JP4732604B2 - Growth factor activity enhancer - Google Patents

Growth factor activity enhancer Download PDF

Info

Publication number
JP4732604B2
JP4732604B2 JP2001062756A JP2001062756A JP4732604B2 JP 4732604 B2 JP4732604 B2 JP 4732604B2 JP 2001062756 A JP2001062756 A JP 2001062756A JP 2001062756 A JP2001062756 A JP 2001062756A JP 4732604 B2 JP4732604 B2 JP 4732604B2
Authority
JP
Japan
Prior art keywords
deoxy
growth factor
derivative
glycosaminoglycan
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001062756A
Other languages
Japanese (ja)
Other versions
JP2002265369A5 (en
JP2002265369A (en
Inventor
靖剛 臼杵
暁子 瀬山
豊 苅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikagaku Corp
Original Assignee
Seikagaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikagaku Corp filed Critical Seikagaku Corp
Priority to JP2001062756A priority Critical patent/JP4732604B2/en
Publication of JP2002265369A publication Critical patent/JP2002265369A/en
Publication of JP2002265369A5 publication Critical patent/JP2002265369A5/ja
Application granted granted Critical
Publication of JP4732604B2 publication Critical patent/JP4732604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、グリコサミノグリカンの誘導体を有効成分とする増殖因子活性増強剤及び該増強剤と増殖因子とを含む組成物に関する。
【0002】
【従来の技術】
ウロン酸残基とグルコサミン残基の繰り返し構造を基本骨格とする硫酸基を有するグリコサミノグリカンの一種であるヘパリンは、様々な増殖因子と親和性を有することが知られている(J. Biol. Chem., 268(32), 23898-23905 (1993)等)。
【0003】
一方、ヘパリンは血中のアンチトロンビンIIIと結合し、血液凝固を阻害する活性が知られており、この活性はヘパリンを抗凝固剤として使用する場合以外はヘパリンを含む医薬品の重大な副作用の要因となる。従って、例えばヘパリンの有する増殖因子活性増強効果などを利用するために、上記副作用を低減させるための様々な試みがなされている(例えば特表平6-506685、特表平8-511764等)。
【0004】
ヘパリンを改変し、抗凝固活性を低下させた種々のグリコサミノグリカン誘導体がこれまでに得られている。例えば特開平11-310602に記載された過ヨウ素酸酸化還元2脱硫酸化ヘパリン(PO2DSH)もそのような誘導体の一つであり、神経細胞に対して神経突起伸長活性を有していることが知られている。しかし、当該物質が増殖因子の活性を増強することは知られていなかった。
【0005】
一方、神経の損傷時に神経成長因子(NGF)を投与すると、神経の再生を促進するが、NGFは痛覚過敏を引き起こすことが知られている(医学のあゆみ, 195(9),585-590 (2000))。
【0006】
【発明が解決しようとする課題】
神経損傷の治療においてNGFの投与量を減らし、疼痛の惹起等の副作用を極力低減させることなど、増殖因子の活性を増強することで副作用を低減する手段の開発に対する要請が高まっていた。
【0007】
【課題を解決するための手段】
本発明者らは上記課題に鑑み、グリコサミノグリカン誘導体であるPO2DSHがNGFの活性を増強することを見い出し、更に当該グリコサミノグリカン誘導体が他の増殖因子、特に繊維芽細胞増殖因子(FGF)に対しても同様にその活性を増強する作用を有することを見い出して本発明を完成した。
【0008】
すなわち、本発明の要旨は以下の通りである。
(1)以下の(a)の特性を有し、且つ(b)に記載の一般式(1)で表される構造部分を、ヘキソサミンとヘキスロン酸の繰り返し構造で形成される基本骨格を有するグリコサミノグリカンの1分子あたりに1個以上有することを特徴とするグリコサミノグリカン誘導体又はその塩を有効成分として含む増殖因子活性増強剤。
【0009】
(a)重量平均分子量が4,000〜20,000 Da(ダルトン)であること。
【0010】
(b)一般式(1)
【0011】
【化2】

Figure 0004732604
【0012】
(但し、R1はH又はSO3Hであり、R2はCOCH3又はSO3Hを示す。)
【0013】
(2) グリコサミノグリカン誘導体又はその塩が更に下記(c)の特性を有することを特徴とする、(1)記載の増殖因子活性増強剤。
(c)グリコサミノグリカン分解酵素による分解と高速液体クロマトグラフィーによる分析を組み合わせた二糖分析により得られる二糖体組成において2-デオキシ-2-スルファミノ-4-O-(4-デオキシ-2-O-スルホ-α-L-Threo-hex-4-エノピラノシルウロン酸)-6-O-スルホ-D-グルコースのモルが0〜10、2-デオキシ-2-スルファミノ-4-O-(4-デオキシ-α-L-threo-hex-4-エノピラノシルウロン酸)-6-O-スルホ-D-グルコースのモルが95〜70であり、2-デオキシ-2-スルファミノ-4-O-(4-デオキシ-α-L-threo-hex-4-エノピラノシルウロン酸)-D-グルコースのモルが5〜20であること。
【0014】
(3)(1)又は(2)記載の増殖因子活性増強剤を有効成分とする医薬。
【0015】
(4)(1)又は(2)記載の増強剤と増殖因子とを含む組成物。
【0016】
(5)(4)記載の組成物を有効成分とする医薬。
【0017】
【発明の実施の形態】
以下、発明の実施の形態により本発明を詳説する。
本発明の増強剤は前記(a)の性質を有し、且つ(b)に記載の一般式(1)で表される構造を、ヘキソサミンとヘキスロン酸の繰り返し構造で形成される基本骨格1分子あたりに1以上有することを特徴とするグリコサミノグリカン誘導体又はその塩(以下「本発明誘導体」)を有効成分として含有する。
【0018】
本発明誘導体は、上記一般式(1)の構造部分をヘキソサミンとヘキスロン酸の繰り返し構造で形成される基本骨格を有するグリコサミノグリカンの1分子あたりに1個以上有するオリゴ糖又は多糖である。ここで、「ヘキソサミン」とは、ヘキソース(六炭糖)の2位炭素原子にアミノ基、アセチルアミノ基又はスルホアミノ基を有し、6位ヒドロキシル基が硫酸化されていることもある単糖を指称し、「ヘキスロン酸」とは、ヘキソースの6位炭素原子がカルボキシル基を形成し、2位又は3位ヒドロキシル基が硫酸化されていることもある単糖を指称する。
【0019】
尚、「グリコサミノグリカン」とは、上記ヘキソサミンとヘキスロン酸の繰り返し単位で形成される構造を基本骨格とするオリゴ糖又は多糖を指称する。本明細書において「硫酸基を有するグリコサミノグリカン」とは、特に上記グリコサミノグリカンのうち、硫酸基を有するヘキソサミン又はヘキスロン酸を構成単糖として1以上有するグリコサミノグリカンを指称する。
【0020】
本発明誘導体は重量平均分子量5,500〜25,000程度の、ヘパリン又はヘパラン硫酸などの硫酸基を有するグリコサミノグリカンを原料として用いて特開平11-310602に記載された方法に従って過ヨウ素酸酸化還元及びヘキスロン酸残基の2位硫酸基の脱硫酸化反応を行うことで調製することが可能である。
【0021】
本発明誘導体の重量平均分子量は試験法2に記載の分子量測定法による測定値が4,000〜20,000Daである。この重量平均分子量は実施例の試験法2に記載の分子量測定法による測定値から算出される値である。
【0022】
また、本発明誘導体は上記(c)に記載した二糖体組成を特性として有していることが好ましい。ここで、本発明誘導体における上記(a)の二糖体組成は、後述する実施例の試験法1に記載の二糖分析法による測定値から算出したものである。
【0023】
上記(c)に規定する二糖体組成は、試験法1に記載の二糖分析法により特定が可能な下記一般式(2)で示される不飽和二糖の総量[2-アセトアミド-2-デオキシ-4-O-(4-デオキシ-α-L-threo-hex-エノピラノシルウロン酸)-D-グルコース(以下ΔDiHS-0Sと記載する)、2-アセトアミド-2-デオキシ-4-O-(4-デオキシ-α-L-threo-hex-4-エノピラノシルウロン酸)-6-O-スルホ-D-グルコース(以下ΔDiHS-6Sと記載する)、2-デオキシ-2-スルファミノ-4-O-(4-デオキシ-α-L-threo-hex-4-エノピラノシルウロン酸)-D-グルコース(以下ΔDiHS-NSと記載する)、2-アセトアミド-2-デオキシ-4-O-(4-デオキシ-2-O-スルホ-α-L-threo-hex-4-エノピラノシルウロン酸)-D-グルコース(以下ΔDiHS-USと記載する)、2-デオキシ-2-スルファミノ-4-O-(4-デオキシ-α-L-threo-hex-4-エノピラノシルウロン酸)-6-O-スルホ-D-グルコース(以下ΔDiHS-di(6,N)S)、2-デオキシ-2-スルファミノ-4-O-(4-デオキシ-2-O-スルホ-α-L-threo-hex-4-エノピラノシルウロン酸)-D-グルコース(以下ΔDiHS-di(U,N)Sと記載する)、2-アセトアミド-2-スルファミノ-4-O-(4-デオキシ-2-O-スルホ-α-L-threo-hex-4-エノピラノシルウロン酸)-6-O-スルホ-D-グルコース(以下ΔDiHS-Di(U,6)Sと記載する)、2-デオキシ-2-スルファミノ-4-O-(4-デオキシ-2-O-スルホ-α-L-threo-hex-4-エノピラノシルウロン酸)-6-O-スルホ-D-グルコース(以下ΔDiHS-tri(U,6,N)Sと記載する)のモル%の合計]を100%として、上記(c)に記載した各不飽和二糖(ΔDiHS-tri(U,6,N)S、ΔDiHS-di(6,N)S、及びΔDiHS-NS)の割合を示したものであり、当該数値は酵素消化前のグリコサミノグリカン誘導体の硫酸基の位置及び数を反映するものである。
【0024】
【化3】
Figure 0004732604
【0025】
【表1】
Figure 0004732604
【0026】
また、上記略号の示す構造は以下の通り表記されることもある。ΔDiHS-0S:ΔHexA1→4GlcNAc、ΔDiHS-6S:ΔHexA1→4GlcNAc(6S)、ΔDiHS-NS:ΔHexA1→4GlcNS、ΔDiHS-US:ΔHexA(2S)1→4GlcNAc、ΔDiHS-di(6,N)S:ΔHexA1→4GlcNS(6S)、ΔDiHS-di(U,N)S:ΔHexA(2S)1→4GlcNS、ΔDiHS-di(U,6)S:ΔHexA(2S)1→4GlcNAc(6S)、ΔDiHS-tri(U,6,N)S:ΔHexA(2S)1→4GlcNS(6S)。
【0027】
上記式中、ΔHexAは不飽和ヘキスロン酸、GlcNAcはN-アセチルグルコサミン、GlcNSはN-硫酸化グルコサミン、カッコ内は硫酸基の結合位置を示す。
【0028】
上記二糖分析法において生成する一般式(2)の構造を有する不飽和二糖は、分析対象となる本発明誘導体の基本骨格を構成する下記一般式(4)又は(5)のヘキスロン酸残基と一般式(7)のヘキソサミン残基が結合した一般式(3)中の(A)−(B)の構造より生ずる。
また本発明誘導体は下記の一般式(3)で表すこともできる。
【0029】
【化4】
OH-[(A)−(B)]n-H (3)
但し、(A)は下記一般式(4)で示されるグルクロン酸残基、下記一般式(5)で示されるイズロン酸残基、又は下記一般式(6)で示される開裂されたヘキスロン酸残基であり、
【0030】
【化5】
Figure 0004732604
【0031】
(B)は下記一般式(7)で示されるヘキソサミン残基をそれぞれ示す。
【0032】
【化6】
Figure 0004732604
【0033】
但し、一般式(4)〜(7)においてR1及びR3はそれぞれ独立にH又はSO3Hであり、R2はそれぞれ独立にCOCH3又はSO3Hを示す。また一般式(7)のヘキソサミン残基においては、R1及びR2の少なくとも一方がSO3Hで示される。
【0034】
また一般式(3)においてnは4≦n≦50を充たす整数であり、(A)の少なくとも一つは一般式(6)の残基である。
【0035】
前記ヘキソサミンとしてはグルコサミン、ガラクトサミン、マンノサミンなどが例示されるが、D-グルコサミンが好ましい。ヘキソサミンはアミノ基又は6位ヒドロキシル基のうちの一方或いは両方が硫酸化されている、すなわちN-硫酸化及び/又は6-O-硫酸化されていることが好ましいが、硫酸基を有しないヘキソサミンであってもよい。ヘキスロン酸としてはD-グルクロン酸及びL-イズロン酸が挙げられる。ヘキスロン酸の一部はその2位と3位の炭素原子間で開裂し、その開裂部位は還元されており、開裂していないヘキスロン酸は、その2位のヒドロキシル基の一部又は全部が硫酸基で置換されていないことが好ましい。そして基本骨格中の繰り返し単位の中に上記開裂されたヘキスロン酸とヘキソサミンとが結合した前記一般式(1)で表される構造単位が本発明誘導体1分子あたり1以上存在する。
【0036】
本発明増強剤はヒトを含むほ乳類の医薬として使用することが可能である。本発明増強剤に含まれる上述の本発明誘導体は、ヘパリン骨格を有する多糖が抱える副作用、すなわち抗血液凝固活性が低減されたものである。本発明誘導体は、例えば最終濃度が3μg/mlで標準血漿に添加して後述の実施例中試験法3記載の方法に従ってAPTTを測定した際に、活性化トロンボプラスチン時間(APTT)が70秒未満、より好ましくは60秒未満、もっとも好ましくは50秒以下である。尚、上記標準血漿とは健常ラット10匹の下大動脈より3.2クエン酸1/10容量で血液を採取し、その血液を1,000×gで10分間遠心分離して得られた血漿を同量ずつ混合したものと定義される。
【0037】
本発明誘導体は増殖因子の活性を増強する作用を有する。従って、本発明増強剤によって活性が増強される増殖因子は本発明誘導体の共存下、好ましくは生理的条件下においてその活性が増強される増殖因子であればいずれであってもよい。そのような増殖因子としては例えばヒト男性ホルモン誘導性増殖因子(AIGF)、トランスフォーミング成長因子(TGF)、インスリン様成長因子(IGF)、上皮細胞成長因子(EGF)、毛様体神経成長因子(CNTF)、FGF(酸性繊維芽細胞増殖因子(aFGF)、塩基性繊維芽細胞増殖因子(bFGF))、血小板由来増殖因子(PDGF)、脳由来成長因子(BNDF)、NGF、肝細胞増殖因子(HGF)、肝実質細胞増殖因子、血管内皮細胞成長因子(VEGF)、血管内皮細胞増殖因子(ECGF)、幹細胞増殖因子(CSF)、ミッドカイン(MK)、インターフェロンγ(IFN-γ)、角質細胞成長因子(KGF)、CXCケモカイン、インターロイキン8(IL-8)、ビトロネクチン(VN)、ヘパリン結合性脳細胞分裂誘発因子(HBBM)、及びヘパリン結合性神経突起伸長促進因子(HBNF)等が例示されるが、その中でも特にbFGF及びNGFが好ましい。
【0038】
【実施例】
以下、実施例により本発明をより具体的に説明する。
試験法1
[酵素による二糖分析]
本発明誘導体及び標準ヘパリンの硫酸基の位置の分析は、次のようにして行った。すなわち、これらの被検物質を酵素消化し、生成した不飽和二糖(前記一般式(2))を高速液体クロマトグラフィー(HPLC)で分析した(生化学実験講座3、糖質II(東京化学同人刊、1991)p.49-62に記載の「2・8グリコサミノグリカン分解酵素とHPLCを組み合わせた構造解析」参照)。各不飽和二糖のピーク面積を計算し、全面積に対するピーク面積を百分率で表示した。
【0039】
(1)酵素による消化
生化学実験講座3、糖質II p.49-62に記載の方法により消化酵素で分解した。標準ヘパリン及び本発明誘導体各1.0mgを2mM酢酸カルシウムを含む20mM酢酸ナトリウム(pH7.0)220μlに溶解して、20mUのヘパリナーゼ、20mUのヘパリチナーゼI及びIIを加えて、37℃で2時間反応させた。
【0040】
(2)HPLCによる分析
標準ヘパリン又は本発明誘導体の酵素による消化後の溶液50μlを、HPLC(理医化、モデル852型)を用いて分析した。イオン交換カラム(Dionex社、CarboPak PA-1 φ4.0mm×250mm)を使用し、232nmでの吸光度を測定した。不飽和二糖スタンダード(生化学工業株式会社製)を基準とし(Yamada, et al., J. Biol. Chem., 270, 8696-8706(1995))、流速1ml/分で、塩化リチウムを用いたグラジエント系(50mM→2.5mM)を用いる方法に準拠した(KARIYA、et al.,Comp. Biochem. Physiol. 103B, 473-479, (1992))。
【0041】
試験法2
[分子量測定]
標準ヘパリン又は本発明誘導体の1%溶液5μlをHPLCによるゲル濾過で分析した。カラムはTSKgel-(G4000+G3000+G2500)PWXL(東ソー、φ7.8mm×30cm)を用い、0.2N塩化ナトリウムで、40℃、0.6ml/分の流速で展開した。検出には示差屈折計(島津製作所、AID-2A)を用いた。表1における重量平均分子量はヘパリンの分子量標準品を対照として求めた(Kaneda et al., Biochem. Biophys. Res. Comm., 220, 108-112(1996))。
【0042】
試験法3
[APTT及びTTの測定]
APTTの測定のため、10匹のラットの下大動脈より3.2%クエン酸1/10容量で採取し、血液を1,000×g、10分間遠心分離して得た血漿を混合した標準血漿100μlと様々な濃度の被検物質100μlとを測定用カップに入れ、37℃で1分間保温した。その後、予め37℃に保温しておいたアクチン(商品名:ウェルファイド株式会社)100μlを添加し、更に2分間保温した。次いで、37℃に保温しておいた0.02M CaCl2溶液100μlを添加し、この時より凝固が起こるまでの時間を血液凝固自動測定装置(KC-10A:アメルング社製)で測定した。また、APTTが100秒となる本発明誘導体の濃度を算出し、標準ヘパリンの前記濃度を本発明誘導体の前記濃度を基準として百分率で算出し、この数値(%)を本発明誘導体のAPTT活性とした。
【0043】
TTの測定のため、上記標準血漿100μlと様々な濃度の被検物質100μlとを測定法カップに入れ、37℃で1分間保温した。その後、37℃に保温したトロンビン(10U/ml)100μlを添加し、この時より凝固が起こるまでの時間を上記血液凝固自動測定装置で測定した。本発明誘導体及び標準ヘパリンのTTが100秒となる標準血漿中の最終濃度を求め、標準ヘパリンの前記濃度を本発明誘導体の前記濃度を基準として百分率で算出し、この数値(%)を本発明誘導体のTT活性とした。
【0044】
[本明細書における標準ヘパリン]
以下に示す物性のヘパリンを標準ヘパリンとした。
(1)上記試験法1に記載の二糖分析法による測定値から算出した標準ヘパリンの二糖体組成は表1に記載の通り、ΔDiHS-0S:4.1%、ΔDiHS-NS:3.4%、ΔDiHS-6S:3.7%、ΔDiHS-US:2.6%、ΔDiHS-di(6,N)S:12.7%、ΔDiHS-di(U,N)S:7.6%、ΔDiHS-di(U,6)S:1.7%、ΔDiHS-tri(U,6,N)S:64.2%である。
(2)抗血液凝固活性が160IU/mgである。
(3)重量平均分子量が11,000〜14,000Daである。
【0045】
調製例
1:標準ヘパリンの過ヨウ素酸酸化・還元によるヘキスロン酸の部分開裂処理
標準ヘパリン(重量平均分子量:13,700Da、Syntex社製Lot No.40210910:ヘパリンナトリウム塩)1.3gを、過ヨウ素酸ナトリウムの存在下で酸化した。すなわちこの酸化反応は、50mlの0.05Mの過ヨウ素酸ナトリウム、50mMの酢酸ナトリウムを含んだpH5.0の溶液中で、標準ヘパリンを4℃、3日間酸化処理して行った。酸化処理後、過剰の過ヨウ素酸を最終濃度250mMのグリセリンを加えることで還元して分解し、蒸留水に対して2日間透析し、その後凍結乾燥することにより1.2gの過ヨウ素酸酸化ヘパリンを得た。この過ヨウ素酸酸化ヘパリンの生成時に生じたアルデヒド基を、30mlの0.2M水素化ホウ素ナトリウム、0.25M炭酸水素ナトリウム及び上記酸化ヘパリン1.2gを含む溶液(pH9.0)を4℃、3時間反応させることでこの過ヨウ素酸酸化ヘパリンのアルデヒド基を還元した。過剰の水素化ホウ素ナトリウムは、氷酢酸で反応液のpHを5.0に調節し、30分間室温で放置することで分解し、再び5Mの水酸化ナトリウムでpH9.0に調節し、蒸留水に対して2日間透析し、その後凍結乾燥することにより、1.1gの過ヨウ素酸酸化還元ヘパリンのナトリウム塩を得た。
【0046】
2:過ヨウ素酸酸化還元ヘパリンの2-O-脱硫酸化
上記1で得た1.1gの過ヨウ素酸酸化還元ヘパリンのナトリウム塩を、20mlの0.05Nの水酸化ナトリウム水溶液に溶解し、室温にて20分間放置した。この溶液を凍結乾燥して選択的に2位の硫酸基を脱硫酸化した。このようにして得られた凍結乾燥パウダーを10mlの1N水酸化ナトリウム水溶液で溶解し、20%酢酸溶液でpH9.0に調節し、30分間室温に放置した。その後、蒸留水に対して2日間透析し、再び凍結乾燥して、脱硫酸化された過ヨウ素酸酸化還元ヘパリン(PO2DSH:本発明誘導体)のナトリウム塩0.8gを得た。
上記試験法1に従い、酵素消化による二糖分析を行った結果を表1に示した。
【0047】
【表2】
表1
Figure 0004732604
【0048】
また上記試験法2に従い、HPLCによりPO2DSHの重量平均分子量を測定し、その結果を表2に示した。
【0049】
【表3】
表2
Figure 0004732604
【0050】
実施例1
神経成長因子(NGF)活性の増強活性測定
被検物質としては調製例で得られたPO2DSH及び標準ヘパリン(対照)を用いた。神経細胞株PC12D細胞(愛知心身障害者コロニー 大平敦彦博士より恵与)2×105個を10%牛胎児血清を含む2mlのダルベッコのMEM培養液(以下単に「DMEM」と略記する)中で24時間、CO2インキュベータ(0.5%(CO2/Air))を使用して培養した。
【0051】
培養にはあらかじめ0.1mg/mlのポリリジン水溶液でコーティーング処理した35mmコーニングディッシュを用いた。使用前にディッシュを水とDMEMで各々2回ずつ洗浄した。洗浄後、ディッシュを無血清DMEM培地(1,10,50ng/mlでNGF、0.01, 0.1, 1.0, 10, 100μg/mlで被検物質を含む)に置換して更に72時間培養した。その後、1mlの2%グルタルアルデヒドを含むリン酸緩衝生理的食塩水(以下「PBS」とも記載する)に置換して、室温で2時間ディッシュ上で細胞を固定した。固定後、1mlの1%クマシーブリリアントブルー/50%メタノール・PBSに置換して、2時間ディッシュ上の細胞を染色した。染色後、2mlの5%メタノール/PBSに置換して、30分間脱色した。脱色液を廃棄した後に、ディッシュを緩やかな流水で更に脱色した。ディッシュを風乾し、神経突起伸長の様子を観察した。
【0052】
NGF無添加、1ng/ml、10ng/ml、及び50ng/mlのNGFを添加して培養した際の神経突起伸長の程度と比較して、被検物質と1ng/mlのNGFを添加した際の神経突起伸長活性の活性化の程度を観察した(表3)。また、被検物質を添加しない群を陰性対照群とした。その結果、PO2DSHを使用した場合は1ng/mlのNGF濃度であるにもかかわらず、50ng/mlのNGFを添加した際と同程度の神経突起伸長が起こっていることが判明し、このことから、PO2DSHはNGFの活性を大幅に増強する優れた活性を有していることが明かとなった。
【0053】
【表4】
表3
Figure 0004732604
++:50ng/mlのNGFを添加した場合と同程度の活性
+:10ng/mlのNGFを添加した場合と同程度の活性
±:陰性対照よりは活性を有するが、10ng/mlのNGFを添加した場合には及ばない程度の活性
−:陰性対照と同程度の活性
【0054】
実施例2
塩基性線維芽細胞増殖因子(bFGF)活性の増強活性測定
実施例1と同じ被検物質を用いた。サブコンフルエントの線維芽細胞株A31細胞(BALB/c3T3;clone A31)を0.25%トリプシン/0.05%EDTA(エチレンジアミン四酢酸)水溶液で剥がし、10%牛胎児血清を含むRPMI1640(IWAKI社製)培地で遠心洗浄した後、0.2%牛胎児血清を含むBasal ME/S-MEM(GIBCO社製)で1×105個/mlに調整し、96穴マルチプレートに100μl/wellずつ播種した。Basal ME/S-MEM培地で1.2ng/ml、4ng/ml、12ng/ml、40ng/ml又は120ng/mlに調整したbFGFを50μl/wellずつ添加した。各濃度のbFGFを添加したwellにつき、Basal ME/S-MEM培地で調製した被検物質を4μg/ml、40μg/ml又は400μg/mlに調整したBasal ME/S-MEM培地を50μl/wellで添加した(最終濃度 bFGF:0.3ng/ml、1ng/ml、3ng/ml、10ng/ml、30ng/ml 被検物質:1μg/ml、10μg/ml、100μg/ml)。この96穴マルチプレートを37℃で3日間、5%CO2インキュベータ内で培養した。培養後、Cell Counting 溶液(DOJINDO社製)を20μl添加して更に3時間培養後、450nmの吸光度を測定した。
【0055】
その結果、被検物質を添加しなかった対照群(陰性対照群)はbFGFの濃度に依存して細胞増殖活性を示した。一方、被検物質としてPO2DSHを使用した群ではbFGFの活性を1.2〜1.5倍程度促進することが観察された。この活性は標準ヘパリンを添加した陽性対照群と同等であった。
【0056】
【発明の効果】
本発明により、抗血液凝固活性が低く、優れた増殖因子活性の増強剤が提供され、増殖因子による副作用の低減を図ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a growth factor activity enhancer comprising a derivative of glycosaminoglycan as an active ingredient, and a composition comprising the enhancer and a growth factor.
[0002]
[Prior art]
Heparin, a kind of glycosaminoglycan having a sulfate group with a repeating structure of uronic acid residues and glucosamine residues as a basic skeleton, is known to have affinity for various growth factors (J. Biol Chem., 268 (32), 23898-23905 (1993), etc.).
[0003]
On the other hand, heparin is known to bind to antithrombin III in blood and inhibit blood coagulation. This activity is a cause of serious side effects of drugs containing heparin, except when heparin is used as an anticoagulant. It becomes. Accordingly, various attempts have been made to reduce the above-mentioned side effects in order to utilize, for example, the growth factor activity enhancing effect of heparin (for example, JP-T 6-506685, JP-T 8-511764, etc.).
[0004]
Various glycosaminoglycan derivatives with modified heparin and reduced anticoagulant activity have been obtained so far. For example, periodate redox 2-desulfated heparin (PO2DSH) described in JP-A-11-310602 is one of such derivatives and is known to have neurite outgrowth activity on nerve cells. It has been. However, it has not been known that the substance enhances the activity of growth factors.
[0005]
On the other hand, administration of nerve growth factor (NGF) during nerve damage promotes nerve regeneration, but NGF is known to cause hyperalgesia (Ayumi of Medicine, 195 (9), 585-590 ( 2000)).
[0006]
[Problems to be solved by the invention]
There has been an increasing demand for the development of means for reducing side effects by enhancing the activity of growth factors, such as reducing the dose of NGF in the treatment of nerve damage and reducing side effects such as pain induction as much as possible.
[0007]
[Means for Solving the Problems]
In view of the above problems, the present inventors have found that PO2DSH, which is a glycosaminoglycan derivative, enhances the activity of NGF, and further, the glycosaminoglycan derivative has other growth factors, particularly fibroblast growth factor (FGF). In the same manner, the present invention has been found to have an action of enhancing the activity.
[0008]
That is, the gist of the present invention is as follows.
(1) Glycos having the following characteristics (a) and having a basic skeleton formed by a repeating structure of hexosamine and hexuronic acid as a structural part represented by the general formula (1) described in (b) A growth factor activity enhancer comprising a glycosaminoglycan derivative or a salt thereof as an active ingredient, wherein the glycosaminoglycan derivative or a salt thereof has one or more per molecule of saminoglycan.
[0009]
(A) The weight average molecular weight is 4,000 to 20,000 Da (Dalton).
[0010]
(B) General formula (1)
[0011]
[Chemical 2]
Figure 0004732604
[0012]
(However, R 1 is H or SO 3 H, and R 2 is COCH 3 or SO 3 H.)
[0013]
(2) The growth factor activity enhancer according to (1), wherein the glycosaminoglycan derivative or a salt thereof further has the following property (c):
(C) 2-deoxy-2-sulfamino-4-O- (4-deoxy-2) in a disaccharide composition obtained by disaccharide analysis that combines degradation by glycosaminoglycan degrading enzyme and analysis by high-performance liquid chromatography -O-sulfo-α-L-Threo-hex-4-enopyranosyluronic acid) -6-O-sulfo-D-glucose has a molarity of 0-10, 2-deoxy-2-sulfamino-4-O -(4-deoxy-α-L-threo-hex-4-enopyranosyluronic acid) -6-O-sulfo-D-glucose has a molarity of 95-70 and 2-deoxy-2-sulfamino- The mole of 4-O- (4-deoxy-α-L-threo-hex-4-enopyranosyluronic acid) -D-glucose is 5-20.
[0014]
(3) A medicament comprising the growth factor activity enhancer according to (1) or (2) as an active ingredient.
[0015]
(4) A composition comprising the enhancer according to (1) or (2) and a growth factor.
[0016]
(5) A medicament comprising the composition according to (4) as an active ingredient.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail by embodiments of the invention.
The enhancer of the present invention has the above-mentioned property (a), and the structure represented by the general formula (1) described in (b) is a molecule of a basic skeleton formed by a repeating structure of hexosamine and hexuronic acid. A glycosaminoglycan derivative or a salt thereof (hereinafter referred to as “the derivative of the present invention”) characterized by having one or more per unit is contained as an active ingredient.
[0018]
The derivative of the present invention is an oligosaccharide or polysaccharide having at least one glycosaminoglycan having a basic skeleton formed of a repeating structure of hexosamine and hexuronic acid as a structural part of the general formula (1). Here, “hexosamine” means a monosaccharide having an amino group, an acetylamino group or a sulfoamino group at the 2-position carbon atom of hexose (hexose sugar), and the 6-position hydroxyl group may be sulfated. The term “hexuronic acid” refers to a monosaccharide in which the 6-position carbon atom of hexose forms a carboxyl group and the 2- or 3-position hydroxyl group may be sulfated.
[0019]
“Glycosaminoglycan” refers to an oligosaccharide or polysaccharide having a basic skeleton with a structure formed by repeating units of hexosamine and hexuronic acid. In the present specification, the “glycosaminoglycan having a sulfate group” refers to a glycosaminoglycan having at least one hexosamine or hexuronic acid having a sulfate group as a constituent monosaccharide among the above glycosaminoglycans.
[0020]
The derivative of the present invention uses periodate redox and hexuron according to the method described in JP-A-11-310602 using a glycosaminoglycan having a weight average molecular weight of about 5,500 to 25,000 and having a sulfate group such as heparin or heparan sulfate as a raw material. It can be prepared by desulfating the 2-position sulfate group of the acid residue.
[0021]
The weight average molecular weight of the derivative of the present invention is 4,000 to 20,000 Da measured by the molecular weight measuring method described in Test Method 2. This weight average molecular weight is a value calculated from the measured value by the molecular weight measuring method described in Test Method 2 of the Examples.
[0022]
Further, the derivative of the present invention preferably has the disaccharide composition described in (c) above as a characteristic. Here, the disaccharide composition of the above (a) in the derivative of the present invention is calculated from the measured value by the disaccharide analysis method described in Test Method 1 of Examples described later.
[0023]
The disaccharide composition defined in (c) above is the total amount of unsaturated disaccharide represented by the following general formula (2) that can be identified by the disaccharide analysis method described in Test Method 1 [2-acetamido-2- Deoxy-4-O- (4-deoxy-α-L-threo-hex-enopyranosyluronic acid) -D-glucose (hereinafter referred to as ΔDiHS-0S), 2-acetamido-2-deoxy-4- O- (4-deoxy-α-L-threo-hex-4-enopyranosyluronic acid) -6-O-sulfo-D-glucose (hereinafter referred to as ΔDiHS-6S), 2-deoxy-2- Sulfamino-4-O- (4-deoxy-α-L-threo-hex-4-enopyranosyluronic acid) -D-glucose (hereinafter referred to as ΔDiHS-NS), 2-acetamido-2-deoxy- 4-O- (4-deoxy-2-O-sulfo-α-L-threo-hex-4-enopyranosyluronic acid) -D-glucose (hereinafter referred to as ΔDiHS-US), 2-deoxy- 2-sulfamino-4-O- (4-deoxy-α-L-threo-hex-4-enopyranosyluronic acid) -6-O-sulfo-D-gluco (Hereinafter referred to as ΔDiHS-di (6, N) S), 2-deoxy-2-sulfamino-4-O- (4-deoxy-2-O-sulfo-α-L-threo-hex-4-enopyra Nosyluronic acid) -D-glucose (hereinafter referred to as ΔDiHS-di (U, N) S), 2-acetamido-2-sulfamino-4-O- (4-deoxy-2-O-sulfo-α- L-threo-hex-4-enopyranosyluronic acid) -6-O-sulfo-D-glucose (hereinafter referred to as ΔDiHS-Di (U, 6) S), 2-deoxy-2-sulfamino-4 -O- (4-deoxy-2-O-sulfo-α-L-threo-hex-4-enopyranosyluronic acid) -6-O-sulfo-D-glucose (hereinafter referred to as ΔDiHS-tri (U, 6 , N) S)) as 100%, each unsaturated disaccharide (ΔDiHS-tri (U, 6, N) S, ΔDiHS-di (6, N) S and the ratio of ΔDiHS-NS), and this value reflects the position and number of sulfate groups of the glycosaminoglycan derivative before enzymatic digestion.
[0024]
[Chemical 3]
Figure 0004732604
[0025]
[Table 1]
Figure 0004732604
[0026]
The structure indicated by the abbreviation may be expressed as follows. ΔDiHS-0S: ΔHexA1 → 4GlcNAc, ΔDiHS-6S: ΔHexA1 → 4GlcNAc (6S), ΔDiHS-NS: ΔHexA1 → 4GlcNS, ΔDiHS-US: ΔHexA (2S) 1 → 4GlcNAc, ΔDiHS-di (6, N) S: ΔHexA1 → 4GlcNS (6S), ΔDiHS-di (U, N) S: ΔHexA (2S) 1 → 4GlcNS, ΔDiHS-di (U, 6) S: ΔHexA (2S) 1 → 4GlcNAc (6S), ΔDiHS-tri (U , 6, N) S: ΔHexA (2S) 1 → 4GlcNS (6S).
[0027]
In the above formula, ΔHexA is unsaturated hexuronic acid, GlcNAc is N-acetylglucosamine, GlcNS is N-sulfated glucosamine, and the parenthesis indicates the binding position of the sulfate group.
[0028]
The unsaturated disaccharide having the structure of the general formula (2) generated in the above disaccharide analysis method is a residue of hexuronic acid of the following general formula (4) or (5) constituting the basic skeleton of the derivative of the present invention to be analyzed It arises from the structure of (A)-(B) in the general formula (3) in which the hexosamine residue of the general formula (7) is bonded to the group.
The derivative of the present invention can also be represented by the following general formula (3).
[0029]
[Formula 4]
OH-[(A)-(B)] n -H (3)
However, (A) is a glucuronic acid residue represented by the following general formula (4), an iduronic acid residue represented by the following general formula (5), or a cleaved hexuronic acid residue represented by the following general formula (6). Group,
[0030]
[Chemical formula 5]
Figure 0004732604
[0031]
(B) represents a hexosamine residue represented by the following general formula (7).
[0032]
[Chemical 6]
Figure 0004732604
[0033]
However, in General Formulas (4) to (7), R 1 and R 3 are each independently H or SO 3 H, and R 2 is each independently COCH 3 or SO 3 H. In the hexosamine residue of the general formula (7), at least one of R 1 and R 2 is represented by SO 3 H.
[0034]
In general formula (3), n is an integer satisfying 4 ≦ n ≦ 50, and at least one of (A) is a residue of general formula (6).
[0035]
Examples of the hexosamine include glucosamine, galactosamine, mannosamine and the like, and D-glucosamine is preferable. Hexosamine preferably has one or both of amino group and 6-position hydroxyl group sulfated, that is, N-sulfated and / or 6-O-sulfated, but hexosamine having no sulfate group. It may be. Hexuronic acid includes D-glucuronic acid and L-iduronic acid. A part of hexuronic acid is cleaved between the 2nd and 3rd carbon atoms, the cleavage site is reduced, and hexuronic acid that has not been cleaved is partly or entirely part of the hydroxyl group at the 2nd position. It is preferably not substituted with a group. One or more structural units represented by the general formula (1) in which the cleaved hexuronic acid and hexosamine are bonded to each other in the repeating unit in the basic skeleton are present per molecule of the derivative of the present invention.
[0036]
The enhancer of the present invention can be used as a medicine for mammals including humans. The above-mentioned derivative of the present invention contained in the enhancer of the present invention is one in which the side effect of the polysaccharide having a heparin skeleton, that is, the anticoagulant activity is reduced. The derivative of the present invention has an activated thromboplastin time (APTT) of less than 70 seconds when APTT is measured according to the method described in Test Method 3 in the Examples below and added to standard plasma at a final concentration of 3 μg / ml, for example. More preferably, it is less than 60 seconds, and most preferably 50 seconds or less. In addition, the above standard plasma is a blood sample collected from the lower aorta of 10 healthy rats at 1/10 volume of 3.2 citrate, and the blood obtained by centrifuging the blood at 1,000 xg for 10 minutes is mixed in equal amounts. Is defined as
[0037]
The derivative of the present invention has an action of enhancing the activity of a growth factor. Therefore, the growth factor whose activity is enhanced by the enhancer of the present invention may be any growth factor as long as its activity is enhanced in the presence of the derivative of the present invention, preferably under physiological conditions. Examples of such growth factors include human androgen-induced growth factor (AIGF), transforming growth factor (TGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), ciliary nerve growth factor ( CNTF), FGF (acidic fibroblast growth factor (aFGF), basic fibroblast growth factor (bFGF)), platelet derived growth factor (PDGF), brain derived growth factor (BNDF), NGF, hepatocyte growth factor ( HGF), hepatocyte growth factor, vascular endothelial growth factor (VEGF), vascular endothelial growth factor (ECGF), stem cell growth factor (CSF), midkine (MK), interferon gamma (IFN-γ), corneocytes Examples include growth factor (KGF), CXC chemokine, interleukin 8 (IL-8), vitronectin (VN), heparin-binding brain cell mitogenic factor (HBBM), and heparin-binding neurite outgrowth promoting factor (HBNF) But In particular bFGF and NGF are preferred among.
[0038]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
Test method 1
[Disaccharide analysis by enzyme]
Analysis of the position of the sulfate group of the derivative of the present invention and standard heparin was performed as follows. That is, these test substances were enzymatically digested, and the resulting unsaturated disaccharide (the general formula (2)) was analyzed by high performance liquid chromatography (HPLC) (Biochemical Experiment Course 3, Carbohydrate II (Tokyo Chemical) (See "Structural analysis combining 2.8 glycosaminoglycan degrading enzyme and HPLC" described in the same publication, 1991) p.49-62). The peak area of each unsaturated disaccharide was calculated, and the peak area relative to the total area was expressed as a percentage.
[0039]
(1) Degradation with digestive enzymes according to the method described in Enzymatic Digestion Biochemistry Experiment Course 3, Carbohydrate II p.49-62. Standard heparin and 1.0 mg each of the derivative of the present invention are dissolved in 220 μl of 20 mM sodium acetate (pH 7.0) containing 2 mM calcium acetate, 20 mU heparinase, 20 mU heparitinase I and II are added, and the mixture is reacted at 37 ° C. for 2 hours. It was.
[0040]
(2) Analysis by HPLC 50 μl of the solution of the standard heparin or the derivative of the present invention after digestion with an enzyme was analyzed using HPLC (Rika Kagaku, model 852). Absorbance at 232 nm was measured using an ion exchange column (Dionex, CarboPak PA-1 φ4.0 mm × 250 mm). Based on unsaturated disaccharide standard (manufactured by Seikagaku Corporation) (Yamada, et al., J. Biol. Chem., 270, 8696-8706 (1995)), using lithium chloride at a flow rate of 1 ml / min (KARIYA, et al., Comp. Biochem. Physiol. 103B, 473-479, (1992)).
[0041]
Test method 2
[Molecular weight measurement]
5 μl of 1% solution of standard heparin or a derivative of the present invention was analyzed by gel filtration by HPLC. The column was TSKgel- (G4000 + G3000 + G2500) PW XL (Tosoh, φ7.8 mm × 30 cm), and developed with 0.2N sodium chloride at 40 ° C. and a flow rate of 0.6 ml / min. A differential refractometer (Shimadzu Corporation, AID-2A) was used for detection. The weight average molecular weight in Table 1 was determined using a heparin molecular weight standard as a control (Kaneda et al., Biochem. Biophys. Res. Comm., 220, 108-112 (1996)).
[0042]
Test method 3
[Measurement of APTT and TT]
For the measurement of APTT, 10 rats were collected from the lower aorta at a volume of 1/10 volume of 3.2% citrate, and 100 μl of standard plasma mixed with plasma obtained by centrifuging blood at 1,000 × g for 10 minutes and various A test substance having a concentration of 100 μl was placed in a measuring cup and incubated at 37 ° C. for 1 minute. Thereafter, 100 μl of actin (trade name: Wellfide Co., Ltd.) that had been kept warm at 37 ° C. in advance was added, and the temperature was further kept for 2 minutes. Next, 100 μl of a 0.02M CaCl 2 solution kept at 37 ° C. was added, and the time until coagulation occurred from this time was measured with a blood coagulation automatic measuring device (KC-10A: manufactured by Amelung). Also, the concentration of the derivative of the present invention at which APTT is 100 seconds is calculated, the concentration of standard heparin is calculated as a percentage based on the concentration of the derivative of the present invention, and this value (%) is calculated as the APTT activity of the derivative of the present invention did.
[0043]
For the measurement of TT, 100 μl of the above standard plasma and 100 μl of test substances of various concentrations were placed in a measuring method cup and incubated at 37 ° C. for 1 minute. Thereafter, 100 μl of thrombin (10 U / ml) kept at 37 ° C. was added, and the time from this time until clotting occurred was measured with the blood coagulation automatic measuring device. The final concentration in the standard plasma at which the TT of the derivative of the present invention and standard heparin is 100 seconds is determined, and the concentration of the standard heparin is calculated as a percentage based on the concentration of the derivative of the present invention. The TT activity of the derivative was defined.
[0044]
[Standard heparin in this specification]
Heparin having the following physical properties was used as standard heparin.
(1) The disaccharide composition of standard heparin calculated from the measured value by the disaccharide analysis method described in Test Method 1 is as shown in Table 1. ΔDiHS-0S: 4.1%, ΔDiHS-NS: 3.4%, ΔDiHS -6S: 3.7%, ΔDiHS-US: 2.6%, ΔDiHS-di (6, N) S: 12.7%, ΔDiHS-di (U, N) S: 7.6%, ΔDiHS-di (U, 6) S: 1.7 %, ΔDiHS-tri (U, 6, N) S: 64.2%.
(2) The anticoagulant activity is 160 IU / mg.
(3) The weight average molecular weight is 11,000-14,000 Da.
[0045]
Preparation Example 1: Partial cleavage treatment of hexuronic acid by periodate oxidation / reduction of standard heparin 1.3 g of standard heparin (weight average molecular weight: 13,700 Da, Syntex Lot No. 40210910: heparin sodium salt), sodium periodate Oxidized in the presence of That is, this oxidation reaction was performed by oxidizing standard heparin at 4 ° C. for 3 days in a solution of pH 5.0 containing 50 ml of 0.05 M sodium periodate and 50 mM sodium acetate. After oxidation treatment, excess periodate is reduced by adding glycerin at a final concentration of 250 mM to decompose, dialyzed against distilled water for 2 days, and then freeze-dried to obtain 1.2 g of periodate-oxidized heparin. Obtained. The periodate oxidation of heparin aldehyde groups generated at the time of generation of, 0.2 M sodium borohydride 30 ml, the solution (pH 9.0) 4 ° C. containing 0.25M sodium hydrogen carbonate and the upper Symbol oxide heparin 1.2 g, 3 The aldehyde group of this periodate oxidized heparin was reduced by reacting for a period of time. Excess sodium borohydride is decomposed by adjusting the pH of the reaction solution to 5.0 with glacial acetic acid, and leaving it at room temperature for 30 minutes, and then adjusted again to pH 9.0 with 5M sodium hydroxide, with respect to distilled water. And dialyzed for 2 days, and then freeze-dried to obtain 1.1 g of periodate redox heparin sodium salt.
[0046]
2: 2-O-desulfation of periodate redox heparin 1.1 g of periodate redox heparin sodium salt obtained in 1 above was dissolved in 20 ml of 0.05N aqueous sodium hydroxide solution at room temperature. Left for 20 minutes. This solution was freeze-dried to selectively desulfate the sulfate group at the 2-position. The lyophilized powder thus obtained was dissolved in 10 ml of a 1N aqueous sodium hydroxide solution, adjusted to pH 9.0 with a 20% acetic acid solution, and left at room temperature for 30 minutes. Thereafter, the mixture was dialyzed against distilled water for 2 days and freeze-dried again to obtain 0.8 g of desulfated periodate redox heparin (PO2DSH: derivative of the present invention).
The results of disaccharide analysis by enzyme digestion according to Test Method 1 are shown in Table 1.
[0047]
[Table 2]
Table 1
Figure 0004732604
[0048]
Further, according to the above test method 2, the weight average molecular weight of PO2DSH was measured by HPLC, and the results are shown in Table 2.
[0049]
[Table 3]
Table 2
Figure 0004732604
[0050]
Example 1
Nerve growth factor (NGF) activity enhancement activity measurement As test substances, PO2DSH obtained in Preparation Examples and standard heparin (control) were used. Nerve cell line PC12D cells (benefit from Dr. Akihiko Ohira), 2 x 10 5 cells in 2 ml Dulbecco's MEM broth containing 10% fetal bovine serum (hereinafter simply referred to as “DMEM”) The cells were cultured for 24 hours using a CO 2 incubator (0.5% (CO 2 / Air)).
[0051]
For the culture, a 35 mm coning dish previously coated with a 0.1 mg / ml polylysine aqueous solution was used. Prior to use, the dishes were washed twice with water and DMEM each. After washing, the dish was replaced with serum-free DMEM medium (NGF at 1,10, 50 ng / ml, containing test substance at 0.01, 0.1, 1.0, 10, 100 μg / ml) and further cultured for 72 hours. Thereafter, the solution was replaced with 1 ml of phosphate buffered saline containing 2% glutaraldehyde (hereinafter also referred to as “PBS”), and the cells were fixed on the dish for 2 hours at room temperature. After fixation, the cells were replaced with 1 ml of 1% Coomassie Brilliant Blue / 50% methanol / PBS, and the cells on the dish were stained for 2 hours. After staining, it was replaced with 2 ml of 5% methanol / PBS and decolorized for 30 minutes. After discarding the decolorizing solution, the dish was further decolorized with gentle running water. The dish was air-dried and observed for neurite outgrowth.
[0052]
Compared to the extent of neurite outgrowth when NGF was not added, cultured with 1 ng / ml, 10 ng / ml, and 50 ng / ml NGF, the test substance and 1 ng / ml NGF were added. The degree of activation of neurite outgrowth activity was observed (Table 3). Further, a group to which no test substance was added was defined as a negative control group. As a result, it was found that when PO2DSH was used, neurite outgrowth occurred at the same level as when 50 ng / ml NGF was added, even though the NGF concentration was 1 ng / ml. It was revealed that PO2DSH has an excellent activity that greatly enhances the activity of NGF.
[0053]
[Table 4]
Table 3
Figure 0004732604
++: Activity similar to that obtained when 50 ng / ml NGF was added +: Activity equivalent to that obtained when 10 ng / ml NGF was added ±: More active than negative control, but 10 ng / ml NGF added An activity that is not as good as the case-: an activity comparable to the negative control
Example 2
Measurement of enhancing activity of basic fibroblast growth factor (bFGF) activity The same test substance as in Example 1 was used. Subconfluent fibroblast cell line A31 cells (BALB / c3T3; clone A31) are peeled off with 0.25% trypsin / 0.05% EDTA (ethylenediaminetetraacetic acid) aqueous solution and centrifuged in RPMI1640 (IWAKI) medium containing 10% fetal calf serum. After washing, the concentration was adjusted to 1 × 10 5 cells / ml with Basal ME / S-MEM (GIBCO) containing 0.2% fetal calf serum, and seeded at 100 μl / well in a 96-well multiplate. 50 μl / well of bFGF adjusted to 1.2 ng / ml, 4 ng / ml, 12 ng / ml, 40 ng / ml or 120 ng / ml in Basal ME / S-MEM medium was added. For each well to which bFGF of each concentration was added, the test substance prepared in Basal ME / S-MEM medium was adjusted to 4 μg / ml, 40 μg / ml or 400 μg / ml of Basal ME / S-MEM medium at 50 μl / well. (Final concentrations bFGF: 0.3 ng / ml, 1 ng / ml, 3 ng / ml, 10 ng / ml, 30 ng / ml Test substances: 1 μg / ml, 10 μg / ml, 100 μg / ml). The 96-well multiplate was cultured at 37 ° C. for 3 days in a 5% CO 2 incubator. After culturing, 20 μl of Cell Counting solution (manufactured by DOJINDO) was added and further cultured for 3 hours, and the absorbance at 450 nm was measured.
[0055]
As a result, the control group to which the test substance was not added (negative control group) showed cell proliferation activity depending on the concentration of bFGF. On the other hand, in the group using PO2DSH as the test substance, it was observed that bFGF activity was promoted by about 1.2 to 1.5 times. This activity was equivalent to the positive control group to which standard heparin was added.
[0056]
【The invention's effect】
According to the present invention, an anti-blood coagulation activity is low and an excellent growth factor activity enhancer is provided, and side effects due to the growth factor can be reduced.

Claims (3)

以下の(a)の特性を有し、且つ(b)に記載の一般式(1)で表される構造部分を、ヘキソサミンとヘキスロン酸の繰り返し構造で形成される基本骨格を有するグリコサミノグリカンの1分子あたりに1個以上有することを特徴とするグリコサミノグリカン誘導体又はその塩及び塩基性線維芽細胞増殖因子を有効成分として含む線維芽細胞増殖剤
(a)重量平均分子量が4,000〜20,000Da(ダルトン)であること。
(b)一般式(1)
Figure 0004732604
(但し、R1はH又はSO3Hであり、R2はCOCH3又はSO3Hを示す。)
Glycosaminoglycan having the following characteristics (a) and having a basic skeleton formed from a repeating structure of hexosamine and hexuronic acid, wherein the structural portion represented by the general formula (1) described in (b) A fibroblast proliferating agent comprising a glycosaminoglycan derivative or a salt thereof and a basic fibroblast growth factor as active ingredients, wherein one or more per molecule of
(A) The weight average molecular weight is 4,000 to 20,000 Da (Dalton).
(B) General formula (1)
Figure 0004732604
(However, R 1 is H or SO 3 H, and R 2 is COCH 3 or SO 3 H.)
グリコサミノグリカン誘導体又はその塩が更に下記(c)の特性を有することを特徴とする、請求項1記載の線維芽細胞増殖剤
(c)グリコサミノグリカン分解酵素による分解と高速液体クロマトグラフィーによる分析を組み合わせた二糖分析により得られる二糖体組成において2-デオキシ-2-スルファミノ-4-O-(4-デオキシ-2-O-スルホ-α-L-threo-hex-4-エノピラノシルウロン酸)-6-O-スルホ-D-グルコースのモルが0〜10、2-デオキシ-2-スルファミノ-4-O-(4-デオキシ-α-L-threo-hex-4-エノピラノシルウロン酸)-6-O-スルホ-D-グルコースのモルが95〜70であり、2-デオキシ-2-スルファミノ-4-O-(4-デオキシ-α-L-threo-hex-4-エノピラノシルウロン酸)-D-グルコースのモルが5〜20であること。
The fibroblast proliferating agent according to claim 1, wherein the glycosaminoglycan derivative or a salt thereof further has the following property (c):
(C) 2-deoxy-2-sulfamino-4-O- (4-deoxy-2) in a disaccharide composition obtained by disaccharide analysis that combines degradation by glycosaminoglycan degrading enzyme and analysis by high-performance liquid chromatography -O-sulfo-α-L-threo-hex-4-enopyranosyluronic acid) -6-O-sulfo-D-glucose has a molarity of 0-10, 2-deoxy-2-sulfamino-4-O -(4-deoxy-α-L-threo-hex-4-enopyranosyluronic acid) -6-O-sulfo-D-glucose has a molarity of 95-70 and 2-deoxy-2-sulfamino- The mole of 4-O- (4-deoxy-α-L-threo-hex-4-enopyranosyluronic acid) -D-glucose is 5-20.
請求項1又は2記載の線維芽細胞増殖剤を有効成分とする医薬。A pharmaceutical comprising the fibroblast proliferating agent according to claim 1 or 2 as an active ingredient.
JP2001062756A 2001-03-07 2001-03-07 Growth factor activity enhancer Expired - Fee Related JP4732604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001062756A JP4732604B2 (en) 2001-03-07 2001-03-07 Growth factor activity enhancer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001062756A JP4732604B2 (en) 2001-03-07 2001-03-07 Growth factor activity enhancer

Publications (3)

Publication Number Publication Date
JP2002265369A JP2002265369A (en) 2002-09-18
JP2002265369A5 JP2002265369A5 (en) 2008-01-17
JP4732604B2 true JP4732604B2 (en) 2011-07-27

Family

ID=18921848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001062756A Expired - Fee Related JP4732604B2 (en) 2001-03-07 2001-03-07 Growth factor activity enhancer

Country Status (1)

Country Link
JP (1) JP4732604B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7511026B2 (en) 2003-03-25 2009-03-31 Seikagaku Corporation Therapeutic agent for nerve damage
FR2861308A1 (en) 2003-10-28 2005-04-29 Organes Tissus Regeneration Re Using carboxylated and sulfonated biocompatible polymers in pharmaceutical, dermatological or cosmetic compositions, for control of discomfort, disorders and pain, e.g. sunburn
JP2021155334A (en) * 2018-05-01 2021-10-07 学校法人近畿大学 Pharmaceutical composition containing middle-molecular-weight heparin or amino acid derivatives of middle-molecular-weight heparin
CN114315682A (en) * 2021-12-24 2022-04-12 福建省南仹生物科技有限公司 Method for preparing bilirubin

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310602A (en) * 1998-02-26 1999-11-09 Seikagaku Kogyo Co Ltd New polysaccharide derivative, production thereof, and medicinal composition containing the same as active ingredient

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1264530B (en) * 1992-07-31 1996-10-02 Crinos Industria Farmaco USE OF POLYSACCHARIDES IN ATROPHIC DEGENERATIVE NEUROPATHIES
US5696100A (en) * 1992-12-22 1997-12-09 Glycomed Incorporated Method for controlling O-desulfation of heparin and compositions produced thereby
JP3942205B2 (en) * 1995-07-24 2007-07-11 生化学工業株式会社 Therapeutic agent for neurological diseases

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310602A (en) * 1998-02-26 1999-11-09 Seikagaku Kogyo Co Ltd New polysaccharide derivative, production thereof, and medicinal composition containing the same as active ingredient

Also Published As

Publication number Publication date
JP2002265369A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
EP0940410B1 (en) Novel heparin-like sulfated polysaccharides
Arlov et al. Engineered sulfated polysaccharides for biomedical applications
US5922690A (en) Dermatan disulfate, an inhibitor of thrombin generation and activation
US8071569B2 (en) Oxidized heparin fractions and their use in inhibiting angiogenesis
HU229509B1 (en) Derivatives of partially desulphated glycosaminoglycans endowed with antiangiogenic activity and devoid of anticoagulating effect, process for their preparation and pharmaceutical compositions containing them
HUT64087A (en) Process for producing n,o-sulfated heparosanes of high molecular weigh and pharmaceutical compositions comprising such compounds
JP3929486B2 (en) Process for producing desulfated polysaccharide and desulfated heparin
EP2025687A1 (en) Process for the preparation of heparanase-inhibiting sulfated hyaluronates and products obtained thereby
JP4732604B2 (en) Growth factor activity enhancer
JPWO2005092348A1 (en) Heparin-like oligosaccharide-containing HGF production promoter
Freeman et al. Human liver N-acetylglucosamine-6-sulphate sulphatase. Catalytic properties
HU219339B (en) Dermatan sulphate with low heparin or heparane sulphate content and pharmaceutical compositions comprising them
JP4051099B2 (en) Low molecular weight heparin, process for producing the same, and pharmaceutical composition
US20030023079A1 (en) Polysaccharides derived from K5 polysaccharide having high anticoagulant and antithrombotic activities and process for their preparation
Foxall et al. Sulfated malto‐oligosaccharides bind to basic FGF, inhibit endothelial cell proliferation, and disrupt endothelial cell tube formation
US7838644B2 (en) Epimerized derivatives of K5 polysaccharide with a very high degree of sulfation
US20020009782A1 (en) Heparin and heparan sulfate derived oligosaccharides and a method for their manufacture
US8604003B2 (en) Promoter for hard tissue formation
Coccheri Low molecular weight heparins: an introduction
EP1059304A1 (en) Novel polysaccharide derivatives, process for the production thereof and medicinal compositions containing the same as the active ingredient
JP2006347883A (en) Composition for medical treatment comprising sugar chain-containing chitosan derivative and glycosaminoglycan
Ponzin et al. Characterization of macrophages elicited by intraperitoneal injection of hyaluronate
JP4462826B2 (en) Bone disease treatment
WO2002083155A1 (en) Use of sulfated bacterial polysaccharides suitable for the inhibition of angiogenesis
JP4035628B2 (en) Gap function enhancer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees