
Strong slip between the input shaft to which rotational power is input, the rotating body that is rotated by being transmitted from the input shaft, and the output shaft that is rotated by receiving the rotational power from the rotating body and can output the rotational power to the outside The purpose of the present invention is to prevent the space and volume of the mechanism constituted by providing the input shaft, the rotating body, and the output shaft from being increased more than necessary.
In addition, by using a structure that can rotatably hold the input shaft, the output shaft, and the rotating body at a common position center, the rotation center axes of a plurality of rotating bodies that can transmit rotation to each other are positioned at the position, New technologies including the degree of freedom of the relative crossing angle between the rotation center axes centered on the position, the degree of freedom of the relative direction of the rotational power, the degree of freedom of the rotation speed ratio between the plurality of rotation axes, etc. The purpose is to realize and provide a configuration that is useful for reducing the number of components, reducing the size and weight, and reducing the cost, and for reducing the power consumption, increasing the efficiency, and saving energy.
[0004]
[Means for solving the problems]
In order to solve the above problems, various structures that can be used in the rotational power transmission structure and the rotational power transmission structure of the present invention can be configured using the following means.
[0005]
(1)... Rotating body 1, rotator 2, and rotator 3 that are rotatably supported around their respective central axes, and a first connection that can transmit rotation between the rotator 1 and the rotator 2. And at least one second connecting means capable of transmitting rotation between the rotating body 2 and the rotating body 3, and at least one of the two connecting means rotates with the rotating body 1 and the rotating body 2. The rotating body 1 is configured so as to surround at least one of the bodies 3, and the rotating body 1 and the rotating body 2 rotate around the common center position 10 on the central axis of the rotating body 1, the rotating body 2 and the rotating body 3. By changing the relative angle of the central axis between at least two of the body 2 and the rotating body 3, at least two of the rotating bodies 1, 2, and 3. The rotational power transmission structure of the present invention can be configured by changing the relative rotational speed ratio between the two. It can be.
Further, at least one of the two connection means is configured to surround at least one of the rotating body 1 and the rotating body 2 and the center position 10 to transmit the rotational power of the present invention. The structure can also be established.
[0006]
(2) ... Moreover, the rotational power transmission structure described in (1) can be configured as follows.
The rotating body 1, the rotating body 2, and the rotating body 3 that are rotatably supported around the respective central axes are provided at least, and the rotating body 1 and the rotating body 2 include the rotating body 1 and the rotating body 1. A substantially spherical outer wall surface around a common center position 10 on the central axis of the rotating body 2 and the rotating body 3 is provided on each of the rotating body 2 and the rotating body 2 around the spherical outer wall surface of the rotating body 1. And connecting means capable of transmitting rotation between the rotating body 1 and the rotating body 2, and the rotating body 3 surrounds the spherical outer wall surface of the rotating body 2 and rotates between the rotating body 2 and the rotating body 3. It is also possible to provide a rotating power transmission structure of the present invention by providing connecting means capable of transmitting and connecting the rotating body 1, the rotating body 2 and the rotating body 3 so as to be able to transmit the rotation.
[0007]
(3) ... Moreover, the structure between the rotating body 1, the rotating body 2, and the connecting means can be configured as follows.
A rotation shaft 83 that is rotatably supported around the center axis 8-1 and an axial direction of the center axis 8-1 and one of both ends of the rotation shaft 83 is a center on the center axis 8-1. A substantially spherical outer wall surface 9-1-1 centered on the position 10, and a substantially spherical outer wall surface 9-1-2 centered on the center position 10 is located on the other end of the rotating shaft 83. A rotating body 1 configured to be provided, a rotating body 2 rotatably supported around a central axis 8-2 intersecting the central axis 8-1; The substantially spherical outer wall surfaces 9-1-1 and 9-1-2 provided on the rotating body 1 can be pressurized while surrounding the periphery, and the rotating body 1 and the rotating body 2 are connected so as to be able to transmit rotation. At least a connecting means is provided.
[0008]
(4) ... Also, the relative angle of the central axis between the rotating bodies including the rotating body 1 and the rotating body 2 or between the rotating body 2 and the rotating body 3 or the relative position of the central axis between the rotating bodies. A center axis moving means capable of moving is provided, and the ratio of the number of rotations between the rotating body 1 and the rotating body 2 or between the rotating body 2 and the rotating body 3 is changed steplessly to relatively move the rotating body. It is also possible to configure such that the rotational speed between them can be relatively continuously variable.
[0009]
(5) ... Moreover, the said rotary body 2 can also be comprised as follows.
Around the outer wall surface of an external member including the rotating body 1 having a circular outer wall surface that is substantially centered at the center position 10 or an outer wall surface that is substantially spherically shaped about the center position 10. A plurality of movable members 6 that can pressurize the outer wall surface, and can be pressurized with the movable member 6, and a distance from the central position 10 is provided while surrounding the central position 10. A plurality of wedge-shaped surfaces facing away from a position approached to the central position 10 at a predetermined position, a holding member that movably holds the movable member 6, and the central position 10 as the center. At least a central position 10, a plurality of movable members 6, and a substantially spherical outer wall surface that can surround the holding means are provided, and a space between the outer wall surface of the outer member and the movable member 6 is provided. The pressure connected In this case, a spherical outer wall surface is constructed so that at least one of the rotational forces in the forward and reverse directions around the center position 10 can be received relative to the external member. Thus, the structure of the member including the rotating body 2 can be established.
[0010]
(6) ... Moreover, the connection means can be configured as follows.
The holding member 12 is provided with a hole 30 having the central axis substantially at the center, and the inner wall surface of the hole 30 surrounds the central axis and is located at a distance from the central axis. A plurality of wedge-shaped surfaces 5-1 and 5-2 are provided in each direction away from the position approaching the central axis, and each of the plurality of wedge-shaped surfaces 5-1 is added. A movable member 6-1 that can be pressed and moved, a movable member 6-2 that can be pressurized and moved with respect to the plurality of wedge-shaped surfaces 5-2, and a movable member 6-1. Is pressed in the direction between the direction approaching the central axis with respect to the wedge-shaped surface 5-1 and the positive rotation direction about the central axis, and the movable member 6-2 is pressed against the wedge. The direction of approaching the central axis with respect to the surface 5 and the central axis And said forward direction and is provided relatively a pressure member that can be pressed in the direction between the rotational direction of the different opposite directions,
An external member having a circular outer wall surface approximately at the center position 10 or a substantially spherical outer wall surface approximately at the center position 10 is inserted into the hole 30 of the holding member 12 and the external member is inserted. When pressure connection is made to the outer wall surface on the surface of the movable members 6-1 and 6-2 that is close to the central axis, either the external member or the holding member 12 is positively centered about the central axis. Even if it rotates in the direction opposite to the direction, the structure provided in the holding member 12 composed of the connecting means can be established by receiving the rotational pressure between the external member and the holding member 12. .
[0011]
(7) ... Moreover, the said connection means can be comprised as follows.
The first member made of the holding member 12, the second member made of the holding member 4, and the distance from the free position 10 including the substantially spherical or circular outer wall surface around the free position 10 on the central axis. And a third member having a wall surface provided with at least two of the first member, the second member, and the third member having the same central axis. The first member has a structure that can be rotatably supported relative to the center, and the first member surrounds the periphery of the central axis at a distance from the central axis. A plurality of relative wedge-shaped surfaces 5-1 and 5-2 that are directed away from the position approaching the position 10 are provided, and the plurality of wedge-shaped surfaces 5 are provided on the second member. -1 for each of the movable members 6 that can be pressurized and relatively movable. 1 and a movable member 6-2 that is pressurizable and relatively movable with respect to each of the plurality of wedge-shaped surfaces 5-2. At least one of the member, the movable member 6-1 and the movable member 6-2 has the movable member 6-1 in a substantially positive direction around the central axis with respect to the wedge-shaped surface 5-1. A pressure member capable of pressurizing the movable member 6-2 in the rotational direction and pressurizing the movable member 6-2 in a substantially reverse rotational direction about the central axis with respect to the wedge-shaped surface 5-2; By connecting the wall surface of the third member to 6-1 and 6-2 so as to be freely pressable, the first member is rotated in the forward direction or the reverse direction around the central axis. An element that allows the second member and the third member to receive the rotational pressure transmitted from the first member even if When the second member is rotated in the direction opposite to the normal direction around the central axis while the material is relatively stopped or fixed, the first member receives the rotational pressure transmitted from the second member. An element in which the first member is rotated, and in the state where the third member is stopped or fixed, the pressing force of rotation is transmitted to the first member around the central axis in either the forward direction or the reverse direction. In addition, it is possible to configure the rotational power transmission structure including the connecting means so that the rotational pressure transmitted from the first member is contained in at least the elements received by the third member.
[0012]
(8) In addition, in the rotational power transmission structure comprising the connecting means shown in the means (7), the movable members 6-1 and 6-2 are moved from the rotational direction and the center position 10 by the pressure member. The movable member 6-1 is pressurized so as to be pushed out in a direction between the separating direction and the movable member 6-1 so as to be relatively sandwiched between the wedge-shaped surface 5-1 and the wall surface of the third member. The movable member 6-2 can be configured to be pressurized so as to be relatively sandwiched between the wedge-shaped surface 5-2 and the wall surface of the third member.
[0013]
(9) ... Further, at least one of the moving means that can move the relative position including the vehicle and the power generating device that can generate electricity can be driven by driving at least one of the moving means and the power generating device. As a means, any one of the rotational power transmission structures described in (1), (2), (3), (4), (7), or (8) can be provided.
[0014]
(10) In addition, the connection means provided in any one of the rotational power transmission structures described in the above (2) and (3) is provided with a hole substantially centered on the central axis, and is formed on the inner wall surface of the hole. A plurality of relative wedge-shaped surfaces 5 surrounding the central axis and facing away from a position approaching the central axis at a distance from the central axis, and the wedge-shaped surface A plurality of movable members that are pressurizable and movable with respect to the surface 5, a direction in which the movable member is brought close to the central axis with respect to the wedge-shaped surface 5, and rotation about the central axis A pressure member 7 that can be pressurized so as to be pushed out in a direction between them is provided relatively, and the movable member is added to the substantially spherical outer wall surface provided in the rotary body 1 and the rotary body 2. By connecting with pressure, between the rotating body 1 and the rotating body 2 and rotating with the rotating body 2 It is configured as a rotation force transmission mechanism which can rotate transmittable manner that is constituted between 3 also freely.
[0015]
[Embodiment of the present invention]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a rotational power transmission structure of the present invention and embodiments that can be used for the structure will be described with reference to the drawings.
[0016]
FIG. 1 is a schematic diagram showing the first embodiment and features of the rotational power transmission structure of the present invention.
(A) is a plan view, (b) is a front sectional view of FIG. (A), and (c) is based on the center position 10 on the right side of FIG. (B). It is sectional drawing.
[0017]
  The rotational power transmission structure shown in the diagrams (a), (b), and (c) of FIG.
  A rotating body 1, a rotating body 2, and a rotating body 3 that are rotatably supported around their respective central axes, and connection means 20-1 that can transmit rotation between the rotating body 1 and the rotating body 2, The rotating body2 and rotating body 3By providing at least connecting means 20-2 that can transmit rotation between the rotating body 1, the rotating body 2, and the rotating body 3 reach the central axis having a relative angle from the same central axis, and the rotating body The rotational power can be output from any one of them by inputting the rotational power from at least one of them, and the rotation body 1, the rotation body 2, and the rotation body 3 are common on the respective central axes. By changing the relative angle of the central axis of at least one of the rotating body 1, the rotating body 2, and the rotating body 3 around one central position 10 (including the free position 10 described in the above means). The first rotational power transmission structure is configured to be able to change the ratio of the relative rotational speed between at least two of the rotating body 1, the rotating body 2, and the rotating body 3.
  Further, at least one of the two connection means is configured to surround at least one of the rotating body 1 and the rotating body 2 and around the central position 10 in the first rotation of the present invention. A power transmission structure can also be established.
[0018]
Further, in FIG. 1, the rotating body 1 is rotatably supported with respect to the support means 91 around the center axis 8-1 and is rotated with respect to the support means 92 around the center axis 8-2. A rotating body 2 that is freely supported and a rotating body 3 that is rotatably supported with respect to the shaft support means 93 around a central axis 8-3 are provided. Are respectively provided with substantially spherical outer wall surfaces surrounding the central position 10 (including the central axis) that are common to each other on the central axis, and the rotating body 2 includes the spherical surface of the rotating body 1. Connecting means 20-1 surrounding the outer wall surface 9-1 and transmitting the rotation between the rotating body 1 and the rotating body 2 is provided, and the rotating body 3 has the spherical outer wall surface 9-2. And connecting means 20-2 that surrounds the rotating body 2 and can transmit rotation between the rotating body 2 and the rotating body 3. And between the rotating body 2, a first rotational power transmission structure indicating that that is the rotation transmission freely connected between the rotating body 2 and the rotor 3.
[0019]
Next, the specific structure and function shown in FIG.
[0020]
The central axis 8-1 shown in the figure is the central axis of the rotating body 1, the central axis 8-2 is the central axis of the rotating body 2, the central axis 8-3 is shown as the central axis of the rotating body 3, and the center Although the shafts 8-1, 8-2 and 8-3 are arranged on the same central axis, the rotating body 1, the rotating body 2, the rotating body 3 and the central shafts 8-1, 8-2 and 8 are shown. -3 can also be set to a central axis position at relatively different angles.
In addition, any one of the different shaft support means 91, 92 and 93, the rotating bodies 1, 2 and 3, or the central shafts 8-1, 8-2 and 8-3 is selected as the center. A center axis moving means is provided which can move in the illustrated x direction, which is an axial direction, and in the illustrated y direction, which is a direction having a relative angle with respect to the center position 10, so that the shaft support means, the rotating body, and the central axis can be moved. At least one of them can be configured to be movable.
Accordingly, at least one of the different shaft support means is movable with respect to other shaft support means and frames (not shown) including rotation and slide (reciprocating rotation, swing and slide). It is also possible to freely configure it.
In addition, even if a relative position or a relative angle between at least one of the central axes 8-1, 8-2, and 8-3 occurs, or the relative position of the central axis is being moved. Even if there is at least one between the rotating body 1 and the rotating body 2, between the rotating body 2 and the rotating body 3, or between the rotating body 1, the rotating body 2, and the rotating body 3, the forward direction and the reverse direction are rotated. It is a structure that can be configured to allow transmission and rotation transmission in either the forward direction or the reverse direction.
[0021]
Further, the connecting means 20-1 and 20-2 shown in FIG. 1 are configured as follows using substantially the same function and substantially the same structure. (The connecting means 20-1 and 20-2 can be configured by using different functions and different structures and shapes)
[0022]
As shown in FIG. 1, a hole 30 is provided with the central axis (in the description example of all the embodiments of the present invention, the central axis can be understood as the central position 10 on the central axis) substantially at the center. The holding member 12 having an arcuate outer wall surface 40 (which may have a shape other than the arcuate shape) having the central axis substantially at the center is provided, and the inner wall surface 50 of the hole 30 includes A plurality of wedge-shaped surfaces 5 surrounding the central axis and facing away from a position approaching the central axis at a distance from the central axis (the wedge-shaped surfaces are defined by the central axis). And a plurality of movable members 6 that are pressurizable and movable with respect to the wedge-shaped surface 5 and a holding member that holds the movable member 6 movably. 4 and the movable member 6 in the wedge shape A pressurizing member 7 that can pressurize the surface 5 in a direction between the direction approaching the central axis and the rotational direction about the central axis and can exert a repulsive force against the applied pressure. (It may be an elastic member that can be elastically deformed and restored), and the holding member 4 and the holding member 12 are integrally formed or relatively fixed between the holding member 4 and the holding member 12 (holding member 4). The holding member 12 can be attached to be relatively rotatable about the central axis), and the holding member 4 and the holding member 12 are configured to be freely rotatable so that the connecting means 20-1 can be rotated. And 20-2 are configured respectively.
[0023]
Furthermore, the holding member 12 provided in the connecting means 20-1 is press-fitted into the hole 32 having an arcuate inner wall surface that is substantially centered on the central axis provided in the rotating body 2 and rotates the rotating body 2. And a holding member 12 are relatively fixed, and a substantially spherical outer wall surface 9-2 surrounding the center position 10 with the connecting means 20-1 and the center position 10 on the center axis as a center. A rotating body 2 is provided.
The holding member 12 provided in the connecting means 20-2 is press-fitted into a hole 33 provided with an arcuate inner wall surface substantially centered on the central axis provided in the rotating body 3, and the rotating body 3 and the holding member. The rotating body 3 is configured together with the connecting means 20-2 with the twelve portions relatively fixed.
[0024]
Further, the rotary member 2 and the holding member 12 of the connecting means 20-1 or the rotary member 3 and the holding member 12 of the connecting means 20-2 are integrally molded, joined, or engaged without being press-fitted. Thus, it can be configured freely, or can be configured as the same material or different materials.
[0025]
Further, the wedge-shaped surface 5 shown in the figure has a curved shape (substantially U-shaped) that is concavely inclined relative to the inner wall surface 50 of the hole 30 of the holding member 12 (may be relatively uneven). A plurality of (even or odd) may be provided at regular intervals (not necessarily regular intervals).
Further, the wedge-shaped surface 5 can be provided on the pressing member 7 and the holding member 4.
Therefore, the wedge-shaped surface 5, the pressure member 7, and the holding member 4 can be integrally formed, joined, engaged, or configured as the same material or different materials.
[0026]
In addition, the illustrated movable member 6 is movably held in the holding member 4 or the holding member 12 including rotation, swinging or sliding, and is configured in a columnar shape. However, the movable member 6 is cylindrical, conical, polygonal, It is also possible to configure a rod-like shape having a plurality of arc-shaped outer wall surfaces not centered on one point, or a spherical body or sphere having a spherical surface.
Further, the movable member 6 can be provided on the holding member 12, the pressure member 7, or the holding member 4.
Accordingly, the movable member 6, the holding member 12, the wedge-shaped surface 5, the pressure member 7, and the holding member 4 are integrally formed, joined, engaged, or relative to each other while being configured as the same material or different materials. The movable member 6 can be configured so as to be movable with respect to the holding member 12, the wedge-shaped surface 5, the pressing member 7, and the holding member 4 that are configured to be movable.
[0027]
Further, in the figure, the rotating body 1 is configured to have a substantially spherical outer wall surface 9-1 with a center position 10 as the center, and the rotating body 1, the rotating body 2 and the rotating body 3 are provided with rotating shafts, respectively. However, the rotating shaft may be a rotating shaft having a hole.
[0028]
Further, the substantially spherical outer wall surfaces 9-1 and 9-2 may be a perfect spherical surface having the same radius in the radial direction around the center position 10, but the substantially spherical outer wall surfaces themselves are It is a structure that is inserted into the hole 30 of the connecting means and fits, and is suitable for the fitting means, including the fitting tolerance and dimensions, the center position 10, processing accuracy, and assembly accuracy. A perfectly spherical outer wall surface, which can have no perfect accuracy, is difficult to achieve with current technology including molding methods and molding means.
Therefore, a substantially spherical outer wall surface with a slightly elliptical spherical surface including artificial shapes and efficient shapes, irregularities consisting of surface roughness, and slight irregularities consisting of an unbalanced or balanced arrangement. However, it can also be used as a spherical outer wall surface together with a spherical surface.
[0029]
  Moreover, although the illustrated pressure member 7 uses a coil-shaped spring, a plate-shaped or other shaped spring, an elastic member having a repulsive force that can be elastically deformed and reconstructed, including resin and metal, While other members can be used, the holding member 4 and the holding member 12Movable member 6Alternatively, the pressure member 7 can be attached to the pressure member 7, or the pressure member 7 and the holding member 4, the holding member 12, and the movable member 6 can be integrally formed to form the same material or different materials.
[0030]
Further, the movable member 6 can be configured to be pressurized so as to be pushed out in a direction between a direction approaching the central axis and a rotational direction around the central axis with respect to the wedge-shaped surface 5. In this configuration, the movable member 6 can be pressurized so as to be pushed out in any direction between the direction approaching the central axis and the rotational direction around the central axis. It is an example.
[0031]
Further, the structure and the connecting means 20-1 and 20-2 provided in the holding member 12 are rotated or transmitted by relatively receiving the pressure applied in the positive direction around the central axis. A one-way clutch that has the function of not being able to transmit rotation or not transmitting rotation without being able to receive the rotational force in the reverse direction and switching the direction to receive the rotational force. A back stop mechanism including a mechanism called a clutch, a ratchet mechanism, or the like can be used, or the back stop mechanism can be configured using the structure of the back stop mechanism, but the connection means 20-1 shown in FIG. 20-2 and the structure provided in the holding member 12 are shown using a one-way clutch comprising the backstop mechanism. Therefore, it is a gist that a backstop mechanism of any structure can be used.
[0032]
The connecting means 20-1 and 20-2 are arcuate outer wall surfaces having the same radius around the center axis or substantially spherical outer wall surfaces (9-1 or 9) having the center position 10 as the center. -2) When the external member including the rotating body 1 and the rotating body 2 including the rotating body 2 is inserted into the hole 30 of the holding member 12, the pressing member 7 contracts (or may extend). While being moved in a radial direction slightly away from the central axis, the outer member is pressed and connected to the outer wall surface of the outer member on the surface close to the central axis of the movable member 6 and the pressing force of the pressing member 7 Thus, the movable member 6 can also pressurize the central axis direction and the wedge-shaped surface 5.
In addition, when at least one of the external member and the holding member 12 is rotated about the central axis in any direction at least in the reverse direction, the external member and the holding member 12 are held. The members 12 are configured to receive and rotate the applied pressure of rotation.
Therefore, in FIG. 1, the spherical outer wall surface 9-1 of the rotating body 1 and the movable member 6 provided in the connecting means 20-1 are pressure-connected, and the spherical outer wall surface 9-2 of the rotating body 2 Since it is pressure-connected to the movable member 6 provided in the connecting means 20-2, at least one of the rotating body 1 and the rotating body 2 is reversed between the rotating body 2 and the rotating body 3 in the reverse direction. This is a first rotational power transmission structure that is capable of transmitting rotation if it is rotated in any direction at least.
[0033]
Next, the spherical outer wall surfaces 9-1 and 9-2, the movable member 6, the wedge-shaped surface 5 and the pressurizing member 7 at the time of transmission of rotation between the rotating body 1, the rotating body 2 and the rotating body 3 will be described. A typical function will be described.
[0034]
For example, a rotational force (meaning a pressing force) of one rotation is transmitted in the direction of an arrow 70 around the central axis with the input power to the rotating body 1, and the rotating body 2 is stopped by giving a rotational resistance. When fixed, the movable member 6 positioned in the holding member 4 provided in the connection means 20-1 receives the rotation pressure from the spherical outer wall surface 9-1 of the rotating body 1 and connects. The wedge-shaped surface 5 and the spherical outer wall surface -20 are slightly rotated and rotated or slid in the direction of the arrow v in the figure with respect to the wedge-shaped surface 5 and the spherical outer wall surface 9-1 included in 20-1. The position of the pressure connection with respect to 9-1 is moved and stuck between the wedge-shaped surface 5 and the spherical outer wall surface 9-1, and the wedge-shaped surface 5, the movable member 6, and the spherical shape are stuck. The pressing force is increased between the outer wall surfaces 9-1, the wedge-shaped surface 5, the movable member 6, and the spherical outer wall. The relative engagement of between 9-1 is received by the connection unit 20-1 pressure of rotation transmitted from the rotary member 1 is caused, it is possible to the rotating body 2 substantially one rotation.
Further, when the connecting means 20-1 is configured by the backstop mechanism described above, the rotating body 2 continues to rotate without transmitting rotation to the rotating body 1 even if the rotation of the rotating body 1 is stopped. In addition, when the rotating body 1 is rotated in the direction of the arrow 71, only the rotating body 1 can be rotated without rotating the rotating body 2.
[0035]
Further, a rotational force (meaning a pressing force) of one rotation is transmitted to the rotating body 2 in the direction of the arrow 70 around the central axis by the input power, and the rotating body 3 is stopped by giving a rotational resistance. When fixed, the movable member 6 located in the holding member 4 provided in the connection means 20-2 receives a rotational pressure from the spherical outer wall surface 9-2 of the rotating body 2 and receives the connection means. The wedge-shaped surface 5 and the spherical outer wall surface 9-2 are slightly rolled and rotated or slid in the direction of the arrow v in the figure with respect to the wedge-shaped surface 5 and the spherical outer wall surface 9-2. The position of the pressure connection with respect to 9-2 is moved, and the wedge-shaped surface 5, the movable member 6 and the spherical surface are stuck while being pinched between the wedge-shaped surface 5 and the spherical outer wall surface 9-2. The pressure force is increased between the outer wall surfaces 9-2, and the wedge-shaped surface 5, the movable member 6, and the spherical outer surface Is received the pressure of rotation relative engagement between the surface 9-2 is transmitted from the rotating member 2 is caused by the connecting means 20-2, can cause the rotor 3 substantially one rotation.
[0036]
Further, when the connecting means 20-2 is configured by the backstop mechanism described above, the rotating body 3 continues to rotate without transmitting rotation to the rotating body 2 even if the rotation of the rotating body 2 is stopped. In addition, when the rotating body 2 is rotated in the direction of the arrow 71, only the rotating body 2 can be rotated without rotating the rotating body 3.
[0037]
Therefore, if the rotating body 1 is rotated in the direction of the arrow 70, the rotating body 2 and the rotating body 3 can continue to rotate in the direction of the arrow 70 by the connecting means 20-1 and 20-2.
Further, if the rotating body 3 is rotated in the direction of the arrow 71, the rotating body 2 and the rotating body 1 are rotated in the direction of the arrow 71 by the connecting means 20-1 and 20-2 and can continue to rotate.
[0038]
Further, if the structure of the connecting means 20-1 and 20-2 and the backstop mechanism is applied, and the structure and functions similar to those described above are additionally provided, the rotating body 1 is set in the direction of arrow 70. When rotating in the 71 direction, the rotating body 2 and the rotating body 3 are rotated in the directions of the arrows 70 and 71 by the connecting means, and when the rotating body 3 is rotated in the directions of the arrows 70 and 71, the rotating body 2 and the rotating body 1 are rotated. Are rotated in the directions of arrows 70 and 71 by the connecting means, and if the rotating body 2 is rotated in the directions of arrows 70 and 71, the rotating body 3 and the rotating body 1 are rotated in the directions of arrows 70 and 71 by the connecting means. Can also be configured.
[0039]
Although the rotational power transmission structure shown in FIG. 1 and the structure of the connecting means 20-1 and 20-2 are rotational transmission structures based on frictional force similar to frictional contact (like traction drive), a plurality of movable parts are movable. Since the member 6 and the plurality of wedge-shaped surfaces 5 are arranged so as to surround the spherical surfaces 9-1 and 9-2 and are press-connected, the spherical surfaces 9-1 and 9-2 are in contact with each other. While increasing the pressure connection location of the movable member 6, while dividing and dispersing the applied pressure into a plurality of pressure connection locations in the rotation transmission between the rotary body 1 and the rotary body 2 and between the rotary body 2 and the rotary body 3, Reduces the pressure load and damage at each pressure connection point, and prevents or prevents slipping in the rotation transmission between the rotating body 1 and the rotating body 2 or between the rotating body 2 and the rotating body 3. It is possible to transmit the rotation with a strong torque.
[0040]
Further, the pressure connection between the wedge-shaped surface 5 and the movable member 6 and the spherical surfaces 9-1 and 9-2 can be a press contact between the members, or the wedge-shaped surface 5 and the movable member 6 can be connected to the spherical surface. Between the surfaces 9-1 and 9-2, other members and media including lubricating oil may be interposed so that the applied pressure of rotation can be relatively received by the other members and media. .
[0041]
In the structure of the connecting means (20-1 and 20-2), the holding member 4 and the holding member 12 are integrally formed or fixed. However, the holding member 4 and the holding member 4 are held around the central axis. The member 12 is configured to be rotatable and transmittable by the movable member 6 while being configured to be relatively slightly rotatable, and configured as a connecting means 20-3 instead of the connecting means 20-1 and 20-2. You can also make it.
For example, in the case of the connecting means 20-3 configured as described above and omitting the illustration,
When a rotational resistance is applied to the rotating body 1 and the rotating body 2 is rotated in the direction of the arrow 71 by the input rotational power, the holding member 4 and the rotating body 1 provided in the connecting means 20-3 become the rotating body 2. Rotating in the direction of the arrow 71 in response to the rotational pressure transmitted from.
Next, if the rotating body 2 is rotated in the direction of the arrow 70 in the above state, the holding member 4 provided in the connecting means 20-3 receives the rotational pressure transmitted from the rotating body 2 and moves in the direction of the arrow 70. Although it is rotated, the rotating body 1 can be kept in a state where it cannot receive the applied pressure of rotation and is not rotated.
Further, if rotational resistance is applied to the rotating body 2 and the holding member 4 and the rotating body 1 is rotated in the direction of the arrow 70, the rotating body 2 and the holding member 4 rotate by receiving the rotational pressure transmitted from the rotating body 1. Is done.
Further, if rotational resistance is applied to the rotating body 2 and the holding member 4 to rotate the rotating body 1 in the direction of the arrow 71, the rotating body 2 and the holding member 4 cannot receive the rotational pressure transmitted from the rotating body 1. It is possible to keep the stop state.
Further, if the rotating body 2 is rotated in the direction of the arrow 70, the holding member 4 receives the rotation pressure transmitted from the rotating body 2 and rotates in the direction of the arrow 70, but the rotating body 1 is transmitted from the rotating body 2. It is also possible to keep the stopped state without receiving the applied pressure of rotation.
Since these functions use the structure of the backstop mechanism in the same manner as the connecting means (20-1 and 20-2), a backstop function can be obtained.
[0042]
In this backstop function, if any one of the holding member 12 and the rotating body 1 is rotated in the forward rotation direction, the movable member 6 is sandwiched between the spherical outer wall surface 9 and the wedge-shaped surface 5 to make a relative relationship. The rotary member 1 can be relatively received by rotating the holding member 12 and the rotating body 1 in the opposite direction, so that the movable member 6 has a spherical outer wall surface 9 and a wedge-shaped surface 5. The reason is that the angle between the inclined surfaces of the wedge-shaped surface 5 that is the left and right positions with respect to the movable member 6 is changed. . Accordingly, a wedge-shaped surface 5 made of an inclined surface is provided at either the left or right position with respect to the movable member 6, and the surface 5 having a different angle from the inclined surface is formed at any of the left and right positions. Can also be provided.
[0043]
Next, even if the holding member 4 provided in the connection means 20-3 is rotated in any of the directions of arrows 70 and 71 with input rotational power while giving rotational resistance to the rotating body 1, the rotating body 2 ( The holding member 12) receives the rotational pressure transmitted from the holding member 4 and can rotate the rotating body 1 while rotating in the directions of arrows 70 and 71. This is also the backstop function. It is an effect.
[0044]
Next, when the rotating body 1 is fixed or stopped with respect to the shaft support means 90, the holding member 4 provided in the connection means 20-3 is rotated in the directions of arrows 70 and 71 by the input rotational power. Then, the rotating body 2 is also rotated in the same direction. However, in this state, when the rotational force of the rotating body 2 is applied to the rotating body 2 in the rotational direction of the arrow 71 by the input rotational power, the rotating body 2 receives the rotational pressure of the rotating body 2. It is possible that the holding member 4, the rotating body 1, and the shaft support unit 90 are not rotated or rotated about the central axis. Therefore, it is possible to obtain the same function as the self-locking mechanism for preventing the rotation in the positive direction by rotating in the positive direction within the range where the input rotational power is transmitted and exceeding the range in which the input rotational power is transmitted. It is free.
Further, when the holding member 4 is rotated in the direction of the arrow 70 by the input rotational power, the rotating body 2 and the holding member 4 can be rotated in the direction of the arrow 70 without rotating the rotating body 1. This is a function inherent in the top mechanism.
[0045]
FIG. 2 is a schematic diagram showing further features of the first embodiment shown in FIG. 1, which is a modified view based on the front view shown in FIG. 1 (b).
Therefore, the reference numerals shown in FIGS. 1A, 1B, and 1C are applied mutatis mutandis.
[0046]
FIG. 2 shows the structure of FIG. 1, and the difference from the illustration shown in FIG. 1 is that the central shaft 8-2, the rotating body 2 and the pivot support means 92 are connected to the central shafts 8-1 and 8-3. The state which moved to the position which has a relative angle is shown.
Specifically, the rotating body 2 is pivotally supported with respect to the pivot support means 92 about the central axis 8-2, and the pivot support means 92 is pivoted about the center position 10 with respect to the pivot support means 94. The rotating body 2 and the central shaft 8-2 are turned to the central shafts 8-1 and 8 by rotating the shaft supporting means 92 about the central position 10 in the y direction shown in the figure. -3 and moved to a position having a relative angle.
Further, the shaft support means 91, 93 and 94 are fixed to the frame 99.
Therefore, in this configuration, the shaft support means 92 can also be understood as the central axis moving means.
[0047]
Further, at least one of the shaft support means for rotatably supporting the rotating body 1, the rotating body 2, and the rotating body 3 can be rotated about the center position 10 in the y direction shown in the figure. A structure capable of moving in the x direction shown in the figure is provided, and the shaft support means (91, 92, 93, 94) can be understood as the central axis moving means.
In addition, even when moving at least one of the central axis, the rotating body, and the shaft support means in the y direction of the position having the relative angle of the central axis, the relative angle between the central axes can be freely set. It is possible to change the angle steplessly, stop the movement action, return to the base position, free position or set position, keep the moved position, fix it after moving, or move It is also possible to use a flexible structure including a self-locking function of a function of being fixed or restrained relative to the moving position at all times.
[0048]
3 is a diagram showing further functions and features of the first embodiment shown in FIG. 1 and FIG. 2, and FIG. 3 (a) is a diagram (a) of FIG. 1 and FIG. ) Is the same as FIG.
In FIGS. 2A and 2B, the central axis and the central position 10 can be fulcrums (positions other than the central axis and the central position 10 can be used as fulcrums, but for ease of explanation and understanding. Of the relative distance between the distance between the fulcrum s and the force point (symbol t or u in the figure) and the distance between the fulcrum s and the action point (symbol u or t in the figure). By indicating the ratio and changing the ratio of the relative distance, it is possible to change the ratio of the number of rotations of the rotating body 1 and the rotating body 2 and to change the ratio of the number of rotations of the rotating body 2 and the rotating body 3. It shows the gist of what can be done.
The power point and the action point indicate the pressure connection position between the spherical outer wall surface (9-1 and 9-2) and the movable member 6 to be pressure-connected.
[0049]
Further, the change in the ratio of the rotational speed includes the change in the rotational speed and the rotational angular speed, but the central axes 8-1, 8-2 and 8-3 of the respective rotations of the rotating bodies 1, 2 and 3. In the case of FIG. 1A where the two are located on the same central axis, the rotating bodies 1 and 2 can be obtained by rotating the rotating body 1 nine times in the direction of the arrow 70 or rotating the rotating body 3 nine times in the direction of the arrow 71. And 3 are rotated approximately 9 times in the same direction at substantially the same rotational speed and substantially the same rotational angular speed, and become the same rotational speed.
When the central axis 8-2 has a relative angle with respect to the central axes 8-1 and 8-3 as in the case of the figure (b), the rotating body 1 is rotated nine times in the direction of the arrow 70. This indicates that if the rotating body 3 is rotated four times in the direction of the arrow 71, the rotating bodies 1, 2 and 3 have different rotational speeds. For example, the rotating body 1 has nine rotations and the rotating body 2 has six rotations. In the case where the rotation of the rotating body is continued forever, including that the rotating body 3 can be rotated four times so that each rotating body can have a different number of rotations, Even if the number of revolutions is small, the change in the ratio of the number of revolutions indicates that the change in one or more revolutions and the difference in the relative number of revolutions forever increase.
[0050]
Next, specific elements of change in the rotation speed ratio will be described.
[0051]
In the figure (a) of the figure, in the rotation transmission between the rotary body 1 provided with the spherical outer wall surface 9-1 and the rotary body 2 provided with the connecting means 20-1, the rotary body 1 is input with rotational power. When rotated in the direction of the arrow 70, the pressure connection position t between the spherical outer wall surface 9-1 of the rotating body 1 and the movable member 6 becomes a force point, and the movable body 6 moves freely with the spherical outer wall surface 9-1 of the rotating body 1. The rotating body 2 receives the rotation transmission with the pressure connection position u with the member 6 as an action point. When the rotating body 2 is rotated in the direction of the arrow 71 by the input rotational power, the pressure connection position u between the spherical outer wall surface 9-1 of the rotating body 1 and the movable member 6 becomes a power point, and the rotating body 1 The rotating body 1 receives the rotation transmission with the pressure connection position t between the spherical outer wall surface 9-1 and the movable member 6 as an action point.
In this case, for example, when the central position 10 common to the central axes 8-1, 8-2, and 8-3 is the fulcrum s, the distance between the fulcrum s and the force point t, and the distance between the fulcrum s and the action point u. Therefore, the rotating body 1 and the rotating body 2 are rotated at substantially the same speed and at the same rotational speed.
[0052]
In the figure (b), in the rotation transmission between the rotating body 1 having the spherical outer wall surface 9-1 and the rotating body 2 having the connecting means 20-1, the rotating body 1 is input to the arrow 70 by the input rotational power. When rotating in the direction, the pressure connection position t between the spherical outer wall surface 9-1 of the rotating body 1 and the movable member 6 becomes a power point, and the spherical outer wall surface 9-1 of the rotating body 1 and the movable member 6 The rotating body 2 receives the rotation transmission with the pressure connection position u as the action point, and the distance between the fulcrum s1 and the action point u on the center axis 8-2 in this case is the center position 10. On the other hand, the distance between the fulcrum s2 and the force point t on the central axis 8-1 that is substantially perpendicular to the central axis 8-1 from the pressure connection position t toward the central axis 8-1 becomes shorter. Yes.
[0053]
When the rotating body 2 is rotated in the direction of the arrow 71 by the input rotational power, the pressure connection position u between the spherical outer wall surface 9-1 of the rotating body 1 and the movable member 6 becomes a power point, and the rotating body 1 The rotary body 1 receives the rotation transmission with the pressure connection position t between the spherical outer wall surface 9-1 and the movable member 6 acting as an action point. In this case, the distance between the fulcrum s1 and the force point u is set. On the other hand, the distance between the fulcrum s2 and the action point t is short.
[0054]
In the above case, the pressure connection positions t and u serving as the force point and the action point are the same position, but s1 and s2 serving as fulcrums are different from each other with respect to the pressure connection positions t and u. Therefore, since the ratio of the distance between the fulcrum and the force point and the relative distance between the fulcrum and the action point is different, for example, the rotating body 2 is rotated 9 times while the rotating body 2 is rotated 6 times. It can be a thing.
Therefore, if the above description is applied, the rotational speed can be changed between the rotating body 2 and the rotating body 3. For example, the transmission ratio between the rotating body 1 and the rotating body 2 is set to 2/3. 2 is 2/3, the transmission ratio between the rotating body 1 and the rotating body 3 is (2/3) × (2/3) = 4/9. By providing 1, 2 and 3, a larger gear ratio can be obtained.
[0055]
Also, by changing the relative angle between the central axes steplessly, the gear ratio is also changed steplessly, and the relative rotational speed between the rotating bodies 1, 2 and 3 can be changed steplessly. 1 and that the function explained in FIG. 1 can be used to enable a continuously variable transmission between the rotating bodies 1, 2 and 3 while preventing or eliminating slippage during rotation transmission. ing.
In addition, the rotational speed of the rotary body 1 and the rotary body 3 is continuously changed while the rotary body 1 and the rotary body 3 are kept at a fixed position, and either the rotary body 1 or the rotary body 3 is rotated to receive rotational power. It is also possible to freely make the body and the other one a rotating body that outputs rotational power.
[0056]
These continuously variable transmission functions include at least one of the pressure connection positions t and u including the rotating body having the substantially spherical outer wall surface in the relative radial direction (center axis direction). It is made possible by providing the central axis moving means capable of moving freely and moving the relative fulcrum s (s1 and s2).
[0057]
FIG. 4 is a diagram showing another connection means 20-4 utilizing the structure of the connection means (20-1 and 20-2), and is a diagram utilizing the structure shown in FIG. 1C of FIG. is there.
[0058]
4A is a right side view seen from the central axis direction described in FIG. 1, and FIG. 4B shows the holding member 4 and the movable member 6 (6-1 and 6-2). FIG. 6 is a perspective view showing the shape and structure of the pressure member 7, and the holding member 4 surrounds the central axis and the central position 10 and is movable around a part of the movable members 6-1 and 6-2. A plurality of movable members 6-1 including a movable member 6 provided with a plurality of holes 34 movably holding the members 6-1 and 6-2 and surrounding the central axis and the central position 10 in the hole 34; 6-2 is individually configured to be movable, including rotation, sliding, swinging, and the like, and includes a hole 30 centered on the central axis and the central position 10 and configured in a ring shape. Show.
[0059]
4 differs from the connecting means (20-1 and 20-2) shown in FIG. 1 in that the wedge-shaped surface 5 is formed on the holding member 12 as shown in FIG. A plurality of wedge-shaped surfaces 5-1 and 5-2 are provided as inclined surfaces inclined in relatively different directions, respectively, as in the case of the illustrated 5-1 and 5-2. 1, a movable member 6-1 composed of the movable member 6 that is movably held relative to the holding members 4 and 12 that are integrally or fixed to the holding member 12 is disposed on the wedge-shaped surface 5-1. The wedge-shaped surface 5-2 is provided with a movable member 6-2 which is held so as to be movable relative to the holding members 4 and 12 on the wedge-shaped surface 5-2. The movable members 6-1 and 6-2 are arranged so that they can be pressurized and connected to the central axis (8-1 or 8-2, or -3) and the outer surface of the rotating body or member provided with a surface close to the center position 10 and an arcuate outer wall surface or a substantially spherical outer wall surface 9-1 or 9-2 around the center axis or the center position 10. It is configured so that it can be pressure-connected to the wall surface.
[0060]
Further, in the pressing member 7, the movable member 6-1 is sandwiched between the wedge-shaped surface 5-1 and the arc-shaped outer wall surface or the substantially spherical outer wall surface (9-1 or 9-2). The movable member 6-1 can be pressurized so as to be pressurized in a dead-end direction, and the movable member 6-2 has a wedge-shaped surface 5-2, the arc-shaped outer wall surface, and a substantially spherical surface. The movable member 6-2 can be pressurized so that it is sandwiched between the outer wall surfaces (9-1 and 9-2) and pressed in the direction of getting stuck. The movable member 6-1 is pressurized about the central axis in the direction between the arrow 70 and the central position 10 or the central axis direction, and the movable member 6-2 is approximately centered on the central axis. Pressure is applied in the direction between the arrow 71 and the center position 10 or the center axis direction.
The pressurizing member 7 is provided so as to be relatively pressurizable with at least one of the holding members 4 and 12, the movable members 6-1 and 6-2, and the wedge-shaped surfaces 5-1 and 5-2. ing.
[0061]
The holding member 12, the movable members 6-1 and 6-2, the wedge-shaped surfaces 5-1 and 5-2, and the pressure member 7 are shown in the description of FIG. 1 and the first embodiment. It can be freely configured.
Further, the wedge-shaped surfaces 5-1 and 5-2 may be formed integrally with the inner wall surface 50 of the hole 30 of the holding member 12, or may be formed at different positions with respect to the inner wall surface 50, or the movable member 6 -1 and 6-2 may be configured integrally or separately, and a plurality of pressure members 7 may be individually provided so that the pressure members 7 can be separately pressed against the movable members 6-1 and 6-2. However, in FIG. 4, the pressure member 7 is disposed between the movable members 6-1 and 6-2 in order to simplify the structure.
Further, the connecting means 20-4 shown in FIG. 4 can be provided in place of the connecting means 20-1 and 20-2 shown in FIG. 1, FIG. 2 and FIG. It is.
[0062]
Next, the function of the connecting means 20-4 will be described.
[0063]
If the rotating body 1 having the spherical outer wall surface 9-1 shown in the figure is rotated in the direction of the arrow 70, the movable member 6-1 has a wedge-shaped surface 5-1 and the spherical surface of the rotating body 1. While being stuck between outer wall surfaces 9-1 (which may be arcuate outer wall surfaces), the engagement between the outer wall surface 9-1 and the movable member 6-1 is relatively strengthened, and the rotation of the rotating body 1 is increased. The connecting means 20-4 and the rotating body 2 receive the pressure, and the rotating body 2 including the spherical outer wall surface 9-2 can be rotated.
If the rotating body 1 is rotated in the direction of arrow 71, the movable member 6-2 has a wedge-shaped surface 5-2 and a spherical outer wall surface 9-1 of the rotating body 1 (an arcuate outer wall surface may be used). The engagement between the outer wall surface 9-1 and the movable member 6-2 is relatively strengthened while being stuck between them, and the connecting means 20-4 and the rotating body 2 receive the applied pressure of the rotation of the rotating body 1. The rotating body 2 can be rotated.
[0064]
If the rotating body 2 is rotated in the direction of the arrow 71, the movable member 6-1 has a wedge-shaped surface 5-1, and a spherical outer wall surface 9-1 of the rotating body 1 (an arcuate outer wall surface may be used). The engagement between the outer wall surface and the movable member 6-1 is strengthened while being caught between them and the connecting member 20-4 and the rotating body 1 receive the applied pressure of the rotation of the rotating body 2, and the rotating body 1 Can be rotated.
If the rotating body 2 is rotated in the direction of the arrow 70, the movable member 6-2 has a wedge-shaped surface 5-2 and a spherical outer wall surface 9-1 of the rotating body 1 (an arcuate outer wall surface may be used). The engagement between the outer wall surface 9-1 and the movable member 6-2 is strengthened while being stuck between them, and the connecting means 20-4 and the rotating body 1 receive the applied pressure of the rotation of the rotating body 2. The rotating body 1 can be rotated.
[0065]
Therefore, the connection means 20-1 and 20-2 utilizing the structure of the backstop mechanism are slightly different structures, but transmit rotations in both the forward and reverse directions between the rotating body 1 and the rotating body 2. Even if the rotation is transmitted from either the rotating body 1 or the rotating body 2, the rotation is transmitted so that the rotation can be accurately transmitted.
[0066]
Further, the structure of the connecting means 20-4 of FIG. 4 is applied to form the following connecting means 20-5 which is not shown, and the connecting means 20-5 is connected as shown in FIG. 1, FIG. 2 and FIG. It is also possible to establish the rotational power transmission structure of the present invention by providing instead of the means 20-1 and 20-2.
For example, the structure and function of the connecting means 20-4 in FIG. 4 can be applied and configured as follows.
As a specific example, the holding member 12 and the holding member 4 centering on the central axis without fixing between the holding member 12 and the holding member 4 while utilizing the structure of the connecting means 20-4 of FIG. 4 as it is. The holding member 12 and the holding member 4 are rotatably supported with respect to the shaft supporting means so that the holding member 12 and the holding member 4 can be rotated relative to each other. 6-2 can also be configured to transmit rotation.
[0067]
In this configuration, when the rotational body 1 is given rotational resistance and the rotational body 2 (holding member 12) is rotated in the directions of arrows 70 and 71 by the input rotational power, the connecting means 20- The holding member 4 and the rotating body 1 included in 4 receive the rotation pressure transmitted from the rotating body 2 and are rotated in the directions of arrows 70 and 71.
Next, if rotational resistance is given to the rotator 2 and the holding member 4 and the rotator 1 is rotated in the directions of the arrows 70 and 71 by the input rotational power, the rotator 2 and the connecting means 20-4 are connected. If the holding member 4 provided is not capable of receiving the rotational pressure transmitted from the movable members 6-1 and 6-2, it is possible that the holding member 4 is not capable of receiving the rotational pressure transmitted from the rotating body 1 and is not rotated. Become.
[0068]
Next, if rotational resistance is applied to the rotating body 1 and the holding member 4 is rotated in the directions of the arrows 70 and 71 by the input rotational power, the rotating body 2 is subjected to the rotation pressure transmitted from the holding member 4. The rotating body 1 is rotated in the directions of arrows 70 and 71. However, the rotating body 1 is not rotated unless it receives the rotational force transmitted from the movable members 6-1 and 6-2. Rather, this function is based on the function described in connection means 20-3.
Next, when the rotating body 1 is fixed or stopped to the shaft support means 91 and the holding member 4 is rotated in the directions of the arrows 70 and 71 by the input rotational power, the rotating body 2 is transmitted from the holding member 4. The rotating body 1 is rotated in the directions of arrows 70 and 71 in response to the applied pressure, but the rotating body 1 is not rotated. In this state, the rotational power input to the rotating body 2 is used in the directions of the arrows 70 and 71. If the rotating pressure is transmitted to the rotating body 2, the rotating body 2 is received by the rotating body 1, so that the rotating body 2 is not rotated or the holding member 4, the rotating body 2, the rotating body 1, and the shaft support means 91. Can be rotated about the central axis.
Therefore, the self-lock is prevented from rotating in the relative positive direction within the range in which the input rotational power is transmitted and beyond the range in which the input rotational power is transmitted. It is also possible to obtain the same self-locking function as the mechanism.
[0069]
FIG. 5 is a view showing another connection means 20-6 utilizing the structure of the connection means (20-1, 20-2 and 20-4), and is a view utilizing the structure shown in FIG. .
FIG. 5A is a right side view seen from the central axis direction described in FIG.
FIG. 4B is a perspective view showing the shape of the holding member 4 and the positions of the movable member 6 and the pressure member 7.
[0070]
5 differs from the connecting means 20-4 shown in FIG. 4 in that the holding member 4 (the holding member 12 and the holding member 4 are connected to the holding member 12). It is movable within a hole 34 provided in the holding member 12 and the holding member 4 so that the holding member 12 and the holding member 4 can be rotated in a freely rotating manner while being configured to be relatively rotatable about the central axis. The movable member 6 that can be freely held (which may be any of rotation, swing, and slide) is provided, and the surface of the movable member 6 that faces the wedge-shaped surface 5-1 provided in the holding member 12 is a wedge-shaped surface. The movable member 6 is configured to be connected to the wedge-shaped surface 5-2 so that the surface of the movable member 6 facing the wedge-shaped surface 5-2 included in the holding member 12 can be pressed freely. That's right.
Further, between the holding member 4 and the movable member 6, there is provided a pressing member 7-1 that can press the movable member 6 in the direction of the wedge-shaped surface 5-1 and the central axis or the central position 10. Between the movable member 6 and the movable member 6, a movable member 6 is provided with a wedge-shaped surface 5-2 and a pressing member 7-2 that can pressurize the movable member 6 in the direction of the central axis or the central position 10.
With this configuration, the movable member 6 is configured to be pressurized in the rotation direction p indicated by the arrow about the axis k having a relative angle with respect to the central axis in the drawing.
[0071]
Therefore, by using the connecting means 20-6 as a connecting means for transmitting rotation between the rotating body 1 and the rotating body 2 or between the rotating body 2 and the rotating body 3, for example, the rotating body 1 is moved in the forward direction or the reverse direction. Even if the rotating body 2 is rotated in the forward direction or the reverse direction, the movable member 6 has at least either the wedge-shaped surface 5-1 or the wedge-shaped surface 5-2 and the circular or spherical outer surface of the rotating body 1. Rotation between the rotating body 1 and the rotating body 2 is made possible by receiving the applied pressure of rotation while being stuck between the wall surfaces and getting stuck. Accordingly, at least the same function as that of the connecting means 20-4 described above can be obtained.
[0072]
Further, by utilizing the structure of the connecting means 20-6, the holding member 12 and the holding member 4 are made to be relatively rotatable with respect to the central axis between the holding member 4 and the holding member 12 while being slightly rotatable. If it is configured to transmit the rotation freely, it is possible to configure the connecting means 20-7 that can obtain the same function as the connecting means 20-5.
[0073]
Further, the structure of the connecting means 20-3, 20-4, 20-5, 20-6, and 20-7 is different from the structure and function of the existing technology, and various functions and elements other than the description are provided. Is not limited to the structure, function, element, or use described above, and the various functions, elements, other functions, or the like described above while changing the structure or shape described above. The elements can be further incorporated and used for independent purposes.
[0074]
6 and 7, the rotational power transmission structure shown in FIGS. 8 and 9 is a structure having a function different from the rotational power transmission structure shown in FIGS.
Further, the rotational power transmission structure including the structure shown in FIGS. 1, 2, 3, 4 and 5 and the connecting means is a first rotational power transmission structure, and the gist shown in FIGS. 6, 7, 8, and 9 is shown. This rotational power transmission structure is understood as a second rotational power transmission structure and will be described below.
[0075]
The meaning of using the second rotational power transmission structure is that the second rotational power transmission structure is further connected to the first rotational power transmission structure so that efficient rotational power transmission and output can be freely made. The purpose is to make it more versatile and expandable.
[0076]
The common structure of the second rotational power transmission structure shown in FIGS. 6, 7, 8, and 9 is a carrier that is rotatably supported with respect to the shaft support means 95 and 96 around the center shaft 8-4. 60 (meaning a rotating body) and a central axis 8-5 different from the central axis 8-4 (for example, a central axis approximately parallel to the central axis 8-4 and provided with a distance, or a central axis 8- 4 including a central axis having a relative angle with respect to 4), and is supported rotatably relative to the carrier 60 and together with the carrier 60 about the central axis 8-4. A plurality of relative planetary gears 61 that can be rotated (may be rotating bodies capable of planetary motion instead of gears), and can freely rotate relative to the shaft support means 95 and 96 and the carrier 60 around the central shaft 8-4. Gears 62 and 63 that are supported on the shaft (may be other rotating bodies instead of gears) are reduced. Ku is also provided, the gear 62 is connected rotatably transmitted gear 61, the gear 63 is configured by connecting rotatably transmitted gear 61.
[0077]
Specific description will be given below based on a relative configuration example of the second rotational power transmission structure.
[0078]
In the second rotational power transmission structure of FIG. 6, the gear 62 is configured as an internal gear, the plurality of gears 61 and the gear 63 are configured as spur gears, and the gear 61 is substantially parallel and distanced from the central axis 8-4. And a gear 62 and a gear 63 are meshed with the gear 61 so that rotation can be transmitted between the gears 61, 62, 63 and the carrier 60 relatively. It is configured.
[0079]
In the second rotational power transmission structure of FIG. 7, gears 62 and 63 and a plurality of tooth blades 61 are constituted by bevel gears, and the gear 61 has a central shaft 8-5 having a relative angle with respect to the central shaft 8-4. A gear 62 and a gear 63 are engaged with the gear 61 so that the gear 61 can be rotated and transmitted between the gears 61, 62, 63, and the carrier 60.
[0080]
In the second rotational power transmission structure of FIG. 8, the gears 62 and 63 are constituted by spur gears having relatively different numbers of teeth, and the gear 61 is divided into gears 61-1 and 61-2 and the gears 61-1 and 61 are separated. -2 is composed of spur gears having relatively different number of teeth, meshing between the gear 62 and the gear 61-1 and connecting the gear 63 and the gear 61-2 so as to be able to transmit rotation, and transmitting between the gear 63 and the gear 61-2. The gears 61-1 and 61-2 are relatively fixed by the rotating shaft 80, and the gears 61-1 and 61-2 are connected to each other so as to be able to transmit the rotation. 6-2, 62, 63 and the carrier 60 are configured to be relatively rotatable.
The gears 61-1 and 61-2 are rotatably supported around a central axis 8-5 that is substantially parallel to and spaced from the central axis 8-4.
The number of teeth of the gear 62 is 30, the number of teeth of the gear 63 is 20, the number of teeth of the gear 61-1 is 20, and the number of teeth of the gear 61-2 is 30. Can be used.
[0081]
In the second rotational power transmission structure of FIG. 9, the gear 62 is configured as an internal gear, the gear 61 is divided into gears 61-1 and 61-2, and the gears 61-1 and 61-2 are configured with spur gears. The gear 61-1 is pivotally supported with respect to the carrier 60 about the central axis 8-5-1, and the gear 61-2 is rotatable with respect to the carrier 60 about the central axis 8-5-2. The gear 63 is configured as a spur gear, the gear 62 and the gear 61-1 are meshed to be connected to be able to transmit rotation, and the gear 61-1 and the gear 61-2 are meshed to be able to transmit rotation. The gear 61-2 and the gear 63 are meshed with each other and connected so as to be able to transmit the rotation, so that the gears 61-1, 61-2, 62, 63 and the carrier 60 can relatively transmit the rotation. Yes.
Further, the central axis 8-5-1 and the central axis 8-5-2 are provided at different positions that are substantially parallel to and spaced from the central axis 8-4.
[0082]
Further, the second rotational power transmission structure can be configured by providing a structure other than the structure shown in FIGS. 6, 7, 8, and 9, a gear train, a different gear, and a rotating body.
[0083]
Next, some of the common functions of the second rotational power transmission structure will be described.
One common feature of the configurations of FIGS. 6 and 7 is that, for example, when the carrier 60 is fixed, if the gear 62 is rotated in the forward direction about the central axis 8-4, the gear 63 is reversed. There is a calculation function to be rotated, and the gear 62 and the gear 63 have a function capable of rotating in the reverse direction relatively.
One common feature of the configurations of FIGS. 8 and 9 is that, for example, when the carrier 60 is fixed, if the gear 62 is rotated in the forward direction around the central axis 8-4, the gear 63 is in the same forward direction. The gear 62 and the gear 63 have a function of being able to rotate relatively in the same direction.
[0084]
Next, on the basis of the number of teeth of the gear of the configuration of FIG. 8 representing the configuration of FIGS.
When the carrier 60 is fixed, if the gear 62 is rotated once in the forward direction around the center axis 8-4, a speed increasing mechanism in which the gear 63 is rotated 9/4 in the same forward direction can be realized. If the gear 63 is rotated once in the forward direction around the central axis 8-4, a reduction mechanism in which the gear 62 is rotated 4/9 in the same forward direction can be realized.
Further, when the gear 62 is fixed, if the carrier 60 is rotated once in the forward direction around the center axis 8-4, a speed increasing mechanism in which the gear 63 is rotated 5/4 in the reverse direction can be realized. If the gear 63 is rotated once in the forward direction around the shaft 8-4, a speed reduction mechanism in which the carrier 60 is rotated 4/5 in the reverse direction can be realized.
Further, when the gear 63 is fixed, if the carrier 60 is rotated once in the forward direction around the center axis 8-4, a speed reduction mechanism in which the gear 62 is rotated 5/9 in the forward direction can be realized. If the gear 62 is rotated once in the forward direction around 8-4, a speed increasing mechanism in which the carrier 60 is rotated 9/5 in the forward direction can be realized.
[0085]
Further, if the carrier 60 is rotated once in the forward direction and the gear 62 is rotated twice in the forward direction around the central axis 8-4, a speed increasing mechanism in which the gear 63 is rotated by 13/4 in the same forward direction can be realized. Can do.
Further, if the carrier 60 is rotated once in the forward direction and the gear 63 is rotated twice in the forward direction around the central axis 8-4, a speed increasing mechanism in which the gear 63 is rotated 13/9 in the same forward direction can be realized.
Further, if the gear 62 is rotated once in the forward direction and the carrier 60 is rotated twice in the forward direction around the central axis 8-4, a reduction mechanism in which the gear 63 is rotated 1/4 in the reverse direction can be realized.
Further, if the gear 62 is rotated once in the forward direction and the gear 63 is rotated twice in the forward direction around the central shaft 8-4, a speed reduction mechanism in which the carrier 60 is rotated by 1/5 in the forward direction can be realized.
Further, if the gear 63 is rotated once in the forward direction and the carrier 60 is rotated twice in the forward direction around the central shaft 8-4, a speed increasing mechanism in which the gear 62 is rotated 14/9 in the forward direction can be realized. When the gear 63 is rotated once in the forward direction and the gear 62 is rotated twice in the forward direction around the central axis 8-4, a speed increasing mechanism in which the carrier 60 is rotated 14/5 in the forward direction can be realized.
[0086]
Further, if the carrier 60 is rotated once in the reverse direction and the gear 62 is rotated once in the forward direction around the central axis 8-4, a speed increasing mechanism in which the gear 63 is rotated 18/4 in the forward direction can be realized. it can.
Further, if the carrier 60 is rotated once in the reverse direction and the gear 63 is rotated once in the forward direction around the central axis 8-4, a speed reduction mechanism in which the gear 62 is rotated 4/18 in the forward direction can be realized.
Further, if the gear 62 is rotated once in the reverse direction and the carrier 60 is rotated once in the forward direction around the central axis 8-4, a speed increasing mechanism in which the gear 63 is rotated by 10/4 in the reverse direction can be realized.
Further, if the gear 62 is rotated once in the reverse direction and the gear 63 is rotated once in the forward direction around the center shaft 8-4, a speed reduction mechanism in which the carrier 60 is rotated 4/10 in the reverse direction can be realized.
Further, if the gear 63 is rotated once in the reverse direction and the carrier 60 is rotated once in the forward direction around the central shaft 8-4, a reduction mechanism can be realized in which the gear 62 is rotated 5/18 in the forward direction. If the gear 63 is rotated once in the reverse direction and the gear 62 is rotated once in the forward direction around the central axis 8-4, a speed increasing mechanism in which the carrier 60 is rotated 18/5 in the forward direction can be realized.
[0087]
Therefore, although the structures and functions are slightly different in the configurations of FIGS. 6, 7 and 9, it is possible to obtain at least the functions shown using the configuration of FIG. 8 and similar functions.
[0088]
FIG. 10 shows a combination of the first rotational power transmission structure shown in FIG. 1B and the second rotational power transmission structure shown in FIG. 8 and the number of gear teeth. It is a figure which shows sectional drawing of 2nd Embodiment of a rotational power transmission structure, and is the structure which can carry out rotation transmission between the said 1st rotational power transmission structure and the 2nd rotational power transmission structure shown in the said FIG.6,7,8 and9. This is a structure as a representative example of.
Therefore, it is the main point that any of the second rotational power transmission structure and the first rotational power transmission structure can be provided.
[0089]
Further, the connecting means shown in the figure uses the connecting means 20-1 and 20-2, or instead of the connecting means 20-1 and 20-2, the connecting means 20-3, 20-4, 20-5, 20-6 or 20-7 can be used, but here, the connecting means 20-4 shown in FIG. 4 is used instead of the connecting means 20-1 and 20-2.
[0090]
For example, as shown in FIG. 10, the central shafts 8-1, 8-2 and 8-3 shown in the first rotational power transmission structure of FIG. 1 and the central shaft 8-4 of the second rotational power transmission structure Are located on the same central axis (it is also possible to have a parallel distance other than the same central axis or a position having a relative angle), and the first rotational power transmission structure is provided. The rotating body 1, the rotating body 2, the rotating body 3, and the carrier 60 (rotating body) and gears (rotating body) 61, 62, and 63 provided in the second rotational power transmission structure are relatively rotatably connected. Can be configured.
[0091]
In FIG. 10, the rotating body 1 and the gear 63 are connected so as to be able to transmit rotation, and the rotating body 3 and the gear 62 are connected so as to be able to transmit rotation. It can be rotated by power and output from the carrier 60.
Specifically, when the rotating body 1, the rotating body 2, and the rotating body 3 are rotated once in the same direction around the same central axis, the carrier 60, the gears 61 (61-1 and 61-2), 62, and 63 are The gear 61 (61-1 and 61-2) can be prevented from rotating around the central axis 8-5 while being rotated once in the same direction around the central axis.
[0092]
Next, while the central axes 8-1 and 8-3 of the rotary body 1 and the rotary body 3 are on the same central axis, the rotary body 2 is rotated around the central position 10 by the central axis moving means, and the central axis 8 is rotated. -2 is moved to a position having a relative angle with respect to the central axes 8-1 and 8-3, and the rotational speed ratio between the rotating body 1 and the rotating body 3 (meaning a change in relative rotational speed) or relative When the rotation transmission radius ratio (including the ratio of the relative distance between the fulcrum and the force point and the relative distance between the fulcrum and the action point) is changed to a ratio of 9: 4, When the gear 63 is rotated nine times, the rotating body 3 and the gear 62 are rotated four times, and the gear 61 (61-1 and 61-2) is rotated about the central axis 8-5, and the calculated rotation of the carrier 60 that is output. It is also possible to make the number zero, so that the rotating body 1 and the rotating body 3 are connected to the gear 61, the carrier 60, It will be connected rotatably transmitting pairs manner.
[0093]
Next, when the rotation speed ratio between the rotating body 1 and the rotating body 3 or the relative rotation transmission radius ratio is changed to a ratio of 9: 8, the rotating body 1 and the gear 63 rotate when they rotate 9 times in the forward direction. The body 3 and the gear 62 are rotated eight times in the forward direction, and the gear 61 (61-1 and 61-2) is rotated about the central axis 8-5, and the calculated rotational speed output from the carrier 60 is the positive direction. 36/5 rotations.
[0094]
Next, when the rotation speed ratio between the rotating body 1 and the rotating body 3 and the relative rotation transmission radius ratio are changed to a ratio of 9: 3, the rotating body 1 and the gear 63 rotate when they rotate 9 times in the forward direction. The body 3 and the gear 62 are rotated three times in the forward direction, and the gear 61 (61-1 and 61-2) is rotated about the central axis 8-5 while the calculated rotational speed output from the carrier 60 is in the reverse direction. 19/5 rotations.
Therefore, the rotational speed ratio of the first rotational power transmission structure can be changed to any ratio, flexible rotational speed, rotational speed, and rotational direction by the second rotational power transmission structure.
[0095]
Further, the carrier 60 can be rotated by the input rotational power and can be output from any of the gears 62 and 63, the rotating bodies 1, 2 and 3, and the holding member 4, and the rotating body and output rotated by the input rotational power. The rotating body to be used may be any of the rotating bodies 1, 2, 3, the holding member 4, the gears 61, 62, 63, and the carrier 60.
[0096]
Therefore, the gears 61, 62, 63, and the carrier 60, which are composed of a rotating body included in the second rotational power transmission structure including the configurations shown in FIGS. 6, 7, 8, and 9, are included in the first rotational power transmission structure. It can be connected to any of the rotating bodies 1, 2, 3 and the holding member 4 (rotating body) included in the rotator so as to be able to transmit the rotation, or can be configured so as to freely obtain the above functions and other functions. Yes, by changing the number of gear teeth, the gear train, the configuration, and the structure, the rotating body that is output while rotating the rotating body of the input in the forward direction can be rotated in any direction from zero to steplessly. In addition, it is possible to make a continuously variable speed change or to configure the output deceleration range and acceleration range as a relatively infinite ratio.
This is because, when the input rotator is rotated 10 times and the output rotator is changed from 1 rotation to 0 rotation, when rotational power is input from the output rotator side, the rotation is 10/1 to 10/0 rotation. In both methods, the change in the rotational speed ratio between the input rotator and the output rotator during this period is an infinite ratio.
[0097]
Further, the gears 61, 62, 63, the carrier 60, and the carrier 60, which are the rotating bodies provided in the second rotational power transmission structure, the rotating bodies 1, 2, 3 and the holding member 4 (which are provided in the first rotational power transmission structure) It is also possible to configure the rotating body as a relatively same rotating member, as a separate rotating member, to be coupled to each other, or to be connected so as to be able to transmit rotation via another rotating member. .
[0098]
In addition, the gear can be a gear or a rotary body having teeth of any shape including an internal gear, a spur gear, a bevel gear, a helical gear, a gear having a helical tooth, or a rotary body having a rack tooth. . Further, as shown in FIGS. 8 and 9, the gear 61 can be further provided with a plurality of gears 61-1 and 61-2 comprising a plurality of gear trains.
Moreover, it can also be comprised with the rotary body of free shape including the gear and carrier of each said description.
[0099]
Further, the second rotational power transmission structure shown in FIGS. 6, 7, 8, and 9 and the rotational power transmission structure shown in FIG. 10 are gears 61 and 62 made of a rotating body provided in the second rotational power transmission structure. 63 and at least two rotating bodies of the carrier 60 are externally connected to at least two rotating bodies, or are provided in the second rotating power transmission structure. The second rotary power transmission structure includes an input rotary body or input rotary power of the continuously variable transmission and an output rotary body of the continuously variable transmission. A configuration is shown in which the gears 61, 62, 63 and the carrier 60 made of a rotating body can be connected to at least two of the rotating bodies so as to be able to transmit the rotation.
[0100]
A part of the structure used for the first rotational power transmission structure has already been shown in a patent application (Applicant, Shizuo Mishima's serial number ... ME-01-006). Even in the configuration of the continuously variable transmission utilizing the second rotational power transmission structure, there are already patent applications (application number: Japanese Patent Application No. 6-295823, Japanese Patent Application No. 2000-338872, Japanese Patent Application No. 2000- 304198, Japanese Patent Application No. 2001-271043, and other applications), and is the gist that various rotational power transmission structures of the present invention can be configured by utilizing the configurations and structures shown in the existing patent applications.
[0101]
FIG. 11 is a schematic view showing a third embodiment of the rotational power transmission structure of the present invention configured using the rotational power transmission structure shown in FIG.
Here, the first rotational power transmission structure of the present invention is attached to a moving means that can move the relative position (for example, a vehicle including a ship, an aircraft, or a bicycle equipped with wheels). As the driving means for moving the moving means in the one-rotation power transmission structure, the moving means is allowed to travel and propel, speed restriction including braking is possible and braking is possible, and the generator (generator In other words, it is possible to connect and configure such that the power (electricity) can be generated by driving the power.
[0102]
Specifically, FIG. 11 shows a moving means 100 comprising a plurality of front wheels 120-1 and 120-2 and a vehicle on which a plurality of rear wheels 130-1 and 130-2 are rotatably supported. , Using as an energy source electric power comprising a prime mover (the prime mover may be a device capable of outputting power such as rotation, relative reciprocation, or swinging of a motor or esidin) to the frame 101 of the moving means 100 A motor 102 capable of outputting rotational power is attached, rotational power output from a rotational shaft 82 serving as an output shaft of the motor 102 is connected to the rotating body 1 of the first rotational power transmission structure so as to be capable of rotational transmission, and The rotational power output from the carrier 60 of the second rotational power transmission structure is connected to the plurality of front wheels 120-1 and 120-2 and the plurality of rear wheels 130-1 and 130-2 so as to be capable of rotational transmission. In addition, a battery 103 (storage battery) composed of a power source capable of supplying electric energy and storing electric power to the motor 102, and supplying the electric power to the battery 103 and being relatively provided in the motor 102. It is the schematic of the circuit and structure connected so that transmission / reception of electric power was possible with a generator (generator).
[0103]
  Therefore, as described above, the central axis 8-1 and8-3By changing the relative angle of the central axis 8-2, the moving means 100 can be steplessly accelerated, decelerated, moved in the forward direction, or moved in the reverse direction at least. While the moving means 100 is traveling at a high speed, the relative angle of the central axis 8-2 can be changed to freely decelerate or stop the rotation speed of the carrier 60 and the wheels and the moving means 100. This is effective because it is possible to use these brakes without using a brake.
[0104]
When the relative angle of the central shaft 8-2 is changed so as to reduce the rotational speed of the carrier 60 and the wheels and the propulsion speed of the moving means 100, the kinetic energy due to the weight and speed of the moving means 100 is Since the power is transmitted to the wheels, the rotational power is transmitted back from the wheels to all the rotating bodies and gears included in the first rotational power transmission structure and the second rotational power transmission structure and transmitted to the motor 102. The rotating shaft 82 is rotated at an accelerated speed, whereby the motor 102 acts as a power generator (generator) to generate electric power, transmit electric power to the battery 103, and the battery 103 receives electric power and stores electric power. In particular, it is efficient because it can generate and store power while reducing power consumption.
In the case of such a configuration, the moving means 100 and the power generation device (relative configuration including the generator) are utilized as a configuration including the first rotational power transmission structure and the second rotational power transmission structure. I can do things.
[0105]
FIG. 12 shows a fourth embodiment of the first rotational power transmission structure other than the various first rotational power transmission structures and the various connecting means, which are provided with the spherical outer wall surface shown in the embodiments. And a connection means 20-8, which are indicated by reference numerals having substantially the same principle as described above.
FIG. 6A is a plan sectional view in which the central axes 8-1 and 8-2 of the rotating body 1 and the rotating body 2 are arranged on the same central axis, and FIG. FIG. 2C is a front sectional view in which the central axis 8-2 is in a state having a relative angle with respect to FIG. 2A, and FIG. 2C is a view based on the position of the center position 10 shown in FIG. FIG. 6 is a cross-sectional view of the right side of FIG. 4, wherein the rotating body 1 and the rotating body 2 are connected to each other by a connecting means 20-8 so as to be able to transmit rotation, and the rotating body 2 and the rotating body 3 can be connected to another rotating means 20-8 by means of other connecting means. It is the schematic which shows the structure made to connect to.
[0106]
The specific configuration shown in FIG. 12 includes, for example, the holding unit 12 and the rotating body 1 having the spherical outer wall surface integrally formed so that the rotating body 1 has a substantially spherical shape. A little closer to the center position 10 with respect to the outer wall surface 9-1 (although it does not have to be substantially spherical) and substantially the same radius about the center position 10 toward both ends of the center axis 8-1. A plurality of the trajectories 201 and 202 heading in the plane of the surface are provided so as to surround the central position 10, and the trajectory 201 is planar in a direction away from the position approaching the central axis 8-1 and the central position 10. A wedge-shaped surface 5-1 (which may be a curved surface) is provided, and a planar (or curved surface) wedge-shaped surface which extends away from a position approaching the center axis 8-1 and the center position 10 with respect to the track 202. A surface 5-2 is provided, and a substantially spherical surface is formed in the wedge-shaped surface 5-1. A movable member 6-1 made of a sphere having a spherical surface (or a shape other than a sphere) may be arranged, and a movable member 6-made of a sphere having a substantially spherical surface in the wedge-shaped surface 5-2. 2 is arranged, the movable members 6-1 and 6-2 are positioned so as to surround the center axis 8-1 and the center position 10, and the plurality of movable members 6-1 and 6-2 are movable including rotation. A holding member 4 that can be freely held is provided, and the holding member 4 is integrally formed with or fixed to the rotating body 1 so as to be able to rotate with the rotating body 1 (the center axis 8-1 is centered between the holding member 4 and the rotating body 1). Of the circular hole 30 centering on the central axis 8-2 provided in the rotating body 2 (or the holding member 13 in the figure). The movable members 6-1 and 6-2 are arranged so as to be capable of being pressure-connected to the inner wall surface 50 and the movable member 6. A holding member 13 that holds 1 and 6-2 so as to be movable and does not fall off from the rotating body 2 is provided on the rotating body 2 including integral molding, fixing, or attachment, and the pressing member 7 is further provided with a holding member. 4 or 13 or at least one of the movable members 6-1 and 6-2, and the pressing member 7 adds the movable member 6-1 to the wedge-shaped surface 5-1 and the inner wall surface 50. The movable member 6-2 is configured to be press-connected to the wedge-shaped surface 5-2 and the inner wall surface 50 by the pressurizing member 7.
[0107]
  This configuration is also shown in the first embodiment of FIGS.Rotational transmission between the rotating bodies 1 and 2 and 3 is possible.At the same time, it is possible to obtain substantially the same function as the connecting means 20-4 shown in FIG.
  For example, in the case of the configuration shown in FIG. 12A, even if rotation is transmitted from either the rotating body 1 or the rotating body 2, rotation is transmitted at substantially the same rotational speed and substantially the same rotational speed. In the case of the configuration of FIG.If the rotating body 1 is rotated, the rotating body 2 is rotated. If the rotating body 2 is rotated, the rotating body 1 is rotated.Will be done.
[0108]
Further, in the rotation transmission between the rotating body 1 and the rotating body 2, the movable member 6-1 is caught between the wedge-shaped surface 5-1 and the inner wall surface 50, and the movable member 6-2 has a wedge-shaped surface. 5-2 and the inner wall surface 50 are stuck, and the movable member 6-1 receives the pressure applied in the forward direction, and the movable member 6-2 receives the pressure applied in the reverse direction. Rotational transmission between the rotating body 1 and the rotating body 2 is made possible, and functions similar to those of the above-described configurations can be exhibited.
[0109]
Further, in the case of the configuration shown in FIG. 2B, the movable member 6-1 is in the direction of the track 201 and the movable member 6-2 is in the direction of both ends of the center axis 8-2 and the radius of the center axis 8-2. Rotation is transmitted between the rotary body 1 and the rotary body 2 while rolling or sliding in both directions.
[0110]
Therefore, by constructing between the rotating body 1 and the rotating body 2 and between the rotating body 2 and the rotating body 3 by using the structure of the connecting means 20-8, FIG. 1, FIG. 2, FIG. 3, FIG. And the rotational power transmission structure including the various connection means of FIG. 10 and FIG.
In addition, the structure of the various connecting means can be structurally provided for the various rotating bodies without independently interpreting the holding members 4 and 12, and a plurality of additional holding members can be provided. It can also be provided.
[0111]
FIG. 13 is a fifth embodiment showing the first rotational power transmission structure comprising the spherical outer wall surface shown in the above embodiment, and FIG. 13 (a) is a schematic diagram of the plan view. (B) is a schematic diagram showing a cross section of the front, and FIG. (C) is a schematic diagram showing a cross section of the right side surface of FIG.
Further, the fifth embodiment shown in FIG. 13 is an application example based on the first embodiment shown in FIG. 1, and the difference from the first embodiment shown in FIG. The structure and the position of the central axis 8-1.
Hereinafter, the structure shown in FIG. 13 will be described mainly using the terms and symbols shown in the first embodiment of FIG.
[0112]
Specifically, the difference from the first embodiment shown in FIG. 1 is that, as shown in FIG. 13, the shaft is supported around a central axis 8-1 intersecting with the central axis 8-2 of the rotating body 2. A rotating shaft 83 that is rotatably supported by the means 91 and a central axis 8-1 in the axial direction, and one end of the rotating shaft 83 is centered on the central position 10 on the central axis 8-1. The substantially spherical outer wall surface 9-1-1 and the other one end of the rotating shaft 83 are provided with a substantially spherical outer wall surface 9-1-2 centered on the center position 10 for rotation. The body 1 is configured to pressurize the substantially spherical outer wall surface 9-1-1 and the substantially spherical outer wall surface 9-1-2 provided on the rotating body 1 while surrounding the center position 10. The connecting means 20-1 including the backstop mechanism capable of transmitting rotation between the rotating body 1 and the rotating body 2 is provided and configured. Is the point you are.
Accordingly, the plurality of movable members 6 provided so as to surround the center position 10 surround the substantially spherical outer wall surface 9-1-1 and the substantially spherical outer wall surface 9-1-2, and the spherical outer wall surface. 9-1-1 and a substantially spherical outer wall surface 9-1-2 are configured to be pressure-connected to each other.
[0113]
Further, as a specific structure of the rotating body 1, a rotating shaft 83 and a substantially spherical outer wall surface 9-1-1 are integrally formed, and a member having a substantially spherical outer wall surface 9-1-2 is formed. The rotary shaft 83 is fitted and fixed and fitted, but the member having the rotary shaft 83 and the substantially spherical outer wall surface 9-1-1 and the member having the substantially spherical outer wall surface 9-1-2. And rotating the shaft 83, the substantially spherical outer wall surface 9-1-1, and the substantially spherical outer wall surface 9-1-2. It can also be molded integrally.
Further, the outer diameter of the rotary shaft 83 is formed in a circular shape having the same radius with the central axis 8-1 as the center, and a substantially spherical outer wall surface 9-1-1 and a substantially spherical outer wall surface 9-1-. The outer diameter of 2 is larger than the outer diameter of the rotary shaft 83, but can be the same outer diameter or a smaller outer diameter.
Also in the structure of FIG. 13, the above-mentioned various connection means can be used without limitation to the connection means 20-1 and 20-2.
[0114]
13 differs from the embodiment shown in FIG. 1 in that the center axis 8-1 is positioned perpendicular to the center axis 8-2 and the rotating body 1 is rotated around the center axis 8-1. In this case, the rotating body 2 and the rotating body 3 can be maintained in a stopped state without being rotated. When the rotating body 2 is to be rotated around the central axis 8-2 in this state, the connecting means 20 is used. -1 can transmit the pressure applied by rotation in either the forward direction or the reverse direction to the rotating body 1, but if the supporting means 91 is fixed, the rotating body 1 cannot be rotated or the supporting means 91 If it is not fixed, it becomes possible to rotate the shaft support means 91, the rotating body 1 and the rotating body 3.
[0115]
Further, if the central axis 8-1 and the central axis 8-2 have a relative angle within a range in which the direction of the central axis 8-1 is not perpendicular to the central axis 8-2, the rotating body 1 is centered. When one rotation is made around the shaft 8-1, the rotating body 2 and the rotating body 3 are rotated less than one rotation, and the ratio of the number of rotations is changed. Further, if the rotator 2 is rotated once, the rotator 1 is rotated more than one rotation, and the ratio of the number of rotations is changed.
[0116]
Further, either the rotating body 1 or the rotating body 2 is rotated in the direction indicated by the arrow y around the center position 10 so that the relative angle between the center axes 8-1 and 8-2 is changed steplessly. As shown in FIG. 3, the relative ratio of the distance between the action point and the fulcrum is changed as compared with the embodiment shown in FIGS. The stepless speed change of the rotational speed between the rotating body 1 and the rotating body 2 and between the rotating body 2 and the rotating body 3 can be similarly performed.
Further, any of the central axes 8-1, 8-2, and 8-3 can be configured to be movable in the direction in which the relative angle is changed.
Moreover, it is also possible to configure the rotational power transmission structure having the gist as shown in FIGS. 10 and 11 by using the first rotational power transmission structure shown in FIG.
[0117]
FIG. 14 is a view showing a part of the first rotational power transmission structure shown in FIG. 13, in which a further structure of the rotating body 1 and the gear 64 are fixed to the rotating body 1 and meshed with the gear 64. This shows that a gear 65 that is rotatably supported by the shaft support means 91 is provided around a center shaft 8-7 that is substantially parallel to and spaced from the center shaft 8-1, and a gear 64 is shown. And 65 are constituted by spur gears composed of external gears.
[0118]
FIG. 15 is a view showing a part of the first rotational power transmission structure shown in FIG. 13, in which a further structure of the rotating body 1 and the gear 64 are fixed to the rotating body 1 and meshed with the gear 64. It shows that a gear 65 that is rotatably supported by the shaft support means 91 is provided around the center shaft 8-7 having a relative angle with respect to the center shaft 8-1, and the gears 64 and 65 are provided. The bevel gear is composed of an external gear.
[0119]
Further, the gear 64 shown in FIGS. 14 and 15 and the rotary shaft 83 may be integrally formed, fixed, or attached freely.
In this way, by providing the driving means that meshes the gears, it is possible to transmit the rotation between the rotating body 1 and the external gear 65 or between the rotating shafts of the gear 65, and to the rotating body 1. It makes it easy to input rotational power, or to take out rotational power from the rotating body 1 and use it easily.
[0120]
FIGS. 16A and 16B are diagrams showing examples of the shapes of the various rotary bodies 1 and 2 having a substantially spherical outer wall surface, where FIG. 16B is a front view and FIG. 16C is a right side view. FIG.
In the figure, the rotating bodies 1 and 2 are provided with a substantially spherical outer wall surface 9 centering on a central position 10 and a circular through hole 30.
Moreover, this hole 30 can also be comprised by the non-circular shape other than circular, a polygon, other shapes, and a non-penetrating hole.
The center of rotation of the rotating bodies 1 and 2 can be any position on the central axis shown in the figure.
[0121]
FIG. 17 is a diagram showing examples of the shapes of the various rotary bodies 1 and 2 having a substantially spherical outer wall surface. FIG. 17B is a front view, and FIG. 17C is a right side view. FIG.
In the figure, a substantially spherical outer wall surface 9 centering on the center position 10 is provided for the rotating bodies 1 and 2, but the substantially spherical outer wall surface 9 is provided with a concave and convex groove 140.
Although it is not particularly necessary to provide the concave / convex groove 140, the provision of the concave / convex groove 140 makes it possible to store the lubricating oil in the concave / convex groove 140 when, for example, lubricating oil is interposed therebetween. It is possible to promote the adhesion of lubricating oil to 9 and reduce the consumption and heat generation of the substantially spherical outer wall surface 9.
In addition, the shape of the concave and convex grooves 140 may be various shapes other than those shown in the figure.
The center of rotation of the rotating bodies 1 and 2 can be any center axis position shown in the figure.
[0122]
Therefore, the rotary bodies 1 and 2 provided in the various configurations can be configured in the shapes as shown in FIGS. The substantially spherical outer wall surface and the central axis can also be used in the same manner.
[0123]
FIG. 18 is a configuration showing a sixth embodiment of the rotational power transmission structure of the present invention using the first rotational power transmission structure shown in FIG. 1, and the first rotational power transmission structure shown in FIG. Two of them are shown as structure A, and the other as structure B.
Then, the rotation body 2 (shown as 2-1 in the figure) provided in the structure A and the rotation body 2 (shown as 2-2 in the figure) provided in the structure B can freely transmit rotation. Connected and configured.
[0124]
Specifically, a sprocket 131 composed of driving means is fixed to the rotating body 2-1, a sprocket 132 composed of driving means is fixed to the rotating body 2-2, and a ring composed of driving means is connected to the sprockets 131 and 132. A circular chain 133 is wound to connect the rotating body 2-1 and the rotating body 2-2 so as to be able to transmit the rotation.
The rotating bodies 2-1 and 2-2 are rotatably supported with respect to the same shaft support means 92, and the shaft support means 92 is indicated by an arrow centering on the center position 10 provided in the structures A and B. By rotating in the y direction, relative to the rotary body 2 and the central axis 8-2 with respect to the rotary body 1, the rotary body 3 and the central axes 8-1 and 8-3 provided in the structures A and B, respectively. The center axis moving means described above is provided so that the angle and the relative position can be moved steplessly, and the sixth embodiment of the rotational power transmission structure is configured.
[0125]
With this configuration, for example, if the rotating body 1 is rotated with input rotational power, the two rotating bodies 2 and 2 of the structure A and structure B can be rotated to output the rotational power, and the rotating body 3 can be output with the input rotational power. If rotated, the structure A, the two rotating bodies 2 and the rotating body 1 of the structure are rotated, and the rotational power can be output.
In addition, this configuration makes it possible to output the rotational power from any rotating body regardless of the rotational power input to any rotating body, and the utilization range can be increased while the structure is simple.
Also in this configuration, the above-described various connection means and various structures and shapes can be provided.
Further, the rotating means 2-1 and the rotating body 2-2 are connected so as to be able to transmit the rotation by the driving means comprising the sprockets 131 and 132 and the chain 133, but a gear is fixed to the rotating body 2-1. In 2-2, a gear that meshes with a gear included in the rotating body 2-1 may be fixed so that rotation can be transmitted between the rotating body 2-1 and the rotating body 2-2 by a driving means including a gear. It is free.
It is also possible to connect the two rotating bodies 1 of the structure A and the structure B or between the two rotating bodies 3 so as to be able to transmit the rotation by a driving means.
It is also possible to rotate the rotating body 1 and the rotating body 3 in the direction of the arrow y about the center position 10.
[0126]
Furthermore, the rotational power transmission structure of the present invention and each of the above-described configurations can be configured as follows.
[0127]
A relative bearing structure having a sliding bearing structure or a rolling member can be used for a structure that is rotatably or movably supported (including holding).
In addition, the rotary power transmission structure described above and the universal joint, ball joint, and Oldham coupling that can freely transmit rotation between the central axes having a relative angle from the same central axis position are utilized. The center axis moving means that can move the relative position of the center axis and change the relative angle between the center axes can be provided, or the output rotation speed can be steplessly changed with respect to the input rotation speed by changing the relative angle A continuously variable transmission or a braking mechanism that can increase or decrease the rotational resistance can be configured and used for the purpose of obtaining the effect as the continuously variable transmission or the braking mechanism.
[0128]
Further, the structure provided in the rotation transmitting universal joint may be at least between the rotating body 1 and the rotating body 2 or between the rotating body 2 and the rotating body 3 provided in the first rotational power transmission structure. Can be used as a connecting means for freely transmitting the rotation. Further, any one of the rotating body 1, the rotating body 2 and the rotating body 3 is provided with a connecting means comprising the backstop mechanism described above. By the function of the backstop mechanism, a rotational power transmission structure including a continuously variable transmission that can change the ratio of the rotational speed between the rotating body that receives rotational power and the rotating body that receives rotational power is configured. In such a configuration, the rotator 1 and the rotator 2 may be provided with a spherical outer wall surface, or may have a shape other than the spherical outer wall surface.
[0129]
In addition, the various connection means described may include other connection means including viscous members and magnetic members.
Further, the described gear can be configured by a gear having any shape and any structure. Further, it is also possible to connect the various rotating bodies so as to be able to transmit rotation by using driving means including gears.
[0130]
In addition, the rotational power transmission structure of the present invention (which may include a mechanism) is provided with a structure that circulates lubricating oil or lubricating oil, a frame or covering member that surrounds part of the lubricating oil, an oil seal, and the like. It is also possible to make it possible to configure a safe and smooth rotational movement.
Further, the structure of the various connecting means can be used as a rotational power transmission structure.
Further, the various rotational power transmission structures can be attached to various machines and devices including a processing machine and a drive machine so as to exhibit the functions described above.
Further, the pressurizing member 7 can be formed in a cylindrical shape or a columnar shape together with the movable member 6.
In the above-described embodiment, the movable member 6 (including 6-1 and 6-2) has a central axis that is substantially parallel to and spaced from the central axes 8-1, 8-2, and 8-3. Although the shape and the configuration that are slightly rotatable at the center are used, the holding member 4 is slightly rotatable about the central axis having a relative angle with respect to the central axes 8-1, 8-2, and 8-3. And 12 can be configured to be held relative to each other.
In addition, the wedge-shaped surface has one position on the central axis of the central axes 8-1, 8-2, and 8-3 as a central position, and faces away from a position approaching the central position. It can also be configured on the surface. Even with this configuration, the configuration and effect of the wedge-shaped surface can be obtained.
[0131]
The above is mainly an embodiment of the rotational power transmission structure of the present invention (the various rotational power transmission structures and connection means can be configured to mean a rotational power transmission mechanism and a rotational motion transmission mechanism). .
The structure shown in the present invention and the structure including the structure can be configured by using various other shapes, means, and structures without departing from the features shown in the claims.
Accordingly, the moving means capable of moving the relative position having the features and structures shown in the claims, the structure including the power generation device capable of generating electric power, and the elements and functions shown in the claims. The potential structure is at least within the scope of the present invention, and what is described is merely illustrative and is not to be construed as limiting.
[0132]
【The invention's effect】
The present invention can obtain the effects described below at least.
(1). Even if the rotating body 1 and the rotating body 3 are provided at fixed positions and the center axes 8-1 and 8-3 of the rotating body 1 and the rotating body 3 are positioned on the same central axis or at a fixed position, the rotating body 2 and the rotating body 3 rotate. By moving the center axis 8-2 of the body 2 in a direction having a relative angle with respect to the center axes 8-1 and 8-3 and a direction in which the relative angle is increased or decreased with respect to the center position 10, the rotating body 1 It is possible to freely change the rotation speed and the rotation speed of the rotating body 2 and the rotating body 3 steplessly.
(2). Further, by providing connection means 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, 2-7, 2-8, rotation between the rotating body 1 and the rotating body 2 or rotation It is possible to prevent slippage during transmission of rotation between the body 2 and the rotating body 3 and relatively receive the rotational force of a large torque and transmit the rotation.
(3). In addition, by providing the second rotational power transmission structure, it is possible to increase or decrease the speed ratio that becomes the rotational transmission ratio between the first rotational transmission structures, and to obtain a function as a differential mechanism. It can be multifunctional and can achieve relative efficiency.
(4). Further, by providing the rotational power transmission structure of the present invention in the moving means 100 and the power generation device, it becomes possible to save energy and to increase and decrease the relative rotational speed, traveling speed and propulsion speed steplessly. .
(5). In addition, various functions, features, and effects described in the various embodiments can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a first embodiment and characteristics of a rotational power transmission structure of the present invention.
2 and 3 are schematic views showing further features of the first embodiment of the rotational power transmission structure of the present invention.
FIG. 4 is a schematic diagram showing the structure and characteristics of the connecting means 20-4 of the present invention.
FIG. 5 is a schematic diagram showing the structure and characteristics of the connecting means 20-6 of the present invention.
FIGS. 6, 7, 8, and 9 are schematic views showing an embodiment of a second rotational power transmission structure used in the present invention.
FIG. 10 is a schematic view showing a second embodiment and characteristics of the rotational power transmission structure of the present invention.
FIG. 11 is a schematic view showing a third embodiment and characteristics of the rotational power transmission structure of the present invention.
FIG. 12 is a schematic view showing the structure of the fourth embodiment of the rotational power transmission structure of the present invention and the connection means 20-8.
FIG. 13 is a schematic view showing a fifth embodiment and characteristics of the rotational power transmission structure of the present invention.
14 and 15 are schematic views showing further features of a fifth embodiment of the rotational power transmission structure of the present invention.
16 and 17 are schematic views showing the shapes of the rotating bodies 1 and 2;
FIG. 18 is a schematic diagram showing the characteristics of the sixth embodiment of the rotational power transmission structure of the present invention;
[Explanation of symbols]
1, 2, 2-1, 2-1, 3 ... Rotating body
4, 12, 13 ... holding member
5,5-1,5-2 ... Wedge-like surface
6,6-1,6-2 ... movable member
7,7-1,7-2 ... Pressure member
8-1, 8-2, 8-3, 8-4, 8-5, 8-7 ... central axis
9-1, 9-2, 9-1-1, 9-1-2 ... substantially spherical outer wall surface
10: Free position on the center axis, center position
20, 20-1, 20-2, 20-3, 20-4, 20-5
20-6, 20-7, 20-8 ... connection means
30, 32, 33, 34 ... holes
40 ... Outer wall surface
50 ... Inner wall surface of the hole
60 ... Career
61, 61-1, 61-2, 62, 63, 64, 65 ... gears
70, 71 ... direction of rotation
80, 81, 82, 83 ... rotating shaft
91, 92, 93, 94, 95, 96 ... shaft support means
99, 101 ... frame
100: Moving means
102 ... Motor, power generator
103 ... Battery
120-1, 120-2 ... front wheels
130-1, 130-2 ... rear wheels
131, 132 ... sprocket
133 ... chain
140 ... groove
201, 202 ... orbit
k ... axis
p, y ... rotating direction (moving direction)
s, s1, s2 ... fulcrum
t, u ... Pressure connection position (force point or action point)
v, x ... direction of movement

Claims (3)

自らの内側に設けられた所定の位置(10)を軸に該位置(10)を回る回転体であって、第一回転体と,前記第一回転体の外周で回る第三回転体と,前記の第一回転体と第三回転体との間に位置する第二回転体の少なくても三つの回転体と、位置(10)を軸に前記第一回転体と第二回転体の両回転中心軸同士による交差の角度の変化を伴いながらも第一回転体と第二回転体間を回転伝達できる第一接続手段と、
位置(10)を軸に前記第二回転体と第三回転体の両回転中心軸同士による交差の角度の変化を伴いながらも第二回転体と第三回転体間を回転伝達できる第二接続手段とを設け、
更に前記第一接続手段には位置(10)を回り前記の第一回転体と第二回転体の間で第一回転体と第二回転体に対して相対的に可動できると共に第一回転体と第二回転体間を回転伝達できる可動部材を設けることで、前記の第一回転体と第三回転体の両回転中心軸に対する第二回転体の回転中心軸の交差の角度の変化を伴いながらも第一回転体と第三回転体の両回転中心軸間の相対位置を定位置にしながら第一回転体と第三回転体間の回転伝達を行うことができる回転動力を伝達できる装置。
A rotating body that rotates around the position (10) about a predetermined position (10) provided inside thereof , the first rotating body, and a third rotating body that rotates around the outer periphery of the first rotating body; At least three rotating bodies of the second rotating body located between the first rotating body and the third rotating body, and both the first rotating body and the second rotating body about the position (10). A first connection means capable of transmitting rotation between the first rotating body and the second rotating body while changing the angle of intersection between the rotation center axes ;
A second connection capable of transmitting rotation between the second rotating body and the third rotating body with a change in the angle of intersection between the rotation center axes of the second rotating body and the third rotating body about the position (10). Means ,
Further, the first connecting means can be moved relative to the first rotating body and the second rotating body between the first rotating body and the second rotating body around the position (10), and the first rotating body. By providing a movable member that can transmit rotation between the first rotary body and the second rotary body, a change in the angle of intersection of the rotation center axis of the second rotary body with respect to both rotation center axes of the first rotary body and the third rotary body is accompanied. However, a device capable of transmitting rotational power capable of transmitting rotation between the first rotating body and the third rotating body while keeping the relative position between both rotation center axes of the first rotating body and the third rotating body at a fixed position.
前記の第一接続手段と第二接続手段の少なくても何れかには位置(10)を回ることができると共に位置(10)を中心とする略同一半径の球面状の面が少なくても用いられることで前記の第一回転体と第三回転体間の回転数の比率を変えることができる請求項1記載の回転動力を伝達できる装置。At least one of the first connecting means and the second connecting means can turn around the position (10) and use at least a spherical surface having substantially the same radius around the position (10). The apparatus which can transmit the rotational power of Claim 1 which can change the ratio of the rotation speed between said 1st rotary body and said 3rd rotary body . 前記の第一回転体と第三回転体の少なくても何れかと回転動力の伝達できる外部の回転体を具備される請求項1又は2記載の回転動力を伝達できる装置。The device capable of transmitting rotational power according to claim 1 or 2 , further comprising an external rotating body capable of transmitting rotational power to at least one of the first rotating body and the third rotating body .
JP2001330003A 2001-09-20 2001-09-20 Rotational power transmission device Expired - Fee Related JP4535361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001330003A JP4535361B2 (en) 2001-09-20 2001-09-20 Rotational power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001330003A JP4535361B2 (en) 2001-09-20 2001-09-20 Rotational power transmission device

Publications (3)

Publication Number Publication Date
JP2003097657A JP2003097657A (en) 2003-04-03
JP2003097657A5 JP2003097657A5 (en) 2008-12-04
JP4535361B2 true JP4535361B2 (en) 2010-09-01

Family

ID=19145805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001330003A Expired - Fee Related JP4535361B2 (en) 2001-09-20 2001-09-20 Rotational power transmission device

Country Status (1)

Country Link
JP (1) JP4535361B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4733097B2 (en) * 2007-10-02 2011-07-27 静雄 三島 Method for transmitting power between members and outputting them, and means for utilizing the method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031251A (en) * 1973-07-18 1975-03-27
JPS52149543A (en) * 1976-06-07 1977-12-12 Standard Kogyo Kk Coupling material
JPS5398270U (en) * 1977-01-12 1978-08-09
JPS62127556A (en) * 1985-11-27 1987-06-09 スペリ− コ−ポレイシヨン Ball coupling composite traction drive
JPS646530A (en) * 1987-02-17 1989-01-11 Japan Automatic Transmission One-way clutch
JPH03113120A (en) * 1989-09-26 1991-05-14 Ntn Corp Ball joint
JPH08247244A (en) * 1995-03-13 1996-09-24 Shizuo Mishima Rotation transmitting mechanism

Also Published As

Publication number Publication date
JP2003097657A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
JP4799199B2 (en) In-wheel motor drive device
JP6718499B2 (en) Transmission system having an output bearing and a wave transmission capable of supporting the output bearing
KR101310403B1 (en) Planetary gear system using two input characteristic and gear module thereof and method for controlling the same
US6764423B2 (en) Variable speed power transmission system
JP5263388B2 (en) Electric motor with speed change function
KR100740958B1 (en) Power transmission system
JPS5877953A (en) Deceleration transmission
ES2699784T3 (en) Traction system for hybrid vehicles
JP4535361B2 (en) Rotational power transmission device
JPH11247949A (en) Gear driving mechanism assembly
JP2023554683A (en) nutation reducer
WO2000070241A1 (en) Continuously variable transmission and variants
EP0248515A1 (en) Reversible continuously variable transmission
JP2019094050A (en) Coaxial type power-assisted stepless speed change device
JPH0510400A (en) Reduction gear
US9587721B2 (en) Infinitely variable traction drive employing alternate steerable rollers
KR100426333B1 (en) Traction drive continuously various transmission having a four bar linkage and spherical rotors
JP3617645B2 (en) Micro traction drive
JPS62101943A (en) Reducer
KR101886387B1 (en) Rotating apparatus capable of rapid accelerating having high torque
WO2021184423A1 (en) Bispherical cycloidal roller nutation drive device
JP3217060U6 (en) Micro reducer
JP3079144B2 (en) Variable speed reducer
JP2002031206A (en) Toroidal type continuously variable transmission and continuously variable transmission
JPS596456A (en) Speed change device

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4535361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees