JP4731204B2 - 同期分離装置およびスライスレベルの決定方法 - Google Patents

同期分離装置およびスライスレベルの決定方法 Download PDF

Info

Publication number
JP4731204B2
JP4731204B2 JP2005147844A JP2005147844A JP4731204B2 JP 4731204 B2 JP4731204 B2 JP 4731204B2 JP 2005147844 A JP2005147844 A JP 2005147844A JP 2005147844 A JP2005147844 A JP 2005147844A JP 4731204 B2 JP4731204 B2 JP 4731204B2
Authority
JP
Japan
Prior art keywords
level
reference level
input video
video signal
slice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005147844A
Other languages
English (en)
Other versions
JP2006325071A (ja
Inventor
禎人 鈴木
博明 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005147844A priority Critical patent/JP4731204B2/ja
Publication of JP2006325071A publication Critical patent/JP2006325071A/ja
Application granted granted Critical
Publication of JP4731204B2 publication Critical patent/JP4731204B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Synchronizing For Television (AREA)

Description

この発明は、入力映像信号から複合同期信号を分離するために用いるスライスレベルの決定方法、および当該方法を用いた同期分離装置に関するものであり、特に入力映像信号の振幅や波形が時間的に変化したり、入力映像信号に多くの雑音が含まれているような場合であっても、正しく映像信号に重畳されている同期信号を分離することができるようにスライスレベルを調整するスライスレベルの決定方法および同期分離装置に関するものである。
複合映像信号等の入力映像信号から同期信号を分離する同期分離回路では、同期分離のためのスライスレベルを決め、スライスレベルと入力映像信号レベルの比較によって同期信号を映像信号から分離するのが一般的である。たとえば同期信号の先端部分のレベル(以下、シンクチップレベルという)が最も小さなレベルとなる正極性の映像信号においては、入力映像信号がスライスレベルよりも小さくなる期間を同期信号であると見なして同期分離が行われる。
特許文献1にはスライスレベルと入力映像信号レベルとの比較によって同期信号を分離する同期分離回路の例が示してある。この例では外部からの指令によってスライスレベルを実質的に可変とすることができるように構成されている。スライスレベルはシンクチップレベル近傍の比較的低いレベルと、ペデスタルレベル近傍の比較的高いレベルの二つのレベルが選択できる。しかし、シンクチップレベル近傍の比較的低いレベルをスライスレベルとして選択したときには、シンクチップレベルが何らかの原因で上がると、同期信号が検出できなくなる。またペデスタルレベル近傍の比較的高いレベルをスライスレベルとして選択したときには、映像信号振幅が小さくなるなどの原因でペデスタルレベルが下がったときには、やはり同期信号が検出できなくなる。
特許文献2にはスライスレベルが入力映像信号の状態に応じて変化する同期分離回路の例が示してある。ここではシンクチップレベルとペデスタルレベルを検出し、二つのレベルの中間値をスライスレベルとしている。シンクチップレベルとペデスタルレベルの平均値をスライスレベルとして選択すれば、シンクチップレベルやペデスタルレベルが多少変動したとしてもスライスレベルがシンクチップ以下になったり、ペデスタルレベル以上になったりする可能性が少なくなり、より安定した同期分離ができるようになる。
しかし、シンクチップレベルおよびペデスタルレベルを検出するためには、シンクチップの位置およびペデスタルの位置が既知でなければならない。特許文献2では入力映像信号から分離された同期信号の立ち上がりエッジおよび立ち下がりエッジに基づいて、シンクチップの位置およびペデスタルの位置を検出するとしている。しかし、このような構成では一度誤った同期分離を行うと、同期信号を基準として検出していたシンクチップの位置およびペデスタルの位置を誤る可能性が高くなる。すると、シンクチップレベルおよびペデスタルレベルに基づいて決定していたスライスレベルも誤った値となって、正しい同期分離がさらに困難になるという悪循環に陥る可能性がある。これは特に入力映像信号に多くの雑音が含まれているときなどに起きやすい。
特許文献2では同期分離回路が同期信号を検出できない場合には、同期信号が検出できるようになるまでスライスレベルを非常に小さな値から大きな値に順に変化させる機能を持っている。しかし、入力映像信号に含まれる雑音が多い場合には同期信号が全く検出できないのではなく、誤った同期信号が検出されているので、この機能は働かない可能性が高い。また、仮にこの機能が働いた場合であっても、入力映像信号が最小となるレベルはシンクチップレベルとは限らず、雑音が重畳されている部分である可能性もあるため、必ずしも正しく同期信号が分離ができるとは限らない。
非特許文献1の図14・45に示す同期分離回路もスライスレベルが入力映像信号の振幅に応じて変化する同期分離回路の例である。この同期分離回路は現在のスライスレベルが入力映像信号に対して一定値以上大きい場合にはスライスレベルを下げ、そうでないときにスライスレベルを上げるように構成されている。具体的には、スライスレベルが映像信号よりも大きくなる期間(通常はシンクチップの期間)ではトランジスタTr1が導通状態となり、コンデンサC1に対する充電が行われてスライスレベルが下がり、それ以外の期間ではトランジスタTr1が非導通状態となり、コンデンサC1に蓄えられていた電荷が放電してスライスレベルが上がるようになっている。同期分離に用いられるスライスレベルは、コンデンサC1の充電量と放電量が等しくなるレベルに収束する。
非特許文献1の方式は、特許文献2のように分離した同期信号に基づいて同期分離のためのスライスレベルを決める、といったフィードバックループが存在しないため、何らかの原因で同期が外れても、それによって正しい同期分離が一層困難になるという悪循環は発生しない。しかし、スライスレベルがコンデンサの充放電量に依存しており、コンデンサの充放電期間は同期信号の時間幅と水平期間に依存しているため、同期分離が正しくできる映像信号波形は限られてくる。
たとえばアナログ地上波放送の規格であるNTSCでは同期信号の時間幅は水平周期の約7.5%程度であるが、何らかの原因で同期信号の時間幅が大きくなったとする。この場合には充電期間が短いためスライスレベルが十分下がりきらず、スライスレベルはペデスタルレベルの近傍に収束してしまうことになる。逆に何らかの原因で同期信号の時間幅が短くなった場合には充電期間が長すぎるために、スライスレベルが下がりすぎてシンクチップレベルの近傍に収束してしまう。スライスレベルをシンクチップレベルやペデスタルレベルの近傍に設定すると、前述したようにシンクチップレベルが上がったり、ペデスタルレベルが下がったりした場合に同期分離を失敗する可能性が高くなる。
特許第3296637号公報(第3頁、第1図) 特許第3289532号公報(第5頁、第1図) テレビジョン学会編、「テレビジョン画像情報工学ハンドブック」、オーム社、1990年11月30日、p.890−891
この発明は上記のような課題を解決するためになされたもので、入力映像信号の振幅が変動したり、入力映像信号波形が変化したり、入力映像信号に雑音が多く含まれていても、同期分離に用いるスライスレベルを適切な値に調整し、正しく同期分離ができるようにすることを目的とする。
この発明は、入力映像信号から同期信号を分離する同期分離装置において、第1の基準レベルと前記入力映像信号レベルの差を求める第1の減算手段と、前記第1の減算手段の減算結果に基づいて前記第1の基準レベルの値を増減させることで前記第1の基準レベルを前記入力映像信号のペデスタルレベルに調整する第1の基準レベル調整手段と、第2の基準レベルと前記入力映像信号レベルの差を求める第2の減算手段と、前記第2の減算手段の減算結果に基づいて前記第2の基準レベルの値を増減させることで前記第2の基準レベルを前記入力映像信号のシンクチップレベルに調整する第2の基準レベル調整手段と、前記第1の基準レベルと前記第2の基準レベルとの中間レベルをスライスレベルとして出力するスライスレベル生成手段と、前記スライスレベル生成手段から出力された前記スライスレベルと前記入力映像レベルを比較し、該比較結果に基づいて前記同期信号を生成する比較手段とを備えたことを特徴とする同期分離装置を提供する。
この発明では、入力映像信号レベルから第1の基準レベルを減算した結果に基づいて第1の基準レベルを増減することにより、第1の基準レベルをペデスタルレベルに誘導し、入力映像信号レベルから第2の基準レベルを減算した結果に基づいて第2の基準レベルを増減することにより、第2の基準レベルをシンクチップレベルに誘導し、第1の基準レベルと第2の基準レベルの中間値をスライスレベルとするように構成したので、入力映像信号の振幅が変動したり、同期信号の時間幅が変化したとしてもスライスレベルはペデスタルレベルとシンクチップレベルの中間値に留まり、正しく同期分離を行うことができる。また入力映像信号に多くの雑音が含まれており、これが原因で一時的に同期が外れたとしても第1の基準レベルと第2の基準レベルは大きくは変動しないため、すぐに同期状態に復帰することができる。
実施の形態1.
図1はこの発明の実施の形態1である同期分離装置の構成を示す図である。
第1の減算回路1は、入力映像信号レベルVSから後述する第1の基準レベル調整回路2が生成した第1の基準レベルRaを減算する。第1の基準レベル調整回路2は、第1の減算回路1の減算結果に基づいて第1の基準レベルRaを増減させる。同様に第2の減算回路3は、入力映像信号レベルVSから後述する第2の基準レベル調整回路4が生成した第2の基準レベルを減算する。第2の基準レベル調整回路4は、第2の減算回路3の減算結果に基づいて第2の基準レベルを増減させる。第1の基準レベル調整回路2の出力である第1の基準レベルRaと、第2の基準レベル調整回路4の出力である第2の基準レベルは、スライスレベル生成回路5に入力される。スライスレベル生成回路5は、第1の基準レベルRaと第2の基準レベルの中間値をスライスレベルSLとして生成する。比較回路6は、スライスレベル生成回路5で生成されたスライスレベルSLと入力映像信号レベルVSを比較し、その比較結果に基づいて複合同期信号を生成する。
ここで、実施の形態1である同期分離装置の動作について詳細に説明する。
入力映像信号VSが0から1023までの値を取る10ビットのディジタル信号であるとする。また入力映像信号VSが、シンクチップレベルがピーク白レベルよりも小さい(低い)レベルとなる正極性の信号であるとする。第1の減算回路1は10ビットの入力映像信号から第1の基準レベル調整回路2が生成した第1の基準レベルRaを減算する。第1の基準レベルRaは24ビットの値であり、上位10ビットが整数部、下位14ビットが小数部を表している。第1の基準レベルRaが取り得る値は0以上1024未満である。これに対して10ビットの入力映像信号は0以上1023以下の整数値であり、小数部は存在しない。このとき第1の減算回路1の減算結果は、−1024より大きく1023以下の値を取り得るので、第1の減算回路1の減算結果は上位11ビットを整数部、下位14ビットを小数部とする25ビットの値で表される。減算結果は2の補数で表され、整数部の最上位ビットは符号ビットであるとする。
第1の基準レベル調整回路2は、24ビットのアップダウンカウンタで構成されており、そのカウント値は0以上2の24乗(=16777216)未満の値を取り得る。第1の基準レベル調整回路2は第1の減算回路1の減算結果である25ビットの値のうち、符号を表す最上位ビットのみを参照し、この符号ビットが0であるときには現在のカウント値に1を加算し、符号ビットが1であるときには現在のカウント値からm(mは1より大きい整数)を減算する。第1の基準レベルRaは24ビットアップダウンカウンタのカウント値を2の14乗(=16384)で割った値に等しい。実際には24ビットアップダウンカウンタの上位10ビットの値を第1の基準レベルRaの整数部、下位14ビットの値を第1の基準レベルRaの小数部と見なすことができるので、実施の形態1ではアップダウンカウンタのカウント値を第1の基準レベルRaに変換するための除算器などは必要ない。
第2の減算回路3は10ビットの入力映像信号から第2の基準レベル調整回路4で生成した第2の基準レベルRbを減算する。減算結果は第1の減算回路1と同様に25ビットの2の補数で表される。第2の基準レベル調整回路4は24ビットカウンタで構成されており、第2の減算回路3の減算結果の符号ビットが0であるときには現在のカウント値に1を加算し、符号ビットが1であるときには現在のカウント値からM(Mはmより大きい整数)を減算する。第2の基準レベルRbも、第2の基準レベル調整回路4を構成する24ビットアップダウンカウンタのカウント値の上位10ビットを整数部、下位14ビットを小数部とする値に対応している。
スライスレベル生成回路5は、第1の基準レベル調整回路2が生成した第1の基準レベルRaと第2の基準レベル調整回路4が生成した第2の基準レベルRbを加算する。24ビットの値同士を加算するため、加算結果は25ビットの値となる。スライスレベル生成回路5は25ビットの加算結果の上位10ビットをスライスレベルSLとして比較回路6に出力する。スライスレベルSLは入力映像信号と同じく0から1023までの整数値を取り得る。
比較回路6は、スライスレベル生成回路5で生成されたスライスレベルSLと入力映像信号レベルVSを比較し、入力映像信号レベルVSがスライスレベルSLよりも小さいときには1を出力し、そうでないときには0を出力する。比較回路6の出力信号は1ビットの信号であり、後述するように正極性の複合同期信号を表している。
以下では実施の形態1である同期分離装置により、入力映像信号から同期信号を正しく分離できることを説明する。
ここでは入力映像信号VSが全白信号である場合について考える。図2は1水平期間にわたる全白信号の映像信号波形を示したものである。ここではシンクチップレベル(図2に符号Sで示すレベル)は10ビット値で0、ペデスタルレベル(図2に符号Pで示す)は10ビット値で292、白レベル(図2に符号Wで示すレベル)は10ビット値で1023となっている。また同期信号の立ち下がりから立ち上がりまで(図2に符号Taで示す期間)は127クロック、同期信号の立ち上がりから有効映像期間の開始まで(図2に符号Tbで示す期間)は127クロック、有効映像期間の開始から終了まで(図2に符号Tcで示す期間)は1422クロック、有効映像期間の終了から次の同期信号の立ち下がりまで(図2に符号Tdで示す期間)は40クロックであるとする。図2の映像タイミングは、NTSC方式の映像信号を、周波数が27MHzであるクロックでサンプリングした場合に相当する。
以下では、第1の基準レベル調整回路2を構成する24ビットアップダウンカウンタのカウント値をX、第2の基準レベル調整回路4を構成する24ビットアップダウンカウンタのカウント値をYと書く。同期信号の立ち下がりにおけるX、Yの値をそれぞれX(0)、Y(0)と書き、同期信号の立ち下がりからnクロック経過したときのX、Yの値をそれぞれX(n)、Y(n)と書くことにする。
最初に、同期信号の立ち下がりにおいて第1の基準レベルRaがペデスタルレベルPよりも大きく、白レベルWよりも小さいレベルであった場合について考える。ここでは簡単のため、1716クロック後に次の同期信号の立ち下がりが現われるまで、第1の基準レベルRaが常にペデスタルレベルPよりも大きく、白レベルWよりも小さいレベルに留まるものと仮定する。
このとき同期信号の立ち下がりから有効映像期間の開始までの254クロックの間(図2の期間Ta及びTb)は、入力映像信号レベルVSはペデスタルレベルPと等しく第1の基準レベルRaよりも小さいから、第1の減算器1の減算結果は負となり、減算結果の符号ビットは1となる。したがって、有効映像期間の開始時点におけるカウント値X(254)は同期信号の立ち下がりの時点におけるカウント値X(0)よりも254×mだけ減少する。次に有効映像期間の開始から終了までの1422クロックの間(図2の期間Tc)は、入力映像信号レベルVSは白レベルWと等しく第1の基準レベルRaよりも大きいから、第1の減算器1の減算結果は非負となり、減算結果の符号ビットは0となる。したがって有効映像期間の終了時点のカウント値X(1676)は有効映像期間の開始時点におけるカウント値X(254)よりも1422だけ増加する。さらに有効映像期間の終了から次の同期信号の立ち下りまでの40クロックの間は入力映像信号レベルVSはペデスタルレベルPと等しく第1の基準レベルRaよりも小さいから、第1の減算器1の減算結果は負となり、符号ビットは1となる。したがって次の同期信号の立ち下がり時点におけるカウント値X(1716)は、有効映像期間の終了時点におけるカウント値X(1676)よりも40×mだけ減少する。
以上のようにして、X(1716)=X(0)+1422−294×mが成り立つことがわかる。このときm≧5とすればX(0)>X(1716)となり、1水平期間が経過するごとに第1の基準レベル調整回路2が生成する第1の基準レベルRaが減少していき、第1の基準レベルRaがペデスタルレベルPに次第に近づいていくことになる。
次に、同期信号の立ち下がりにおいて第1の基準レベルRaがシンクチップレベルSよりも大きく、ペデスタルレベルPよりも小さいレベルであった場合について考える。ここでは、1716クロック後に次の同期信号の立ち下がりが現われるまで、第1の基準レベルRaが常にシンクチップレベルSよりも大きく、ペデスタルレベルPよりも小さいレベルに留まるものと仮定する。
このとき、同期信号の立ち下がりから同期信号の立ち上がりまでの127クロックの間は入力映像信号レベルVSが第1の基準レベルRaよりも小さく、同期信号の立ち上がりから次の同期信号の立ち下がりまでの1589クロックの間は入力映像信号レベルVSが第1の基準レベルRaよりも大きいから、X(1716)=X(0)+1589−127×mが成り立つことがわかる。このときm<13とすればX(0)<X(1716)となり、1水平期間が経過するごとに第1の基準レベル調整回路2が生成する第1の基準レベルRaが増加していき、第1の基準レベルRaがペデスタルレベルPに次第に近づいていくことになる。
以上から、5≦m<13とすると、第1の基準レベルRaはペデスタルレベルP近傍に収束することがわかる。
一方、第2の基準レベル調整回路4の減算値MをM≧13とすると、第2の基準レベルRbがシンクチップレベルS以上であるときには、Y(0)>Y(1716)となり、時間が経過するにつれて第2の基準レベルRbはシンクチップレベルS近傍に収束することがわかる。
図2にはm≧5かつ第1の基準レベルRaがペデスタルレベルPよりも大きいときのX(n)の変化、およびM≧13かつ第2の基準レベルRbがペデスタルレベルPよりも小さい時のY(n)の変化を折れ線で模式的に示した。X(n)の増減はX(0)、X(254)、X(1676)、X(1716)を結ぶ破線で示され、Y(n)の増減はY(0)、Y(127)、Y(1716)を結ぶ破線で示されている。なお、折れ線が示しているのは実際にはX(n)およびY(n)の16384分の1の値である。また、図ではX(n)およびY(n)の増減をわかりやすくするため、折れ線の傾きを実際の傾きよりもかなり大きくしている。これは、たとえばm=10とすると、X(254)=X(0)−2540、X(1676)=X(0)+1098、X(1716)=X(0)−1518となるから、同期信号の立ち下がりから次の同期信号の立ち下がりまでの第1の基準レベルRaの変化量は実際には高々±1しかなく、これをそのまま図示すると図上ではX(n)の変化がほとんどわからないためである。Y(n)についても同様の理由で、折れ線の傾きを実際の傾きよりもかなり大きくしている。
このようにmおよびMの値を適当に設定することにより、第1の基準レベルRaをペデスタルレベルP近傍に収束させ、第2の基準レベルRbをシンクチップレベルS近傍に収束させることができる。このとき十分時間が経過した後ではスライスレベル生成回路5が生成するスライスレベルSLは第1の基準レベルRaと第2の基準レベルRbの平均レベル、すなわちシンクチップレベルSとペデスタルレベルPの平均レベルにほぼ等しくなる。
比較回路6は入力映像信号レベルVSがスライスレベルSLよりも小さいときには1、そうでないときには0を出力するので、第1の基準レベルRaと第2の基準レベルRbが収束した後では図2の期間Taで1が出力され、期間Tb、Tc、Tdでは0が出力されることになる。比較回路6の出力は正極性の同期信号に対応し、入力映像信号から正しく同期信号が分離されていることがわかる。
ここで実施の形態1である同期分離装置が、入力映像信号の振幅が変動したり、同期信号の時間幅が変化したり、入力映像信号に雑音が多く含まれる場合であっても安定に動作することを説明する。
今、1水平期間の間に第1の基準レベルRaの整数部(Xの上位10ビット)に変化がなく、一定値L0であったとする。さらに1水平期間をTクロックとし、1水平期間内で入力映像信号レベルVSがL0よりも小さくなる期間と、1水平期間との比をRと書く。RはL0の関数である。また、このときX(T)=X(0)+T×(1−R)−T×R×mが成り立つ。r=(1−R)÷Rとすると、RはL0の関数であるから、rもL0の関数となる。このことを強調するために以下ではrを特にr(L0)と書く。ここでm>r(L0)であればX(T)<X(0)となり、第1の基準レベルRaは次第に減少する。一方、m<r(L0)であればX(T)>X(0)となり、第1の基準レベルRaは次第に増加する。したがってL1<L2なるL1、L2に対してr(L2)<m<r(L1)が成り立つとき、第1の基準レベルRaはL1とL2の中間値に収束することになる。同様にして第2の基準レベルRbはr(L4)<M<r(L3)が満たされるようなL3とL4の中間値に収束することがわかる。
δを微小な値とすると、図2の波形ではr(P+δ)=1422÷294=4.84となり、r(P−δ)=1589÷127=12.51となる(小数点以下第3位を四捨五入)。したがって5≦m<13とすると第1の基準レベルRaはP−δよりも大きく、P+δよりも小さい値、すなわちペデスタルレベルP近傍の値に収束する。これは前述した通りである。図2ではP=292であるとしたが、Pの値がどのように変化しても時間幅(Ta+Tb+Td)と時間幅Tcの比が変化しない限りr(P+δ)<m<r(P−δ)は成立する。入力映像信号が全白信号ではなく、全黒信号である場合にはr(P+δ)=0となるが、この場合もr(P+δ)<m<r(P−δ)は成立するので、全黒信号であっても第1の基準レベルRaはペデスタルレベルP近傍の値に収束する。すなわち第1の基準レベルRaは有効映像期間における映像信号波形にほとんど依存しない。したがって、5≦m<13である限りにおいては、Pがどのような値であっても、また有効映像期間の映像信号波形がどのような波形であっても、第1の基準レベルRaはペデスタルレベルP近傍に収束する。
同様にしてM≧13とすると、r(S+δ)=12.51であり、r(S−δ)は無限大であるから、第2の基準レベルRbはS−δよりも大きく、S+δよりも小さい値、すなわちシンクチップレベルS近傍の値に収束する。このときSの値がどのように変化しても時間幅Taと時間幅(Tb+Tc+Td)の比が変化しない限りr(S+δ)<M<r(S−δ)が成立するので、第2の基準レベルRbはシンクチップレベルS近傍に収束する。
以上のようにペデスタルレベルPやシンクチップレベルSの値によらず、第1の基準レベルRaおよび第2の基準レベルRbがペデスタルレベルPおよびシンクチップレベルS近傍に収束するということは、入力映像信号の振幅によらず、正しい同期分離ができることを意味している。ペデスタルレベルPやシンクチップレベルSが突発的に変動した場合でも、スライスレベルSLが両者の平均値に誘導されているため、比較回路6において同期分離が失敗する可能性をある程度低く抑えることができる。
また、r(P+δ)<m<r(P−δ)を満たすmの値、およびr(S+δ)<M<r(S−δ)を満たすMの値にはある程度の裕度があるため、r(P+δ)、r(P−δ)、r(S+δ)、r(S−δ)の値が入力映像信号に含まれる雑音によってある程度変動したとしても、スライスレベルSLがペデスタルレベルPとシンクチップレベルSの中間値に誘導される可能性は高いと言える。
さらに入力映像信号の同期信号部分の波形が図3(a)のように歪んでいたとしても、M<mなのでスライスレベルSLはペデスタルレベルPを超えることはなく、またMの値を13よりもある程度大きく設定することによって、スライスレベルSLをペデスタルレベルPとシンクチップレベルSの平均値に近い値に誘導することは可能である。
また、図3(b)のように同期信号の時間幅Taが図2の約1.5倍に相当する190クロックになったときには、r(P+δ)=4.84、r(P−δ)=r(S+δ)=8.03(小数点以下第3位を四捨五入)となり、図3(c)のように同期信号の時間幅Taが図2の約半分に相当する64クロックとなったときは、r(P+δ)=4.84、r(P−δ)=r(S+δ)=25.81(小数点以下第3位を四捨五入)となる。したがってm=6、M=32などとすれば図2、図3(b)、図3(c)のいずれの場合にもr(P+δ)<m<r(P−δ)、r(S+δ)<M<r(S−δ)が成立し、第1の基準値がペデスタルレベルPに誘導され、第2の基準値がシンクチップレベルSに誘導されることがわかる。このように実施の形態1である同期分離装置は同期信号の時間幅が多少変動してもスライスレベルSLは変動せず、安定した同期分離ができることがわかる。
なお、実施の形態1では、第1の減算回路1において、10ビット値である入力映像信号レベルVSから24ビット値である第1の基準レベルRa(整数部10ビット、小数部14ビット)を減算するとしたが、これに限らず、10ビット値である入力映像信号レベルVSから第1の基準レベルRaの上位10ビット(整数部のみ)を減算するとしても良い。第2の減算回路3についても同様のことが言える。
さらに、実施の形態1では、第1の減算回路1が出力する符号ビットのみを参照して、第1の基準レベルRaを増減させるとしたが、参照するビットは必ずしも符号ビットのみである必要はない。第1の減算回路1が出力する25ビットの減算結果が正であれば第1の基準レベルRaを増加させ、減算結果が負であれば第1の基準レベルRaを減少させるならば、25ビットの減算結果の一部または全部を用いてもよい。たとえば、25ビットの減算結果が正のときには減算結果に所定の係数K1を乗じた値を第1のカウント値Xに加算し、25ビットの減算結果が負のときには減算結果にK1よりも大きい係数K2を乗じた値をカウント値Xに加算する(減算結果が負であるからカウント値は減少する)などとしても良い。映像信号波形に応じてK1、K2の係数を適当に決めれば第1の基準レベル調整回路2が生成する第1の基準レベルRaをペデスタルレベルP近傍に収束させることは可能である。同様にして第2の減算回路3が出力する25ビットの減算結果の一部または全部を用いて第2の基準レベルRbを増減させてもよい。
また、実施の形態1では、第1の基準レベルRaおよび第2の基準レベルRbは毎クロック増減するとしたが、これに限らず、任意の間隔で基準レベルを増減させてもよい。たとえば1クロックおきに第1の基準レベル調整回路2が第1の減算回路1の減算結果を参照して第1の基準レベルRaを増減させるとしても、ほぼ同様の効果が得られる。
また、実施の形態1では、入力映像信号レベルVSと第1の基準レベルRaとが等しいときには、第1の基準レベル調整回路2を構成する24ビットアップダウンカウンタのカウント値Xを1増加させるとしたが、これに限らず、入力映像信号レベルVSと第1の基準レベルRaが等しいときには、カウント値Xを現在の値のまま保持するとしてもよい。同様に、入力映像信号レベルVSと第2の基準レベルRbが等しいときには、第2の基準レベル調整回路4を構成する24ビットアップダウンカウンタのカウント値Yを現在の値のまま保持するとしても良い。
さらに、実施の形態1では、スライスレベル生成回路5が生成するスライスレベルSLを第1の基準レベルRaと第2の基準レベルRbの平均値としたが、第1の基準レベルRaと第2の基準レベルRbの中間値であれば、スライスレベルSLは任意の値であってよい。たとえばスライスレベル生成回路6が、第1の基準レベルRaの75%の値と第2の基準レベルRbの25%の値を加算することによってスライスレベルSLを生成するとしても、同様の効果が得られる。
また、実施の形態1では、シンクチップレベルSがピーク白レベルWよりも小さい正極性の入力映像信号の場合について述べたが、シンクチップレベルSがピーク白レベルWよりも大きい負極性の入力映像信号であっても、同様に同期分離が可能である。このときには、以下のように動作を変更すればよい。すなわち、第1の減算回路1が出力する符号ビットが0のときにはカウント値Xから1を減算し、符号ビットが1のときにはカウント値Xにmを加算する。同様に、第2の減算回路3が出力する符号ビットが0のときにはカウント値Yから1を減算し、符号ビットが1のときにはカウント値YにMを加算する。このように2つの基準レベル調整回路の動作を変更すれば、第1の基準レベルRaはペデスタルレベルPに収束し、第2の基準レベルRbはシンクチップレベルSに収束することになる。
実施の形態2.
図4はこの発明の実施の形態2である同期分離装置の構成を示す図である。実施の形態2である同期分離装置を説明するにあたり、実施の形態1と同じ構成を持つ回路については図1と同じ符号を付し、説明を省略する。
実施の形態2では第2の基準レベルRbを映像信号波形に応じて変化しない固定値FLとする場合の例である。スライスレベル生成回路7は第1の基準レベル調整回路2の出力である第1の基準レベルRaと、固定値FLを用いてスライスレベルSLを生成する。スライスレベル生成のための演算は、外部から入力される1ビットのスライスレベル選択信号SSに基づいて、以下の2通りに可変であるとする。
まずスライスレベル選択信号SSが0のときには、第1の基準レベルRaと固定値FLの平均値をスライスレベルSLとして比較回路6に出力する。次にスライスレベル選択信号SSが1のときには、第1の基準レベルRaに固定値FLを加算した値をスライスレベルSLとして比較回路6に出力する。
同期分離装置を以上のように構成することにより、入力映像信号の振幅が変動したり、入力映像信号に多くの雑音が含まれる場合であっても、ある程度は正しく同期分離ができる。このことを以下に説明する。説明にあたり、入力映像信号波形として実施の形態1の図2で用いたNTSCの信号波形を用いる。
今、第1の基準レベル調整回路2の減算値mを5≦m<13を満たすように設定したとする。このとき実施の形態1で説明したように、第1の基準レベルRaはペデスタルレベルPに収束する。図2ではP=292である。このときスライスレベル選択信号SSを0とし、固定値FLを0とすると、スライスレベルSLは(292+0)÷2=146となる。同様にしてスライスレベル選択信号SSを1とし、固定値FLを−73とすると、スライスレベルSLは292+(−73)=219となる。いずれの場合もスライスレベルSLはシンクチップレベルとペデスタルレベルの中間値になっており、図2の映像信号波形から正しく同期信号が分離できることがわかる。
次に映像信号波形が図2とは異なるときについて考える。実施の形態1で述べたようにペデスタルレベルPが292から変動した場合であっても、5≦m<13が満たされていれば第1の基準レベルRaはペデスタルレベルPに収束する。これは実施の形態1で説明したように入力映像信号に多くの雑音が含まれている場合であっても成り立つ。したがって、スライスレベル選択信号SSが0のときにはP÷2>Sが満たされている限りにおいては同期分離は可能である。同様にしてスライスレベル選択信号SSが1のときにはP−73>S、すなわち同期信号の振幅(ペデスタルレベルPとシンクチップレベルSの差)が73以上である限りにおいては同期分離は可能である。
実施の形態1ではシンクチップレベルSが変動しても、第2の基準レベルRbがSに収束するように構成されていたのに対して、実施の形態2ではこの値が固定値となっている。このため実施の形態2ではシンクチップレベルSやペデスタルレベルPが大きく変動した場合には、同期分離を失敗する可能性があるが、シンクチップレベルSおよびペデスタルレベルPがP÷2>SまたはP−73>Sを満たしている限りにおいては実施の形態2も実施の形態1と同等の性能が得られる。
次に、第1の基準レベル調整回路2に使用する減算値mを、m≧13を満たすように設定したとする。このとき実施の形態1で説明したように、第1の基準レベルRaはシンクチップレベルSに収束する。このときスライスレベル選択信号SSを0とし、固定値FLを146とすると、スライスレベルSLは(0+146)÷2=73となる。同様にしてスライスレベル選択信号SSを1とし、固定値FLを73とすると、スライスレベルSLはやはり0+73=73となる。いずれの場合もスライスレベルSLは適切な値になっており、図2の映像信号波形から正しく同期信号が分離できることがわかる。
次に映像信号波形が図2とは異なるときについて考える。実施の形態1で説明したようにm≧13とすると、シンクチップレベルSが大きく変動したり、入力映像信号に多くの雑音が含まれている場合であっても第1の基準レベルRaはシンクチップレベルS近傍に収束する。したがってS+73<P、すなわち同期信号の振幅が73以上である限りにおいては正しく同期分離ができる。
以上のように、実施の形態2である同期分離装置を用いても、入力映像信号の振幅が変動したり入力映像信号に多くの雑音が含まれる場合であっても、ある程度は正しく同期分離を行うことが可能である。
なお、実施の形態2では、スライスレベル生成回路7はスライスレベル選択信号SSに基づいて、スライスレベルSLを第1の基準レベルRaと固定値FLの中間値とするか、スライスレベルSLを第1の基準レベルRaに対して固定値FLを加算又は減算(即ち固定値FLとして負の値を用いる)した値とするかの2種類を選択可能であるように構成したが、スライスレベル選択信号SSを用いず、どちらか1種類のみをスライスレベルSLとして生成するように構成してもよい。
実施の形態3.
図5はこの発明の実施の形態3である同期分離装置の構成を示す図である。実施の形態2である同期分離装置を説明するにあたり、実施の形態1と同じ構成を持つ回路については図1と同じ符号を付し、説明を省略する。
実施の形態3ではスライスレベル生成回路8の内部構成のみが実施の形態1と異なる。スライスレベル生成回路8は第1の基準レベルRaと第2の基準レベルRbの平均値を計算する平均値演算回路9と、平均値演算回路9の出力レベルの変動を抑制するレベル変動抑制回路10から構成される。レベル変動抑制回路10の出力はスライスレベルSLとして比較回路6に出力される。第1の基準レベルRaと第2の基準レベルRbは24ビットの値であるから、平均値演算回路9の出力レベルも24ビットの値である。
図6はレベル変動抑制回路10の内部構成を詳細に示したものである。減算器11は平均値演算回路9の出力レベルから後述する積分器14の出力レベルを減算する。不感帯処理回路12は図7に示すように、減算器11の出力レベルの絶対値が所定のしきい値ε(ε≧0)未満であるときには0を出力し、減算器11の出力レベルが−ε以下であるときには減算器11の出力レベルにεを加算した値を出力し、減算器11の出力レベルがε以上であるときには減算器11の出力レベルからεを減算した値を出力する。乗算器13は不感帯処理回路12の出力レベルに比例ゲインGを乗じる回路である。積分器14は乗算器13の出力値を時間方向に積算する回路である。積分器14の出力はスライスレベルSLとして後段の比較回路6に出力される。
以上のように構成されたレベル変動抑制回路10はギャップ付きPID制御回路として知られている。ただし、ここでは比例動作のみが用いられており、積分動作および微分動作は用いられていない。レベル変動抑制回路10により、平均値演算回路9の出力レベルとスライスレベルSLの差の絶対値がε未満の場合にはスライスレベルSLは変化せず、差の絶対値がε以上であるときには、比例ゲインGに依存する応答速度でスライスレベルSLは平均値演算回路9の出力レベルに近づいていくことになる。したがって入力映像信号に雑音が多く含まれており、第1の基準レベルRaおよび第2の基準レベルRbが雑音によって変動しやすくなっていたとしても、実施の形態1に比べてスライスレベルSLの変動が抑制され、同期分離の性能を向上させることができる。
なお、実施の形態3ではレベル変動抑制回路10をギャップ付きPID制御の比例動作のみを用いて構成したが、これに限らず、積分動作や微分動作を併用しても良い。また、ギャップ付きPID制御に限らず任意の制御回路を用いても良い。入力映像信号に含まれる雑音の多寡に応じて制御回路の応答が動的に変化する適応制御を用いても良い。
実施の形態4.
図8はこの発明の実施の形態4である同期分離装置の構成を示す図である。実施の形態4である同期分離装置を説明するにあたり、実施の形態2と同じ構成を持つ回路については図4と同じ符号を付し、説明を省略する。
実施の形態4ではスライスレベル生成回路15の内部構成のみが実施の形態2と異なる。スライスレベル生成回路15は、第1の基準レベルRaの変動を抑制するレベル変動抑制回路16と、1ビットのスライスレベル選択信号SS、レベル変動抑制回路16の出力レベル、および固定値FLを用いて比較回路6で用いるスライスレベルSLを生成する加算回路17から構成される。
図9はレベル変動抑制回路16の内部構成を詳細に示したものである。減算器18は、第1の基準レベルRaの整数部を表す上位10ビットの値から、後述するシフタ20の出力レベルを減算する回路である。シフタ20の出力値は後述するように0以上1023以下の整数値であり、減算器18の出力値は−1024以上1023以下の11ビットの値である。積分器19は減算器18の出力レベルを時間方向に積算する。積分器19の出力レベルは0以上2の20乗未満の整数値を取る。シフタ20は積分器19の出力レベルを10ビット右シフトする。シフタ20の出力レベルは0以上1023以下の整数値を取る。減算器18、積分器19およびシフタ20はIIR(無限インパルス応答)型のローパスフィルタを構成している。このディジタルフィルタの伝達関数H(z)は、ディジタルフィルタの入力を第1の基準レベルRaの整数部を表す上位10ビットの値とし、ディジタルフィルタの出力をシフタ20の出力である10ビットの値であるとすると、H(z)=λ×z^(−1)/(1−(1−λ)×z^(−1))と表すことができる。ここでz^(−1)はzの−1乗を表し、1クロック遅延に相当する。また、λはシフタ20において積分器19の出力に乗じた値に相当し、λ=1/1024である。
加算回路17は1ビットのスライスレベル選択信号SSが0のときにはシフタ20の出力レベルと固定値FLとの平均値を出力し、スライスレベル選択信号SSが1のときにはシフタ20の出力レベルと固定値FLとを加算した値を出力する。これは実施の形態2におけるスライスレベル生成回路7の動作と同じである。
スライスレベル生成回路15を以上のように構成することによって、入力映像信号に雑音が多く含まれており、雑音によって第1の基準レベルRaが変動した場合であっても、減算器18、積分器19およびシフタ20が構成するローパスフィルタH(z)が第1の基準レベルRaの変動を抑制し、加算回路17が生成するスライスレベルSLを安定化して、同期分離の性能を向上させることができる。これはローパスフィルタH(z)が高周波、すなわち短い時間内における第1の基準レベルRaの変動を阻止することを考えれば自明である。
なお、実施の形態4では第2の基準レベルRbを固定値FLとし、第1の基準レベルRaにローパスフィルタを適用したが、これに限らず、第2の基準レベルを実施の形態1のように可変値とし、第2の基準レベルにローパスフィルタを適用しても良い。
また、実施の形態4ではレベル変動抑制回路16をローパスフィルタで構成したが、レベル変動抑制回路16を実施の形態3のような制御回路で構成しても同様の効果が得られる。
また、実施の形態4では加算回路17の前段にローパスフィルタを配置したが、加算回路17の後段に配置しても良い。これは、実施の形態3におけるレベル変動抑制回路10を伝達関数が実施の形態4と同じH(z)で表されるローパスフィルタで置き換えることに等しい。
さらに、実施の形態4ではレベル変動抑制回路16を構成するローパスフィルタの伝達関数を具体的に示したが、ローパスフィルタの伝達関数はこれに限らず任意のものであって良い。実施の形態4のローパスフィルタは線形フィルタであるが、非線形のフィルタを用いても良いし、入力映像信号に含まれる雑音の多寡によってフィルタの応答が動的に変化する適応的なフィルタを用いても良い。
実施の形態5.
図10はこの発明の実施の形態5である同期分離装置の構成を示す図である。実施の形態2である同期分離装置を説明するにあたり、実施の形態3と同じ構成を持つ回路については図5と同じ符号を付し、説明を省略する。
実施の形態5では第1の基準レベル調整回路21の内部構成のみが実施の形態3と異なる。第1の基準レベル調整回路21は、第1の減算回路1の出力レベルに連動する第1の基準レベルRaの変動を抑制するように働くレベル変動抑制回路22と、第1のアップダウンカウンタ23から構成される。レベル変動抑制回路22は後述するように第1の減算回路1の出力レベルに基づいて2ビットのカウンタ制御信号を生成する。第1のアップダウンカウンタ23はカウンタ制御信号の値に基づいてカウント値を増減させる。第1のアップダウンカウンタ23の増減は、これも後述するように、外部から与えられるリセット信号、リミット値K、およびカウント停止信号によっても制御される。
図11はレベル変動抑制回路22の内部構成を詳細に示したものである。自走カウンタ24は20ビットカウンタであり、1クロックごとに1だけカウントアップする。カウント値が2の20乗よりも1だけ小さい値となった場合には、次のクロックのカウント値は0となる。第2のアップダウンカウンタ25は24ビットカウンタであり、−2の23乗以上2の23乗未満の値を取り得る。第2のアップダウンカウンタ25は、第1の減算回路1の出力レベルの符号ビットのみを参照して、符号ビットが0ならば現在のカウント値に1を加算し、符号ビットが1ならば現在のカウント値からmを減算する。ただし現在のカウント値が2の23乗以上になる場合には加算を行わず、−2の23乗以下になるときには減算は行わない。さらに第2のアップダウンカウンタ25は自走カウンタ24のカウント値が0になるたびにカウント値を0にリセットする。しきい値処理回路26は自走カウンタ24の(リセット前の)カウント値が0となったときの第2のアップダウンカウンタ25のカウント値が−2048未満であるときには0、2048以上であるときには1をカウンタ制御信号として出力する。第2のアップダウンカウンタ25のカウント値が−2048以上2048未満であるか、自走カウンタ24のカウント値が0以外であるときには、しきい値処理回路26はカウンタ制御信号として2を出力する。カウンタ制御信号は2ビットの信号である。
第1のアップダウンカウンタ23は0以上1023以下の値を取る10ビットカウンタであり、カウンタ制御信号が0のときには現在のカウント値に1を加算し、カウンタ制御信号が1のときには現在のカウント値から1を減算する。ただし、現在のカウント値が外部から与えられるリミット値K以上であるときには加算を行わず、現在のカウント値が0である場合には減算は行わない。第1のアップダウンカウンタ23はカウンタ制御信号が0および1以外のときには現在のカウント値を保持する。さらに、第1のアップダウンカウンタ23は外部から与えられる1ビットのリセット信号が1となったときには、カウント値を292にリセットし、1ビットのカウント停止信号が1となったときには、レベル変動抑制回路22から出力されるカウンタ制御信号の値によらず、現在のカウント値を保持する。実施の形態3では第1の基準レベルRaは24ビット値であり、スライスレベル生成回路8の入力も24ビットの値であった。このため実施の形態5では、第1の基準レベル生成回路21の出力レベルを24ビットの値であるとし、上位10ビットに第1のアップダウンカウンタ23のカウント値を代入し、下位14ビットをすべて0で埋める。
同期分離装置を以上のように構成することによって、入力映像信号に雑音が多く含まれている場合であっても、レベル変動抑制回路22が第1の基準レベルRaの変動を抑制することによりスライスレベル生成回路8が生成するスライスレベルSLが安定化させ、同期分離の性能をさらに向上させることができる。このことを実施の形態1の図2の映像信号波形を用いて説明する。
以下では図2の同期信号の立ち下がりにおける第2のアップダウンカウンタ25のカウント値をZ(0)と書き、同期信号の立ち下がりからnクロック経過した後のカウント値をZ(n)と書く。いま、第1の基準レベルRaがペデスタルレベルPよりも若干大きい値であったとする。同期信号の立ち下がりから有効映像期間の開始点までは入力映像信号レベルVSの方が第1の基準レベルRaよりも小さいから、有効映像期間の開始点における第2のアップダウンカウンタ25のカウント値Z(254)はZ(254)=Z(0)−254×mとなる。同様に有効映像期間の終了点における第2のアップダウンカウンタ25のカウント値はZ(1676)=Z(0)+1422−254×mとなり、次の同期信号の立ち下がりにおける第2のアップダウンカウンタ25のカウント値はZ(1716)=Z(0)−294×m+1422となる。
n=0において20ビットカウンタである自走カウンタ24のカウント値が0であり、第2のアップダウンカウンタ25のカウント値がZ(0)=0であったとすると、次に自走カウンタが0となるのは2の20乗クロック後、すなわちn=1048576のときであるから、第2のアップダウンカウンタ25のカウント値は1048576=611×1716+100より、Z(1048576)=611×(1422−254×m)−100×mとなる。ここでm=8とすると、Z(1048576)=−373510となり、しきい値処理回路26の出力であるカウンタ制御信号は0となって、第1のアップダウンカウンタ23のカウント値、すなわち第1の基準レベルRaはペデスタルレベルPの方向に減少する。
同様にして、第1の基準レベルRaがペデスタルレベルPよりも若干小さい値であった場合について考えると、Z(1716)=Z(0)+1589−127×mであるから、Z(1048576)=611×(1589−127×m)−100×mとなる。m=8のときには349303となり、カウンタ制御信号は1となるから、第1の基準レベルRaはペデスタルレベルPの方向に増加していく。以上のようにして、m=8とすると第1の基準レベルRaはペデスタルレベルP近傍に収束することがわかる。
前述したように、第1の基準レベルRaの増減は20ビットカウンタである自走カウンタ24のカウント値が0となったときのみ発生する。したがって、入力映像信号波形に雑音が含まれていたとしても、20ビットカウンタのカウント値が一巡する間に雑音成分は互いに相殺し、第2のアップダウンカウンタ25のカウント値は雑音がなかった場合と比べてそれほど大きくは変化しない。したがってしきい値処理回路26の出力は雑音による影響をある程度小さくすることができ、第1の基準レベルRaをペデスタルレベルP近傍に収束させることができる。
さらに、実施の形態5では、第1の基準レベル調整回路21に対して外部からリセット信号を適切なタイミングで与えることにより、第1の基準レベルRaを素早く適当な値に誘導することができるようにも構成されている。このことを以下に説明する。
いま、入力映像信号が無信号状態になっており、入力映像信号レベルVSが時間によらず0になっていたとする。このとき第1の基準レベルRaは絶対に入力映像信号レベルVSよりも小さくはならないので、第1の基準レベル調整回路21は第1の基準レベルRaが0になるように誘導する。その後、入力映像信号を切り替えたときに入力映像信号が図2のような波形になっていたとすると、第1の基準レベルRaは0から292に向かってゆっくりと上昇していく。ここで入力映像信号を切り替えると同時にリセット信号を1にしたとすると、第1の基準レベルRaはただちに292となり、素早くスライスレベルSLを適切な値に誘導することができる。リセット信号によるスライスレベルSLの収束時間の短縮は入力映像信号のペデスタルレベルPが292よりも小さい場合にも、ある程度有効である。これは、減算値mは1よりも大きな値に設定されているため、第1の基準レベルRaが0から増加してペデスタルレベルPに収束する時間よりも、第1の基準レベルRaが292から減少することによってペデスタルレベルPに収束する時間の方が短いからである。
さらに、リミット値Kを用いて第1のアップダウンカウンタ23のカウント値の上限を292以下に制限することによっても、第1の基準レベルRaの収束を速めることができる。たとえばテレビの受信チャンネルに放送がないいわゆる砂嵐の状態(信号成分が存在せずきわめて振幅の大きい雑音成分のみが存在する状態)には第1の基準レベルRaが非常に大きな値になる可能性がある。このような場合には第1のアップダウンカウンタ23のリミット値Kを設けることによって、第1の基準レベルRaが不必要に大きな値になることを防ぎ、図2のような入力映像信号波形に切り替わった場合に、第1の基準レベルRaの収束を高速化することができる。
また、カウント停止信号は、映像信号波形が通常と異なる垂直帰線期間に1となる信号である。カウント停止信号を垂直帰線期間において1とすると、垂直帰線期間において入力映像信号波形が図12のようになったとしても、同期信号振幅(図12の期間Ta)の大きな変化による第1の基準レベルRaの変動を防ぐことができ、スライスレベルSLを安定化することができる。
なお、実施の形態5では第1の基準レベル調整回路2のみにレベル変動抑制回路22を用いたが、第2の基準レベル調整回路4に対してレベル変動抑制回路22と同じ構成を持つ回路を適用して第2の基準レベルを安定化させるとしてもよい。同様に、第2の基準レベル調整回路4に対してリセット信号およびリミット値Kを適用して第2の基準レベルの収束を高速化してもよいし、第2の基準レベル調整回路4に対してカウント停止信号を適用することによって第2の基準レベルの垂直帰線期間における変動を防ぐとしても良い。
以上の実施の形態1乃至5において第1の減算回路1、第1の基準レベル調整回路2、21、第2の減算回路3、第2の基準レベル調整回路4、スライスレベル生成回路5、7、8、15はソフトウエアにより、即ちプログラムされたコンピュータにより実現するがことができる。
この発明の実施の形態1である同期分離装置の全体構成を示すブロック図である。 この発明の実施の形態1である同期分離装置の動作を説明するための標準的な映像信号波形の例である。 この発明の実施の形態1である同期分離装置の動作を説明するための非標準的な映像信号波形の例である。 この発明の実施の形態2である同期分離装置の全体構成を示すブロック図である。 この発明の実施の形態3である同期分離装置の全体構成を示すブロック図である。 この発明の実施の形態3であるレベル変動抑制回路10の内部構成を示すブロック図である。 この発明の実施の形態3である不感帯処理回路12の入出力応答を示すブロック図である。 この発明の実施の形態4である同期分離装置の全体構成を示すブロック図である。 この発明の実施の形態4であるレベル変動抑制回路16の内部構成を示すブロック図である。 この発明の実施の形態5である同期分離装置の全体構成を示すブロック図である。 この発明の実施の形態5であるレベル変動抑制回路22の内部構成を示すブロック図である。 垂直帰線期間における映像信号波形を示す図である。
符号の説明
1 第1の減算回路、 2 第1の基準レベル調整回路、 3 第2の減算回路、 4 第2の基準レベル調整回路、 5 スライスレベル生成回路、 6 比較回路、 7 スライスレベル生成回路、 8 スライスレベル生成回路、 9 平均値演算回路、 10 レベル変動抑制回路、 11 減算器、 12 不感帯処理回路、 13 乗算器、 14 積分器、 15 スライスレベル生成回路、 16 レベル変動抑制回路、 17 加算回路、 18 減算器、 19 積分器、 20 シフタ、 21 第1の基準レベル調整回路、 22 レベル変動抑制回路、 23 第1のアップダウンカウンタ、 24 自走カウンタ、 25 第2のアップダウンカウンタ、 26 しきい値処理回路。

Claims (20)

  1. 入力映像信号から同期信号を分離する同期分離装置において、
    第1の基準レベルと前記入力映像信号レベルの差を求める第1の減算手段と、
    前記第1の減算手段の減算結果に基づいて前記第1の基準レベルの値を増減させることで前記第1の基準レベルを前記入力映像信号のペデスタルレベルに調整する第1の基準レベル調整手段と、
    第2の基準レベルと前記入力映像信号レベルの差を求める第2の減算手段と、
    前記第2の減算手段の減算結果に基づいて前記第2の基準レベルの値を増減させることで前記第2の基準レベルを前記入力映像信号のシンクチップレベルに調整する第2の基準レベル調整手段と、
    前記第1の基準レベルと前記第2の基準レベルとの中間レベルをスライスレベルとして出力するスライスレベル生成手段と、
    前記スライスレベル生成手段から出力された前記スライスレベルと前記入力映像レベルを比較し、該比較結果に基づいて前記同期信号を生成する比較手段とを備えたことを特徴とする同期分離装置。
  2. 入力映像信号から同期信号を分離する同期分離装置において、
    第1の基準レベルと前記入力映像信号レベルの差を求める第1の減算手段と、
    前記第1の減算手段の減算結果に基づいて前記第1の基準レベルの値を増減させることで前記第1の基準レベルを前記入力映像信号のペデスタルレベルに調整する第1の基準レベル調整手段と、
    前記第1の基準レベルと所定の固定レベルとの中間レベルをスライスレベルとして出力するスライスレベル生成手段と、
    前記スライスレベル生成手段から出力された前記スライスレベルと前記入力映像レベルを比較し、該比較結果に基づいて前記同期信号を生成する比較手段とを備えたことを特徴とする同期分離装置。
  3. 入力映像信号から同期信号を分離する同期分離装置において、
    第1の基準レベルと前記入力映像信号レベルの差を求める第1の減算手段と、
    前記第1の減算手段の減算結果に基づいて前記第1の基準レベルの値を増減させることで前記第1の基準レベルを前記入力映像信号のペデスタルレベルに調整する第1の基準レベル調整手段と、
    前記第1の基準レベルと所定の固定レベルとの和または差をスライスレベルとして出力するスライスレベル生成手段と、
    前記スライスレベル生成手段から出力された前記スライスレベルと前記入力映像レベルを比較し、該比較結果に基づいて前記同期信号を生成する比較手段とを備えたことを特徴とする同期分離装置。
  4. 第1の基準レベル調整手段が、
    第1の減算手段の減算結果によって、第1の基準レベルよりも入力映像信号レベルの方が大きいことが判明したときには前記第1の基準レベルを増加させ、
    前記第1の減算手段の減算結果によって、前記第1の基準レベルよりも前記入力映像信号レベルの方が小さいことが判明したときには前記第1の基準レベルを減少させる
    ことを特徴とする請求項1から請求項3までのいずれかに記載の同期分離装置。
  5. 第2の基準レベル調整手段が、
    第2の減算手段の減算結果によって、第2の基準レベルよりも入力映像信号レベルの方が大きいことが判明したときには前記第2の基準レベルを増加させ、
    前記第2の減算手段の減算結果によって、前記第2の基準レベルよりも前記入力映像信号レベルの方が小さいことが判明したときには前記第2の基準レベルを減少させる
    ことを特徴とする請求項1に記載の同期分離装置。
  6. 第1の基準レベル調整手段または第2の基準レベル調整手段のいずれか一方または両方が、
    第1の基準レベルの変動を抑制するための制御手段あるいはフィルタ手段のいずれかを備えている
    ことを特徴とする請求項1から5までのいずれかに記載の同期分離装置。
  7. スライスレベル生成手段が、
    スライスレベルの変動を抑制するための制御手段あるいはフィルタ手段のいずれかを備えている
    ことを特徴とする請求項1から6までのいずれかに記載の同期分離装置。
  8. 第1の基準レベルおよび第2の基準レベルのいずれか一方または両方の可変範囲が入力映像信号のダイナミックレンジよりも小さい範囲内に制限されていることを特徴とする請求項1から7までのいずれかに記載の同期分離装置。
  9. 第1の基準レベルまたは第2の基準レベルのいずれか一方または両方のレベル変化を外部信号により停止できることを特徴とする請求項1から8までのいずれかに記載の同期分離装置。
  10. 第1の基準レベルおよび第2の基準レベルのいずれか一方または両方を外部信号により所定の値に設定可能であることを特徴とする請求項1から9までのいずれかに記載の同期分離装置。
  11. 入力映像信号から同期信号を分離するために用いるスライスレベルの決定方法において、
    第1の基準レベルと前記入力映像信号レベルの差を求める第1の減算ステップと、
    前記第1の減算ステップの減算結果に基づいて前記第1の基準レベルの値を増減させることで前記第1の基準レベルを前記入力映像信号のペデスタルレベルに調整する第1の基準レベル調整ステップと、
    第2の基準レベルと前記入力映像信号レベルの差を求める第2の減算ステップと、
    前記第2の減算ステップの減算結果に基づいて前記第2の基準レベルの値を増減させることで前記第2の基準レベルを前記入力映像信号のシンクチップレベルに調整する第2の基準レベル調整ステップと、
    前記第1の基準レベルと前記第2の基準レベルとの中間レベルをスライスレベルとするスライスレベル生成ステップと
    を備えたことを特徴とするスライスレベルの決定方法。
  12. 入力映像信号から同期信号を分離するために用いるスライスレベルの決定方法において、
    第1の基準レベルと前記入力映像信号レベルの差を求める第1の減算ステップと、
    前記第1の減算ステップの減算結果に基づいて前記第1の基準レベルの値を増減させることで前記第1の基準レベルを前記入力映像信号のペデスタルレベルに調整する第1の基準レベル調整ステップと、
    前記第1の基準レベルと所定の固定レベルとの中間レベルをスライスレベルとして出力するスライスレベル生成ステップと
    を備えたことを特徴とするスライスレベルの決定方法。
  13. 入力映像信号から同期信号を分離するために用いるスライスレベルの決定方法において、
    第1の基準レベルと前記入力映像信号レベルの差を求める第1の減算ステップと、
    前記第1の減算ステップの減算結果に基づいて前記第1の基準レベルの値を増減させることで前記第1の基準レベルを前記入力映像信号のペデスタルレベルに調整する第1の基準レベル調整ステップと、
    前記第1の基準レベルと所定の固定レベルとの和または差をスライスレベルとして出力するスライスレベル生成ステップと
    を備えたことを特徴とするスライスレベルの決定方法。
  14. 第1の基準レベル調整ステップが、
    第1の減算ステップの減算結果によって、第1の基準レベルよりも入力映像信号レベルの方が大きいことが判明したときには前記第1の基準レベルを増加させ、
    前記第1の減算ステップの減算結果によって、前記第1の基準レベルよりも前記入力映像信号レベルの方が小さいことが判明したときには前記第1の基準レベルを減少させる
    ことを特徴とする請求項11から13までのいずれかに記載のスライスレベルの決定方法。
  15. 第2の基準レベル調整ステップが、
    第2の減算ステップの減算結果によって、第2の基準レベルよりも入力映像信号レベルの方が大きいことが判明したときには前記第2の基準レベルを増加させ、
    前記第2の減算ステップの減算結果によって、前記第2の基準レベルよりも前記入力映像信号レベルの方が小さいことが判明したときには前記第2の基準レベルを減少させる
    ことを特徴とする請求項11に記載のスライスレベルの決定方法。
  16. 第1の基準レベル調整ステップまたは第2の基準レベル調整ステップのいずれか一方または両方が、
    第1の基準レベルの変動を抑制するための制御ステップまたはフィルタ演算ステップのいずれかを備えている
    ことを特徴とする請求項11から15までのいずれかに記載のスライスレベルの決定方法。
  17. スライスレベル生成ステップが、
    スライスレベルの変動を抑制するための制御ステップまたはフィルタ演算ステップのいずれかを備えている
    ことを特徴とする請求項11から16までのいずれかに記載のスライスレベルの決定方法。
  18. 第1の基準レベルおよび第2の基準レベルのいずれか一方または両方の可変範囲が入力映像信号のダイナミックレンジよりも小さい範囲内に制限されていることを特徴とする請求項11から17までのいずれかに記載のスライスレベルの決定方法。
  19. 第1の基準レベルまたは第2の基準レベルのいずれか一方または両方のレベル変化を外部信号により停止できることを特徴とする請求項11から18までのいずれかに記載のスライスレベルの決定方法。
  20. 第1の基準レベルおよび第2の基準レベルのいずれか一方または両方を外部信号により所定の値に設定可能であることを特徴とする請求項11から19までのいずれかに記載のスライスレベルの決定方法。
JP2005147844A 2005-05-20 2005-05-20 同期分離装置およびスライスレベルの決定方法 Expired - Fee Related JP4731204B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005147844A JP4731204B2 (ja) 2005-05-20 2005-05-20 同期分離装置およびスライスレベルの決定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005147844A JP4731204B2 (ja) 2005-05-20 2005-05-20 同期分離装置およびスライスレベルの決定方法

Publications (2)

Publication Number Publication Date
JP2006325071A JP2006325071A (ja) 2006-11-30
JP4731204B2 true JP4731204B2 (ja) 2011-07-20

Family

ID=37544390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005147844A Expired - Fee Related JP4731204B2 (ja) 2005-05-20 2005-05-20 同期分離装置およびスライスレベルの決定方法

Country Status (1)

Country Link
JP (1) JP4731204B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4955485B2 (ja) 2007-08-28 2012-06-20 ルネサスエレクトロニクス株式会社 水平同期検出装置
US8462269B2 (en) * 2007-11-16 2013-06-11 Mediatek Inc. Devices and methods for extracting a synchronization signal from a video signal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0533997B1 (de) * 1991-09-27 1996-03-20 Siemens Aktiengesellschaft Gerät zum Verarbeiten von in Zeilen aufgeteilten Videosignalen mit einer digitalen Synchronabtrennstufe

Also Published As

Publication number Publication date
JP2006325071A (ja) 2006-11-30

Similar Documents

Publication Publication Date Title
EP0969658B1 (en) Noise reduction signal processing circuit and display apparatus
US20090304135A1 (en) Synchronous clock generation apparatus and synchronous clock generation method
CA2384452C (en) Hdtv receiver having fast digital if agc and analog rf agc
JP4731204B2 (ja) 同期分離装置およびスライスレベルの決定方法
US7443455B2 (en) Automatic gain control based on multiple input references in a video decoder
US6111897A (en) Multiplexing/demultiplexing apparatus in digital communication system with variable frame structure and method of controlling the same
WO2009118977A1 (ja) 映像処理装置
US20060152630A1 (en) Video signal processor, video signal processing method, and TV broadcasting receiving set
KR101324577B1 (ko) 지연된 신호에 avc를 적용하는 신호 처리장치 및 방법
US8854541B2 (en) Video demodulation device
US9438820B1 (en) Systems and methods for processing composite video signals
US6894725B2 (en) Sample rate converter system
JPH04271570A (ja) 画像の輪郭補正回路及び画像の輪郭補正方法
US20100066908A1 (en) Synchronizing-signal generating device
JP2008160466A (ja) 映像信号処理装置
US7411527B2 (en) Noise shaping quantizer
JP4503461B2 (ja) 映像信号直流電圧安定化回路
JP2871323B2 (ja) 映像信号処理装置
KR100866571B1 (ko) 동기신호 보정 장치 및 방법
JP4335081B2 (ja) 信号直流電圧安定化回路およびそれを備えた映像機器
KR940002416B1 (ko) 동기신호삽입방식 및 회로
JP2006314011A (ja) 同期分離回路
EP1729506A2 (en) Slicing device for extracting multiplexed data
JP2010016520A (ja) 映像信号処理装置、及び映像信号処理方法
JPH07322091A (ja) 水平同期信号発生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees